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ABSTRACT

Many application scenarios involve anomaly detection of multivariate time series,
which exhibit complicated dependencies across different dimensions governed by
physical laws or system design. Though such cross-dimensional dependencies
usually serve as important references for human experts to detect anomalies from
monitoring data, the algorithms in this domain have not explored and leveraged
them thoroughly. On the one hand, many algorithms incorporating graph networks
to model the cross-dimensional dependencies require establishing the topology
manually. However, in many real-world application scenarios, there are usually
thousands of indicators, such as complex IoT systems, aircraft control systems,
and so on. Constructing such topologies manually is laborious, as the complexity
of defining them grows quadratically with the number of dimensions. On the
other hand, graph networks usually assume fixed and instantaneous dependencies,
but we observe pronounced cross-dimensional correlation lag in complex system
monitoring data, indicating that dependencies across dimensions are not static
but dynamically shift with time intervals. To address these issues, we propose
an Anomaly Detection Method Capturing Semantic Topology and Correlation
lag (ADSec), which extracts topology from expert documents and monitoring
data automatically and successfully models the cross-dimensional correlation lag.
Specifically, ADSec extracts a semantic topology from expert documents and
refines it with monitoring data. Besides, it leverages a novel Neural Hawkes
process to model the cross-dimensional correlation lag and adjust the topology
dynamically. Extensive experiments on four real-world datasets demonstrate that
ADSec improves F1 Score by 5.8% averagely on multivariate time series with
complex inter-dimension dependencies, compared with SOTA anomaly detection
methods.

1 INTRODUCTION

In many real-world application scenarios, such as anomaly detection in aircraft control systems,
there exist complex cross-dimensional dependencies. For instance, these include the voting logic
in redundant channels (Davis, 1987) or the physical relationships between commanded force and
control surface deflection (Nelson et al., 1998). Such dependencies are typically rooted in system
design principles and physical laws. While they often provide valuable references for human experts
when detecting anomalies in monitoring data, existing anomaly detection algorithms have not fully
exploited this information.

MSCRED (Zhang et al., 2019) employs a signature matrix to model cross-dimensional correlations,
and SARAD (Dai et al., 2024) trains a transformer to capture spatial correlations. However, these
approaches are purely data-driven and fail to effectively incorporate domain knowledge about such
dependencies. Many spatio-temporal anomaly detection methods (Yi et al., 2023; Mercatali et al.,
2024; Huang et al., 2023) adopt graph networks to represent cross-dimensional correlations, but
these approaches require manually constructing the topology. In practice, scenarios such as industrial
IoT systems and aircraft control systems often involve thousands of monitoring indicators, making
manual topology construction impractical given its quadratic complexity with respect to the number
of dimensions.
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Figure 1: (a) The figure shows how the correlation coefficients between different dimensions of a
high-dimensional time series vary with lag. In the legend, “1 vs 2” denotes the cross-correlation
between the first and second dimensions; (b) The figure illustrates the working mechanism of the
Neural Hawkes process and explains why it can adapt to temporal scenarios where the topology varies
across different time steps; (c) The figure presents the anomaly scores produced by ADSec alongside
the corresponding time series and anomaly labels, demonstrating the effectiveness of ADSec.

Moreover, graph-based approaches typically assume fixed and instantaneous dependencies across
dimensions. In reality, variations in one dimension often induce changes in another only after a
certain delay. For example, in aircraft control systems, the rudder angle responds several time
steps after a steering wheel command force is applied. As illustrated in Fig. 1(a), where we plot
the cross-correlation functions of monitoring data from an aircraft control system, the peak values
across most dimensions do not appear at lag 0. This observation indicates that cross-dimensional
dependencies vary with time intervals and exhibit cross-dimensional correlation lags and using a
static and instantaneous topology could not precisely model such a lag.

To effectively leverage expert knowledge of cross-dimensional dependencies and address the lim-
itations of graph networks in handling dynamic dependencies with correlation lag, we propose an
Anomaly Detection method capturing Semantic Topology and Correlation lag (ADSec). Specifically,
ADSec first constructs a semantic topology from a large language model (LLM) fine-tuned on expert
documents. This semantic topology is then refined to better align with monitoring data by a refinement
module. In addition, to capture dynamic cross-dimensional dependencies with temporal lag, we
propose a novel Neural Hawkes process that learns impact functions ϕ(t− t′i) for each time lag t′i
based on the refined topology, as illustrated in Fig. 1(b).

The main contributions of this paper are summarized in the following:

• We propose a framework that integrates semantic topology derived from professional docu-
ments with data-pattern topology extracted from monitoring data.

• We design a semantic topology extraction module that effectively leverages diverse profes-
sional documents, even when they contain inconsistent terminologies.

• We propose a novel Neural Hawkes Process to model dynamically evolving dependencies
with correlation lags across different monitoring dimensions.

• We conduct extensive experiments demonstrating that ADSec delivers robust and consistent
improvements in anomaly detection performance as shown in Fig. 1(c), outperforming the
strongest state-of-the-art methods across multiple datasets.

2 PRELIMINARY

2.1 MULTIVARIATE HAWKES PROCESS

A multivariate Hawkes process (Cai et al., 2022) models how the occurrence of an event in one
dimension exerts a continuous and dynamically evolving influence on the same and other dimensions
over future time, governed by an impact function. Specifically, when an event occurs in a given
dimension, it increases the conditional intensities of events in the same and other dimensions, with
the magnitude and duration of the influence modulated by the form of the impact function. This
allows the Hawkes process to capture intricate, time-variant interactions across multiple dimensions.
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Formally, for an event set V , given empirical event rates E ∈ RT×|V|, E[t, i] represents the rate of
event i at time slot t. The conditional intensity function λk(t|H) for event k at tth time slot is given
by Eq. 1, where T− is a set of time slots that are before the time slot t, ϕi,k is an impact function
characterizing the time-variant influence between event i and k, µk represents the spontaneous
occurrence rate of event k, and H is the observing event history at tth time slot.

λk(t|H) = µk +
∑
i∈V

∑
t′∈T−

ϕi,k(t− t′)E[t′, i] (1)

2.2 PROBLEM SETUP

Given a multivariate time series X ∈ RT×n with semantically meaningful names for each dimension,
where X[i] ∈ Rn denotes the time series value at ith time slot, the ground truth of whether each time
slot is anomaly is denoted by y ∈ RT , where y[i] = 1 denotes the ith time slot is an anomaly and
y[i] = 0 denotes it is not. We divide the time series X by sliding window and use Xi to denote the
ith window. We use [⃗ai]

n
i=1 to denote the word embeddings for each dimension name in LLM. The

semantic topology between different dimensions are represented by an adjacency matrix A ∈ Rn×n.
The data-driven relation pattern between different dimensions are denoted by an adjacency matrix
S ∈ Rn×n. The reconstruction-based anomaly detection methods obtain a reconstructed series X̂
and use the reconstruction error

∣∣∣X[i]− X̂[i]
∣∣∣ as the anomaly score M [i] for ith time slot. The

reconstruction-based anomaly detection methods aim to minimize objective function shown in Eq. 2,
where 1 denotes the indicative function and T denotes the threshold found by the reconstruction-based
anomaly detection methods.

T∑
i=1

|y[i]− 1(M [i]− T )| (2)

3 METHODOLOGY
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Figure 2: The model architecture of ADSec

3.1 OVERVIEW

The architecture of ADSec is shown in Fig. 2. We firstly use the professional document to fine-tune an
LLM and obtain the word embeddings for each dimension name. Based on these word embedding we
construct the semantic topology. Subsequently, to make the semantic topology more consistent with
the actual data, in the training process, we refine the semantic topology by a designed loss function.
In order to model the cross dimensional correlation lag, we use Time Lag Embeddings to obtain
impact functions of Neural Hawkes process for different temporary lag based on refined topology.
After that, we use anomaly attention mechanism (Xu et al., 2022) to reconstruct original time series
from the conditional intensity obtained from Neural Hawkes process. The topology refinement and
time series reconstruction is trained iteratively.
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3.2 SEMANTIC TOPOLOGY EXTRACTION

To better leverage the expert knowledge, we extract semantic topology relation between different
dimensions in the dataset from professional documents. However, even within the same organization,
it is highly likely that different departments use varying expressions to refer to the same monitoring
indicator in their respective domain-specific documents. Traditional knowledge graph extraction
methods tend to create separate entities for the same object when it is referred to by different names,
leading to inconsistency and redundancy in the resulting graph (Getoor & Machanavajjhala, 2012).
To mitigate the potential disruption that inconsistent terminology may introduce when extracting the
semantic topological relationships among different dimensions, we extract the semantic topological
structure among dimensions based on their word embeddings, allowing the analysis to focus on the
underlying semantics rather than superficial differences in the naming of dimensions. We firstly
fine-tune the embedding layer of a causal self-attention-based large language model (LLM) (Radford
et al., 2019) using the Low-Rank Adaptation (LoRA) technique (Hu et al., 2022), with domain-
specific documents and a text completion objective. This fine-tuning process aligns the model’s
word embeddings with the semantics of the target domain, enabling the LLM to better capture and
represent expert knowledge specific to the current field. The fine-tuning details can be found in
Appendix. A.5. Subsequently, we extract the word embeddings corresponding to each dimension
name in the current dataset. If a dimension name is tokenized into multiple tokens, we compute
its final embedding by averaging the embeddings of all associated tokens. We use a⃗i to denote the
embeddings of ith dimension.

We observe that after fine-tuning the model on domain-specific documents, the angles between
the word embeddings reflect expert knowledge regarding the relationships between dimensions.
Specifically, when two dimensions are positively correlated according to domain expertise, the angle
between their embeddings tends to be smaller, resulting in a higher cosine similarity. Conversely,
when two dimensions are negatively correlated, the angle between their embeddings tends to be
larger, leading to a lower (often negative) cosine similarity. For example, water temperature and flow
velocity are known to have a positive correlation; after fine-tuning, the cosine similarity between
their embeddings is positive and greater than that between unrelated dimensions. In contrast, the
concentration of chlorinated compounds and water temperature are known to exhibit a negative
correlation; correspondingly, after fine-tuning, the cosine similarity between their embeddings
becomes negative and smaller than that observed between unrelated dimensions. We discuss this
finding in Section 4.5 experimentally.

Based on the aforementioned findings, we model the semantic topological relation between dimen-
sions by calculating the cosine similarity between their embeddings. We use A ∈ Rn×n to denote the
semantic topology adjacency matrix, where A[i][j] denotes the semantic relation between ith and jth

dimension, as defined in Eq. 3.

A[i][j] =
a⃗i · a⃗j
|⃗ai| |⃗aj |

(3)

This approach enables us to overcome the problem of using different terminologies referring to the
same object, thereby effectively integrating expert knowledge from multiple documents that adopt
distinct terminological systems. For example, different documents use the terms "steering wheel
control force" and "steering wheel command force" to describe the same aircraft monitoring indicator,
respectively. These two terms are tokenized into [‘ste’, ‘ering’, ‘Ġwheel’, ‘Ġcontrol’, ‘Ġforce’] and
[‘ste’, ‘ering’, ‘Ġwheel’, ‘Ġcommand’, ‘Ġforce’], respectively. Through this tokenization, different
documents collaboratively fine-tune the embeddings of shared subword tokens such as ‘ste’, ‘ering’,
‘Ġwheel’, and ‘Ġforce’. Consequently, when extracting the final word representations, the model can
effectively fuse expert knowledge about the same concept from different documents.

3.3 NEURAL HAWKES PROCESS FOR TIME LAG

In traditional graph neural networks, the modeling of topological dependencies across different
dimensions typically assumes static and instantaneous relationships. However, this assumption fails
to capture the fact that inter-dimensional dependencies may evolve dynamically over time and often
exhibit temporal lag. For example, consider a scenario where dimension A represents changes in
control stick force in an aircraft, while dimension B represents changes in the deflection angle of
the aircraft control surface. In this case, changes in A do not immediately lead to changes in B;

4
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instead, the influence of A on B becomes evident only after several time steps. To accurately capture
such temporally lagged and dynamically evolving dependencies, we adopt the Hawkes process to
model the inter-dimensional topological relations over time. We construct impact functions across
different temporal intervals based on the underlying topology and optimize them through data-driven
training. Specifically, we first initialize a trainable adjacency matrix S using semantic topology,
which encodes the structural prior between dimensions. Taking the tth sliding window Xt as an
example, let T− = {t′1, t′2, . . . , t′m} denote the set of time slot immediately preceding t. The impact
function is given by Eq. 4, where Wi are trainable parameters, ϕ0 is the instantaneous impact function,
and ϕ(t− t′i) is the impact function when time interval is equal to t− t′i.

ϕ0 = SW0, ϕ(t− t′i) = SWi, i ∈ [1,m] (4)
Consequently, we model the conditional intensity function by Eq. 5, where µ ∈ Rn is trainable
spontaneous response rate, the term

∑m
i=1 Xt′i

· ϕ(t − t′i) models the time-lagged influence both
within and across dimensions, and the term Xt · ϕ0 models the instantaneous impact both within and
across dimensions. After obtaining the conditional intensity function, we use Anomaly Attention
mechanism (Xu et al., 2022) to reconstruct the original time series from it. The reconstruction time
series is denoted by X̂ .

λ(t|H) = µ+

m∑
i=1

Xt′i
· ϕ(t− t′i) +Xt · ϕ0 (5)

In standard Hawkes processes, the impact function is typically required to satisfy two conditions: non-
negativity and finite integrability. However, in ADSec, we do not impose the non-negativity constraint.
This is because, in many complex real-world scenarios, the relationship between dimensions can be
suppressive (negatively correlated) rather than excitatory (positively correlated). As such, allowing
the impact function to take negative values enables ADSec to capture negative correlation between
dimensions. Regarding finite integrability, this property still holds in our setting. Since the set T− is
finite and the values of the impact function ϕ within this set are bounded, the integration of impact
function remains finite.

3.4 DATA-DRIVEN TOPOLOGY REFINEMENT

The semantic topology extracted from expert documents does not fully align with the underlying
cross-dimensional correlation in the dataset. Therefore, we use data-driven method to refine the
semantic topology extracted from professional document. We denote the refined topology by S,
which is initialized with the semantic topology A. We adopt an alternating optimization strategy: we
first fit the topology structure S and fix the remaining model parameters to minimize a designed loss
function L1; then, with the topology structure fixed, we update the remaining model parameters θ by
minimizing the reconstruction error L2. These two steps are iteratively performed until convergence.

In the first step, inspired by (Jin et al., 2020), we optimize the refined topology S with the objective
of enhancing the smoothness of the graph neural network and reducing the reconstruction error. To
this end, we incorporate a sparsity regularization term, as well as a penalty term that constrains the
deviation of the optimized S from the original topology extracted from professional documents. The
overall loss function used in this step is defined in Eq. 6. In the second step, we optimize θ by the
reconstruction error, as shown in Eq. 7.

L1(S) = ∥X − X̂∥2 + γ1

n∑
i=1

n∑
j=1

Si,j∥X[:, i]−X[:, j]∥2 + γ2∥A− S∥2 + γ3∥S∥2 (6)

L2(θ) = ∥X − X̂∥2 (7)

4 EXPERIMENT

We have made extensive experiments on four datasets and make the following contributions:

• ADSec can achieve the best F1 score across the four datasets compared with SOTA, only
requiring reasonable time and memory overhead increase.

5
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• ADSec is insensitive to the hyperparameters.
• Every module in ADSec contributes to its final performance. Especially, the semantical

topology can successfully capture important correlation between dimensions and the neural
Hawkes process can precisely capture cross dimensional correlation lag.

4.1 EXPERIMENT SETUP

Baselines. We choose the SOTA anomaly detection methods, Anomaly Transformer (Xu et al.,
2022), TranAD (Tuli et al., 2022), AutoFormer (Wu et al., 2021), MSCRED (Zhang et al., 2019),
OmniAnomaly (Su et al., 2019), Time series foundation model Moment (Goswami et al., 2024),
OneFitsAll (Zhou et al., 2023) and large language model GPT4 as our baselines. For more details,
please refer to Appendix. A.1

Datasets. We use four real world datasets. Two of them are open source benchmarks: GECCO
(Rehbach et al., 2018) and weather dataset (Institute, 2020). GECCO is a water quality monitoring
dataset and weather is a weather monitoring dataset. Other two (Flight 1 and Flight 2) are aircraft
operating system monitoring data of different aircrafts, collected from one of aircraft production
company in World’s top 300 enterprises. Among them, Flight 1 and Flight 2 have shown strong
correlation lag across different dimensions. Part of weather dataset have shown weak correlation lag
across different dimensions. GECCO does not show the correlation lag. Thus, we compare ADSec’s
performance on them in the following to verify the effectiveness of Neural Hawkes module. For more
details of datasets, please refer to Appendix. A.2.

Hyperparameter. We use grid search to determine the optimal hyperparameter settings. We discuss
the hyperparameter setting process, explore ranges, and optimal settings in Appendix. A.4.

Evaluation Metrics. We use three widely-used metrics: precision, recall and f1 score to measure the
performance of ADSec and our baselines. For more details please refer to Appendix. A.3.

Table 1: The average performance of ADSec and baselines on four datasets. We use the first four
characters to represent each method.

GECCO Weather Flight 1 Flight 2
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

AutoF 0.367 0.779 0.295 0.291 0.927 0.441 0.750 0.985 0.852 0.886 0.949 0.916
Anoma 0.438 0.872 0.553 0.849 0.815 0.821 0.129 1.000 0.229 0.127 0.939 0.223
TranA 0.995 0.892 0.930 0.820 0.988 0.894 1.000 0.425 0.597 1.000 0.424 0.596
MSCRe 0.874 0.888 0.874 0.825 0.920 0.869 0.885 0.746 0.810 0.952 0.798 0.868
OmniA 0.895 0.892 0.883 0.621 0.792 0.694 0.566 0.478 0.518 0.723 0.606 0.659
Momen 0.328 0.922 0.466 0.882 0.509 0.645 0.583 0.731 0.649 0.605 0.765 0.676
OneFi 0.621 0.792 0.637 0.988 0.190 0.319 0.857 0.358 0.505 0.310 0.133 0.186
GPT4 0.131 0.477 0.192 0.290 0.915 0.441 0.113 0.896 0.200 0.142 0.606 0.229
ADSec 0.996 0.911 0.941 0.955 0.958 0.956 0.917 0.993 0.953 0.978 0.968 0.973

4.2 PREDICTION ACCURACY

We evaluate the average performance of ADSec and several baselines across four real-world datasets.
The experimental results are summarized in Tab. 1, where the best scores are shown in bold and the
second-best scores are underlined. For brevity, only the first five characters of each method’s name
are presented.

From Tab. 1, we observe that our method consistently achieves the highest F1 score across all four
datasets, improving the F1 score by an average of 5.8% over the strongest baseline. Among the
baselines, TranAD achieves good F1 scores on GECCO and Weather, whereas AutoFormer performs
well on Flight 1 and Flight 2. We attribute this to the pronounced cross-dimension correlation lag
in the Flight datasets: AutoFormer’s auto-correlation mechanism explicitly models correlations
across different lags, enabling it to better capture such dependencies. This also explains TranAD’s
performance drop on Flight 1 and Flight 2.
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Moreover, ADSec’s performance across the four datasets closely aligns with the strength of cross-
dimension correlation lag observed in each dataset. Flight 1 and Flight 2 exhibit the strongest lag,
and ADSec achieves higher F1 scores on these datasets than on the other two. In contrast, GECCO
shows minimal cross-dimension lag, where ADSec’s performance is comparatively lower. These
findings validate the effectiveness of the Neural Hawkes process employed by ADSec.

4.3 MEMORY AND TIME OVERHEAD

We measure the memory and time overhead of ADSec and baselines on a Linux server with dual
AMD EPYC 7T83 CPUs, eight NVIDIA RTX 4090 GPUs, and 503 GiB RAM. For performance
tests, only a single RTX 4090 GPU was used. In Fig. 3(a), we present the training time, inference
time, and memory overhead of the baselines and ADSec. For clarity, the memory overhead is divided
by 10, and the time overhead of GPT-4 is also scaled down by a factor of 10 due to its large gap
from other methods. As shown in the figure, compared with the most lightweight baseline, ADSec
achieves higher accuracy while introducing only modest additional training and storage costs.

4.4 HYPERPARAMETER SENSITIVITY

We evaluated the F1 score of ADSec with respect to different values of m and γ, where m ∈
{3, 5, 7, 9, 11} and γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. Due to space limitations, we set γ1, γ2, γ3
uniformly to γ. A more fine-grained parameter tuning is discussed in the Appendix A.4. The
experimental results are shown in Fig. 3(b), from which we can observe that the effect of m on
ADSec is greater than that of γ. Specifically, the F1 score of ADSec first increases and then decreases
as m grows, reaching its optimum around m = 5. This observation aligns with the average cross-
dimension correlation lag we measured in the Flight dataset (discussed in Appendix A.2). We attribute
this fluctuation to the fact that when m is too small, it fails to capture the lagged correlations across
dimensions with large cross-dimension correlation lags. Conversely, when m is too large, since most
dimensions do not exhibit such long correlation lags, increasing m substantially raises the number
of trainable parameters, thereby complicating the training process and reducing the likelihood of
converging to an optimal solution. When m is fixed, the impact of γ on ADSec is minimal: across
the above range of γ, the variation in ADSec’s F1 score does not exceed 3.5%. When m and γ vary
jointly, the gap between the best and worst hyperparameter settings is within 8% in terms of ADSec’s
F1 score. Therefore, the performance of ADSec is not sensitive to this set of hyperparameters and
does not incur complicated deployment overhead.

In addition, we evaluated the variation of ADSec’s F1 score when the learning rate and window
length were set to {0.1, 0.01, 0.001, 0.0001, 5 × 10−4, 1 × 10−4} and {3, 5, 7, 9, 11}, respectively,
as shown in Fig. 3(c). When the learning rate is set to 0.1, ADSec achieves its best performance;
however, the model’s performance becomes unstable across different window lengths due to the
overly large step size. As the learning rate decreases to 0.01 and below, the performance of the model
becomes more stable across varying window lengths, with the best overall performance observed
at a learning rate of 0.01 (except 0.1). Overall, ADSec’s performance varies within 7%, when the
learning rate and window length vary in the aforementioned ranges. Thus, ADSec is also insensitive
to this group of hyperparameters.

4.5 EFFECTIVENESS OF EACH MODULE

To validate the effectiveness of the Semantical Topology, Neural Hawkes, and Topology Refinement
modules, we first conducted ablation studies by removing each module in turn and comparing the
resulting model performance with that of the complete ADSec. When ablating the Semantical
Topology module, we replaced the computed word embedding correlation matrix with a random
matrix. The corresponding results are reported in Tab. 2, where we use ‘ST’, ‘NH’, ‘TR’ to represent
Semantical Topology, Neural Hawkes and Topology Refinement separately. From the table, we can
observe that the complete ADSec consistently outperforms the variants with ablated modules. On the
GECCO dataset, the performance gap between ADSec and the variant without the Neural Hawkes
module is relatively small. This is mainly because, the phenomenon of cross-dimension correlation
lag is not evident in GECCO (shown in Appendix. A.2).
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(a) Time and Memory Overhead of
ADSec and Baselines

F1 Score

(b) Model sensitivity of γs and m

F1 Score

(c) The impact of window length
and learning rate

(d) Semantical Topology (e) Effect of Topology Refinement (f) Effect of Neural Hawkes

Figure 3: (a) The figure illustrates the memory overhead (divided by 10), as well as the inference
and training time overhead of the baselines and ADSec. For brevity, we denote each method by its
first five characters; (b)The figure shows the F1 scores of ADSec when m and γ1, γ2, γ3 change.
For simplicity, we set γ1 to γ3 as a unified value γ. For more fine grained experiments, please
refer to Appendix. A.4; (c) The figure shows the F1 scores of ADSec when window length and
learning rate (lr) change; (d) The figure shows the correlation relationship between the dimensions
of dataset GECCO. Positive value denotes positive correlation. The larger the value is, the stronger
the correlation is and vice versa; (e) The figure shows the estimated error of semantical topology
and the topology after refining along different training steps; (f) We shift one series to the left by 4,
6 and 8 steps and plot the ϕ(t− t′i), t

′
i ∈ {t′1, . . . , t′m} of a given time slot t in shadow. The wider

the shadow is, the larger the value of ϕ(t − t′i) is. The figure verifies that the point in the shifted
series corresponding to the given time slot in original series has the largest ϕ(t− t′i), which means
the corresponding point can be attributed the highest weight in Neural Hawkes process.

Moreover, we exhibit the semantic topology in Fig. 3(d). The correlation results largely conform
to water chemistry expectations, such as the negative association between temperature and redox,
the inverse relation between CL2 and pH, and the strong consistency between the two flow sensors.
At the same time, certain deviations, like the unexpected negative correlation between CL2 and
Redox, indicate that semantic topology may be misleading. These findings highlight the necessity of
data-driven topology refinement to uncover hidden or non-intuitive dependencies in multivariate time
series.

We verify the effectiveness of the data-driven topology refinement module in Fig. 3(e), where we
plot the estimated errors of the semantic topology and the refined topology. As shown, the estimated
error of the refined topology first increases and then decreases as training proceeds. We attribute this
behavior to the Adam optimizer: in the early stages, the moment estimates are not yet stable, leading
to a temporary rise in error; once the estimates converge, the error begins to decrease.

To evaluate the effectiveness of the Neural Hawkes process, we construct synthetic datasets by
shifting an original time series by 4, 6, and 8 steps to generate additional dimensions. As illustrated
in Fig. 3(f), for a given time slot t, we highlight in the shifted series the corresponding values of
ϕ(t − t′i), i ∈ [1,m], using shaded regions whose widths increase with the magnitude of ϕ. From
the figure, it is evident that ϕ(t− t′i) reaches its maximum at the point in the shifted series aligned
with the given time slot. This demonstrates that the Neural Hawkes process is capable of capturing
cross-dimension correlation lags.
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Table 2: The average performance of ADSec and its variants.
Modules GECCO Weather Flight 1 Flight 2

ST NH TR Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
×

√ √
0.873 0.860 0.863 0.882 0.959 0.918 0.709 1.000 0.830 0.857 0.968 0.909√

×
√

0.962 0.911 0.924 0.879 0.985 0.928 0.796 0.993 0.884 0.657 0.968 0.783√ √
× 0.892 0.839 0.853 0.857 0.955 0.898 0.624 0.694 0.657 0.891 0.968 0.928√ √ √

0.996 0.911 0.941 0.955 0.958 0.956 0.917 0.993 0.953 0.978 0.968 0.973

5 RELATED WORK

Graph neural networks can generally be divided into two categories: spectral methods and spatial
methods. Spectral methods derive node representations based on graph spectral theory (Bruna
et al., 2014; Defferrard et al., 2016; Kipf & Welling, 2017), whereas spatial methods perform graph
convolutions directly in the spatial domain by aggregating information from neighboring nodes
(Chen et al., 2018; Hamilton et al., 2017; Veličković et al., 2018). A limitation of these approaches
is that they typically require a manually defined topology, which becomes cumbersome in high-
dimensional settings. To address this issue, recent studies have proposed approaches that learn and
refine the graph structure from training data (Jin et al., 2020; Wu et al., 2020). However, these
methods usually assume that the graph structure remains static across time steps, and that a change
in one dimension immediately leads to a change in another dimension, thereby employing a single
graph throughout the entire time span. In reality, the relationships between different dimensions
are often dynamic and exhibit cross-dimensional lags, as discussed in the Introduction. In other
words, a change in one dimension at a given time may only induce a change in another dimension
after several subsequent time steps. Consequently, no dependency exists at the time of the initial
change, but a dependency emerges after a delay. Anomaly detection methods can broadly be
categorized into classical approaches and neural network-based approaches. Classical methods,
particularly statistical-based algorithms, model the distribution of time series data and identify
anomalies according to their likelihood under the fitted distribution (Eskin, 2000; Wang et al., 2016).
While effective for detecting point anomalies and distributional shifts, these methods typically rely
on strong distributional assumptions that may not hold in dynamic environments (Ma et al., 2021).
Moreover, they lack the capacity to incorporate expert knowledge and temporal dependencies, which
limits their ability to detect contextual anomalies (Wang et al., 2024). Neural network-based methods,
by contrast, can be further divided into prediction-based methods (Malhotra et al., 2015; Hundman
et al., 2018; Zong et al., 2018; Chen et al., 2022a), reconstruction-based methods (Chen et al., 2022b;
You et al., 2022; Jiang et al., 2022; Shen et al., 2021; Tian et al., 2019), and large language model
(LLM)-based methods (Liu et al., 2024b; Russell-Gilbert et al., 2024; Liu et al., 2024a). However,
prediction-based and reconstruction-based approaches often require manual effort to integrate expert
knowledge and to construct appropriate graph structures. LLM-based methods, while more flexible,
are generally insensitive to subtle value fluctuations and face challenges in capturing fine-grained
normal patterns (Jin et al., 2024).

6 CONCLUSION

In this paper, we propose ADSec, a novel anomaly detection method that captures semantic topology
and cross-dimensional correlation lag to better leverage expert knowledge and model dynamic inter-
dimensional dependencies. ADSec has three key features: (1) it adopts a unified framework that
integrates semantic topology extracted from expert documents with data-driven topology mined
from monitoring data; (2) it employs a semantic topology extraction module to effectively utilize
expert knowledge from diverse documents; and (3) it introduces a Neural Hawkes Process to capture
cross-dimensional correlation lags and model dynamic topologies across different time intervals.
Extensive experiments on four real-world datasets demonstrate that ADSec consistently improves F1
scores by an average of 5.8% over the strongest state-of-the-art anomaly detection methods, with
each module contributing to this performance improvement.
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7 REPRODUCIBILITY STATEMENT

We include the datasets and code used in our experiment in supplementary files. Besides, we discuss
the hyperparameter tuning technique, LLM fine-tuning technique and optimal hyperparameter settings
in Appendix. A.5 and Appendix. A.4.

REFERENCES

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In Yoshua Bengio and Yann LeCun (eds.), 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6203.

Ruichu Cai, Siyu Wu, Jie Qiao, Zhifeng Hao, Keli Zhang, and Xi Zhang. Thps: Topological hawkes
processes for learning causal structure on event sequences. IEEE Transactions on Neural Networks
and Learning Systems, 35(1):479–493, 2022.

Chengwei Chen, Yuan Xie, Shaohui Lin, Angela Yao, Guannan Jiang, Wei Zhang, Yanyun Qu, Ruizhi
Qiao, Bo Ren, and Lizhuang Ma. Comprehensive regularization in a bi-directional predictive
network for video anomaly detection. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 230–238, 2022a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=rytstxWAW.

Wenchao Chen, Long Tian, Bo Chen, Liang Dai, Zhibin Duan, and Mingyuan Zhou. Deep variational
graph convolutional recurrent network for multivariate time series anomaly detection. In Inter-
national Conference on Machine Learning, ICML 2022, volume 162 of Proceedings of Machine
Learning Research, pp. 3621–3633, 2022b.

Zhihao Dai, Ligang He, Shuanghua Yang, and Matthew Leeke. SARAD: spatial association-aware
anomaly detection and diagnosis for multivariate time series. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
56ad264ac7448239145606cf4106042f-Abstract-Conference.html.

Gloria J Davis. An analysis of redundancy management algorithms for asynchronous fault tolerant
control systems. Technical report, 1987.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Eleazar Eskin. Anomaly detection over noisy data using learned probability distributions. 2000.

Lise Getoor and Ashwin Machanavajjhala. Entity resolution: theory, practice & open challenges.
Proceedings of the VLDB Endowment, 5(12):2018–2019, 2012.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
MOMENT: A family of open time-series foundation models. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=FVvf69a5rx.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

10

http://arxiv.org/abs/1312.6203
https://openreview.net/forum?id=rytstxWAW
http://papers.nips.cc/paper_files/paper/2024/hash/56ad264ac7448239145606cf4106042f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/56ad264ac7448239145606cf4106042f-Abstract-Conference.html
https://openreview.net/forum?id=FVvf69a5rx


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang
Wang. Crossgnn: Confronting noisy multivariate time series via cross interaction refinement.
Advances in Neural Information Processing Systems, 36:46885–46902, 2023.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. De-
tecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In Proceedings
of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
387–395, 2018.

Max Planck Institute. The weather dataset, 2020. URL https://www.kaggle.com/
datasets/alistairking/weather-long-term-time-series-forecasting.

Xi Jiang, Jianlin Liu, Jinbao Wang, Qiang Nie, Kai Wu, Yong Liu, Chengjie Wang, and Feng Zheng.
Softpatch: Unsupervised anomaly detection with noisy data. Advances in Neural Information
Processing Systems, 35:15433–15445, 2022.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-llm: Time series forecasting
by reprogramming large language models. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024, 2024.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 66–74, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Chen Liu, Shibo He, Qihang Zhou, Shizhong Li, and Wenchao Meng. Large language model guided
knowledge distillation for time series anomaly detection. arXiv preprint arXiv:2401.15123, 2024a.

Jun Liu, Chaoyun Zhang, Jiaxu Qian, Minghua Ma, Si Qin, Chetan Bansal, Qingwei Lin, Saravan
Rajmohan, and Dongmei Zhang. Large language models can deliver accurate and interpretable
time series anomaly detection. arXiv preprint arXiv:2405.15370, 2024b.

Minghua Ma, Shenglin Zhang, Junjie Chen, Jim Xu, Haozhe Li, Yongliang Lin, Xiaohui Nie,
Bo Zhou, Yong Wang, and Dan Pei. Jump-starting multivariate time series anomaly detection for
online service systems. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp.
413–426, 2021.

Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, Puneet Agarwal, et al. Long short term memory
networks for anomaly detection in time series. In Esann, volume 2015, pp. 89, 2015.

Giangiacomo Mercatali, Andre Freitas, and Jie Chen. Graph neural flows for unveiling systemic
interactions among irregularly sampled time series. Advances in Neural Information Processing
Systems, 37:57183–57206, 2024.

Robert C Nelson et al. Flight stability and automatic control, volume 2. WCB/McGraw Hill New
York, 1998.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Frederik Rehbach, Steffen Moritz, Sowmya Chandrasekaran, Margarita Rebolledo, Martina Friese,
and Thomas Bartz-Beielstein. Gecco 2018 industrial challenge: Monitoring of drinking-water
quality. Accessed: Feb, 19:2019, 2018.

Alicia Russell-Gilbert, Alexander Sommers, Andrew Thompson, Logan Cummins, Sudip Mittal,
Shahram Rahimi, Maria Seale, Joseph Jaboure, Thomas Arnold, and Joshua Church. Aad-llm:
Adaptive anomaly detection using large language models. arXiv preprint arXiv:2411.00914, 2024.

11

https://www.kaggle.com/datasets/alistairking/weather-long-term-time-series-forecasting
https://www.kaggle.com/datasets/alistairking/weather-long-term-time-series-forecasting
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lifeng Shen, Zhongzhong Yu, Qianli Ma, and James T Kwok. Time series anomaly detection
with multiresolution ensemble decoding. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 9567–9575, 2021.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2828–2837,
2019.

Kai Tian, Shuigeng Zhou, Jianping Fan, and Jihong Guan. Learning competitive and discriminative
reconstructions for anomaly detection. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 5167–5174, 2019.

Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings. Tranad: Deep transformer networks
for anomaly detection in multivariate time series data. Proc. VLDB Endow., 15(6):1201–1214,
2022. doi: 10.14778/3514061.3514067. URL https://www.vldb.org/pvldb/vol15/
p1201-tuli.pdf.
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A APPENDIX

A.1 BASELINES

To verify the effectiveness of ADSec, we choose the SOTA anomaly detection methods: Anomaly
Transformer, TranAD, OmniAnomaly, MSCRED, AutoFormer; SOTA time series foundation models:
Moment, OneFitsAll and LLM-based method GPT4. Here is a brief introduction of each method.

• Anomaly Transformer: It introduces an association-based criterion for unsupervised time
series anomaly detection. It employs a novel Anomaly-Attention mechanism to capture both
local prior-associations and global series-associations, with a minimax strategy to enhance
the distinction between normal and abnormal points. This design enables the model to
achieve state-of-the-art performance across diverse anomaly detection benchmarks.

• TranAD: It is a transformer-based model for anomaly detection in multivariate time series.
It uses a two-phase, self-conditioned reconstruction process with adversarial training to
amplify subtle deviations and stabilize learning. Combined with meta-learning for data
efficiency, TranAD achieves state-of-the-art detection accuracy while significantly reducing
training and inference time.

• OmniAnomaly: It is a stochastic recurrent neural network designed for multivariate time
series anomaly detection. It combines GRU with variational autoencoders and introduces
techniques such as stochastic variable connection and planar normalizing flow to capture
both temporal dependence and stochasticity of time series. By reconstructing inputs and
evaluating reconstruction probabilities, it achieves robust anomaly detection and has shown
superior performance across diverse real-world datasets.

• MSCRED: It is an unsupervised deep learning model for anomaly detection and diagnosis
in multivariate time series. It constructs multi-scale signature matrices to represent system
states, employs a convolutional encoder and attention-based ConvLSTM to capture inter-
sensor correlations and temporal dependencies, and reconstructs these matrices with a
convolutional decoder. Anomalies are identified through residuals, enabling both detection
and root-cause diagnosis with improved robustness to noise.

• AutoFormer: AutoFormer is a Transformer-based model designed for long-term time series
forecasting. It introduces a progressive decomposition architecture that separates trend and
seasonal components during the forecasting process, thereby alleviating the challenges of
modeling intricate temporal patterns. Moreover, AutoFormer replaces conventional self-
attention with an Auto-Correlation mechanism, which leverages series periodicity to capture
dependencies efficiently at the sub-series level, achieving both accuracy and scalability.
In our experiments, we adopt AutoFormer within a prediction-based anomaly detection
framework to perform anomaly detection.

• Moment: MOMENT is a family of open-source foundation models designed for general-
purpose time series analysis. It is pre-trained on the large-scale and diverse Time Series Pile
using masked time series modeling, enabling strong performance across forecasting, classi-
fication, anomaly detection, and imputation tasks. With minimal fine-tuning, MOMENT
achieves competitive results in limited supervision settings, demonstrating its effectiveness
as a versatile time series baseline.

• OneFitsAll: OneFitsAll leverages frozen pre-trained language or vision transformers for
general time series analysis without modifying the core self-attention and feedforward layers.
By fine-tuning only lightweight components, it provides a unified framework for diverse
tasks including classification, forecasting, imputation, and anomaly detection. Experiments
demonstrate that OneFitsAll achieves state-of-the-art or comparable performance across
major time series benchmarks.

• GPT4: GPT-4 is a large-scale language model developed by OpenAI, known for its strong
capabilities in natural language understanding and reasoning across diverse tasks. It has been
widely applied in various domains due to its powerful generalization ability and adaptability.
In our experiments, we employ GPT-4 with carefully designed prompt engineering to
perform anomaly detection.
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Table 3: Dataset characters
GECCO Weahter Flight 1 Flight 2

Dimension 9 19 179 179
Anomaly Ratio 5.40% 26% 11.90% 10%
Stationary Stable Stable Stable Unstable
Periodicity apeioridc aperiodic Weak periodicity Weak periodicity
Dimension Correlation Lag None Little Yes Yes
Max Lag – 1 80 100
Average Lag – 0.005 6.84 5.27
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(b) ACF of Weather
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(c) ACF of Flight 1
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(d) ACF of Flight 2

100 75 50 25 0 25 50 75 100
Lag

0.0

0.2

0.4

0.6

0.8

1.0

Cr
os

s-
Co

rre
la

tio
n

1 vs 2
1 vs 3

1 vs 4
1 vs 5

1 vs 6
1 vs 7

1 vs 8
1 vs 9

(e) CCF of GECCO

100 75 50 25 0 25 50 75 100
Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n

Cross-correlation between dimensions vs Lag
1 vs 1
1 vs 2
1 vs 3
1 vs 4
1 vs 5
1 vs 6
1 vs 7
1 vs 8
1 vs 9
1 vs 10
1 vs 11
1 vs 12
1 vs 13
1 vs 14
1 vs 15
1 vs 16
1 vs 17
1 vs 18
1 vs 19
11 vs 11
11 vs 12
11 vs 13
11 vs 14
11 vs 15
11 vs 16
11 vs 17
11 vs 18
11 vs 19

(f) CCF of Weather (g) CCF of Flight 1 (h) CCF of Flight 2

Figure 4: (a) The figure verifies that GECCO has no periodicity; (b) The figure verifies that Weather
has no periodicity; (c) The figure verifies that Flight 1 has weak periodicity. Since the number of
dimension in Flight 1 is too large, we only marked the first 10 dimension in legend; (d) The figure
verifies that Flight 2 has weak periodicity; (e) The figure verifies that GECCO has no cross dimension
correlation lag. Since the number of dimension in Flight 2 is too large, we only marked the first 10
dimension in legend; (f) The figure verifies that Weather has little cross dimension correlation lag; (g)
The figure verifies that Flight 1 has lots of cross dimension correlation lag; (h) The figure verifies that
Flight 2 has lots of cross dimension correlation lag.

A.2 DATASETS

We use four real-world dataset: one water quality monitoring dataset, one weather dataset, two aircraft
control system monitoring dataset. The GECCO dataset originates from the GECCO Industrial
Challenge, focusing on online anomaly detection for drinking water quality. It contains real-world
time series data collected from sensors monitoring water and environmental variables, provided
by Thüringer Fernwasserversorgung, a major German water supplier. The dataset is designed to
evaluate methods for detecting subtle but critical anomalies while maintaining low false alarm rates,
making it a practical benchmark for robust anomaly detection research. The Weather dataset records
20 meteorological indicators every 10 minutes throughout 2020 at a Max Planck Institute station,
covering parameters such as temperature, humidity, wind, radiation, and precipitation. With over
52,000 samples per variable, it provides high-resolution insights into atmospheric conditions and
long-term weather patterns. For anomaly detection, we inserted synthetic anomalies into the original
dataset to evaluate model performance under realistic perturbations. The Flight 1 and Flight 2 datasets
are collected from the operation control systems of a top-300 global aircraft manufacturer. They
include measurements from 179 different indicators. These datasets provide valuable benchmarks for
evaluating anomaly detection methods in complex industrial systems.

Moreover, we analysis the stationary, periodicity, cross dimension correlation lag for each dataset,
which is shown in Tab. 3. The Auto-Correlation Function (ACF) and Cross-Correlation Function
(CCF) are shown in Fig. 4.
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Table 4: Hyperparameter explore range
Dataset Hyperparameter Ranges Dataset Hyperparameter Ranges

Learning rate {0.1,0.01,0.001,0.005,0.0001} Learning rate {0.1,0.01,0.005,0.0001}
Batch size 100 Batch size 100
m {3,5,7,9,11} m {3,5,7,9,11}

GECCO γ1 {0.1,0.3,0.5,0.7,0.9,1} Weather γ1 {0.1,0.3,0.5,0.7,0.9,1}
γ2 {0.1,0.3,0.5,0.7,0.9,1} γ2 {0.1,0.3,0.5,0.7,0.9,1}
γ3 {0.1,0.3,0.5,0.7,0.9,1} γ3 {0.1,0.3,0.5,0.7,0.9,1}
Window length {3,5,7,9,11} Window length {3,5,7,9,11}
Epochs {1,3,5,7,10} Epochs {1,3,5,10}
Layer of attention 10 Layer of attention 10
Learning rate {0.1,0.01,0.005,0.0001} Learning rate {0.1,0.01,0.005,0.0001}
Batch size 100 Batch size 100
m {3,5,7,9,11} m {3,5,7,9,11}

Flight1 γ1 {0.1,0.3,0.5,0.7,0.9,1} Flight2 γ1 {0.1,0.3,0.5,0.7,0.9,1}
γ2 {0.1,0.3,0.5,0.7,0.9,1} γ2 {0.1,0.3,0.5,0.7,0.9,1}
γ3 {0.1,0.3,0.5,0.7,0.9,1} γ3 {0.1,0.3,0.5,0.7,0.9,1}
Window length {3,5,7,9,11} Window length {3,5,7,9,11}
Epochs {1,3,5,10} Epochs {1,3,5,10}
Layer of attention 10 Layer of attention 10

A.3 METRICS

In anomaly detection tasks, precision, recall, and F1 score are widely used to evaluate detection
performance. Precision measures the proportion of correctly identified anomalies among all predicted
anomalies, while recall reflects the proportion of true anomalies that are successfully detected. The
F1 score is defined as the harmonic mean of Precision and Recall. Formally, they are given by:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 =
2× Precision×Recall

Precision+Recall
(10)

where TP denotes the number of correctly detected anomalies (true positives), FP represents normal
samples incorrectly predicted as anomalies (false positives), and FN indicates anomalies that are
missed by the detector (false negatives).

A.4 HYPERPARAMETER SETTINGS

We use grid search to find the optimal hyperparameter settings for each dataset. We list the explore
range and highlighted the optimal setting in Tab. 4. Moreover, we supplement more hyperparameter
sensitivity experiments in Fig. 5, which verifies that ADSec is insensitive to different hyperparameter
settings and requires reasonable deployment overhead.

A.5 LLM TUNING TECHNIQUES

To enable efficient adaptation of Llama3-8B under limited hardware constraints, we employ parameter-
efficient fine-tuning (PEFT) and model compression techniques.

4-bit quantization via the BitsAndBytes library reduces memory usage by approximately 75%,
allowing the Llama3-8B model to be fine-tuned on GPUs with 10 GB of memory. We further apply
Low-Rank Adaptation (LoRA), leveraging the low intrinsic rank of weight updates during adaptation.
The rank of the low-rank matrices is set to 32, and the scaling factor lora_alpha is set to 64. LoRA is
applied to the embedding layer to enhance word embeddings for downstream vector extraction tasks.
The language modeling head (lm_head) is also fine-tuned to improve output accuracy. The resulting
checkpoint size is typically only a few megabytes.
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Optimization follows the causal language modeling (CLM) objective, enabling the model to capture
syntactic and semantic patterns in meteorological text. We use the paged_adamw_8bit optimizer,
which incorporates 8-bit quantization and paged memory to avoid out-of-memory errors during
training.

A linear learning rate schedule decays the rate from 1e-5 to 4e-9 over 20 epochs, balancing rapid
convergence with stable refinement. Training uses a per-device batch size of 2 with 2 gradient
accumulation steps, yielding an effective batch size of 4. We use bfloat16 precision and gradient
checkpointing, trading 20% additional computation for substantially reduced memory usage during
backpropagation. Training proceeds for 20 epochs with metrics logged every 50 steps.

F1 Score

(a) ADSec F1 score when tuning
λ1 and λ2

F1 Score

(b) ADSec F1 score when tuning
λ1 and λ3

F1 Score

(c) ADSec F1 score when tuning
λ2 and λ3

F1 Score

(d) ADSec F1 score when tuning
λ1 and m

F1 Score

(e) ADSec F1 score when tuning
λ2 and m

F1 Score

(f) ADSec F1 score when tuning
λ3 and m

Figure 5: (a-f) The figures show ADSec F1 score for different hyperparameter settings.

A.6 USAGE OF LLM

In our paper writing process, we leverage large language models (LLMs) to assist with polishing and
proofreading our English expressions. Moreover, during data visualization, we utilize LLMs to adjust
figure legends, ticks, and other layout or formatting details.
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