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Abstract. Anomaly detection plays a vital role in industrial quality control and 
manufacturing processes. Traditional machine learning methods often face chal-
lenges, especially in scenarios where training data is limited. In these circum-
stances, quantum machine learning (QML) has emerged as a promising approach 
to improve anomaly detection capabilities. This paper provides a comprehensive 
review of QML applications in industrial anomaly detection, with particular fo-
cus on image-based inspection systems, presenting our novel contributions. This 
paper classifies various types of anomalies encountered in industrial environ-
ments and provides a detailed review of classical and quantum anomaly detection 
approaches. In addition, we present the latest advances in quantum kernel meth-
ods in image-based anomaly detection. The analysis includes experimental re-
sults showing that quantum kernels outperform classical methods in certain in-
dustrial applications. For example, in shipment inspection, compared to an F1 
score of 0.964 for SVM using an imbalanced dataset of 400 samples (300 normal, 
100 anomalous), QSVM achieved an F1 score of 0.990 compared to 0.958 for 
ResNet (1132 normal), a 2.7% improvement in detection performance. We also 
discuss the implementation of quantum support vector machines (QSVM) with 
quantum kernels and their performance on quantum simulators and actual quan-
tum hardware. Hardware validation reveals that quantum circuits with depths ≤32 
maintain consistent performance between simulators and actual quantum devices, 
while circuits with depths >273 suffer significant degradation (AUC: 
0.89→0.59) due to noise accumulation. These findings establish practical guide-
lines for deploying quantum machine learning in industrial settings and provide 
a roadmap for future quantum-enhanced manufacturing systems. 

Keywords: Quantum machine learning, Anomaly detection, Quantum kernels, 
Support vector machines, Industrial inspection, Image processing. 

1 Introduction 

The manufacturing industry faces increasing demands for efficient and accurate quality 
control systems, particularly as product diversification leads to small-batch, high-mix 
production scenarios. Traditional machine learning approaches for anomaly detection 
often require large datasets for training, which can be challenging to obtain in special-
ized manufacturing contexts. Quantum machine learning (QML) has emerged as a 
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promising paradigm that leverages quantum mechanical principles to potentially over-
come these limitations [1–3]. 

Quantum computing exploits phenomena such as superposition and entanglement to 
process information in fundamentally different ways than classical computers. It is be-
lieved that quantum computers can solve problems faster than classical computers. We 
adopt a different perspective on quantum computing advantages. In artificial intelli-
gence and machine learning, quantum algorithms can explore exponentially large fea-
ture spaces more efficiently than their classical counterparts, potentially leading to im-
proved classification performance with smaller training datasets. This capability is par-
ticularly relevant for industrial anomaly detection, where obtaining large numbers of 
defective samples for training can be impractical or costly. 

The integration of quantum machine learning in industrial settings represents a sig-
nificant step toward what has been termed the "sustainable smart factory with quantum 
technology." This concept encompasses not only improved efficiency in manufacturing 
processes but also reduced computational energy consumption through reversible quan-
tum computation. As we progress through the NISQ era, practical applications of quan-
tum machine learning are becoming increasingly feasible, with several successful 
demonstrations in industrial trial.[4–6] 

This paper provides a comprehensive review of quantum machine learning applica-
tions for industrial anomaly detection [7–9]. We begin by examining the various types 
of anomalies encountered in industrial settings (Section 2), followed by a detailed re-
view of both classical and quantum approaches to anomaly detection (Section 3). Sec-
tion 4 presents our recent advances in image-based anomaly detection using quantum 
kernels, including experimental results from industrial applications. Finally, Section 5 
discusses future perspectives and challenges in implementing quantum machine learn-
ing for industrial quality control. Within this review, we present the results of our work 
in Chapters 3.3 and 4. 

 

2 Types of Anomaly Detection 

2.1 Classification of Anomalies in Manufacturing 

Anomaly detection in industrial contexts encompasses a wide range of defect types and 
detection scenarios. Understanding these different categories is essential for selecting 
appropriate detection methods and evaluating the potential benefits of quantum ap-
proaches. We examine point anomalies [10–12], contextual anomalies [13–18], and 
collective anomalies[19–22]. 

Point Anomalies: 
 These represent individual data instances that deviate significantly from the normal 
pattern. This anomaly is usually identified as an outlier, which is a significant deviation 
from the trend of the data. For example, if a certain credit card holder suddenly spends 
more on their credit card than usual, we investigate the possibility of credit card fraud.  
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In manufacturing, point anomalies are often the most straightforward to detect but can 
have significant implications: 
Manufacturing Examples: A single defective product with a crack in an otherwise per-
fect batch, sudden spike in temperature readings during a stable process, individual 
measurement exceeding tolerance limits 
Detection Characteristics: Point anomalies typically manifest as outliers in statistical 
distributions. They can be detected using threshold-based methods, statistical process 
control charts, or distance-based approaches 
Challenges: Distinguishing between true anomalies and measurement noise, setting ap-
propriate thresholds that balance sensitivity and specificity 

Contextual Anomalies: Also known as conditional anomalies, these occur when data 
instances are anomalous in specific contexts but not others. This is when the normal 
behavior of a data point fluctuates depending on the situation. A common example is 
when a retail site experiences a large increase in traffic and sales on Black Friday, the 
busiest shopping day of the year. These spikes would be abnormal at other times of the 
year, so we set special parameters for this day.  
Manufacturing Examples: High power consumption during machine startup (normal) 
vs. during idle state (anomalous), dimensional variations acceptable for prototype prod-
ucts but not for mass production, seasonal variations in environmental conditions af-
fecting product quality. 
Detection Requirements: Contextual anomaly detection requires understanding of op-
erational states, temporal patterns, and environmental conditions. Methods must incor-
porate contextual features such as time of day, production phase, or product type. 
Technical Approaches: Conditional probability models, time-series segmentation, 
multi-modal analysis combining sensor data with operational logs. 

Collective Anomalies: These involve collections of related data instances that are 
anomalous when considered together. This is when a group of data points together ex-
hibit abnormal behavior, even though each individual data point may appear normal. 
This anomaly can be identified by observing associations or patterns between multiple 
data points. A DDoS attack is an example of a collective anomaly, as it generates traffic 
from multiple sources that differ from the normal traffic pattern.  
Manufacturing Examples: Gradual tool wear causing progressive quality degradation, 
coordinated drift in multiple process parameters indicating systemic issues, batch ef-
fects where entire production runs show subtle deviations. 
Detection Complexity: Individual instances may appear normal, requiring analysis of 
patterns, trends, and correlations across multiple data points. 
Detection Methods: Sequential pattern mining, change point detection, multivariate sta-
tistical process control. 

2.2 Domain-Specific Anomaly Types 

Industrial anomalies are classified into product anomalies (surface defects, dimensional 
variations, structural issues) and process anomalies (equipment degradation, parameter 
drift, environmental factors) [23–27]. This work addresses both standardized industrial 
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products [28–30] and non-standardized agricultural products[26,31,32], as demon-
strated in our shipping inspection and apple quality control applications.  
These are detailed as follows. 

Industrial Product: 
• Surface defects: scratches, dents, discoloration 
• Dimensional anomalies: size variations, misalignment 
• Structural defects: cracks, voids, inclusions 
• Assembly errors: missing components, incorrect assembly 
Agricultural Product: 
• Internal defects: rot, hollow areas, internal browning 
• External blemishes: bruises, insect damage, disease spots 
• Shape irregularities: deformation, size variations 
• Ripeness variations: over-ripe or under-ripe products 
Manufacturing (Growth) Process: 
• Equipment degradation: bearing wear, alignment issues 
• Process parameter drift: temperature, pressure, speed variations 
• Environmental anomalies: contamination, humidity effects 

This detailed classification of content helps clarify the specific anomaly types and 
their detection requirements in each industry sector and allows the selection of appro-
priate detection methods. 

2.3 Challenges in Industrial Anomaly Detection 

Industrial anomaly detection presents several unique challenges that make quantum ap-
proaches particularly attractive as well as classical approaches. We describe the follow-
ing challenges: Data Scarcity and Imbalance [33–36], High Dimensionality and Multi-
modality [37–40], Real-time Requirements [41–44], Dynamic and Evolving Patterns 
[45–49], and Cost Sensitivity [50,51]. 

Data Scarcity and Imbalance:  
High-quality products dominate production, making defective samples rare and diffi-
cult to collect for training. 

Statistical Challenge: In high-quality manufacturing, defect rates often below 0.1%, 
creating severe class imbalance 
Economic Impact: Cost of producing defective samples for training purposes 
Solution Approaches: Data augmentation, synthetic defect generation, transfer learn-
ing, few-shot learning techniques 

High Dimensionality and Multi-modality:  
Modern inspection systems generate high-resolution images and multi-sensor data. As 
a results, they generate multiple data types. 

Visual: RGB images, hyperspectral data, thermal imaging 
Physical: Force, torque, vibration measurements 
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Chemical: Spectroscopy, gas chromatography 
Acoustic: Ultrasonic signals, acoustic emissions 

Real-time Requirements:  
Production line speeds demand rapid detection and classification. 

Production Speeds: Modern production lines operate at speeds requiring sub-second 
decision making. 
Latency Constraints: Detection, classification, and action must occur within tight time 
windows. 
Edge Computing: Need for onsite processing capabilities rather than cloud based solu-
tions. 

Dynamic and Evolving Patterns:  
Natural variations in materials and processes require robust detection methods. 

Concept Drift: Normal patterns change over time due to tool wear, seasonal variations, 
or process improvements. 
New Defect Types: Previously unseen anomaly patterns emerge with process or mate-
rial changes. 
Adaptive Requirements: Detection systems must continuously learn and update 

Cost Sensitivity:  
False positives and false negatives both carry significant economic impacts. 

2.4 Anomaly Detection Metrics and Evaluation 

When performing anomaly detection, it is sometimes difficult to know what evaluation 
metrics to use. Here, we will explain two important metrics. 

Performance metrics that can be detected include true positive rate (sensitivity), false 
positive rate (1-specificity), precision, and F1 score. Classification Performance Met-
rics are formally defined as:  

• True Positive Rate (TPR/Sensitivity/Recall): TPR = TP/(TP+FN) 
• False Positive Rate (FPR): FPR = FP/(FP+TN)   
• Precision: Precision = TP/(TP+FP) 
• F1-score: F1 = 2×(Precision×Recall)/(Precision+Recall) 

where TP, TN, FP, and FN represent true positive, true negative, false positive, and 
false negative classifications, respectively. 

In addition, economic metrics include the cost of false positives (unnecessary exclu-
sions) and the cost of false negatives (shipment of defective products). Meanwhile, op-
erational metrics include the impact on throughput, inspection time, and computational 
resources. 

As an evaluation challenge, there is the establishment of ground truthing techniques. 
This is due to the difficulty of obtaining accurate labels for all anomaly types. In 
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addition, as a time aspect, there is a trade-off between early detection and accurate clas-
sification. Finally, as a multi-class problem, different anomaly types require different 
actions. 

2.5 Related work 

Classical Anomaly Detection in Industrial Setting:  
Traditional industrial anomaly detection has evolved from statistical control charts [52] 
to machine learning approaches, with SVMs becoming popular for small datasets. Re-
cent surveys highlight the dominance of deep learning, particularly autoencoder-based 
methods for unsupervised anomaly detection[4,5]. However, these methods typically 
require substantial training data, limiting applicability in specialized manufacturing 
contexts with limited defective samples. 

Quantum Machine Learning for Pattern Recognition:  
Quantum machine learning addresses classical limitations through theoretical 
speedups. Rebentrost et al. [53] demonstrated quantum advantages for SVMs, while 
Havlíček et al. [2] provided experimental validation using quantum feature maps. 
Quantum kernel methods show particular promise for NISQ devices [54], with Huang 
et al.[55] proving that quantum kernels can achieve lower generalization error than op-
timal classical methods. However, most results assume ideal conditions, raising ques-
tions about practical applicability under noise. 

Quantum Anomaly Detection:  
Direct quantum applications to anomaly detection remain limited. Liu and Rebentrost 
[56] introduced quantum algorithms for anomaly detection with logarithmic scaling ad-
vantages. Corli et al. [1] surveyed quantum anomaly detection across supervised, unsu-
pervised, and reinforcement learning paradigms. Industrial applications are largely un-
explored, with Bhowmik and Thapliyal [57] discussing consumer electronics potential.  

NISQ-Era Limitation and Error Mitigation:  
NISQ devices face significant noise challenges [58]. Wang et al. [54] demonstrated that 
quantum advantages can vanish under realistic noise, with circuit depth as a critical 
factor. Some commercial solutions, including those involving error suppression, offer 
practical approaches to noise mitigation in near-term quantum devices. 

Positioning of This Work:  
This work addresses key gaps by tackling real-world industrial applications rather than 
synthetic datasets. Our systematic investigation of quantum kernel architectures (QK0-
QK10) and comparative analysis of simulator versus hardware performance provides 
practical insights for NISQ-era deployment. The demonstrated quantum advantage in 
small-data regimes and applications across industrial and agricultural domains establish 
empirical evidence for quantum benefits in resource-constrained manufacturing envi-
ronments. This work makes several distinctive contributions: (1) systematic investiga-
tion of quantum kernel architectures (QK0-QK10) with comparative performance 
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analysis, (2) empirical validation across both standardized industrial products and non-
standardized agricultural products, and (3) comprehensive hardware validation demon-
strating the practical constraints of NISQ-era quantum devices for industrial deploy-
ment. 

3 Methods for Anomaly Detection 

3.1 Classical Machine Learning Approach 

Traditional machine learning methods have been extensively applied to anomaly detec-
tion in industrial settings. We provide a comprehensive analysis of each approach with 
mathematical foundations and practical considerations. We describe statistical method 
[8,52] and machine learning Algorithm [7,59,60] as following item. 

Statistical method:  
• Gaussian distribution modeling assumes normal data follows a Gaussian distribution, 

flagging instances beyond certain standard deviations as anomalies 
• Regression analysis identifies anomalies as instances with high prediction errors 
• Time series analysis methods like ARIMA detect anomalies in temporal data patterns 

Machine Learning Algorithms:  

Support Vector Machines (SVM):   
SVMs construct optimal hyperplanes to separate normal and anomalous classes. The 
kernel trick enables non-linear classification by mapping data to higher-dimensional 
spaces. Key advantages include effectiveness with small datasets and robust perfor-
mance in high-dimensional spaces. 

Neural Networks:  
Deep learning approaches, particularly Convolutional Neural Networks (CNNs), have 
shown remarkable success in image-based anomaly detection. Autoencoders learn 
compressed representations of normal data, identifying anomalies through high recon-
struction errors. However, these methods typically require large training datasets and 
significant computational resources 

Ensemble Methods:  
Random Forests and Gradient Boosting combine multiple weak learners to create ro-
bust anomaly detectors. Isolation Forests specifically designed for anomaly detection, 
isolate anomalies using fewer random partitions than normal instances. 

Clustering-Based Methods:  
K-means, DBSCAN, and other clustering algorithms identify anomalies as instances 
that don't belong to any cluster or form small, isolated clusters. 
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3.2 Quantum Machine Learning Approaches 

Quantum machine learning leverages quantum mechanical principles to potentially 
achieve computational advantages over classical methods. Several quantum approaches 
have been developed for anomaly detection. Here, we describe an interface between 
PCA-quantum interface [61,62], QSVM [53,63,64], VQA [65–69], and quantum neural 
networks [70–72]to perform image quality control. 

PCA-Quantum Interface:  
The number of principal components directly determines the required number of qubits 
in quantum circuits. This creates a natural bridge between classical preprocessing and 
quantum processing, where PCA not only reduces computational complexity but also 
enables quantum encoding of classical industrial data. 

Quantum Support Vector Machines (QSVM):  
QSVMs utilize quantum kernels to compute inner products in exponentially large fea-
ture spaces. The quantum kernel function is expressed as: 

𝜅"𝑥! , 𝑥"% = '(𝜙(𝑥!)#'𝜙"𝑥"%,'
$ = '(0'𝑈%#(𝑥!)𝑈%"𝑥"%'0,'

$
 

where	𝜙(𝑥) represents the quantum feature map, and 𝜅"𝑥! , 𝑥"% is the quantum kernel 
function computing the inner product between quantum states |𝜙(𝑥!)⟩ and |𝜙"𝑥"%,. 
This approach has shown particular promise for problems with limited training data. 
φ(x): ℝⁿ → ℋ represents the quantum feature map that encodes classical data into quan-
tum Hilbert space ℋ, and the kernel computes the squared overlap between correspond-
ing quantum states. 

Variational Quantum Algorithms (VQA):  
Variational Quantum Circuits (VQCs) combine quantum and classical processing, us-
ing parameterized quantum circuits optimized through classical optimization. The 
Quantum Approximate Optimization Algorithm (QAOA) can be adapted for anomaly 
detection tasks. 

Quantum Neural Networks:  
Quantum versions of neural networks leverage quantum gates as neurons and quantum 
states for information processing. These include Quantum Convolutional Neural Net-
works (QCNNs) for image processing and Quantum Autoencoders for unsupervised 
anomaly detection. 

3.3 Comparative Analysis 

There are two differences between classical and quantum machine learning. One is that 
a machine learning model can be built with a small data set [73–75], and the other is 
that the learning process itself is different and useful for anomaly detection [76]. 

The first point is that being able to build a machine learning model with a small data 
set is very useful for manufacturing small quantities of a wide variety of products in 
manufacturing sites. Fig.1 illustrate performance of Quantum Kernel-SVM (Q-SVM) 
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compared to classical Kernel-SVM (C-SVM) and Resnet: a kind of Convolutional Neu-
ral Network (CNN)[75]. Quantum kernel is QK0 on Fig.4. The comparative perfor-
mance of classical and quantum approaches is illustrated on across different metrics.  
Recent studies have demonstrated that quantum methods can achieve superior perfor-
mance with smaller training datasets, making them particularly suitable for industrial 
applications where anomalous samples are rare. Methods for Anomaly Detection Nat-
ural variations in materials and processes require robust detection methods. 

 

 
Fig.1. Quantum advantage in small-data regimes: F1-score performance comparison across var-
ying training set sizes for industrial product classification. Experimental conditions: Real indus-
trial product images, binary classification (normal vs anomaly), 15 principal components (The 
cumulative contribution rate is 0.82). Methods: Red circles: Quantum SVM (QK0 kernel), Black 
circles: Classical SVM (RBF kernel, γ=0.1), Green circles: CNN (ResNet-18). Key finding: 
Quantum SVM demonstrates superior performance for training sets <1000 samples, with F1-
score advantage diminishing as dataset size increases. Statistical significance: Error bars repre-
sent means ± standard deviation across 3 independent runs. This figure shows the number of 
training sessions in logarithmic scale by adding some data to the numerical data in ref. [75]. 

Another point is that the learning process itself is different and effective for anomaly 
detection. Figure 2 shows the FPR and TPR values plotted in the ROC space using the 
Hearts disease and Iris_2 datasets. Here, we created a two-class dataset Iris_2 (versi-
color and Virginia) with attribute 4 from the original Iris dataset. Figures (a) and (b) 
plot the training set size (ts) from 8 to 200 and 6 to 60 for hearts disease and Iris_2. The 
red and gray arrows show the hypotheses about the quantum and classical learning pro-
cesses in the ROC space. 

The gray line is how classical machine learning progresses and represents a random 
machine learning model. It is an ideal learning method that starts from TPR=0.5, 
FPR=0.5 and eventually progresses in the direction of TPR=1, FPR=1.  

On the other hand, in the case of quantum machine learning, we observed that the 
learning process starts at a high TPR=1 and near FPR=1. If you maintain a high TPR, 
the FPR will decrease as the learning progresses (orange arrow in the figure). This 
means that the TPR is always 1, the inspection result is always a good product, and 
suspicious products are judged as defective. Therefore, no defective products are 
shipped to the market [76].  
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Fig.2. The plotting onto ROC space. Open diamond and square shape stand for training size of 8 
and 200 on heart disease dataset, 6 and 60 on Iris_2 dataset. The red and gray directing arrow 
indicate hypothesis of learning progress. Ibm_Bogota is actual quantum computer [76]. TPR 
(True Positive Rate) and FPR (False Positive Rate) trajectories show different learning behaviors 
between classical and quantum approaches. 

4 Image-based Anomaly Detection using Quantum Machine 
Learning 

4.1 Quantum Kernel Design for Image Processing 

The design of effective quantum kernels is crucial for image-based anomaly detection. 
Our research has explored various quantum circuit architectures, each offering different 
advantages.  

Fig.3 shows the basic structure of a quantum kernel. It is represented by the inner 
product of 𝑈%(𝑥!) and its dagger. This calculated inner product is embedded as the ker-
nel of the SVM. And then a machine learning model is constructed. Fig.4 shows the 
detailed circuit configuration of 𝑈%(𝑥!). We designed QK0 to QK10. The design con-
cept is shown below [77]. 

 

 

Fig.3. Quantum kernel circuits diagram in the 4qubits.  
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Fig.4. Quantum circuit architectures for different kernel designs. QK0 and QK1 are superposition 
only. QK2, QK3, QK4 and QK5 include control rotation gate. QK6, QK7, QK8, QK9, and QK10 
include CNOTs and rotation gates. 

Basic Rotation Gates (QK0, QK1): Simple circuits using Hadamard gates and single-
qubit rotations provide baseline quantum kernels. While these show improvements over 
classical kernels, their expressivity is limited. 

Controlled Rotation Gates (QK2-QK5): Circuits incorporating controlled rotation 
gates (C-𝑅&, C-𝑅') create entanglement between qubits, enabling more complex fea-
ture relationships. These kernels show significant improvements in discriminative 
power. 

CNOT-based Architectures (QK6-QK10): Advanced circuits using CNOT gates and 
combinations with rotation gates achieve the highest performance. The QK9 architec-
ture, featuring CNOT gates connecting each qubit to a bottom qubit with Ry rotations 
between CNOTs, has proven particularly effective. 

4.2 Industrial Application: Shipping Inspection 

Machine learning is now widely used in shipping inspection at production sites. Prod-
ucts are quality controlled within a 3σ range to ensure that no basic defects occur. Con-
versely, as there are almost no defective products, machine learning models are con-
structed using unsupervised machine learning.  

Like many factories, TOPPAN's factories also use unsupervised learning. To prevent 
defective products from being shipped, shipping inspection uses a three-stage model: 
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an image processing model, a discrimination model, and a generative model to prevent 
the outflow of anomaly products. This image-based shipping inspection process is 
shown in Fig.5. Products are shipped after passing through these three stages of inspec-
tion.  

 

 
Fig.5. Overview of shipping inspection using classical machine learning at an actual production 
site. We use three model described in the figure actually [75]. Here, 0 and 1 stand for normal and 
anomaly. 

 
Fig.6. Application of supervised ML on shipping inspection in actual production sites. ML means 
machine learning [75].  

Table 1. Performance in the shipping inspection.  

Model Note Datasets size Accuracy F1-score  
ResNets Unsupervised learning 1132 0.940±0.047 0.958±0.048 
C-SVM supervised learning 400 0.944±0.047 0.964±0.048 
Q-SVM supervised learning 400 0.988±0.049 0.990±0.050 

Results represent mean ± standard deviation across 3 independent experiments. Original data is 
based on ref. [75]. 
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Our implementation of quantum machine learning for shipping inspection demon-
strates practical advantages in real-world settings. The system processes product im-
ages through several stages. 

1. Image Preprocessing: Binarization and noise reduction. 
2. Feature Extraction: Principal Component Analysis (PCA) to reduce dimensionality. 
3. Quantum Kernel Generation: Creating quantum kernels based on selected features. 
4. Classification: SVM with embedded quantum kernels. 

Results show in the table 1. ResNet using unsupervised learning achieved an F1-
score of 0.958 with nearly 1,000 training samples, while our quantum approach 
achieved superior results with an accuracy of 0.988 and of F1 Score of 0.990 with the 
quantum kernel using an imbalanced data set (300 normal, 100 anomalous). Even when 
using classical kernel RBF, both accuracy and F1 score were 0.944-0.958, which is not 
as good as the quantum kernel, but excellent results were obtained [75]. All experiments 
were conducted three times with different random seeds to ensure reproducibility, with 
variations remaining within 5% across all metrics. 

4.3 Agricultural Product Inspection 

Extending beyond industrial products, we applied quantum anomaly detection to agri-
cultural products (apples with internal defects) [77]. Research into the use of quantum 
technology in the agricultural field [73,78] is also being conducted overseas, but there 
are challenges unique to the agricultural field. This application presents unique chal-
lenges: 

• Non-standardized product shapes and sizes 
• Internal defects invisible from external inspection 
• Natural variations requiring robust classification 

Fig.7 shows the experimental setup for creating the dataset. Internal defects cannot 
be detected from external inspection. Therefore, we created a device that irradiates the 
apple with an LED from the top side and takes a photo from the bottom side. The res-
olution was 4032 x 3024. The photo taken from the top shifts to orange, but it is con-
verted to a black and white image by binarization. Only the vine is captured, but if there 
is nectar, a spotted pattern appears. On the other hand, if there is a crack in the vine, it 
is not visible, but when enlarged, a black spreading area appears around the vine. This 
enlarged area was 120 x 80. In both cases, by cutting the apple in half and comparing 
the photo with the binarized image, it is possible to determine whether the apple is filled 
with nectar or has cracks. 

Here, the apple we chose is Fuji. Fuji is the most widely produced apple variety in 
Japan and is characterized by a good balance of sweetness and sourness, and a good 
taste with nectar. For this reason, the appearance is also important, and internal defects 
lead to customer dissatisfaction, so it is best not to ship the product if possible. On the 
other hand, apples full of honey (which at first glance appear to be browning) are prized 
as they add to the flavor. However, cracks on the rind result in complaints. 
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Fig.8 shows the relationship between the F1 scores of the principal components of 
each quantum kernel used to identify internal vine cracks in apples, compared to clas-
sical kernel RBF. Fig.8(a) shows the results of the conventional kernel RBF and QK0-
QK5. The horizontal axis is the feature corresponding to the cumulative contribution of 
the principal components. The vertical axis is the F1 score. When the feature is 3, it 
means the cumulative contribution of the first to third principal components. When the 
feature is 7, it means the cumulative contribution of the first to seventh principal com-
ponents.  

 

 
 

Fig.7 Experimental setup for discriminating internal vine crack in the apple. Internal defects can 
be visualized using LEDs. Original image is 4032×3024. Magnified image is 120×80.  

First, we compare the F1 scores of each kernel when the feature is 3, and then com-
pare the trend of the F1 score as the features increases. The classical RBF increased by 
about 0.2 from the feature of 3 to 6, but there was almost no change when the feature 
size increased from 6 to 7. QK0 and QK1 are quantum circuits with one H gate, one H 
gate, and one rotation gate Ry for each qubit. When the features increased from 3 to 7, 
the F1 score value increased by more than 0.5. The F1 scores of QK2, QK3, QK4, and 
QK5 increase slightly as the feature value increases from 3 to 7, however, remain al-
most constant. 

Fig.8(b) shows the results of QK6 to QK10 and the classical kernel RBF. When the 
features is 3, the F1 scores of QK7 and QK8 are more than 0.15 larger than RBF. QK6 
shows almost the same trajectory as QK1 and QK2 (1), but QK7 and QK8 increase by 
0.1 to 0.15 larger than RBF, even when the feature value increases, and by 0.15 larger. 
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Furthermore, the F1 scores of QK9 and QK10 are more than 0.3 larger than the classical 
kernel RBF when the feature value is 3, and the F1 scores also increase as the feature 
value increases. 

From the above, it is thought that quantum circuits with entanglement can form more 
complex separation interfaces than superposition and rotation control gates. In particu-
lar, quantum circuits with an Rz rotation gate at the end are thought to be more effective. 
The F1 scores of QK9 and QK10 are the highest among these quantum kernels, and 
they are considered promising quantum kernel candidates. 

 

 
Fig.8 Quantum kernel performance comparison for apple internal defect detection (vine crack). 
FEATURE VALUE means numbers of features (number of principal components).  (a) Basic 
quantum kernels: QK0-QK5 vs classical RBF kernel. QK0/QK1 use simple rotation gates, QK2-
QK5 incorporate controlled rotations. (b) Advanced quantum kernels: QK6-QK10 with CNOT-
based architectures. QK9 and QK10 demonstrate substantial improvement over classical RBF, 
particularly with 3-7 principal components. Key observation: Quantum kernels with entangle-
ment (QK6-QK10) significantly outperform both classical methods and simple quantum circuits. 

4.4 Performance Analysis on Quantum Hardware 

In the current analysis, it is better to evaluate the performance with a quantum simulator 
(ideal, noiseless simulation) and actual quantum hardware (IBM superconducting quan-
tum processor with realistic noise). However, the availability of the quantum simulator 
depends on the environment, the user, and the conditions, and is subject to various con-
straints. In addition, the only way to use the quantum computer without error correction 
is to use it via the cloud. Basically, the data from the factory cannot be taken out of the 
factory. Therefore, the experiment with the quantum computer was only used for the 
shipping inspection of agricultural products. 

Fig.9 shows the ROC curves comparing the quantum simulator and the quantum 
computer for the quantum kernels QK9 and QK10, which have 4 qubits and an AUC 
of 0.9 or more. Here, QC and QS mean the quantum computer and the simulator. The 

(a)Basic Kernel                                                                   (b)Advanced Kernel 
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left figure shows the ROC-AUC curves of RBF, QS, and QC for QK9, and the right 
figure shows the ROC-AUC curves of RBF, QS, and QC for QK10. For reference, we 
also plot the positions of the random model (black dashed line) and the ideal machine 
learning model (red dashed line). The dashed line from False Positive Rate (FPR) = 0, 
True Positive Rate (TPR) = 0 to FPR = 1, TPR = 1 shows the random model. The axis 
of FPR = 0 and TPR = 1 shows the ideal machine learning model. The AUC of the 
classical RBF is drawn close to the random model, and the numerical data is 0.62. In 
QK9, the behavior of the AUC curve on the quantum computer was the same as that of 
the quantum simulator. The numerical data of the AUC at that time was 0.90 for both, 
as shown in the figure. The difference in behavior between QK9 and QK10 is thought 
to be due to the difference in depth. The depths of QK9 are 32, while the depths of 
QK10 are 273, and it is thought that noise became unacceptable between these two. 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.9 ROC curve. Hardware validation: Quantum simulator vs actual quantum computer perfor-
mance. Experimental setup: QK9 (left) and QK10 (right) kernels, 4 qubits, agricultural dataset. 
Hardware: IBM quantum computer vs ideal simulator. Performance metrics: QK9: AUC=0.90 
(both simulator and hardware) QK10: AUC=0.89 (simulator) → 0.59 (hardware). Circuit depth 
impact: QK9 (depths=32) maintains performance, QK10 (depths=273) suffers noise degradation. 
Reference lines: Black dashed = random classifier, Red dashed = ideal classifier. Measurement: 
1024 shots, 3 independent runs for hardware validation. 

5 Future Perspectives 

Fig.10 shows the industrial application roadmap of quantum technology in the manu-
facturing field. This figure is based on my experience in quantum computer-related 
research and development, including references [79–81] and other literature and books. 

The quantum technology roadmap for industrial applications spans three phases: 1) 
Near-term (2025-2030), NISQ-optimized hybrid algorithms and specialized quantum 
kernels; 2) Medium-term (2030-2040) - on-premises quantum processors and real-time 
anomaly detection; 3) Long-term (2040+) - fault-tolerant quantum computers enabling 
fully quantum industrial control systems. 

I am thinking of the overall picture of smart manufacturing using quantum technol-
ogy in the future, as shown in Fig.11. System and product failure prediction, health 
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management, process optimization, energy management, production line, inspection 
system, and supply chain are centered on quantum computers and connected on-prom-
ise with classical computers.  

I am thinking that integrating quantum processors with classical systems could im-
prove processes by 10% to 20% and potentially make them 30%-50% more energy 
efficient. 

 

 
Fig.10 Roadmap for smart manufacturing using quantum technology. 

 
Fig.11 Smart manufacturing using quantum technology in the future. 
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6 Conclusion 

This comprehensive study has demonstrated the significant potential of quantum 
machine learning for industrial anomaly detection, establishing both theoretical foun-
dations and practical applications for quantum-enhanced manufacturing quality control. 
Through systematic investigation of quantum kernel methods, we have shown that 
quantum approaches can achieve superior performance in small-data regimes typical of 
industrial settings. 

Our research provides several critical contributions to the field. We have demon-
strated quantum advantage in practical industrial scenarios, with quantum SVMs 
achieving F1-scores of 0.990 compared to 0.964 for classical SVM using 400 training 
samples. The systematic design and evaluation of quantum kernel architectures (QK0-
QK10) revealed that CNOT-based circuits with controlled rotations significantly out-
perform simple rotation-based designs, providing concrete guidelines for quantum cir-
cuit design in industrial applications. 

Empirical validation on actual quantum hardware provided crucial insights into 
NISQ-era limitations. Our analysis revealed that circuit depths ≤32 maintain consistent 
performance between simulators and hardware, while depths >273 suffer significant 
degradation due to noise accumulation. This finding establishes practical constraints 
for current quantum implementations and highlights the importance of error mitigation 
strategies. 

Deployment in real-world applications has achieved an F1 score of 0.990 (quantum 
simulator) for industrial product outgoing inspection and 0.90 (AUC: quantum com-
puter) for agricultural product quality control. As shown above, we have demonstrated 
robust performance across a range of defect types, demonstrating the practical feasibil-
ity of quantum anomaly detection in manufacturing environments. 

It is expected that this research will establish quantum machine learning as a trans-
formative technology for industrial quality control. 

Current NISQ devices show clear advantages in small-scale data processing but are 
limited in scalability and circuit complexity. In the future, on-premises infrastructure 
will be required, so efforts will be needed to break down the barriers to adoption in 
traditional manufacturing environments. 

Future research should prioritize three key areas: (1) developing noise-resilient 
quantum algorithms for industrial deployment, (2) establishing standardized quantum-
classical hybrid frameworks, and (3) creating scalable quantum infrastructure for man-
ufacturing environments. The transition toward fault-tolerant quantum computing will 
unlock unprecedented capabilities for complex industrial optimization and quality con-
trol systems. 
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