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Abstract

Online disinformation poses a global challenge,
placing significant demands on fact-checkers
who must verify claims efficiently to prevent
the spread of false information. A major issue
in this process is the redundant verification of
already fact-checked claims, which increases
workload and delays responses to newly emerg-
ing claims. This research introduces an ap-
proach that retrieves previously fact-checked
claims, evaluates their relevance to a given
input, and provides supplementary informa-
tion to support fact-checkers. Our method
employs large language models (LLMs) to
filter irrelevant fact-checks and generate con-
cise summaries and explanations, enabling fact-
checkers to faster assess whether a claim has
been verified before. In addition, we evaluate
our approach through both automatic and hu-
man assessments, where humans interact with
the developed tool to review its effectiveness.
Our results demonstrate that LLMs are able
to filter out many irrelevant fact-checks and,
therefore, reduce effort and streamline the fact-
checking process.

1 Introduction

The rise of social media has accelerated the spread
of false information, posing significant societal,
economic and public health risks (Zubiaga et al.,
2018). This challenge is further compounded by
the multilingual nature of false information, mak-
ing fact-checking a complex and resource-intensive
task for fact-checkers. Fact-checkers often struggle
to verify claims across languages, particularly in
low-resource settings where limited fact-checking
support exists (Hrckova et al., 2024). To address
this issue, it is crucial to develop multilingual fact-
checking approaches that can assist fact-checkers
to identify and verify misinformation efficiently.
One of the key tasks in fact-checking is claim
retrieval, also known as previously fact-checked
claim retrieval (Pikuliak et al., 2023), where the
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Previously Fact-Checked Claims Retrieved by the TEM

‘ AFP@ The 1918 Spanish flu shot killed 50 million people ‘

usa Photo shows woman with sign "Wear a Mask or Go
\4 To Jail' in 1918 Spanish flu

Relevant Claims Identified by the LLM

Claim: The 1918 Spanish flu shot killed 50 million people
Explanation: This claim is directly related to the input claim,
as it also states that the 1918 Spanish flu vaccination killed 50
million people.

Summary: A false claim circulating on social media states that
50 million people died after being vaccinated against the
Spanish flu in 1918. However, this is not true, as a vaccine
against the disease did not exist at that time and began to be
mass-produced in the US only during World War II.

Rating: Incorrect

Veracity Explanation

The input claim is predicted to be false because multiple fact-
checked claims have debunked the assertion that the 1918
Spanish flu vaccination killed 50 million people. In fact, there
was no vaccine available at that time, and the first mass
production of flu vaccines began in the US during World War I1.
The claim about wearing masks or going to jail is true, but it is
unrelated to the false claim about vaccine-related deaths.

Figure 1: An example of a post with two fact-checked
claims retrieved by the embedding model. The LLM se-
lects the relevant claim, explains its choice, summarizes
the fact-check article, and predicts the post’s veracity.

goal is to identify fact-checks from a database that
are the most similar to a given input. This task
is crucial, as many claims are not entirely new
but rather rephrased or repeated versions of previ-
ously debunked misinformation. Efficient retrieval
enables fact-checkers to quickly detect repeated
claims, reduce redundant efforts, and prioritize
emerging or complex claims (Hrckova et al., 2024).
However, retrieved results may include fact-checks
that are only loosely related or irrelevant, increas-
ing the workload. To mitigate this, LLMs can
be leveraged to assess the relevance of retrieved



fact-checks, thereby streamlining the review pro-
cess (Vykopal et al., 2025).

In this paper, we propose a novel pipeline for
retrieving previously fact-checked claims and as-
sisting fact-checkers in assessing their relevance
to a given query. Our experiments cover more
than 10 languages from diverse linguistic families
and scripts, including low- and high-resource lan-
guages. We analyze the ability of language models
to retrieve relevant fact-checks while incorporating
summarization and explanation. An example is
shown in Figure 1. In addition, we evaluate LLMs’
performance to determine the veracity based on
retrieved fact-checks and supporting information. '

Our contributions are as follows:

* We provide a novel AFP-Sum dataset consist-
ing of around 19K fact-checking articles along
with their summaries across 23 languages. Ad-
ditionally, we created a subset of 2300 fact-
checks in 23 languages along with the sum-
maries in the original language and translated
summaries in English.

* We evaluated multiple text embedding models
(TEMs) for retrieving previously fact-checked
claims across 20 languages and the capabili-
ties of TEMs for filtering fact-checks based
on instructions in the natural language.

* We proposed a novel pipeline for incorporat-
ing LLMs into the verification process by em-
ploying LLMs for identifying relevant pre-
viously fact-checked claims, providing fact-
check summaries and predicting the veracity
of a given claim based on the previously re-
trieved fact-checks.

2 Related Work

Previously Fact-Checked Claim Retrieval. Pre-
viously fact-checked claim retrieval, also known
as verified claim retrieval (Barrén-Cedefio et al.,
2020) or claim-matching (Kazemi et al., 2021),
aims to reduce fact-checkers’ workload by retriev-
ing similar, already verified claims. While most
research focused on monolingual settings (Shaar
et al., 2020, 2022; Hardalov et al., 2022), multi-
lingual retrieval remains underexplored (Vykopal
et al., 2024). Recent work, such as Pikuliak et al.

'The data are available at Zenodo upon request for
research purposes only: anonymous. The source code
is available at: https://anonymous.4open.science/r/
claim-retrieval-0925.

(2023), introduces the MultiClaim dataset for mul-
tilingual claim retrieval, evaluating various TEMs
for ranking fact-checked claims in monolingual and
cross-lingual contexts.

Recent advancements in LLMs present new op-
portunities for enhancing claim retrieval. Exist-
ing approaches primarily rely on two strategies.
The first involves textual entailment, where mod-
els classify the entailment between an input claim
and a fact-check into three categories (Choi and
Ferrara, 2024a,b). In contrast, the second strategy
employs generative re-ranking to rank the previ-
ously fact-checked claims based on the conditional
probabilities generated by LLMs, which are used
to prioritize more relevant claims (Shliselberg and
Dori-Hacohen, 2022; Neumann et al., 2023).

Fact-Checking Pipelines & Tools. With the
growing importance of online fact-checking, nu-
merous pipelines have been developed to combat
misinformation. Many of these systems rely on
retrieving the evidence based on a given claim and
leveraging LLMs to asses veracity and provide jus-
tifications. However, most research has predomi-
nantly focused on English (Hassan et al., 2017; Shu
etal., 2019; Li et al., 2024) or Arabic (Jaradat et al.,
2018; Althabiti et al., 2024; Sheikh Ali et al., 2023),
with fewer studies dedicated to other languages.
Several online tools have been developed to ad-
dress false information. We Verify? provides a suite
of tools for identifying false information, including
image analysis for detecting manipulated content.
In addition, BRENDA (Botnevik et al., 2020) as-
sesses the credibility of claims, helping users eval-
uate online information. Furthermore, Fact Check
Tool® aims at retrieving previously fact-checked
claims. We build upon the retrieval system and
incorporate LLMs into various steps of the entire
pipeline to determine the veracity and provide ad-
ditional information to human fact-checkers.

Multilingual Summarization. Multilingual
summarization has been propelled by the develop-
ment of extensive datasets and the application of
LLMs (Scialom et al., 2020; Hasan et al., 2021;
Bhattacharjee et al., 2023). These resources have
enabled the fine-tuning of multilingual models
like mT5 (Xue et al., 2021), which demonstrate
competitive performance in both multilingual and
low-resource summarization tasks. Furthermore,
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studies have explored the zero-shot and few-shot
capabilities of LLMs such as GPT-3.5 and GPT-4
in cross-lingual summarization, highlighting their
potential to handle diverse language pairs without
extensive fine-tuning (Wang et al., 2023). Efforts
to enhance factual consistency in multilingual
summarization have also been made, exemplified
by the use of multilingual models to improve the
reliability of machine-generated summaries across
languages (Aharoni et al., 2023).

3 Methodology

Our experiments aim to evaluate the capabilities
of TEMs and LLMs in assisting fact-checkers by
providing additional information. This includes
retrieving the most similar previously fact-checked
claims, summarizing fact-checking articles along
with their ratings, and potentially predicting the
veracity of a given input based on the retrieved in-
formation. Much of this process can be automated
using LLMs, thereby reducing the effort required
from fact-checkers to identify relevant fact-checks.

Our proposed pipeline, illustrated in Figure 2,
consists of four key steps: retrieval (Section 4),
filtration (Section 5), summarization (Section 6)
and veracity prediction (Section 7). In the retrieval
step, the TEM retrieves the top K most similar
fact-checks based on a given input. The filtration
step then refines these results by using the LLM to
identify only the fact-checks that are directly rele-
vant, providing explanations for its selection and
filtering out irrelevant claims. In the summariza-
tion step, the LLM generates concise summaries of
the relevant fact-checking articles. Finally, in the
veracity prediction step, the LLM leverages the re-
trieved fact-checks, their ratings, and the generated
summaries to assess and predict the veracity of the
given input based on the available information.

In addition, we provide an overview of the
datasets (Section 3.1) and models (Section 3.2)
used in our experiments. We also detailed the eval-
uation for each step of the pipeline in Section 3.3.

3.1 Datasets

MultiClaim. We selected the MultiClaim
dataset (Pikuliak et al., 2023) to evaluate the
efficiency of embedding models and LLMs in
retrieving previously fact-checked claims and
assessing claim veracity. MultiClaim comprises
206K fact-checking articles in 39 languages and
28K social media posts in 27 languages. Addi-

tionally, this dataset includes 31K pairs between
social media posts and fact-checking articles,
linking posts to corresponding fact-checking
articles. Moreover, each fact-checking article is
assigned a veracity rating and contains a URL,
allowing retrieval of the full article content. This
supplementary information enhances our pipeline
by enabling a more structured and comprehensive
evaluation of detecting previously fact-checked
claims.

AFP-Sum. To evaluate the abilities of LLMs to
summarize fact-checking articles, we created the
AFP-Sum dataset, consisting of fact-checking ar-
ticles and their summaries from the AFP (Agence
France-Presse)*. We scrapped fact-checking arti-
cles across 23 languages, yielding approximately
19K fact-checking articles with summaries written
by fact-checkers. For our experiments, we selected
100 fact-checking articles per language, evaluating
LLM-generated summaries in English. To facilitate
evaluation, we employed Google Translate to trans-
late all reference summaries into English. Table 8
in Appendix B.2 presents the dataset statistics.

3.2 Language Models

We employed two categories of models, especially
text embedding models and large language mod-
els. TEMs were used in the retrieval stage to iden-
tify the most relevant fact-checks for a given input.
While numerous TEMs exist, we selected both En-
glish and multilingual models, using BM25 as a
baseline for comparison. The TEMs used in our
study are listed in Table 2.

In addition to TEMs, we evaluated a diverse set
of LLMs, including both closed and open-sourced,
chosen based on their state-of-the-art performance
across NLP tasks. For the summarization, we also
experimented with smaller LLMs with fewer than
3 billion parameters. The full list of LLMs used in
our experiments is shown Table 1.

3.3 Evaluation

We employed various evaluation metrics tailored
to different stages of our proposed pipeline.

In the retrieval step, we used success-at-K
(S@K) as the primary evaluation metric for assess-
ing TEMs performance. S@K measures the per-
centage of cases where a correct fact-check appears
within the top K retrieved results. Additionally, we
apply this metric to evaluate the ability of LLMs to
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Figure 2: Our proposed pipeline consisting of (1) retrieval of the top N most similar fact-checks, (2) identifying
relevant fact-checked claims, (3) summarizing relevant fact-checking articles, and (4) predicting the veracity of the

query along with the explanation.

Model #Params [B] #Langs Organization Citation

GPT-40 (2024-08-06) N/A N/A OpenAl

Claude 3.5 Sonnet N/A N/A  Anthropic

Mistral Large 123 11 Mistral Al Mistral Al Team (2024)
C4AI Command R+ 104 23 Cohere For AI  Cohere For AI (2024)
Qwen2 Instruct 72 29  Alibaba Yang et al. (2024)
Qwen2.5 Instruct 0.5,1.5,3,72 29  Alibaba Yang et al. (2024)
Llama3.1 Instruct 70 8 Meta Grattafiori et al. (2024)
Llama3.2 Instruct 1,3 8 Meta Grattafiori et al. (2024)
Llama3.3 Instruct 70 8 Meta Grattafiori et al. (2024)
Gemma3 27 140 Google Team et al. (2025)

Table 1: LLMs used in our experiments, including both
closed-source and open-source models.

identify the most relevant fact-checks from the set
retrieved by a TEM.

For summarization experiments, we used two
standard metrics: BERTScore and ROUGE-L.
BERTScore evaluates semantic similarity by com-
puting the F1 score based on contextual word em-
beddings from a BERT model. ROUGE, on the
other hand, measures n-gram overlaps between
the generated summary and the reference sum-
mary. Specifically, we employed ROUGE-L, which
focuses on the longest common subsequence of
words. ROUGE-L also helps detect cases where
the LLM generated summaries in a language other
than English — something that is more challenging
to identify using BERTScore.

Finally, for veracity prediction experiments, we
employed standard classification metrics for imbal-
anced data: Macro F1 score, Precision and Recall.

4 Retrieval Experiments

In this section, we describe experiments with
various TEMs in two settings. First, direct re-
trieval (Section 4.1), in which we evaluate the
performance of existing TEMs for retrieving the

most similar previously fact-checked claims based
on posts. Second, criteria-based retrieval (Sec-
tion 4.2), where we evaluate TEMs for filtering
the results based on criteria specified in a natural
language in English (e.g. the presence of a specific
named entity, the publication date, etc.).

4.1 Direct Retrieval

We evaluated various TEMs and their performance
for ranking previously fact-checked claims based
on a given input. We formulate the task as a rank-
ing problem, where we aim to rank all fact-checks
from the database for a given input based on co-
sine similarity. We selected 20 languages with at
least 100 posts per language with a setup similar to
that proposed by Pikuliak et al. (2023). In addition
to the TEMs evaluated in (Pikuliak et al., 2023),
we included more recent multilingual TEMs, espe-
cially multilingual ES models of various sizes. We
evaluate the TEM’s performance only in a monolin-
gual setting, where fact-checked claims and posts
are in the same language.

Results. The results of TEMs in the monolin-
gual setting are shown in Table 2. These results
demonstrated that some multilingual TEMs can
outperform the combination of English transla-
tion with English TEMs, but not statistically sig-
nificantly. Multilingual E5 Large achieved the
highest S@ 10 (statistically significant; p < 0.05),
while GTR-T5-Large achieved the best results with
English translations (p < 0.05). The other multi-
lingual TEMs fall behind the English TEMs.
Table 9 shows the results of all studied TEMs
across 20 languages. Based on the results of the



Model Size [M] Ver. Avg. S@10
BM25 Og 0.62
English TEMs
DistilRoBERTa 82 En 0.75
MiniLM-L6 22  En 0.79
MinilLM-L12 33 En 0.79
MPNet-Base 109 En 0.77
GTE-Large-En 434  En 0.80
GTR-T5-Large 737 En 0.83
Multilingual TEMs
BGE-M3 568 Og 0.82
DistilUSE-Base-Multilingual 134 Og 0.66
LaBSE 470 Og 0.69
Multilingual E5 Small 117  Og 0.78
Multilingual E5 Base 278 Og 0.78
Multilingual E5 Large 559 Og 0.84
MiniLM-L12-Multilingual 117  Og 0.63
MPNet-Base-Multilingual 278 Og 0.69

Table 2: Average performance of English and multilin-
gual TEMs in monolingual settings using S@ 10 metric.
Ver. denotes either original (Og) or the English (En)
version of the dataset. The best results for both versions
are highlighted in bold.

English TEMs, GTR-T5-Large achieved superior
performance for most languages (p < 0.05). How-
ever, for the German language, the results were
lower than 0.70. On the other hand, Multilingual
E5 Large proved to be effective across all lan-
guages (p < 0.05), except Thai, where the smaller
Multilingual E5 outperformed larger versions.

4.2 Criteria-based Retrieval

In addition to retrieval based only on the input
claim or posts, we also experimented with criteria-
based retrieval, where we employ TEMs to filter
the results based on given criteria, e.g., the presence
of a specific named entity. The aim is to evaluate
whether TEMs can be employed to filter the results
with natural language instructions provided by fact-
checkers. We defined four settings for the experi-
ments: filtering based on the language, date range,
fact-checking domain or the named entity. We se-
lected the best-performing TEM —Multilingual
E5 Large for the experiments. We proposed a
template illustrated in Figure 5, consisting of fact-
checked claims and metadata, such as language,
fact-checking organization, and publish date.

As ground truth, we used the results obtained by
using Multilingual E5 Large to rank a subset
of the data already filtered based on a given condi-
tion using the manually-designed filter (e.g., only
Spanish fact-checks were ranked). Our pipeline
for criteria-based retrieval consists of two steps:

. Avg. Avg. Avg.
Settings Spearman Kendall’s Tau Common FCs
Named Entities —0.31 —0.20 0.32
Languages —0.58 —0.43 0.17
Domains —0.66 —0.51 0.12
Dates —0.82 —0.64 0.02

Table 3: Scores for average Spearman correlation coef-
ficient, Kendall’s Tau and the proportion of the common
fact-checks (FCs) between the ground truth and pre-
dicted ranked list. We report the mean score across all
settings with at least 100 fact-checks per category.

(1) Retrieval based on the criteria (e.g., a given
language), where we select only fact-checks with
a similarity score of more than 0.8; (2) Ranking
based on the post, where we rank previously re-
trieved results using the post content, similarly to
the direct retrieval.

For the evaluation, we employed Spearman’s
rank correlation coefficient and Kendall’s Tau to
evaluate the capabilities of TEMs to rank the re-
sults by using queries in the natural language.
We calculated the correlation between ranks pro-
duced by Multilingual E5 Large with our two-
step approach and ranks obtained by using the
Multilingual E5 Large on the already filtered
results based on manually-designed filters.

Results. Table 3 presents the results for the fil-
tered retrieval across four settings: named entities,
languages, fact-checking domains and date ranges.
We calculated the average Spearman’s rank cor-
relation, Kendall’s Tau and the proportion of the
common fact-checks between the predicted and ref-
erence list of fact-checks. A positive correlation
indicates that the predicted ranking aligns with the
reference ranking, whereas a negative correlation
suggests an inverse relationship.

Our results showed that filtering based on the
named entities yielded the highest overlap be-
tween the predicted and ground truth fact-check
lists (p < 0.05), suggesting that TEMs performed
best when fact-checks were retrieved based on
named entities. Despite this, the Spearman cor-
relation of —0.31 indicates that while TEMS might
identify relevant fact-checks, their rankings did not
fully match the ground truth ordering.

Filtering by language, domain and date range
led to lower performance, with the latter perform-
ing the worst. This suggests that while TEMs can
retrieve relevant fact-checks based on natural lan-
guage instructions, their filtering changes the can-



didate set that limits and reduces overall ranking
performance. Additionally, we specified a date
range, whereas the embeddings of fact-checks only
included the exact date of each fact-check. This
discrepancy made it more challenging for TEMs to
retrieve the fact-checks based on dates not explic-
itly mentioned in the prompt.

5 Filtration Experiments

To filter out irrelevant previously fact-checked
claims, we experimented with several LLMs on
a subset of the MultiClaim dataset. We selected
10 languages, specifically Czech, English, French,
German, Hindi, Hungarian, Polish, Portuguese,
Spanish and Slovak, with 100 posts per language.
These posts were chosen based on their veracity
labels. However, since the MultiClaim dataset
predominantly contains false posts, achieving a
balanced distribution was not feasible. The final
dataset consists of 55 true, 65 unverifiable and 880
false posts, resulting in a significant imbalance. We
used this data to evaluate the efficiency of LLMs in
filtering out irrelevant fact-checks for a given input.

Our approach involved a two-step process. First,
we used Multilingual E5 Large to retrieve the
50 most similar fact-checked claims. Then, we
instructed the LLM to filter this set (see Figure 7),
selecting only those directly relevant to the input
post, while removing irrelevant fact-checks.

To assess the performance and efficiency of the
LLMs in this task, we calculated the S@10 and
MRR (mean reciprocal rank) scores for retrieval.
In addition, we calculated Macro F1, True nega-
tive rate (TNR) and False negative rate (FNR) to
identify the capabilities of LLMs. To calculate
classification metrics, we created pairs of posts and
fact-checks identified by the Multilingual E5
Large model, where the relevance labels were ob-
tained from the labelled pairs from the MultiClaim
dataset. TNR represents the proportion of how
many irrelevant fact-checks were correctly filtered
out, while FNR represents the proportion of how
many relevant fact-checks were incorrectly filtered
out. In this case, we want to maximize the TNR
and minimize the FNR.

5.1 Results

Table 4 summarizes our results on filtering irrele-
vant fact-checks. Using Multilingual E5 Large
as the baseline, we correctly retrieved 76% of rel-
evant fact-checks within the top 10 results. To

Model S@10t MRRT MacroF11 TNR{T FNR |

Multilingual E5 Large 0.76 0.58 5475 8627  25.59
Mistral Large 123B 0.70 040 59.82 90.23 15.38
C4AI Command R+ 0.66 0.35 5550 85.83  15.38
Qwen2.5 72B 0.57 0.32 5837  90.81  30.65
Llama3.3 70B 0.67 0.38 5996 90.82  19.61
Llama3.1 70B 0.63 0.37 59.62  91.08 2425
Gemma3 27B 0.65 0.35 5777 89.14  21.78
Llama3.1 8B 0.60 0.24 5238 8230 21.16
Qwen2.5 7B 0.47 0.35 59.25 9320 43.86

Table 4: Retrieval and filtration performance results
on 100 posts across 10 languages. Multilingual E5
Large serves as the baseline. The best results are
highlighted in bold, while the second-best results are
underlined.

further assess performance, we framed the ranking
task as binary classification, selecting an optimal
threshold using Youden’s Index. Macro F1 showed
that the baseline outperformed L1ama3.1 8B.
After retrieval, we applied an LLM to filter the
top 50 retrieved fact-checks. While this lowered
S@10 and MRR scores compared to the baseline,
the aim was to reduce the number of irrelevant
fact-checks presented to fact-checkers. We mea-
sured the proportion of relevant and irrelevant fact-
checks removed. Mistral Large achieved the
best trade-off between TNR and FNR (p < 0.05),
while also outperforming other LLMs in S@10.
Our findings suggest that while LLMs effec-
tively remove irrelevant fact-checks, they may
exclude some relevant ones. The performance
gap between Multilingual E5 Large and LLMs
indicates occasional misclassification of relevant
fact-checks as irrelevant, although LLMs may also
elevate lower-ranked fact-checks into the top 10.

6 Summarization Evaluation

We evaluated LLMs on summarizing fact-checking
articles using a subset of our AFP-Sum dataset
across 23 languages. Experiments were conducted
in two settings: (1) Article first — the article is pro-
vided before the instruction; (2) Article last — the ar-
ticle is provided after the instruction (see Figure 6).
We examined how prompt order and quantization
affect summary quality. Articles were provided in
their original language, with instructions to gen-
erate a summary in English. The generated sum-
maries were compared against English translations
of reference summaries using Google Translate.

6.1 Results

Figure 3 presents the overall results using the
ROUGE-L metric in the Article first setup. The re-



Figure 3: Overall performance of LLMs for fact-check
summarization. We report the average ROUGE-L score
for each LLM using the Article first setup, where the
article is provided before the instruction.

sults demonstrated the diverse performance across
LLMs. Smaller Llama models struggled with
summarization, often generating summaries in
the article’s original language instead of English,
leading to lower ROUGE-L. In contrast, other
LLMs better adhered to the instruction to produce
English summaries. Furthermore, providing the in-
struction before the article worsened this issue and
resulted in a very low ROUGE-L (see Table 13).

Table 12 compares L1ama3.2 models (1B and
3B parameters) across different article-order se-
tups and three quantization levels. Summaries
were generated using 4-bit, 8-bit, and full-precision
models. Results showed that providing the arti-
cle before the instruction significantly improved
performance (p < 0.05), yielding better results
when the article was provided after the instruc-
tion. For L1ama3.2 1B, the 8-bit model generally
performed best (not statistically significant), with
full precision close behind. The performance gap
between the full-precision and 4-bit was around
0.3 BERTScore points for L1ama3.2 1B, while for
Llama3.2 3B, only 0.1, suggesting that quantiza-
tion has less impact on larger LLMs.

Overall, L1ama3.3 70B and Mistral Large
achieved the best performance across languages
(see Table 11), while other LLMs lagged behind
(not statistically significant). The results indicate
that LLMs covering fewer languages (e.g., L1ama)
can outperform broader multilingual LLMs, e.g.,
C4AI Command R+ or Qwen2.5.

7 Evaluation of LLM’s Veracity
Prediction

To assess how well LLMs predict claim verac-
ity using retrieved previously fact-checked claims
and the fact-check summaries (see Figure 7), we
employed the same data as in Section 5. The fi-
nal dataset consists of three classes: True, False
or Unverifiable, which are imbalanced. There-

Model Macro Macro Macro
ode F1 Precision Recall

Baseline (without retrieved fact-checks)
Mistral Large 123B 26.53 39.57 33.25
Llama3.3 70B 30.29 34.22 33.30
Mistral Large 123B 63.05 64.88 61.62
C4AI Command R+ 54.92 55.50 54.38
Qwen2.5 72B 57.28 57.28 57.33
Llama3.3 70B 52.62 52.18 53.09
Llama3.1 70B 51.68 50.67 53.25
Gemma3 27B 52.39 52.62 52.36
Llama3.1 8B 49.15 46.66 53.65
Qwen2.5 7B 51.99 56.47 49.23

Table 5: Veracity prediction results across various
LLMs. Results are presented for baseline (without
retrieved fact-checks), and LLMs with retrieved fact-
checks. The best results are highlighted in bold.

fore, we leveraged Macro F1, Macro Precision and
Macro Recall to evaluate the performance of LLMs.
In this case, the supplementary information is in
English, particularly summaries, ratings and fact-
checked claims. This is also beneficial for human
fact-checkers to understand the results provided by
LLMs. As baselines, we selected Mistral Large
and Llama3. 3, instructed only with the post and
task description without additional information.

7.1 Results

Our results are shown in Table 5, where we em-
ployed eight LLMs with different model sizes. The
Mistral Large with the retrieved information
outperformed all other LLMs, also the baselines
(not statistically significant). It achieved the high-
est performance, making it the most reliable for
veracity prediction out of the experimented LLMs.

Qwen2.5 72B follows with a noticeable drop
in performance, suggesting that model size alone
does not determine effectiveness. Llama models
performed similarly, showing limited ability to dis-
tinguish veracity class based on the retrieved in-
formation. The smaller models performed the
worst and struggled with generalization.

Overall, while bigger LLMs tend to perform bet-
ter, the contextual information plays an impor-
tant role. The strong performance of Mistral
Large highlights its potential for improving fact-
checking applications.

8 Human Evaluation

To assess the effectiveness of our proposed pipeline
for multilingual claim retrieval, we developed a



web-based tool designed for fact-checkers. In addi-
tion to conducting automatic evaluations of individ-
ual components, we focused on human evaluation
of the entire pipeline using the developed tool. We
provided the tool to students and academics, who
assessed its performance and usability. Their feed-
back was collected through the evaluation work-
shop and a structured questionnaire, offering in-
sights into the system’s applicability.

8.1 Developed Tool

Our web-based application integrates the pipeline
described in Section 3, utilizing the best-
performing TEM model — Multilingual E5
Large. The backend employs L1ama3.3 70B, se-
lected for its strong summarization ability and abil-
ity to filter irrelevant fact-checks. We store fact-
checked claims from over 80 languages, along with
metadata and Multilingual E5 Large embed-
dings, in the Milvus® vector database. The result
of the system provides a ranked list of relevant
fact-checks identified by the LLM, along with their
summaries and explanations. In addition, we pro-
vide users with a veracity label distribution graph
and a verdict explanation to aid decision-making.

8.2 Evaluation & Results

To evaluate the tool, we conducted a user study
with six participants (five journalism students and
one academic). Each participant interacted with the
tool and completed the questionnaire designed to
assess system usability, output quality and overall
effectiveness in supporting fact-checking.

Participants rated their satisfaction with various
aspects of the tool, including summaries, expla-
nations of relevant fact-checks, the veracity graph
and overall usability. Ratings ranged from 1 (very
unsatisfied) to 5 (very satisfied). Most features re-
ceived average satisfaction scores between 3.5 and
4, with explanations of relevant fact-checks and
veracity explanations achieving the highest aver-
age rating. Users generally found the tool helpful
in identifying relevant fact-checks and appreciated
the clarity of summaries and explanations.

We asked participants to assess the tool’s main
benefits (see Figure 4). Participants highlighted
the retrieval of relevant fact-checks (FCs), concise
summaries and explanations, and the clarity of the
interface as the main benefits. These results suggest
that the tool is a promising aid for fact-checkers.

Shttps://github.com/milvus-io/milvus
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Figure 4: Number of participants (N = 6) who high-
lighted each evaluation criterion as beneficial.

9 Discussion

Multilingual TEMs Outperform English TEMs.
Multilingual E5 Large achieved the best re-
trieval performance across most languages. How-
ever, criteria-based retrieval experiments showed
that TEMs struggled with natural language instruc-
tions, especially when filtering by date range.

Filtration with LLMs Improves Precision But
Has Trade-Offs. Mistral Large provided the
best balance between retaining relevant fact-checks
and filtering out irrelevant ones, showing promise
for assisting fact-checkers. However, the trade-off
between precision and recall remains challenging,
as some useful fact-checks may be excluded.

Larger LLMs Excel in Summarization and Ve-
racity Prediction. Smaller LLMs often failed to
follow instructions, producing summaries in the
original language instead of English. Larger LLMs
performed better, particularly when the article pre-
ceded the instruction, and were more effective at
predicting claim veracity. However, overall per-
formance remained moderate due to the inherent
difficulty of accurately assessing claim veracity.

10 Conclusion

This paper presents a pipeline for multilingual re-
trieval of previously fact-checked claims, integrat-
ing LLMs to enhance the fact-checking process.
Beyond the retrieval, our approach supports fact-
checkers by filtering irrelevant fact-checks, sum-
marizing fact-checking articles, and predicting ve-
racity labels along with explanations. We also de-
veloped a web-based application and evaluated its
effectiveness in the fact-checking process. Our
findings demonstrate the potential of LLMs to im-
prove fact-checking workflows, making them more
efficient and accessible across languages.
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Limitation

Models Used. Our experiments relied on a selec-
tion of state-of-the-art LLMs and TEMs, including
closed-source models (e.g., GPT-40 or Claude 3.5
Sonnet) and open-sourced models (e.g., Mistral
Large, L1ama3). However, model performance is
highly dependent on training data and fine-tuning
strategies. As a result, our findings may not gen-
eralize to all LLMs and architectures, and future
improvements may arise with newer models.

Language Support. Despite evaluating our ap-
proach on more than 10 languages and incorpo-
rating fact-checking data from 20 languages, our
system may still face challenges in handling low-
resource languages. The performance of TEMs
and LLMs may vary across languages, particularly
those with limited pre-trained resources.

In addition, the selected LLMs exhibit varying
degrees of multilingual capabilities. While model
cards on Hugging Face® indicate intended language
support, the models may demonstrate capabilities
in additional languages due to the training data
diversity and potential data contamination.

Human Evaluation. Our user study included six
participants from an academic environment — five
journalism students and one academic. While pro-
fessional fact-checkers would have been more ap-
propriate evaluators for our tool, their inclusion
was not feasible due to time constraints and limited
availability. Journalism students, however, serve as
a reasonable proxy, given their specialization and
relevance as potential end-users. We acknowledge
this limitation and consider evaluation with profes-
sional fact-checkers as an important direction for
future work.

Automated Veracity Prediction. Our pipeline
includes an LLM-based veracity prediction, which
suggests a claim’s veracity based on retrieved fact-
checks. However, automated assessments remain
limited by the availability and accuracy of fact-
checking data. In cases where no relevant fact-
check exists, the system may struggle to provide
reliable predictions.

Ethical Consideration

Biases. Since we experimented with LLMs, our
system may inherit biases from the training data
used in the embedding models and LLMs. These

https://huggingface.co/

biases can affect claim retrieval, relevant fact-check
selection, and veracity assessments, potentially
leading to skewed or misleading outputs, especially
for politically sensitive or controversial topics.

Additional bias is propagated by fact-checkers
since they decide what they will fact-check.

Developed Tool. The final version of the devel-
oped tool employs the L1ama3.3 70B’. This model
was selected for its advanced capabilities in summa-
rizing and efficient inference, compared to larger
models. The tool includes biases inherited from the
used LLM.

To enhance transparency and assist users in eval-
uating the output, the tool also provides the number
of supporting and refuting fact-checks associated
with a given claim. This information is included in
the veracity distribution graph within the tool. The
user can employ this information for the final deci-
sion on the veracity of the given claim and compare
the veracity prediction done by the LLM.

The classification accuracy and efficiency of the
pipeline depend on the final model — in our case,
Llama3.3 7@B. The evaluation of the correspond-
ing model and its effectiveness for the veracity pre-
diction is evaluated in Section 7. LLMs are known
to hallucinate (Rawte et al., 2023), and therefore,
they might create fake, non-factual or even harmful
information.

In addition, the tool incorporates fact-checking
articles and corresponding claims, many of which
are false or misleading statements spread online.
As aresult, users of the application may be exposed
to false, misleading, or even harmful claims. To
address this, the tool includes a Terms of Use that
outlines its intended purpose, identifies the target
users, and specifies user groups for whom the tool
is not intended.

Personal Information. The original Multi-
Claim (Pikuliak et al., 2023) dataset might contain
personal information and data from the social me-
dia posts (e.g., the names of users). However, we
are not using any personal information within our
experiments or the developed tool.

Terms of Use of Platforms and Datasets. In our
research, we utilized the MultiClaim dataset (Piku-
liak et al., 2023), which is accessible under specific
conditions — the dataset is restricted to academic
and research purposes.

7https://huggingface.co/meta—llama/Llama—3.
3-70B-Instruct


https://huggingface.co/
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct

Additionally, we incorporated fact-checking arti-
cles from Agence France-Presse (AFP)®, which are
available for personal, private, and non-commercial
use. Any reproduction or redistribution beyond
these permitted uses is forbidden.

We ensure that our use of both the MultiClaim
and AFP’s content for the AFP-Sum is compiled
with their respective terms and conditions.

Intended Use. The annotated data presented in
this research are intended solely for research pur-
poses. They are derived from the existing Multi-
Claim dataset (Pikuliak et al., 2023), which is also
intended only for research purposes. In our work,
we selected a subset and annotated specific portions
for the task of veracity prediction.

Additionally, we introduce the AFP-Sum
dataset, comprising fact-checking articles and their
summaries sourced from the AFP organization.
Due to the copyright restrictions on the AFP data,
its usage is strictly limited to research purposes. As
such, we release the AFP-Sum dataset and any de-
rived resources to researchers for non-commercial
research use only.

To promote reproducibility, we also release code
used to obtain our results. Both the datasets and
the code are intended only for research use, and
replicating our findings requires access to the orig-
inal MultiClaim dataset, which is available under
its respective terms and conditions.

Usage of Al assistants. We have used the Al as-
sistant for grammar checks and sentence structure
improvements. We have not used Al assistants in
the research process beyond the experiments de-
tailed in the Methodology section (Sec. 3).
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A Computational Resources

For our experiments, we leveraged a computational
infrastructure consisting of A40 PCle 40GB, A100
80GB and H100 NVL 94GB NVIDIA GPUs. In
addition, we used API from Anthropic to run the
experiments with Claude 3.5 Sonnet and Azure for
deploying GPT-4o.

The experiments with TEMs took around 30
GPU hours. Our experiments with summarization
and comparison of various quantization variants
required approximately 600 GPU hours. Finally,
the experiments with the overall pipeline — with
veracity prediction — took around 400 GPU hours.

B Dataset Statistics
B.1 MultiClaim Dataset

For our experiments, we selected Multi-
Claim (Pikuliak et al., 2023), the most com-
prehensive multilingual dataset for previously
fact-checked claim retrieval. We used the full
dataset for retrieval experiments, as described
in Section 4. For other components, we worked
with a subset of MultiClaim, selecting a set
of 10 languages that included both high- and
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Language
Czech
German
English
French
Hindi
Hungarian
Polish
Portuguese
Slovak
Spanish

Lang. Code Average WC  # False # True # Unverifiable

168.60 + 242.44

86.08 £ 84.90
11111 £ 142.39
109.14 £ 129.62
63.36 + 108.82
123.73 £ 178.21
102.00 £ 130.70
92.25 £+ 176.08
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95.73 £ 130.48
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Table 6: Statistics of a subset of MultiClaim dataset
used for experiments with filtration and veracity predic-
tion. We provide the average word count (WC) with
standard deviation and the number of false, true and
unverifiable claims per language.

low-resource languages. From each language, we
sampled 100 social media posts for each language
while aiming to balance the distribution of veracity
labels. However, the original MultiClaim dataset
is highly imbalanced, with a predominant number
of false social media posts. As a result, our subset
contains a significant proportion of false claims.
Table 6 provides detailed statistics on the subset
used in our experiments.

The final veracity ratings were derived from fact-
checking articles linked to particular posts. We
manually evaluated these links to ensure they were
correctly extracted from the metadata of the corre-
sponding fact-checks.

B.2 AFP-Sum Dataset

To assess the ability of LLMs to summarize fact-
checking articles, we collected data from the
AFP organization. Specifically, we extracted fact-
checking articles in 23 languages, listed in Table 7,
which also includes the number of articles per lan-
guage. Our dataset comprises fact-checking articles
published up until September 2023.

For the final evaluation, we employed only a
subset of the data, especially we used 100 fact-
checking articles per language, which we randomly
sampled from the AFP-Sum dataset. The statistics
of the sampled dataset, consisting of 2300 fact-
checking articles in 23 languages, are shown in
Table 8. Besides the number of fact-checking ar-
ticles, we provide the average word count for the
article and for the summary along with the standard
deviation.

Since the extracted summaries are in the original
language, we employed Google Translate API to
translate the summaries into English, which we
then used for the final evaluation and calculating
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Language Lang. Code Domain # Articles
English en https:/factcheck.afp.com 6358
Spanish es https://factual.afp.com 3999
French fr https:/factuel.afp.com 2883
Portuguese pt https://checamos.afp.com 1320
German de https://faktencheck.afp.com 564
Indonesian  id https://periksafakta.afp.com 506
Polish pl https://sprawdzam.afp.com 386
Korean ko https://factcheckkorea.afp.com 359
Thai th https://factcheckthailand.afp.com 349
Serbian sr https://cinjenice.afp.com 306
Finnish fi https:/faktantarkistus.afp.com 289
Malay ms https://semakanfakta.afp.com 233
Slovak sk https://fakty.afp.com 226
Czech cs https://napravoumiru.afp.com 216
Dutch nl https://factchecknederland.afp.com 192
Bulgarian  bg https://proveri.afp.com 139
Bengali bn https://factcheckbangla.afp.com 136
Romanian  ro https://verificat.afp.com 135
Burmese my https://factcheckmyanmar.afp.com 128
Hindi hi https://factcheckhindi.afp.com 125
Greek el https://factcheckgreek.afp.com 121
Hungarian  hu https://tenykerdes.afp.com 112
Catalan ca https://comprovem.afp.com 110

Table 7: Statistics of the AFP-Sum dataset, consisting of
the languages, language codes, domains and the number
of articles per language.

the BERTScore and ROUGE-L.

C Retrieval Experiments

Table 9 provides the results of the experiments with
simple retrieval across 20 languages, where we
aimed to evaluate how accurate TEMs are for re-
trieving the relevant fact-checks based on the con-
tent of the social media post. We report S@10 as
the main metric for the evaluation.

C.1 Ciriteria-based Retrieval

Figure 5 illustrates the template used for filtered
retrieval experiments. Each fact-check is struc-
tured using this template, which includes the fact-
checked claim, the language of the fact-checking
article, the publication date, and the fact-checking
organization. This structure representation is then
embedded using the selected TEM.

To retrieve relevant fact-checks based on the in-
struction in natural language, we test different re-
trieval conditions, such as filtering by language or
by a specific named entity. Once we obtain a list
of fact-checks with a similarity score above 0.8,
we perform a second retrieval step based on the
content of a social media post. In this step, each
fact-check is represented only by the fact-checked
claim without any metadata, and is embedded using
a specific TEM to facilitate retrieval.

13

. Average WC Average WC
Lang. Code Language # Articles Article Summary
bg Bulgarian 100 965.66 +533.28  81.57 +20.09
bn* Bengali 100 308.93 +£114.53  55.07 +17.23
ca* Catalan 100 822.30 +£454.67  82.69 + 18.19
cs Czech 100 691.35 +£35320  62.31 + 14.28
de German 100 869.32 £510.19  62.19 + 15.57
el Greek 100 111624 +500.74 86.51 + 17.89
en English 100 463.63 +£197.19  58.18 +13.51
es Spanish 100 713.13 +£477.01  75.87 + 18.69
fi* Finnish 100 754.15 +£369.82  57.50 + 17.54
fr French 100 659.96 +£568.90  61.38 +23.46
hi Hindi 100 507.20 + 142.50  78.07 + 17.16
hu Hungarian 100 884.79 £570.36  78.02 £ 17.50
id* Indonesian 100 45879 £173.84  56.58 &+ 12.63
ko Korean 100 309.15+£131.40 4699 +11.12
ms Malay 100 521.20 +163.88  59.05 + 13.16
my Burmese 100 233.89 +77.18 31.18 + 10.57
nl Dutch 100 998.47 +515.52  73.51 +19.30
pl Polish 100 836.52+474.79  59.31 +17.34
pt Portuguese 100 715.00 £ 343.31  80.21 &+ 15.72
o Romanian 100 1156.78 £ 566.54 88.75 4 19.20
sk Slovak 100 850.55 4 552,95  62.53 +22.07
sr Serbian 100 954.83 £497.00  71.55 %+ 19.63
th Thai 100 121.34 +42.42 10.71 £ 4.68

Table 8: Statistics of the dataset used for summariza-
tion experiments, consisting of 100 fact-check articles
across 23 languages. Languages marked with * are not
included in other experiments besides summarization.
The Arabic language is missing, which is used in other
experiments.

D Summarization Experiments

Figure 6 illustrate the final prompt formats used in
our summarization experiments. We present both
the Article last and Article first variants.

Table 10 presents the results of the summariza-
tion experiments using various open-source and
closed-source LLMs across 23 languages, evalu-
ated with the BERTScore metric. For each LLM,
we report performance in two settings: when the
article is provided before the instruction (Article
first) and when the article is provided after the in-
struction (Article last).

Similarly, Table 11 summarizes the results based
on the ROUGE-L metric.

In addition to evaluating the two settings, we
also examined the impact of different quantiza-
tion variants on LLM performance. Specifically,
we compared non-quantized models with versions
quantized to 4-bit and 8-bit precision. For these ex-
periments, we selected L1ama models, focusing on
Llama 3.7 70B and Llama3.2 in 1B and 3B vari-
ants. The BERTscore results across 23 languages
are presented in Table 12, while Table 13 reports
ROUGE-L scores.



Model Ver. ara bul ces deu ell eng fra hbs hin hun kor msa mya nld pol por ron slk spa tha Avg

BM25 Og 075 071 070 0.63 0.61 063 074 046 0.61 049 058 075 031 056 056 077 070 0.78 0.73 031 0.62
English TEMs
DistilRoBERTa En 079 086 0.88 058 0.73 0.64 079 065 0.65 082 0.82 075 077 072 0.65 0.64 0.86 085 072 089 0.75
MinilM-L6 En 084 089 0.85 0.64 0.80 0.69 082 070 0.75 0.87 0.84 078 079 0.76 0.70 0.70 0.86 0.84 0.77 0.90 0.79
MinilLM-L12 En 084 090 0.86 0.64 080 070 082 072 0.77 0.86 0.83 0.78 080 0.73 0.72 0.71 086 086 0.78 0.89 0.79
MPNet-Base En 080 0.87 0.89 057 077 068 081 070 0.72 0.87 0.80 0.79 080 0.74 0.67 0.67 0.86 085 075 0.88 0.77
GTE-Large-En En 082 088 0.88 0.65 082 073 084 072 0.74 0.85 0.84 076 081 0.78 0.71 0.69 0.87 086 0.79 0.89 0.80
GTR-T5-Large En 086 086 0.88 0.69 083 0.77 086 0.74 0.79 0.89 0.86 082 088 0.78 0.74 0.80 0.88 087 0.84 090 0.83
Multilingual TEMs
BGE-M3 Og 084 087 090 0.74 0.80 0.69 087 067 082 0.89 090 086 086 074 072 079 0.88 0.89 084 093 0.82
DistilUSE-Base-Multilingual Og 0.74 081 0.71 0.50 0.60 0.56 0.69 0.57 053 0.78 0.74 0.60 0.62 0.61 060 0.58 0.80 0.77 0.64 0.72 0.66
LaBSE Og 077 084 0.81 048 070 044 072 057 056 0.82 0.77 0.67 077 061 057 066 078 0.74 0.64 0.79 0.69
Multilingual E5 Small Og 081 089 082 071 0.80 061 080 063 072 0.87 0.85 077 0.69 072 071 076 0.89 083 081 089 0.78
Multilingual E5 Base Og 081 087 0.85 070 0.77 0.64 0.83 0.60 067 0.88 0.86 080 074 0.73 0.66 0.77 0.88 0.84 081 089 0.78
Multilingual E5 Large Og 084 090 092 078 082 0.75 086 0.74 0.81 0.90 091 088 081 0.83 0.77 0.82 090 089 087 085 0.84
MinilM-L12-Multilingual Og 049 083 075 048 058 058 066 055 049 0.79 0.61 054 058 064 0.61 051 079 0.77 057 081 0.63
MPNet-Base-Multilingual Og 070 081 0.78 053 063 061 073 056 0.63 083 071 062 075 0.66 0.60 0.57 0.84 080 0.64 086 0.69
Table 9: TEM results for retrieving previously fact-checked claims across 20 languages using the S@10 metric. The

best scores for each configuration — English translation (En) or original language (Og) — are in bold. GTR-T-Large
performed best on English translations, while Multilingual E5 Large excelled on multilingual data, surpassing

English TEMs.

Model Version Quant. bg bn ca cs de el en es fi fr hi hu id ko ms my nl pl pt ro sk sr th  Avg.
Open-Source LLMs
CAALCommand Ry ATticlefist dbit 075 076 074 074 075 076 076 073 075 074 076 075 077 077 076 074 075 075 074 076 075 075 075 075
Article last  4bit 070 071 072 069 071 067 076 070 071 069 071 068 072 075 074 066 073 070 072 069 073 073 0.64 071
Llama3.1 708 Instuc ATiCle st dbit 075 0.77 074 074 075 076 076 073 075 074 076 075 077 077 076 072 075 075 074 076 075 075 075 075
: ’ Articlelast  4bit 075 077 074 074 075 076 076 074 074 074 077 069 077 077 076 072 075 075 074 075 075 075 075 075
Llama33 708 Tnstruet ATHCI st 4bit 074 0.76 073 074 074 075 075 073 075 073 076 075 076 076 075 070 075 074 074 076 074 074 075 074
amas-3 MU Articlelast  4bit 075 076 073 074 074 075 075 073 075 073 076 074 076 076 075 070 075 074 073 075 074 074 075 074
Mistral Laree Article first 4bit 075 077 073 074 075 076 076 073 05 074 075 035 077 077 076 074 075 075 074 075 074 074 075 075
istral Large Article last  4bit  0.75 076 0.74 074 075 075 076 073 05 074 075 074 077 077 076 074 075 074 074 075 074 074 075 075
Ower2 728 Insuyer AT At dbit 074075 073 073 074 075 075 072 074 073 075 073 076 076 074 0.74 074 074 073 074 074 074 074 074
wen TSUEL T Aricle last 4bit 074 076 073 073 074 074 075 072 074 073 075 074 076 076 074 073 074 074 073 075 074 073 074 074
Owen2.5 0.55 Instruer AT st - 070 068 071 070 072 0.69 074 071 068 071 069 069 073 072 071 0.68 071 071 071 071 070 0.69 072 070
WenZ. DB IS Article Tast - 070 068 070 070 071 0.68 073 070 0.68 070 068 069 073 072 071 067 070 070 070 071 070 0.69 072 0.70
Ouwen2.5 1.5B Instruer AT frst - 073 073 073 072 073 072 075 073 071 073 073 072 076 074 074 070 074 073 073 074 073 072 074 073
wens. LB IS Article last - 073 073 072 072 073 072 075 072 072 072 073 072 075 075 074 069 073 073 072 073 072 072 074 073
Quen25 3B Instruer AT At - 074 075 073 073 074 074 076 073 073 073 075 073 076 075 075 071 074 074 074 075 074 074 074 074
g Article last - 071 071 071 069 071 071 074 071 071 072 072 071 072 074 072 068 071 069 071 072 069 068 073 071
Qwen25 7B Instruer AT At - 073 075 073 073 074 074 075 072 073 073 074 073 076 075 075 070 073 073 073 074 073 073 074 074
Wens. IR INSCL Article Tast - 074 075 073 073 074 074 076 073 074 073 074 073 076 075 075 072 074 074 074 075 074 074 05 074
Qwen2.5 728 Insyryey AT At dbit 075077 074 074 074 075 076 073 075 074 076 074 077 076 076 074 075 075 074 075 075 075 075 075
- : Article last  4bit 075 076 074 074 074 075 075 073 075 074 076 075 077 076 076 074 075 074 074 076 074 075 0I5 075
Gemma3 278 Article first  4bit 072 075 072 072 073 074 074 072 073 073 074 073 075 075 074 073 073 072 072 073 073 072 073 073
- Articlelast  4bit 072 074 072 073 073 074 074 072 073 072 074 073 075 074 074 072 073 073 072 073 073 073 073 073
Closed-Source LLMs

Claude 3.5 Sonnet Article first - 074 076 073 074 073 074 075 072 074 073 075 074 076 075 075 073 074 074 073 074 074 073 0I5 074
aude 2.9 Somne Article last - 074 076 073 074 074 075 076 073 074 074 075 074 076 076 075 074 074 074 074 074 074 074 0I5 074
GPTdo Article first - 074 076 073 074 074 075 075 072 074 073 075 074 076 076 075 074 074 074 074 074 074 074 0I5 074
Article last - 074 076 073 073 074 075 075 072 074 073 075 074 076 076 075 074 074 074 073 074 074 074 05 074

Table 10: BERTScore evaluation of summarization performance across 23 languages for various LLMs in two

settings: Article first and Article last. The best results for each language are in bold.
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Model Version Quant. bg bn ca cs de el en es fi fr hi hu id ko ms my nl pl pt ro sk sr th  Avg.
Open-Source LLMs

Article first ~ 4bit 032 034 028 028 030 032 033 027 030 028 034 030 037 034 035 028 031 030 030 032 029 030 032 031
Article last 4bit  0.12 0.19 0.18 0.12 0.12 008 032 008 0.19 005 016 0.10 0.11 028 024 0.15 023 0.14 0.11 006 025 026 0.09 0.16

Llama3.1 70B Instruct Article first ~ 4bit 031 034 029 029 031 032 033 029 031 028 034 031 037 034 034 024 032 030 031 033 028 030 033 031
: i Article last ~ 4bit 030 032 0.28 028 031 030 033 028 028 027 033 013 034 034 032 024 031 030 028 027 028 029 032 029

Llama3.3 70B Instruct Article first ~ 4bit 030 035 029 029 031 032 032 028 031 027 035 030 037 034 034 022 031 030 030 033 029 029 034 031
R st Article last 4bit 031 034 029 028 031 031 032 029 031 027 035 026 035 035 034 022 031 029 030 031 029 029 034 031
Article first ~ 4bit 031 033 027 028 030 032 033 027 030 027 032 030 035 034 033 027 031 029 030 030 028 029 032 030
Article last 4bit 030 033 028 029 031 032 031 027 031 027 033 029 036 034 033 028 031 029 029 031 030 029 033 031
Article first ~ 4bit 028 031 025 026 027 029 029 025 028 024 030 027 032 031 030 026 028 027 026 028 027 027 029 028
Article last 4bit 028 032 025 026 028 029 030 024 028 024 029 028 032 031 029 026 028 027 027 028 026 027 030 028

C4AI Command R+

Mistral Large

Qwen2 72B Instruct

Qwen2.5 058 Instruer ATECIE A <019 016 019 018 024 016 025 021 015 019 017 016 025 023 021 0I5 021 019 020 019 017 016 024 019
WeNZI DB IS Articlelast - 020 016 0.8 0.9 021 0.6 025 018 0.5 019 018 016 024 024 022 0.5 018 019 0.7 019 017 0.7 024 0.19
Qwen2.5 155 Instruer TSIt - 025024024 022 025 023 026 025 021 024 026 021 031 026 028 07 027 025 025 027 023 023 029 025
wenso IOBISICL Articlelast - 026 024 022 021 024 023 026 025 023 023 025 021 029 028 027 017 025 024 023 026 024 023 029 024
Quen25 3B Insuer | ATIIEAL - 027 028 025 024 027 027 030 025 026 024 028 025 031 030 028 021 027 026 026 028 025 026 030 027

: Articlelast - 024 025 023 0.9 025 023 028 023 021 023 024 022 027 029 026 0.6 025 020 023 025 0.8 0.7 029 023
Quen25 7B Insuer ATIISAL - 025 028 023 024 026 026 026 023 024 023 027 025 030 026 027 017 025 025 024 026 025 024 027 025

- Aticlelast - 028 030 025 026 028 028 029 025 027 024 029 025 032 031 030 023 028 026 027 029 027 027 031 028

Article first ~ 4bit 029 032 027 028 029 029 030 026 030 025 031 029 034 032 032 026 029 029 028 029 028 028 031 029
Article last 4bit 029 032 026 027 028 030 030 025 030 025 031 029 034 032 031 025 029 026 028 029 028 029 031 029

Article first ~ 4bit 026 030 024 025 026 026 029 024 026 025 030 026 032 029 031 026 027 025 025 026 025 025 030 027
Article last ~ 4bit 026 030 0.24 025 027 027 028 024 026 024 030 027 031 029 030 025 026 025 025 027 025 026 030 027

Closed-Source LLMs

Qwen2.5 72B Instruct

Gemma3 27B

Claude 3.5 S " Article first - 030 034 026 028 029 029 030 026 029 027 033 030 033 032 031 027 029 028 028 030 028 027 033 029
aude 5.5 Sonne Article last - 029 033 027 029 030 030 032 027 029 027 033 028 034 034 031 028 029 029 029 029 028 028 033 030
GPT 40 Article first - 029 032 027 028 029 030 030 026 029 027 033 028 033 033 031 027 028 028 028 029 028 027 031 029
Article last - 029 033 026 027 029 029 030 026 029 025 032 029 032 033 031 026 028 027 027 029 027 028 031 029

Table 11: ROUGE-L evaluation of summarization performance across 23 languages for various LLMs in two
settings: Article first and Article last. The best results for each language are in bold.

Model Version Quant. bg bn ca cs de el en es fi fr hi hu id ko ms my nl pl pt ro sk sr th  Avg.

4bit 070 0.67 071 0.69 071 0.70 0.74 070 0.66 0.69 0.64 0.64 072 072 070 065 072 0.68 070 0.70 0.69 0.68 0.60 0.69

Atticle first 8bit 072 0.72 071 071 073 073 0.74 071 0.70 0.72 0.72 0.67 0.74 0.73 0.73 066 0.73 0.71 072 072 072 071 0.72 0.72
- 072 072 072 071 073 073 074 071 070 071 072 0.66 0.74 0.73 073 0.67 072 071 0.71 0.73 071 071 072 0.72

4bit  0.61 0.60 0.66 0.64 0.67 0.62 074 0.68 0.61 0.67 0.63 0.63 0.69 0.63 0.67 052 0.67 0.65 067 065 061 062 059 0.64

Article last 8bit  0.64 0.63 0.68 0.67 070 0.64 075 069 064 070 0.64 065 071 0.69 0.69 053 069 0.67 069 067 0.65 0.65 0.61 0.66
- 0.64 0.63 0.69 067 070 064 075 070 0.64 070 0.64 0.64 071 0.69 0.69 053 0.69 0.67 0.69 067 065 0.66 0.61 0.66

4bit 074 075 073 073 0.74 0.74 0.76 0.73 072 073 0.75 0.69 076 0.75 074 069 074 074 072 0.75 0.73 0.73 074 0.73

Article first ~ 8bit 074 0.75 0.73 0.73 0.74 074 0.75 072 074 0.73 0.75 070 075 075 074 070 0.74 073 072 075 073 073 074 0.74
- 073 075 0.73 0.73 074 0.75 076 0.72 0.74 0.73 0.75 0.69 075 076 0.74 0.70 0.74 0.74 0.72 075 0.73 0.73 0.74 0.74

4bit 073 075 0.72 072 0.73 0.73 0.76 0.72 0.70 0.73 0.75 0.66 0.76 0.76 0.75 0.68 0.73 0.72 071 073 072 072 074 0.73

Article last 8bit 070 0.76 0.71 0.69 0.72 0.66 0.75 0.72 0.67 0.73 0.73 0.66 074 076 0.73 0.69 072 071 071 0.69 0.68 0.69 073 0.71
- 0.69 0.76 0.70 0.69 072 0.67 075 0.72 0.66 0.73 0.73 0.66 074 0.76 0.73 0.70 072 0.71 0.71 0.69 0.68 0.69 0.74 0.71

4bit 075 077 074 0.74 0.75 0.76 0.76 0.73 0.75 0.74 0.76 0.75 0.77 0.77 0.76 072 0.75 075 0.74 0.76 0.75 0.75 0.75 0.75
- 0.75 077 0.74 0.74 074 075 076 073 075 074 0.76 0.75 0.77 0.77 076 0.75 075 075 0.74 075 074 075 075 0.75

Llama3.2 1B Instruct

Llama3.2 3B Instruct

Llama3.1 70B Instruct ~ Article first

Table 12: BERTScore evaluation of LLM summarization across 23 languages, comparing non-quantized models
with 4-bit and 8-bit quantized variants. The best results for each language are in bold.

Model Verstion Quant bg bn ca cs de el en es fi fr hi hu id ko ms my nl pl pt ro sk sr th All

4bit 021 0.16 020 0.17 022 0.19 028 020 011 0.17 006 006 021 024 015 0.14 022 0.4 0.5 0.17 0.18 0.14 0.04 0.17

Article first ~ 8bit  0.24 026 022 023 026 025 029 024 019 023 026 0.10 029 027 027 017 026 022 024 025 022 021 027 024
- 024 027 022 022 026 026 029 024 019 022 026 009 029 027 027 017 026 022 024 025 022 020 028 023

4bit  0.01 0.00 0.04 005 004 0.02 027 006 002 005 001 003 0.06 0.05 004 002 007 002 005 0.04 0.03 001 001 0.04

Article last ~ 8bit  0.03 0.02 0.08 0.08 0.11 003 026 0.11 003 0.2 003 004 0.14 016 009 005 009 0.07 009 005 006 0.04 004 0.08
- 0.02 001 008 008 0.11 0.03 026 011 003 0.13 003 004 0.14 0.16 0.09 004 009 007 009 005 0.06 0.05 0.04 0.08

4bit 027 031 025 027 028 027 031 025 025 024 032 0.4 032 030 030 0.19 028 028 022 030 026 026 030 027

Article first ~ 8bit  0.29 031 026 027 028 029 031 026 028 025 032 0.7 032 031 030 021 028 028 020 030 026 0.27 031 027
- 029 032 027 027 028 029 031 026 028 025 031 0.14 032 032 030 022 029 027 017 030 026 026 031 027

4bit 026 030 0.19 022 024 024 029 023 0.8 024 029 006 030 030 028 0.19 025 024 0.12 021 022 021 029 023

Article last 8bit  0.13 031 0.09 0.13 020 006 030 0.18 008 022 023 004 022 030 0.19 019 0.16 0.17 0.10 0.07 009 0.12 029 0.17
- 0.11 031 009 0.2 021 0.06 029 019 006 022 024 004 0.19 031 017 021 017 0.6 0.11 0.07 0.10 0.10 029 0.17

4bit 031 034 029 029 031 032 033 029 031 028 034 031 037 034 034 024 032 030 031 033 028 030 033 031
- 032 035 029 030 031 032 033 029 032 028 036 031 037 035 034 030 032 030 031 033 029 030 034 032

Llama3.2 1B Instruct

Llama3.2 3B Instruct

Llama3.1 70B Instruct ~ Article first

Table 13: ROUGE-L evaluation of LLM summarization across 23 languages, comparing non-quantized models
with 4-bit and 8-bit quantized variants. The best results for each language are in bold.
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Template

/

Fact-checked claim: {claim}

Language: {language} ({language code})
Published date: {yyyy/mm/dd}

Fact-checking organization: {organization name}

. J

An Example

Fact-checked claim: Vaccines cause autism
Language: English (en)

Published date: 2019/03/26

Fact-checking organization: healthfeedback.org

.

J

Figure 5: Template used to structure fact-checks for
filtered retrieval, along with an example illustrating its
format, including the fact-checked claim, language, pub-
lication date and fact-checking organization.

Article Last

Create a 3-5 sentence summary of the following article,
focusing on the main idea. Provide only the summary in
English without any additional text.

Article: { text}

Summary:

Article First

Article: { text}

Create a 3-5 sentence summary of the article, focusing
on the main idea. Provide only the summary in English
without any additional text.

Summary:

Figure 6: Prompts used for the experiments with sum-
marization.

E Veracity Explanations

Figure 7 provides the prompt templates for each
step within our pipeline. These prompts are used in
the pipeline to obtain the final veracity prediction.

E.1 Error Analysis

In this section, we investigate the errors and in-
correct explanations in veracity prediction. We
conducted both manual inspection of a subset of
incorrect predictions and automatic analysis to eval-
uate these errors.
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Manual Analysis. For our manual investigation,
we randomly selected 20 samples per LLM® with
incorrect predicted labels, resulting in a total of
140 samples. One of the authors analyzed the re-
trieved relevant fact-checks and LLM-generated
explanations, categorizing them into several types.

The most prevalent error category was missing
context within claims, which occurred in 27% of
our manually checked samples. This missing con-
text made it difficult to identify relevant fact-checks
and predict veracity correctly. Notably, in 63% of
these cases, the LLMs provided correct explana-
tions acknowledging the missing context.

The second most common error (16% of cases)
stemmed from failures in the previous steps, where
relevant fact-checks were not identified. In these
instances, the LLMs correctly explained that none
of the retrieved fact-checked information was di-
rectly relevant to the given claim, yet still produced
incorrect veracity assessments.

Misunderstanding of claims and provided rel-
evant fact-checks accounted for 17% of errors. In
these cases, LLMs focused on different aspects of
the provided fact-checks or failed to grasp the main
point of the claim. We observed some instances
where LLMs incorrectly relied on information from
the social media post itself to explain its veracity,
particularly with longer posts.

Another error pattern (12% of cases) involved
LLMs predicting veracity based on ratings men-
tioned in their generated summaries, while the
actual fact-check ratings differed. For example,
a summary might characterize a claim as a hoax,
while the rating extracted from the fact-check was
"unverifiable".

In 4% of cases, LLMs relied only on the rating
from the first fact-check, despite the presence of
fact-checks with correct ratings later in the prompt
context. This suggests an incorrect assumption
that the first fact-check should be used in veracity
prediction.

Finally, 15% of errors could be attributed to
ground truth issues, primarily in cases where fact-
checks classified claims as having "no evidence" —
which our normalization process converted to "un-
verifiable". However, in all these cases, the LLMs’
explanations of the claims and their veracity were
correct and supported by information from the fact-
check summaries.

The Gemma3 model was not included in the error analysis,

as it was added into the study during the final stages, after the
manual investigation had already been conducted.



Article Summary

-~

Article: {document}

Create a 3-5 sentence summary of the article, focusing on
the main idea. Provide only the summary in English without
any additional text.

Summary:

\

~

/

Filtration

Input claim: {post_text}

Claim ID: 1
Fact-checked claim: {claiml}

Claim ID: 50
Fact-checked claim: {claim50}

Identify only fact-checked claims that are implied by the
input claim. For each claim, provide the claim ID, the fact-
checked claim, and an explanation of fact-checked claim's
implication to the input claim.

Output Format (JSON):
{
"fact_checked_claims": [
{
"claim_id": "<ClaimID1>",
"fact_checked_claim": "<Claim1>",
"explanation": "<Explanation of Claim1>"
h
{
"claim_id": "<ClaimID2>",
"fact_checked_claim": "<Claim2>",
"explanation": "<Explanation of Claim2>"
}

Overall Summary

Retrieved claim: {claiml}
Summary: {article summaryl}

~

Retrieved claim: {claim2}
Summary: {article summary2}

Generate a brief, one-paragraph summary that captures the

key information from all the relevant claims and fact-checks.

Ensure the summary covers the main points of each claim
(nd addresses all the topics presented, while remaining /

concise and comprehensive.

Veracity prediction

Input Claim: {post_text}

Fact-checked claim:
Summary of the fact-check article: {article summaryl}

{claiml}

Fact-checked claim: {claim2}
Summary of the fact-check article: {article summary2}

Based only on the provided fact-checked information that is
directly relevant to the input claim, determine the veracity of
the claim.
Ignore fact-checks that do not apply. The veracity should be
classified as one of the following:

- "True" if the claim is accurate based on the relevant
fact-checked information.

- "False" if the claim is inaccurate based on the
relevant fact-checked information.

- "Unverifiable" if there is insufficient or no relevant fact-
checked information to assess the claim.
Provide a concise explanation that justifies your prediction.

Output Format (JSON):

"veracity": "<True/False/Unverifiable>",
"explanation": "<Explanation for the prediction>"

Figure 7: Prompt templates used in the pipeline for the veracity prediction.
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Model Missing FC [%]
Mistral Large 25.5
C4AI Command R+ 253
Qwen2.5 72B 39.1
Llama3.1 70B 33.5
Llama3.3 70B 29.2
Llama3.1 8B 29.9
Qwen2.5 7B 48.6

Table 14: Percentage of posts for which no ground truth
relevant fact-checks were present in the retrieved context
for each LLM.

Automatic Analysis. Since one of the observed
errors stems from the failure in previous steps to
identify relevant fact-checks, we conducted an auto-
matic analysis focusing on the proportion of cases
where relevant fact-checks were missing from the
retrieved context. Table 14 presents the percentage
of posts for each model where none of the ground
truth-relevant fact-checks were included in the list
of relevant fact-checks. Without access to relevant
fact-checks, models can struggle to accurately pre-
dict veracity regardless of their reasoning capabili-
ties. The analysis reseals variations across LLMs,
with smaller models generally exhibiting higher
rates of missing fact-checks. Notably, Qwen2.5 7B
showed the highest proportion (48.6%) of posts
without relevant fact-checks, while C4AI Command
R+ and Mistral Large performed best with ap-
proximately 25% of posts lacking relevant fact-
checks. These findings suggest that retrieval quality
remains a bottleneck in the fact-checking pipeline,
particularly for smaller models.

F Developed Application

The web-based application integrates the pipeline
introduced in Section 3. For retrieval, we use the
best-performing TEM model, Multilingual ES5.
The backend runs Llama3.3 70B, selected for its
strong summarization capabilities and effective fil-
tration of irrelevant fact-checks.

Our fact-check database aggregates fact-checked
claims from multiple fact-checking organizations
in over 80 languages. We store fact-checked claims,
metadata (e.g., language, fact-checking article, rat-
ing) and calculated Multilingual E5 embeddings
of fact-checked claims in Milvus!'? vector database.

Users submit queries, and the system returns
a ranked list of relevant fact-checks identified by
the LLM, along with their summaries and explana-

Yhttps://github.com/milvus-io/milvus
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tions. Additionally, the system provides an overall
summary, a veracity label distribution graph and
an explanation of the verdict. This information
supports users in making the final decision.

F.1 Interface

The developed application consists of four main
components. (1) Text input (see Figure 8), where
the user provides the claim for which the tool
should return relevant fact-checking articles. (2)
List of relevant fact-checks (see Figure 9), where
we provide all the relevant fact-checks identified by
the LLM. (3) List of non-relevant fact-checks (see
Figure 10), where we list the fact-checks that were
retrieved in the retrieval step but were not classi-
fied by the LLM as relevant. Since LLMs are not
100% accurate in identifying relevant fact-checks,
we also provide the rest of the fact-checks to make
the application robust and provide all the informa-
tion that was obtained within our pipeline for fact-
checkers to make the informed decision. (4) System
response (see Figure 11), which includes the over-
all summary of the input claim and all relevant
fact-checks, a veracity distribution graph based on
the ratings of the relevant fact-checking articles and
an explanation of the predicted veracity label.


https://github.com/milvus-io/milvus

Text input: @

Spanish flu vaccination killed 50 million people

Search engine: @ Date from:

Date to: Languages:

Fact-checking organization:

Automatic v 2020/4/25

Figure 8: User interface component for the text input.

Relevant fact checks:

Claim:
Vaccination, not Spanish flu, killed 50 million people G&Y

Title:

Fake: Vaccination, not Spanish flu killed 50 million @

people
Rating:
Unverifiable

Explanation Summary

Claim:
50 million people died in 1918 due to vaccine and not flu.

Titte:

Fact Check: Viral claim that 50 million people died in 1918 due
to vaccine and not flu is FALSE.

Rating:

False

Explanation Summary

Claim:
The flu vaccine killed 50 million people during the 1918
Spanish flu pandemic.

Title:

No, the flu vaccine did not kill 50 miltion people during
the "Spanish flu" pandemic of 1918 - Mal

Rating:
False

Explanation Summary

‘ ‘ 2024/7/10

Reset filters ©

stopfake.org

Russian (RU)

Published on:
2020-09-16

newsmeter.in
English (EN)

Published on:
2020-07-30

maldita.es
Spanish (ES)

Published on:
2020-11-01

Figure 9: User interface component for a list of relevant
fact-checks identified by the LLM within our pipeline.
For each relevant fact-check, we provide the summary
of the fact-checking article and an explanation of why
the fact-check was classified as relevant.

Non-relevant fact checks:

Claim:
COVID-19 vaccine will kill 50 miltion Americans

Tite:

Disgraced US researcher makes false claims about vaccine
safety

Claim:
COVID-19 vaccine will kill 50 miltion Americans

Tite:

Disgraced US researcher makes false claims about vaccine
safety

Claim:
aittoege  covid19 vaccines killed 20 million people
o
Title:
Fact Check: COVID-19 Vaccines Have NOT 'Killed 20 Million

People’

factcheck.afp.com
English (EN)

Published on:
2020-06-26

factuel.afp.com
English (EN)

Published on:
2020-06-26

leadstories.com
English (EN)

Published on:
2023-09-22

Figure 10: User interface component for a list of non-

relevant fact-checks.
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8 User input:
Spanish flu vaccination killed 50 million people

C  system response:

Explanation of input claim: Veracity of fact checks:
@ False Uknown

The claim that Spanish flu vaccination killed 50 million people is

false because there was no flu vaccine available during the 1918

pandemic. The first flu vaccine was developed in the 1940s, and 33.3%

historical records confirm that the 50 million deaths were due to

the lack of a vaccine and antibiotics to treat secondary bacterial

infections, not from the vaccine itself.

Overall summary:

A false claim has been circulating on social media that the 1918 flu vaccine, rather than the Spanish flu itself, killed 50
million people during the pandemic. However, this claim has been thoroughly debunked by the fact that there was no
flu vaccine available at the time, with the first flu vaccine being developed in the 1940s. The Spanish flu pandemic,
caused by the HIN1 virus, is estimated to have infected 500 million people and killed at least 50 million worldwide due
to the lack of effective treatment or vaccine. Reputable sources, including the CDC and historical records, confirm
that vaccines and antibiotics were not available during the pandemic, and that vaccines at the time were only
available for diseases such as smallpox, rabies, and typhoid, not the flu, thus disproving the claim that vaccines were
responsible for the deaths. The origins of the false claim are unclear, but it has been repeatedly debunked by fact-
checkers and health organizations, emphasizing the importance of relying on credible sources for information.

Figure 11: User interface component for system response, where we provide the overall summary of the claim and
relevant fact-checks, a veracity distribution graph and the explanation of the predicted veracity prediction.
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