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ABSTRACT

Self-supervised learning alleviates the massive demands for annotations in deep
learning, and recent advances are mainly dominated by contrastive learning. Ex-
isted contrastive learning methods narrows the distance between positive pair while
neglect the redundancy shared by positive pairs. To address this issue, we introduce
the information bottleneck principle and propose the Self-supervised Variational In-
formation Bottleneck (SVIB) learning framework. Specifically, We apply Gaussian
Mixture Model (GMM) as the parametric approximate posterior distribution to the
real feature distribution and introduce the categorical latent variable. Features from
different augmentations are forced to infer the other one and the latent variable
together. Then, we propose variational information bottleneck as our objective,
which is composed of two parts. The first is maximizing the mutual information
between the inferred feature and the latent variable. The second is minimizing the
mutual information between the other feature and the latent variable. Compare
to previous works, SVIB provides the self-supervised learning field with a novel
perspective from the variational information bottleneck, while also highlighting
a long-neglected issue. Experiments show that SVIB outperforms current SOTA
methods in multiple benchmarks.

1 INTRODUCTION

Self-supervised learning has raised widespread interest because of alleviating the massive demand
for annotations in deep learning, and recent advances are mainly dominated by contrastive learning
(?). Contrastive learning enables training by discriminating positive pairs of samples from negative
pairs (Wu et al., 2018; Misra & van der Maaten, 2020; Ye et al., 2019; Zhuang et al., 2019; Tian
et al., 2020; Chen et al., 2020; He et al., 2020; Li et al., 2020) or only narrowing the distance between
positive pairs (Grill et al., 2020; Caron et al., 2020; 2021). The positive samples are usually from
different augmentations of the same image while negative samples are sampled from all other images.
These methods expect to obtain a feature space where different augmentations from the same image
can be as close as possible, while just different in their approach to aligning positive pairs. For
example, MoCo (He et al., 2020) uses a queue to store negative samples and discriminates positive
pairs from negative samples with infoNCE (van den Oord et al., 2018) loss. SwAV (Caron et al.,
2020) constructs clustering prototypes and narrows the cluster assignments between positive pairs.
DINO (Caron et al., 2021) aligns positive pairs by minimizing the cross-entropy between the output
of teacher and student network.

Existed methods expect to vary the redundancy among the positive samples with some semantic-
irrelevant data augmentations so that narrowing positive samples can retain the common semantic
information while eliminating noise and redundancy. However, such data augmentation is difficult to
obtain. If we want to obtain a data augmentation with which only semantic information is preserved
and all noise is removed, then this data augmentation will perfectly define semantic information and
noise, which is unattainable. For example, if we want to learn a representation of a person, then our
data augmentation should be able to generate data of this person wearing all clothes and in all scenes
in order to separate semantic information and redundancy. Unfortunately, this is impossible. So the
currently applied data augmentation implies the redundancy between the positive samples, which are
ignored in previous methods.
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Figure 1: The framework of Self-supervised Variational Information Bottleneck.

Considering an episode, proposed by Redlich (1993) , where we are supplied with an article (in the
case of English). This article lacks spaces between words, punctuation, and capitalization. We hope
to recover the article without any prior information. These unseparated letters are regrouped into
words that are similar to the human semantics by minimizing the entropy of each letter. It suggests
that the learning process of humans is similar to entropy reduction, and the redundancy information
will be eliminated before the semantic information during entropy reduction.

When coming back to self-supervised learning, we also need entropy reduction to reduce the re-
dundancy between the positive samples while keeping the semantic information. In this paper, we
make the first attempt to remove the redundancy between augmentations with the introduction of the
information bottleneck (Tishby et al., 2000; Alemi et al., 2016) framework. Assume that the latent
variable C is implicit and can generate features of two different augmentations Z1, Z2. Besides, we
have the Markov chain as Z1 ↔ Z2 ↔ C. Information Bottleneck suggests a standard objective
as RIB = I(C,Z1)− βI(Z2, C). To maximize this objective function, we need to maximize the
first term, which means learn information to predict C from Z1, while minimizing the last term,
encouraging C to ”forget” Z2. This objective actually restricts the learning of shared information
from two different augmentations and serves as a regularization term.

Moreover, directly calculate the information bottleneck with the latent variables will suffer intractable
posterior distribution caused by high dimensional integration. Then variational distribution is intro-
duced to approximate the intractable posterior distribution and results in a lower bound of IB, namely
Variational Information Bottleneck (VIB).

Specifically, we apply Gaussian Mixture Model (GMM) here as the posterior parametric approx-
imation of the feature distribution, from which we introduce the latent variable. Features from
different augmentations are forced to infer the other one and the latent variable together. Features
from different augmentations are forced to infer the other one and the latent variable together. Then,
we propose variational information bottleneck as our objective, which is composed of two parts. The
first is maximizing the mutual information between the inferred feature and the latent variable. The
second is minimizing the mutual information between the other feature and the latent variable. In this
way, we set an information bottleneck on the latent variable, with which we force model to learn a
consistent representation for different augmentations with as little information as possible. In this
process, redundancy information will be dropped first and induce to a better representation. The
contributions of this paper can be summarized as follows:

• To our best knowledge, we are the first who attempts to constrain the mutual information
between different views to facilitate representation learning via redundancy reduction.
Previous works only focus on maximizing the mutual information between different views
but neglect the entropy minimization principle and the redundancy shared by different
augmentations. Our work provides a new perspective for the current self-supervised learning
field.

• We introduce a theoretical framework with information bottleneck theory for self-supervised
representation learning. Features from different augmentations are forced to infer the other
one and the latent variable together. We set an information bottleneck on the latent variable
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by maximizing mutual information between feature and latent variable while minimizing
mutual information between the other one and latent variable. In this way, the model is
forced to learn representations with minimal entropy.

• SVIB is evaluated on both convolutional network and vision transformer (Dosovitskiy
et al., 2021) and shows consistent improvement compared to previous methods. Transfer
tasks in semi-supervised, object detection, and semantic segmentation also demonstrate the
generalize ability of SVIB.

2 RELATED WORK

Recent advances (Caron et al., 2021; 2020; Grill et al., 2020; He et al., 2020) in visual self-supervised
learning show its potential in producing general representations for given images, and the key
component of self-supervised learning is the design of a task to enable learning without any human
annotations.

Doersch et al. (2015) address this issue by forcing the model to predict the positional relationship
between two patches. Noroozi & Favaro (2016) treat this as a jigsaw puzzle further. Gidaris et al.
(2018) use the rotation of images as the learning target. Pathak et al. (2016) and Zhang et al. (2016)
consider this issue from reconstruction, and employee inpainting and colorization as their learning
tasks respectively. These methods induce the model to concentrate on certain properties of the image
but ignore others, which impair the representation ability. Besides that, they only focus on the
intra-image information but neglect the inter-image relationship.

Contrastive learning enables self-supervised learning via discrimination tasks where different aug-
mentations of the same image are regarded as positive pairs and others as negative pairs. Wu et al.
(2018) build a memory bank for storing features in the previous step and regards features except itself
in the memory bank except the current sample itself as negative samples. Misra & van der Maaten
(2020); Ye et al. (2019); Zhuang et al. (2019); Tian et al. (2020); Chen et al. (2020) generates negative
pairs using all samples within the current mini-batch. MoCo (He et al., 2020) apply a momentum
encoder to generate negative pairs and a queue to store recent negative pairs cross mini-batch. PCL
(Li et al., 2020) formulates the self-supervised learning with EM algorithm and generates negative
pairs with k-means. These methods differ in their way to obtain negative pairs. From another point of
view, BYOL (Grill et al., 2020) enables self-supervised learning by narrowing the distance between
different views with an asymmetrical predictor and gets rid of the dependence on negative samples.
SwAV (Caron et al., 2020) indirectly narrows two views through their cluster assignments. DINO
(Caron et al., 2021) propose to apply trainable prototypes for end-to-end training and the centering
operation to avoid trivial solutions. The difference between these approaches is how they construct
the contrasting agents, such as predictor in BYOL, prototype in SwAV, and learnable parameters in
DINO.

Mutual information maximization. There are also other works that consider the unsupervised
representation learning tasks from an information perspective. Hjelm et al. (2018); Bachman et al.
(2019) learns image representation via maximizing the mutual information between local and global
features. Wu et al. (2020) derive a new lower bound on mutual information that supports sampling
negative examples from a restricted distribution to facilitate representation learning. However, all of
them propose to maximize the mutual information but neglect to reduce the entropy of representations.

Max MI

Min M
I

Figure 2: Illustration to the relationship between variables and our objective.
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Semantic augmentation. Wang et al. (2021) attempts to generate semantic data augmentation, i.e., to
generate different images with the same semantic information, such as cars from different viewpoints,
animals in different scenes, etc. However, the method is only accessible by supervised learning or
semi-supervised learning. In addition, Cai et al. (2020) proposes to estimate the distribution of the
data augmentation in the feature space by sampling the current data augmentation multiple times,
thus directly contrasting the distribution of positive samples instead of instances to improve the
performance of self-supervised learning. However, the method is only applied to supervised learning
or semi-supervised learning, and the method learns the distribution of images of the same category
within the current dataset, which does not achieve the perfect data augmentation mentioned above. In
addition, B also proposes to estimate the distribution of the data augmentation in the feature space by
sampling the current data augmentation multiple times, thus directly comparing the distribution of
positive samples to improve the performance of self-supervised learning. However, this approach
is also limited to the currently applied data augmentation and does not solve the aforementioned
problems.

3 METHODOLOGY

For clarity, we define our notions here. As illustrated in Fig 2, we regard output of the encoder as z1
and output of the momentum encoder as z2. The latent variable c is a categorical variable introduced
by the GMM model.

3.1 VARIATIONAL CONTRASTIVE LEARNING

Following the standard in the Information Bottleneck literature, we assume the joint distribution can
be factored as follows:

p(X,Z1, Z2, C) = p(C|Z1, Z2, X)p(Z1|Z2, X)P (Z2|X)p(X) (1)

With the probabilistic relationship between Z1, Z2, andC shown in Figure 2, we have p(Z1|Z2, X) =
p(Z1|Z2), p(C|Z1, Z2, X) = p(C|Z2). Then the joint distribution can be rewritten as:

p(X,Z1, Z2, C) = p(C|Z2)p(Z1|Z2)p(Z2|X)p(X) (2)

Here, X is the observations, Z1, Z2 are features generated from different augmentation of X
respectively. The latent variable C obeys a categorical distribution, and the number of categories
keeps the same with prototypes. Then we have the conditional mutual information between C and
Z1:

I(C,Z1|X) =
∑
x

p(x)Ep(c,z1|x)[log
p(z1|c, x)
p(z1|x)

] (3)

The p(z1|c, x) is fully defined by Markov Chain as follows:

p(z1|c, x) =
∫
p(z1, z2|x)dz2 =

∫
p(z1|z2, x)p(z2|c)dz2 =

∫
p(z1|z2)p(c|z2)p(z2)

p(c)
dz2 (4)

The calculation of the true posterior distribution is intractable, then we leverage a variational distri-
bution q(z1|c) to approximate p(z1|c, x). Because that the Kullback Leibler divergence is always
positive, we have:

I(C,Z1|X) ≥
∑
x

p(x)Ep(c,z1|x)[log
q(z1|c)
p(z1|x)

]

=
∑
x

p(x)Ep(c,z1|x)[log q(z1|c)]−
∑
x

p(x)Ep(z1|x)[log p(z1|x)]
(5)

Considering the first part of Eq. 5, we have:∑
x

p(x)Ep(c,z1|x)[log q(z1|c)] =
∑
x

p(x)Ep(c|z2)p(z1|z2)p(z2|x)[log q(z1|c)]

=
∑
x

p(x)Ep(z1|z2)p(z2|x)Ep(c|z2)[log p(c|z1, x) + log
q(z1|c)
p(c|z1, x)

]

(6)
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With the Bayesian formula, we have:

p(c|z1, x) =
p(z1|c, x)p(c)∑

i=1,··· ,I p(z1|ci, x)p(c = ci)
(7)

We take the uniform assumption for the prior distribution of p(c = ci) = 1/I , where I is the number
of categories for c. Then we have:

p(c|z1) =
p(z1|c, x) 1I∑

i=1,··· ,I p(z1|ci, x)
1
I

=
p(z1|c, x)∑
i p(z1|ci, x)

(8)

We further bring Eq. 8 into Eq. 6, then we can rewrite the second term in Eq. 6 as:∑
x

p(x)Ep(z1|z2)p(z2|x)Ep(c|z2)[log
q(z1|c)
p(z1|c, x)

∑
i

p(z1|ci, x)] (9)

Because q(z1|c) is the approximation to p(z1|c, x), we can assume that q(z1|c) ≈ p(z1|c, x). Then
the second term in Eq. 6 can be reduced to:∑

x

p(x)Ep(z1|z2)p(z2|x)p(c|z2)[log
∑
i

p(z1|ci, x)] (10)

Then we bring Eq. 10 into Eq. 5 and Eq. 6, and get:

I(C,Z1|X) ≥
∑
x

p(x)Ep(c,z1|x)[log q(z1|c)]−
∑
x

p(x)Ep(z1|x)[log p(z1|x)]

=
∑
x

p(x)Ep(z1|z2)p(z2|x)Ep(c|z2)[log p(c|z1, x)] +
∑
x

p(x)Ep(z1|x)[log
∑
i p(z1|ci, x)
p(z1|x)

]

(11)
For the second term in Eq. 11, we have:∑

x

p(x)Ep(z1|x)[log
∑
i p(z1|ci, x)
p(z1|x)

] =
∑
x

p(x)Ep(z1|x)[log
∑
i p(z1|ci, x)p(ci)
p(z1|x)p(ci)

]

=
∑
x

p(x)Ep(z1|x)[log
p(z1|x)
p(z1|x) 1I

]

=
∑
x

p(x)Ep(z1|x)[log I] = log I

(12)

This term is a constant, then we can omit it in our optimization. Finally, we have:

I(C,Z1|X) ≥
∑
x

p(x)Ep(z1|z2)p(z2|x)Ep(c|z2)[log p(c|z1, x)] (13)

We now consider the other term I(C,Z2|X) in our conditional information bottleneck.

I(C,Z2|X) =
∑
x

p(x)Ep(c,z2|x)[log
p(c|z2, x)
p(c|x)

] (14)

The computation of p(c|x) =
∫
p(c, z2|x)dz2 is intractable. Thus, we let q(c) as a variational

approximation. Then we have the upper bound:

I(C,Z2|X) ≤
∑
x

p(x)Ep(c,z2|x)[log
p(c|z2, x)
q(c)

]

=
∑
x

p(x)Ep(z2|x)Ep(c|z2,x)[log
p(c|z2, x)
q(c)

]

=
∑
x

p(x)Ep(z2|x)[DKL(p(c|z2, x)‖q(c)]

(15)
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Combining the proposed two bounds, we have the final information bottleneck:

V IB = I(C,Z1|X)− βI(C,Z2|X) ≥
∑
x

p(x)Ep(z1|z2)p(z2|x)Ep(c|z2)[log p(c|z1, x)]

−β
∑
x

p(x)Ep(z2|x)[DKL(p(c|z2, x)‖q(c)]
(16)

In practice, we formulate the negative VIB as our loss function and enable end-to-end training with a
mini-batch. The mathematical form of the loss function is given as:

Loss = p(c|z2) log p(c|z1) + p(c|z2) log
p(c|z2)
q(c)

(17)

We assume each component of the GMM model follows an isotropy Gaussian distribution. Then we
have:

p(z|ci) = e−(z−ci)
2/σ2

(18)

Combine Eq. 8 we have:

p(ci|z) =
e−(z−ci)

2/σ2∑
i e
−(z−ci)2/σ2 (19)

Since both z and the µci are normalized vector, we have (z − ci)2 = 2− 2z · ci. Combining with
Eq. 17, 8, we have:

Loss =
∑
i

exp(ci · z2/σ2
i )∑

j exp(ci · z2/σ2
j )

log
exp(ci · z1/σ2

i )∑
j exp(ci · z1/σ2

j )

+
exp(ci · z2/σ2

i )∑
j exp(ci · z2/σ2

j )
log

exp(ci · z2/σ2
i )∑

j exp(ci · z2/σ2
j ) · q(c)

(20)

4 EXPERIMENTS

We assess SVIB on ImageNet-1M (Deng et al., 2009) with the commonly used convolutional network
ResNet50 (He et al., 2016) and the recently emerging advance VisionTransformer (ViT) (Dosovitskiy
et al., 2021) to reveal its performance across architectures. We first train models with SVIB and
evaluate pre-trained models in the linear classification task and the k-nearest neighbor (KNN)
classification task on ImageNet. Then, we transfer the pre-trained ResNet50 to the semi-supervised
scene to validate its potential in finetuning. Object detection and segmentation tasks are also applied
to evaluate SVIB in dense pixels tasks.

4.1 IMPLEMENTATION DETAILS

We follow the standard implementation of ResNet50 (He et al., 2016) and ViT/S-16 (Dosovitskiy
et al., 2021). The projection head is an MLP with 2048 hidden units and outputs a 256-D and L2-
normalized feature. Data augmentation is composed of color jittering, Gaussian blur, and solarization
which is the same as BYOL (Grill et al., 2020) and DINO (Caron et al., 2021). The multi-crop
(Caron et al., 2020) operation is also applied by following the setting of DINO (10 local crops range
from 0.05 to 0.25 for ViT and 6 local crops range from 0.05 to 0.14 for ResNet50 in default, unless
otherwise stated). We use adamw optimizer (Loshchilov & Hutter, 2018) for ViT. The learning
rate is linearly increasing in the first 10 epochs to 0.0005*batch size/256 (Goyal et al., 2017), and
weight decay increases from 0.04 to 0.4 with a cosine scheduler. We use LARS optimizer (Ginsburg
et al., 2018) for ResNet50. The base learning rate is 0.3, and weight decay is fixed on 1e-6. Others
follow the same setting with ViT. We set K = 65536. The teacher network output more consistent
representations for EMA updating, so we give a smaller variance to the teacher network. Specifically,
we set σt = 0.2, σs = 0.32. We apply an exponentially decaying β which decays from 0.5 to 0.01
through the whole training process. We re-initialize the GMM model at the end of each epoch to
avoid the parameters of the GMM model deviating too much from the true distribution of the current
feature. Specifically, we randomly sample N instances from the dataset and re-initialize the mean
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Method architecture epochs Linear KNN

Local aggregation (Zhuang et al., 2019) ResNet50 200 60.2 49.4
PIRL (Misra & van der Maaten, 2020) ResNet50 800 63.6 -
PCL (Li et al., 2020) ResNet50 200 65.9 54.5
SimCLRv2 (Chen et al., 2020) ResNet50 800 71.7 -
MoCo v2 (Chen et al., 2020) ResNet50 300 71.1† 62.9†

BYOL (Grill et al., 2020) ResNet50 300 72.7† 65.4†

SwAV (Caron et al., 2020) ResNet50 300 74.1† 65.4†

DINO (Caron et al., 2021) ResNet50 300 74.5 65.6
SVIB (Ours) ResNet50 300 74.8 69.4

MoCo v2 (Chen et al., 2020) ViT-S/16 300 71.6† 62.0†

BYOL (Grill et al., 2020) ViT-S/16 300 71.4† 66.6†

SwAV (Caron et al., 2020) ViT-S/16 300 71.8† 64.7†

DINO (Caron et al., 2021) ViT-S/16 300 76.1 72.8
SVIB (Ours) ViT-S/16 300 76.4 73.5

Table 1: Top-1 accuracy under linear classification and KNN 20 under K nearest neighbour classification on
ImageNet with ResNet-50 as backbone. †: The result is reported by Caron et al. (2021).

of each component in GMM with their feature. The impact of this operation is discussed in the
experiment section. We train SVIB for 300 epochs on ImageNet. In the ablation study, we adopt a
more accessible configuration. We set K = 8192 and use 2 local crops. The training time is reduced
to 100 epochs with a batch size of 512.

4.2 IMAGE CLASSIFICATION

Linear and KNN evaluation. Initially, we apply the linear classification and k-nearest neighbor
(kNN) classification tasks on self-supervised learning models. We follow the standard evaluation
protocol. We fix the encoder and attach a fully connected layer at the end of the encoder. The SGD
optimizer and a batch size of 1024 are applied to train the FC layer on ImageNet for 100 epochs. We
apply random size crops and horizontal flips augmentation during training and report the accuracy on
a central crop. We use a 0.3 learning rate for ResNet50 and a 1e-3 learning rate for ViT-S/16. The
kNN classifier matches the feature of an image to the k nearest stored features that vote for the label.
Thus, kNN classification is less parametric compare to linear classification and is more stable (Caron
et al., 2021). We apply the result of kNN 20 as our main result. Table 1 shows that the proposed
method achieves a consistent improvement compared to previous methods in both linear evaluation
and kNN classification. SVIB achieves a particularly significant improvement on the knn of resnet50
(3.8 improvement to DINO), which indicates that the semantically similar features will be closer in
the feature space learned by SVIB.
Semi-supervised image classification. Then, We reveal the fine-tuning potential of our proposed
methods with the semi-supervised setting on ImageNet. Follow the setting from Chen et al. (2020),
we select the same subset (1% or %10) of ImageNet training data and fine-tune self-supervised
models on these subsets. Table 2 report the top-1 and top-5 accuracy on ImageNet validation set. The
results show that our method has good fine-tune potential with limited data (1%), even surpassing the
model with 800 epochs of training.

4.3 OBJECT DETECTION AND SEGMENTATION

We assess the performance of self-supervised models on the dense pixel tasks. We choose CoCo (Lin
et al., 2014) as the experimental dataset and follow the setting from MoCov2 (Chen et al., 2020) to
fine-tune the pre-trained model on COCO with the 1× schedule. Table 3 report the result. The results
show that SVIB pre-training generalizes well on the segmentation or detection task, and even better
than methods trained for long epochs (SVIB 300 epochs, MoCo v2 800 epochs, BYOL 1000 epochs).
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Method architecture #pretrain Top-1 Accuracy Top-5 Accuracy
epochs 1% 10% 1% 10%

Random (Wu et al., 2018) ResNet-50 - - - 22.0 59.0
Supervised baseline (Zhai et al., 2019) ResNet-50 - - - 48.4 80.4
Semi-supervised learning methods:
Pseudolabels (Zhai et al., 2019) ResNet-50v2 - - - 51.6 82.4
S4L Rotation (Zhai et al., 2019) ResNet-50v2 - - - 53.4 83.8
Self-supervised learning methods:
PIRL (Misra & van der Maaten, 2020) ResNet-50 800 30.7 60.4 57.2 83.8
SimCLR Chen et al. (2020) ResNet-50-MLP 1000 48.3 65.6 75.5 87.8
DINO (Caron et al., 2021) ResNet-50-MLP 800 52.9† 66.6† 77.5† 87.6†

BYOL (Grill et al., 2020) ResNet-50-MLPbig 1000 53.2 68.8 78.4 89.0
MoCov2 (Chen et al., 2020) ResNet-50-MLP 800 52.4 65.3 78.4 86.6
SwAV (Caron et al., 2020) ResNet-50-MLP 800 53.9 70.2 78.5 89.9
SVIB (Ours) ResNet-50-MLP 300 55.9 68.6 78.6 88.6

Table 2: Semi-supervised learning on ImageNet. We report top-1 and top-5 accuracy on the ImageNet
validation set of self-supervised models that are finetuned on 1% or 10% of labeled data. The accuracy is the
mean of 5 independent runs. †: The result is produced by us with the released pre-trained model under the same
setting.

Method
Mask R-CNN, R50-FPN, Detection Mask R-CNN, R50-FPN, Segmentation
APbb APbb

50 APbb
75 APS APM APL APmk APmk

50 APmk
75 APS APM APL

Supervised 38.9 59.6 42.0 23.0 42.9 49.9 35.4 56.5 38.1 17.5 38.2 51.3
MoCo v2 (Chen et al., 2020) 39.2 59.9 42.7 23.8 42.7 50.0 35.7 56.8 38.1 17.8 38.1 50.5
BYOL (Grill et al., 2020) 39.9 60.2 43.2 23.3 43.2 52.8 - - - - - -
SVIB (Ours) 40.0 61.7 43.4 24.8 43.9 50.4 36.7 58.6 39.1 18.4 39.8 51.8

Table 3: Transfer learning performance (%) on COCO detection and COCO instance segmentation.
MoCo v2 is trained for 800 epochs, and BYOL is trained for 1000 epochs. SVIB is trained for 300
epochs.

Method ReIntial IB β kNN-20

1 X × × 66.3
2 × X 0.1 divergence
3 × X 0.5 61.3
4 X X 0.5 64.2
5 X X 0.1 66.8
6 X X 0.5→ 0.01 67.3

Table 4: Ablation study. We ablate the components in SVIB: the re-initialization operation, IB and
the hyper-parameter β. Models are run for 100 epochs with ViT-S/16. We report the kNN 20 result.

4.4 ABLATION STUDY

In this section, we explore the role of each component in SVIB through ablation experiments. We
discuss the impact of β and the re-initialization operation here and reveal their impact by removing
them respectively or set various values.

We use ViT-S/16 as encoder and train the encoder on ImageNet for 100 epochs with a batch size
of 512. As Table 4 shows, the re-initialization operation help model avoids trivial solution when β
is small (Task 5 and Task 2) and brings performance improvement when using the same value of
β (Task 3 and Task 4). We further illustrate the performance of models at 20, 40, 60, 80, and 100
epochs under different β in Fig 3, and the result shows that a large β is beneficial to model in the
early phase, and a smaller β works better in the middle and later periods. An interpretation to it is that
there is much redundancy in the representations in the early phase, thus a large β can help the model
get rid of it. However, when the model is going to converge, a strong constraint on IB will force
the model to discard part of semantic information and result in performance degradation. Therefore,
we apply an exponentially decaying β in our experiments. Specifically, we initialize β = 0.5 at the
initial stage and exponentially decrease it to 0.01 at the end. As presented in Fig 3, this strategy has
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Figure 3: The performance in each epoch with different β

Figure 4: Visualization of attention maps from DINO and SVIB.

similar performance to large β in the early stage, and also has the growth rate of small β in the later
training, ultimately achieving the best performance.

4.5 VISUALIZATION

We visualize the attention maps of DINO and SVIB in Fig 4. As shown in the figure, the attention map
of SVIB is more compact and localized, and SVIB can better concentrate on independent semantic
units than DINO.

5 CONCLUSION

Redundancy is naturally present between positive samples and is rarely mentioned in existing methods.
The redundancy will impair the representation and we attempt to reduce it from the perspective of
variational information bottleneck. We believe that a good representation should have minimal entropy,
just as the process of human learning is forgetting. Thus, redundant information is discarded before
semantic information in the entropy reduction process. So our information bottleneck can reduce the
redundancy between positive samples and induce the model to learn a better representation. This is
also demonstrated by our experimental results and visualization results. Methodologically, SVIB can
be extended in many ways, such as different parameterization forms to the feature distribution and
an adaptive β. More importantly, however, SVIB provides a question for self-supervised learning.
whether the consistency we have relied on so far will be a bottleneck in performance at present? It is
worthwhile to continue exploring.
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