
LLM-PySC2: Starcraft II learning environment for
Large Language Models

Zongyuan Li1,Yanan Ni2,Runnan Qi2,Chang Lu1,Lumin Jiang2,Xiaojie Xu1,
Xiangbei Liu1, Pengfei Li1,Yunzheng Guo1,Zhe Ma1,Huanyu Li1,Wu Hui1,

Xian Guo1, *, Kuihua Huang2, *, Xuebo Zhang1∗
1College of Artificial Intelligence, Nankai University, Tianjin, China

2Laboratory for Big Data and Decision, National University of Defense, Changsha, China

Abstract

The tremendous potential has been demonstrated by large language models (LLMs)
in intelligent decision-making problems, with unprecedented capabilities shown
across diverse applications ranging from gaming AI systems to complex strategic
planning frameworks. However, the StarCraft II platform, which has been widely
adopted for validating decision-making algorithms in the past decade, has not yet
provided substantial support for this emerging domain. To address issues that LLMs
cannot interface with the hundreds of actions of the pysc2 backend and the lack of
native support for multi-agent (MA) collaboration, we propose the LLM-PySC2
environment. This is the first environment that offers LLMs the complete pysc2
action space with sufficient multi-modal information and game Wiki knowledge.
With an asynchronous query architecture, the environment efficiently interacts
with LLMs that maintain a constant latency regardless of the scale of the agents’
population. In the experiments, we evaluated LLMs’ decision-making performance
in both the macro-decision and micro-operation scenarios, with traditional StarCraft
II Multi-Agent Challenge (SMAC) tasks and a series of new proposed. Results
indicate that LLMs possess the potential to achieve victories in complex scenarios
but cannot constantly generate correct decisions, especially in the recovered pysc2
action space and MA settings. Without task-relevant instructions, the pre-trained
models suffer from issues such as hallucinations and inefficient collaboration. Our
findings suggest that StarCraft II still challenges in the era of large models, revealing
that there is a lot to do to develop an advanced LLM decision-making system, and
the proposed LLM-PySC2 environment will support future development of LLM-
based decision-making solutions.

1 Introduction

The remarkable progress of LLMs has not only enhanced their reasoning capabilities but also
positioned them as multitask strategists, even without post-training on specialized domains. Unlike
reinforcement learning (RL) based agents, LLMs exhibit advantages in better context understanding,
knowledge utilization, and human-AI interactions, acting in a wider range of zero-shot scenarios like
gaming (1)-(12) , robot manipulation/navigation (13)-(17) , financial and trading (18)-(20).

However, there is still a lot to do to release the potential of LLM decision systems. Current works are
mostly limited to prompt engineering (6)(7) , reflection (4)(8)(9)(22) , LLM workflow (3)(18)(21) to
dismantle tasks into smaller tasks. These works enable LLMs to act better in diverse scenarios, but
the knowledge-learning problem for a specific domain remains unsolved.

∗Corresponding authors

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Player1 Player2

Build-in Bot

Human

Agent Data Cache

LLM server1 GPT-4 backend

LLM Services

Analysis:...

Prompt: ... Images

Unit Select

�� Wrapper

Agent3

Multi-Agent System

Communication Actions:
<MessageTo(Agentxx, ‘’‘...’‘’)>
<MessageTo(Channel-1, ‘’‘...’‘’)>

Prompt:{system prompt}
{example prompt}
{observed info}

Actions:
Team Stalker-1:
<AttackUnit(0x1000a2001)>

Communication Info:
From Channel-1: \n\t Agent1: ...
From Agent xx: ...

Commu In: ...

Actions:... Commu A:...

Analysis:
In game time ..., we meet
group of enemies roaches ...

Agent4

Agent1

Aye!

To Agent2:
I need help

Listen: all
go to [x,y]

Agent for
Stalkers

Superior
Commander

Agent for
Colosuss

Agent for
Disruptors

��

��
����

�� Wrapper
��

����

��
���

��
���

��
��

��

LLM server2 GPT-3 backend

LLM server3 GPT-3 backend

LLM server4 GPT-3 backend

(Commander)

Agent2

To Agent3:
copy that

Camera Move

Script Agent

RL Agent RL model

text obs

profile LLM client4

wiki data

last action

commu-in

commu-out

query
response

�

�

image obs

��
�����4

Figure 1: LLM-PySC2 framwork. In LLM-PySC2, the original observation will be wrapped into a
text- or multi-modal observation. LLM-generated text action can be recognized and transformed into
PySC2 functions, enabling LLMs to interact with the StarCraft II environment and control the units.

Currently, most LLM decision-making solutions are developed in relatively simple environments,
resulting in ignorance of LLM’s shortcomings. For example, MineDojo(23) is relatively compre-
hensible for LLMs and exhibits a high tolerance for errors, while some other works simplify the
policy space of the environment(5)(6). Earlier works, such as StanfordTown(24), do not even concern
decision-making ability but is more focused on LLMs’ behaviors.

The StarCraft II environment, well known for its complexity, has been widely used as a validation
platform for decision algorithms in the past decade, supported multi-agent research such as VDN(25),
Qmix(26), MAPPO(27), the milestone algorithm Alpha-Star(28) and DI-Star(29). It is precisely the
extremely high complexity that makes it the most authoritative verification platform for decision-
making algorithms. However, since the vector interfaces are not compatible with LLMs, the StarCraft
II environment does not support complete interactions with LLMs in the past few years.

Existing LLM Starcraft II environments, such as Swarm Brain(5), TextStarCraft II(TSC2) (6), have
the problem of severely limiting the action space. They cut off most unit control operations and
reduce continuous action space to discrete. Although the over-simplified environments have attracted
attention for LLM decision research in the past years, they hindered further research due to the lack
of complexity. Other works like (30)(31) do not support complete games.

At the same time, the support of current platforms for multi-agent systems is insufficient. Currently,
most LLM multi-agent systems(12)(18) expose only a single agent to interact with the environment,
while others act as modules for data processing or aggregating. Other works focus on conducting
social simulations, emphasizing the accuracy of simulation (32)-(34) rather than promoting multi-
agent collaboration.

To provide support for LLM decision-making, we developed LLM-PySC2, an environment derived
from the StarCraft II Learning Environment (SC2LE)(35). This environment expanded the action
space to complete pysc2 action space, allowing agents to perform fine-grained operations and
unit skills. We also provide agents with comprehensive observations, including images and Wiki
Knowledge(36).

It is worth noting that this is a platform with native multi-agent framework. We enable all kinds of
multi-agent cooperation such as centralized decision-making and distributed decision-making. To

2

avoid an increase in waiting time as the number of agents grows, we build an asynchronous query
architecture to maintain the latency of multi-agent queries.

In experiments, eight new scenarios were proposed. Unlike the SMAC(37) tasks, these tasks require
more on task understanding and usage of unit skills. Mainstream LLMs are evaluated in both the
complete StarCraft II games and mini scenarios. Results indicate that pre-trained LLMs have possess
zero-shot decision-making ability but lack the ability to make consistently effective decisions. Without
task-specific training, pre-trained LLMs cannot always find the key elements for victories. They
fail to identify the important aspect of the situation, making mistakes in analysis and even dealing
damage to allies sometimes.

Our contributions can be concluded as follows:

(1) We propose the first LLM StarCraft II framework with a complete pysc2 action space and
provide a structured Wiki knowledge database of all units’ information.

(2) We provide native support for multi-agent collaboration in our platform, paired with an
asynchronous architecture that ensures a stable latency regardless of the population of LLM agents.

(3) We propose several new evaluation scenarios for LLM decision-making and evaluate LLMs’
performance in both the macro-decision scenarios and the scenarios for micro-operations.

Problems of the LLM decision system are also discussed in the final sections of our paper. Results
indicate that current LLMs cannot effectively handle complex StarCraft II scenarios due to serious
hallucinations and lack of domain knowledge. How to increase the ability of LLMs in complex
decision-making problems, at an acceptable cost, still poses a challenge in the era of large models
and remains an unsolved problem.

2 LLM-PySC2 environment

2.1 Framework

The LLM-PySC2 environment is built on the player level of SC2LE. As shown in Figure 1, two
players fight against each other and play the role of interacting with the pysc2 backend. They directly
control the camera, select units, collect observations, and execute actions.

To precisely control the whole system, a multi-agent framework is designed. Agents of the system
collaborate through natural language communication. At each step time t, agent i with profile pi get
the observations oit from the environment, queries remote LLM for analysis anait and strategy stgit,
communication messages mi

t and actions ait:
(anait, stg

i
t,m

i
t, a

i
t) = LLM(pi, oit)

Then the player sends the joint action to the environment and transmits messages to assigned agents:
(o1t+1, o

2
t+1, ... , o

n
t+1) = Env(a1t , a

2
t , ... , a

n
t ;m

1
t ,m

2
t , ... ,m

n
t)

Pseudo code of the interaction and query process can be seen in Appendix A.

2.2 Actions

Actions are the most important part of a decision-making problem. In LLM-PySC2, textual actions
play the role of the interface for large models and the environment. These actions are defined as:

< ActionName(args) >

where args refer to screen or minimap coordinates, unit tag, or their combination. Compared
to discrete text actions, these actions avoid clipping the policy space and neglecting StarCraft II
complexity. Details of the actions are provided in Appendix B.

In SC2LE, there are about 500 original for controlling Protoss, Terran, and Zerg. Most of them
require additional parameters such as a screen or minimap position. These actions further constitute a
huge policy space, making it one of the most complex environments for decision-making problems.

As shown in Fig 2, there are more than 100 text actions for Protoss agents in the LLM-PySC2
environment, which can be classified as unit control, unit skills, building, researching, training, etc.
Different from other environments, these actions increase the theoretical performance of optimal
policy but also raise the challenge of generating correct actions.

3

Unit Contol (6):
<Stop()>
<Hold_Position()>
<Attack_Unit(tag)>
<Move_Screen(screen)>
<Move_Minimap(minimap)>...

Unit Trainning Actions (17):
<Train_Adept()>
<Train_Zealot()>
<Train_Stalker()>
<Train_Phoenix()>
<Train_Colossus()>

Unit Warpping Actions (6):
<Warp_Zealot_Near(tag)>
<Warp_Stalker_Near(tag)>

Research Actions (17):
<Research_WarpGate()>
<Research_PsiStorm()>
<Research_ProtossAirArmor()>
<Research_ProtossAirWeapons()>

Build Actions (Easy Mode1, 15):
<Build_Nexus_Near(tag)>
<Build_Assimilator_Near(tag)>
<Build_Pylon_Near(tag)>
<Build_Forge_Near(tag)>
<Build_Gateway_Near(tag)>......

Build Actions (Screen Mode, 15):
<Build_Nexus_Screen(screen)>
<Build_Assimilator_Screen(screen)>
<Build_Pylon_Screen(screen)>
<Build_Gateway_Screen(screen)>

Single Unit Contol, basic actions (3):
<Select_Unit_Attack_Unit(tag, tag)>
<Select_Unit_Move_Screen(tag, screen)>
<Select_Unit_Move_Minimap(tag, screen)>

Resource Block Actions (2):
<Lock_Nexus_Near(tag)>
<Lock_Assimilator_Near(tag)>

Transporter Actions (2):
<Load_Unit(tag)>
<Unload_Screen(screen)>

Unit Abilities (17):
<Ability_GuardianShield()>
<Ability_Blink_Screen(screen)>
<Ability_PsiStorm_Screen(screen)>

Single Unit Control, Abilities (17):
<Select_Unit_Ability_GuardianShield(tag)>
<Select_Unit_Ability_Blink_Screen(tag, screen)>
<Select_Unit_Ability_PsiStorm_Screen(tag, screen)>

Morph Actions (5):
<Morph_Archon()>
<Morph_ObserverMode()>
<Morph_WarpPrismPhasingMode()>......

Protoss Action Space

<Ability_StasisTrap_Screen(screen)>
<Ability_ForceField_Screen(screen)>
<Ability_NexusMassRecall_Near(tag))>

Build Actions (Easy Mode2, 15):
<Build_Nexus()>
<Build_Assimilator()>
<Build_Pylon()>
<Build_Forge()>
<Build_Gateway()>

Scan Actions (4):
<Worker_Scan()>
<Zealot_Scan(t)>

Easy Control Actions (3):
<All_Units_Attack()>
<All_Units_Defend()>

Unit Warpping Actions (Easy Mode, 6):
<Warp_Zealot_Near(tag)>
<Warp_Stalker_Near(tag)>

Recognize Process of an Action
Bridge Object = {'name': 'Select_Unit_Blink_Screen', 'arg': ['tag', 'screen'],

'func': [(2, pysc2.lib.actions.select_point, ('select', 'screen_tag')), (180, pysc2.lib.actions.Effect_Blink_screen, ('now', 'screen'))]}

Recogonized Action:
<Select_Unit_Move_Screen(0x1000c0001, (16,32))>

PySC2 functions:
pysc2.lib.actions.select_point('select', (45, 66))
pysc2.lib.actions.Effect_Blink_screen('now', (16,32))

0x1000c0001

Find the bridge object Find the position of Generate pysc2 functions

Figure 2: Protoss action space and the recognition process. LLM-PySC2 is the first LLM decision-
making environment with complete pysc2 action space. LLM controls units by output actions in
the shape of <Action_Name(args)>. The environment transforms text action into pysc2 functions
according to a transform protocol and the relevant bridge object of the action.

2.3 Observation

Observation provides fundamental support for decision-making. Given the distinct requirements
of different agents, we developed an interface that offers each agent the observations specifically
suited to their tasks. Additionally, with multi-modal observations that convey rich semantic and
visual information, we released the potential for a deeper understanding of the situation, solving the
problem that the previous environment had only observation of unit quantity information.

LLM-PySC2 Observation

Query Message

System Prompt

Example Input

Example Output

�� Warpper

Environment Task Description

Global info

Team unit info

Game Knowledge

Valid Actions

......

Text Observation

Team Stalker-1 Info:
 Controlled Units:
 Nearby Ally Units:
 Nearby Enemy Units:

Game Time: 00:50
Minerals: 200, Gas: 50
Supply:31 total, 12 left...

Valid Actions:
 Team Adept-1:
 <Stop()>
 <Attack_Unit(tag)>
 <Move_Screen(screen)>

Tasks: Team Adept-1' task: Kill as much as enemy workers as possible.

Relevant Knowledge: Protoss.Adept:, Zerg.Queen:,

RGB Feature RGB MinimapRGB Screen

Feature map

Minimap

Image Observation
Screen Image

Image Observation

Text Observation

Feature map

Last step Actions:
 Team Adept-1:

Communication info:, Valid targets:, Communicat Actions:

Unit Count: our unit:, our buildings:, spotted enemy:

��
����

��
���

��

Figure 3: LLM-PySC2 observations. LLM-PySC2 provides multi-modal observation. The obser-
vation wrapper generates text and image observations that contain all the important information for
decision-making, with access to images of the screen, minimap, and pysc2 original feature maps.

4

2.3.1 Text Observation.

As illustrated in Fig. 3, an observation wrapper is implemented to process the relevant text observations
for each agent. This wrapper includes a set of functions tailored for handling different types of text
information. Once all parts of the text observation are generated, they will be aggregated into OpenAI
query messages, which include system prompts, example inputs and outputs, as well as a series of
images. These messages are then sent to the LLM server for querying responses.

Considering possible user requirements, we expose all the observation interfaces in the open-source
code repository. It is possible to customize the wrapper to generate other kinds of text observations.
More detailed examples of text observation can be seen in Appendix C.

2.3.2 Image Observation.

In StarCraft II scenarios, image observation provide information such as terrain and relative position.
It is almost inevitable to use images to describe such higher-dimensional information.

In LLM-PySC2, we provide four kinds of image observation: RGB-Screen, RGB-Minimap, RGB-
Feature, and Original-Feature-Maps. Image observation wrapping functions collect the image from
the pysc2 backend, adding auxiliary lines and annotations to facilitate the coordinate recognition by
LLMs. The image will be encoded into a base 64 string and will be added to the message to query
the LLMs for analysis, actions, and communication behaviors.

2.4 Multi-Agent System

Disassembling complex problems into small tasks in a multi-agent system has become a basic solution.
Different large models interact through natural language, coordinating their behaviors and managing
the massive StarCraft II system together.

(1) Macro Decisions: Combat (2) Macro Decisions: Develop

(3) Micro Operations: Precise Combat (4) Micro Operations: Precise Build

<xxx_Scan()>
<All_Units_Attack()>

Agent
CombatGroup1

Agent
CombatGroup2

Agent
CombatGroup5

Agent
Commander

��
3

Agent
Developer unit training buildings

researching buildings

<Reasearch_xxx()>
<Train_xxx()>

Communication

Agent
Builder

��
2

Execute

Execute

��
1

Execute

workers

Communication Communication

(1)

(2)

(1) Enable Easy Control Mode (2) Enable Easy Build Mode

Team Probe-1: ...
Team Probe-2: ...

<Build_xx()>

Figure 4: LLM-PySC2 multi-agent system. In LLM-PySC2, game control is divided into com-
bat((1), (3)) and development((2), (4)). In standard unit control mode, the agent Commander sends
messages to agents named CombatGroupi, and the CombatGroup agents control their units moving,
attacking, or using skills to achieve tasks assigned by superiors. In standard build mode, the agent
Developer trains units, updates technologies, and asks the agent Builder to build buildings. Then the
Builder controls workers and chooses positions to construct new buildings.

5

In LLM-PySC2, agents collaborate by communicating with each other. They can discuss in a channel
or directly send messages to another agent. As shown in Fig. 1, at each step, received messages will
be added to observation, and the agent can respond to others by generating Communication actions
shaped as < MessageTo(TargetName, ′′′content′′′) >. When the agent receives messages, the
received messages will be displayed in their origin form. An Agent should analyze both the observed
situation and the requests/information from others, and finally generate actions and reply to their
teammates.

As shown in Fig. 4, we define four kinds of agents responsible for (1) macro-decisions for combat
deployment, (2) macro-decisions for economic development, (3) micro-operations for combat, and
(4) micro-operations for building. Agents for macro-decisions organize other agents to work together,
while agents for micro-operations execute specific actions. Note that, agents of LLM-PySC2 query in
independent threads, ensuring a constant waiting time when the number of agents increases.

The multi-agent system supports both centralized and decentralized decisions in the environment. Two
’Easy Modes’ are also provided for simplifying some aspects that researchers are not very concerned
about, among which ’Easy Build’ disables the agent Builder and helps researchers concentrate more
on multi-agent collaboration in the combat, while ’Easy Control’ disables the agents CombatGroups
and helps researchers concentrate more on planning and multi-modal information processing.

3 Experiments

In this section, we introduce two series of experiments: (1) Experiments for macro-decisions, i.e.
complete StarCraft II game; (2) Experiments for micro-operations, including classic SMAC
scenarios and eight new tasks that require units to use their skills and achieve assigned goal. To
distinguish micro-operation scenarios from the traditional SMAC environment, we refer to these two
groups of experiments the LLM-SMAC task group and the LLM-PySC2 task group.

Combined with the complete StarCraft II games, these experiment scenarios constitute one of the
most comprehensive experiment groups in LLM decision-making and support research on enhancing
LLMs’ abilities in reasoning, planning, learning, and multi-agent cooperation.

We use the Kill/Death (KD) ratio and Winning Rate (WR) to evaluate the performance of the LLMs:

Vunit = minerals(unit) + 2× gas(unit)

KD = Vkilled_units/Vdead_units

WR = num(win)/num(total)

where Vkilled_units and Vdead_units refers to killed units’ value and dead units’ value of the LLM’s
camp. The higher the value of KD and WR, the better the performance of LLMs.

3.1 Experiments for Macro-Decisions

3.1.1 Experiment Settings

Complete games demand real decision-making abilities, such as analyzing situations, planning for
tactic strategy, deceiving the opponent, and engaging with the enemy at the right time. To evaluate
the performance of LLM macro-decisions, we tested the three modes in the Simple64 map: (1)
easy control + easy build (ECEB); (2) standard control + easy build (SCEB); and (3) easy control +
standard build (ECSB). Considering the poor performance of LLM in complex settings, we do not
further test the last mode (4) standard control + standard build (SCSB).

For games with easy control settings, we enable the agent Commander to directly control all units to
attack, defend, retreat, and scan for information. For the standard control settings, we enable agents
named CombatGroup-i to precisely control different kinds of unit to move, attack, and use skills.

For games with easy build settings, the agent Developer can build buildings by generating actions
< Build_BuildingName() >. For games that enable standard build, the agent Developer can only
train units and upgrade technologies, and has to communicate with the agent Builder to build in
specific coordinates [x, y] by generating actions < Build_BuildingName_Screen([x, y]) >.

6

In these experiments, we give each agent a client for querying GPT-4o-mini. For macro-decision
agents, we provide relevant text information and minimap images. For standard unit control agents, we
provide text observation and both the screen image and minimap images. Examples of observations,
responses for different agents, and detailed experimental settings can be seen in Appendices C and D.

(a) expand a new base (b) build buildings (c) train/warp units

(d) attack (e) defend (f) retreat

Figure 5: StarCraft II complete game in LLM-PySC2. StarCraft II complete game requires
both the macro-decision ability and micro-operation ability. The agent Developer and Builder has
to (a) expand new bases, (b) build new buildings, (c)train or warp units for combat, and upgrade
technologies. The agent Commander with agents for CombatGroups controls the army (d) defend, (e)
attack, (f) retreat, or make complex deployment to deceive and defeat the opponent.

3.1.2 Experiment Results

In the macro-operation tasks (complete StarCraft II games), we conducted 30 repeated experiments
from level-1 (very easy) to level-7 (very hard/elite). As shown in Table 1, two agents in the ECEB
mode control the whole system via discrete actions and perform nearly the same as in TSC2 (6). At
level-5, LLMs can only win about 30% of the games and nearly lose all games at level-6 and above.

Table 1: Winning Rates of GPT-4o-mini in Complete StarCraft II games (with 90% Wilson Score
Confidence Intervals. Red for upper limits and green for lower.)

Winning Rate from Level-1 to Level-7

Mode L1 L2 L3 L4 L5 L6 L7

ECEB (EasyControl+EasyBuild) 100%100%
92% 100%100%

92% 80%89%
66% 57%70%

42% 30%45%
18% 3%13%

1% 0%8%
0%

SCEB (StandardControl+EasyBuild) 100%100%
92% 60%73%

45% 0%8%
0% 0%8%

0% 0%8%
0% 0%8%

0% 0%8%
0%

ECSB (EasyControl+StandardBuild) 100%100%
92% 80%89%

66% 60%73%
45% 17%30%

8% 17%30%
8% 0%8%

0% 0%8%
0%

In SCEB and ECSB modes, LLMs perform worse due to the recovered complexity from the complete
action space and the higher demand for collaboration. In SCEB mode, the Easy Build part develops
the economy and military strength the same as in ECEB mode, but agents for micro-operations
frequently make mistakes in command, resulting in a 0% winning rate from level-3 onwards. Notably,
in ECSB mode, while the Builder agent controls workers for standard construction operations, it
maintains certain competitiveness from level-1 to level-3, achieving a 60% winning rate at level-3.
However, as the difficulty increases further, issues such as inappropriate building placement and
suboptimal defense layouts become evident, causing the winning rate to drop sharply to 17% at
level-4 and resulting in complete inability to win from level-6 onwards.

To better assess the statistical significance of the winning rates and account for the uncertainty
associated with the limited sample size, we calculated Wilson Score Confidence Intervals. This
interval provides a reliable confidence interval estimate for a binomial proportion, particularly suitable
for small sample sizes or proportions near 0 or 1. The formula for the Wilson interval is as follows:

7

a =
p̂+ z2

2n

1 + z2

n

, b =
z

1 + z2

n

√
p̂(1− p̂)

n
+

z2

4n2

WPupper = a+ b, WPlower = a− b,

where p̂ is the observed winning rate, n is the number of trials (30 in this case), and z is the 1− α/2
quantile of the standard normal distribution, i.e., z = Φ−1(1− α/2). For a 90% confidence interval
(α = 0.10), z ≈ 1.645. The upper and lower limits of the interval, denoted as WPupper and WPlower,
are reported in the table in red and green, respectively.

3.2 Experiments for Micro-Operations

3.2.1 Experiment Settings

SMAC is a well-known benchmark for multi-agent reinforcement learning (MARL) approaches. We
provide compatible support for SMAC tasks. Note that, unlike the SMAC tasks that n units are
controlled by n agents, the LLM-SMAC units are controlled in groups. It is not recommended to
compare the LLM-based method with the MARL-based method due to different control frequencies.

In the LLM-PySC2 task group, eight new experimental scenarios were constructed. These tasks
introduce unit skills into the experiments. Unlike SMAC, which focuses only on incoming combat,
LLM-PySC2 requires an understanding of task description, planning attack routes, and utilizing skills
to achieve the goal. Tasks 1 to 4 are designed as single-agent tasks, while tasks 5 to 8 are designed
as multi-agent tasks. Agent settings are the same as for the standard control mode of the complete
StarCraft II game. More detailed settings can be seen in Appendix D.

(d) task4: Blink-Stalker combat (e) task5: large scale combat (type1)

(a) task1: 2 Adept harass (b) task2: 3 Pheonix harass (b) task3: intercept airdrops

(f) task6: large scale combat (type2)

Figure 6: Experiments for micro-operations: LLM-PySC task group. games. (a)(b) Controlling
2Adepts/3Pheonix to harass enemy economy, kill more than half of enemy workers; (c)(d) Controlling
Stalkers to intercept incoming airdrop or defeat enemy Roaches using Blink ability; (e)(f) Controlling
a combat group of several unit types, use skills especially Area-of-Damage skills to defeat enemies.

3.2.2 Experiment Results

In the micro-operation tasks, we conducted 20 repeated experiments for each LLM (except GPT-
3.5-turbo which evaluates 50 games). As shown in Table. 2, all the tested LLMs act poorly in
LLM-SMAC scenarios, similar to works such as (30). LLMs make obvious mistakes that do not move
their long-range combat units, even when attacked by melee units in 3s_vs_3z. In 2s3z, the agent for
Stalkers sometimes escapes from the battlefield, resulting in the quicker death of ally Zealots.

In the LLM-PySC2 task group, we evaluate the performance of 9 models. Results in Table. 3
demonstrate that LLM suffers from hallucinations and the lack of knowledge (More details are
provided in the Discuss section and Appendix E).

8

Table 2: Kill/Death Rates and Winning Rates of LLMs in LLM-SMAC Tasks.

Task Names / KD (WR)

Model 2s3z 3s5z 1c3s5z 3s5z_vs_3s6z 2c_vs_64zg 3s_vs_3z

gpt-3.5-turbo 0.60(22%) 0.43(4%) 0.91(44%) 0.29(0%) 0.52(0%) 0.05(0%)
gpt-4o-mini 0.66(20%) 0.39(0%) 1.01(50%) 0.29(0%) 0.54(0%) 0.09(0%)
glm-4-plus 0.81(25%) 0.46(0%) 0.47(0%) 0.33(0%) 0.54(5%) 0.15(0%)
claude3-haiku 0.58(5%) 0.48(0%) 0.48(0%) 0.32(0%) 0.52(0%) 0.10(0%)
llama3.1-8b 0.19(0%) 0.23(0%) 0.18(0%) 0.14(0%) 0.49(0%) 0.00(0%)
gpt-4o 0.76(20%) 0.47(0%) 0.80(30%) 0.35(0%) 0.56(0%) 0.15(0%)

Table 3: Kill/Death Rates and Winning Rates of LLMs in LLM-PySC2 Tasks (level-1).

Task Names / KD (WR)

Model task1 task2 task3 task4 task5 task6

gpt-3.5-turbo 1.23(58%) 0.13(4%) 6.63(38%) 0.38(0%) 0.61(8%) 0.28(0%)
gpt-4o-mini 1.67(70%) 0.16(0%) 3.46(0%) 0.39(0%) 0.62(20%) 0.30(0%)
glm-4-plus 0.78(30%) 0.21(5%) 153(100%) 0.38(0%) 0.60(10%) 0.30(0%)
claude3-haiku 2.19(90%) 0.19(10%) 5.25(40%) 0.34(0%) 0.75(25%) 0.33(0%)
llama3.1-8b 0.28(5%) 0.12(5%) 14.9(75%) 0.18(0%) 0.48(5%) 0.14(0%)
llama3.1-70b 0.36(15%) 0.14(0%) 58.9(95%) 0.33(0%) 0.59(15%) 0.31(0%)
llama3.1-405b 0.70(30%) 0.10(0%) 3.0k(100%) 0.28(0%) 0.56(10%) 0.32(0%)
gpt-4o 2.27(80%) 0.16(10%) Inf(100%) 0.46(0%) – –
gpt-o1-mini 1.36(60%) 0.04(0%) – – – –

Two findings derive from these results: (1) Reasoning models such as GPT-o1-mini cannot signifi-
cantly improve the decision-making ability in an environment never seen before; (2) Scaling law does
not work well in decision-making problems that Llama3.1-405b does not significantly outperform
Llama3.1-70b (but enough parameters is crucial for basic decision-making ability). These problems
are possibly due to a lack of relevant knowledge and instructions in the pre-training stage.

Table 4: Kill/Death Rates and Winning Rates of Gpt-3.5-turbo in LLM-PySC2 Tasks (level-1/2/3).

Task Names / KD (WR)

Task Level task1 task2 task3 task4 task5 task6

Task Level-1 1.23(58%) 0.13(4%) 6.63(38%) 0.38(0%) 0.61(8%) 0.28(0%)
Task Level-2 0.56(5%) 0.04(0%) 3.31(5%) 0.34(0%) 0.52(0%) 0.20(0%)
Task Level-3 0.39(0%) 0.05(0%) 1.99(0%) 0.31(0%) 0.40(0%) 0.26(0%)

To avoid the situation that all tasks achieve 100% winning rates several years after its proposal, we set
three difficulty levels for the LLM-PySC2 task group. As the level grows, it will be more difficult for
the LLMs to reach the goal due to additional enemy units or upgrades. We evaluate the performance
of GPT-3.5-turbo in these tasks, as shown in Table. 4, and serve it as a baseline for future research.

3.3 Latency and Token Cost.

Since StarCraft II is a real-time environment, we also report the runtime latency and token con-
sumption to assess the practicality of LLM-based decision-making. Table 5 summarizes the average
observation size, response size, and runtime latency by agent type in complete-game settings using
GPT-3.5. The environment-side latency (i.e., observation processing and action parsing) remains

9

below 0.1 seconds per step, which is negligible compared to the model-side inference cost. As
shown in the table, LLM response latency (5.2–5.6 seconds per query) is the dominant overhead,
demonstrating that the PySC2 execution pipeline is efficient and that LLM inference is the true
computational bottleneck.

Table 5: Latency and token cost by agent type in complete-game settings (GPT-3.5).

Agent Type Obs Tok. Resp Tok. Env Lat. (Obs) Env Lat. (Act) LLM Lat.

Commander 1240 321 0.016 ms 0.001 ms 5.23 s
Developer 1587 320 0.076 ms 0.001 ms 5.51 s
Other 2269 363 0.019 ms 0.001 ms 5.58 s

4 Discussion

In this section, we discuss three challenges in LLM decision making. These challenges significantly
reduce performance, severely hindering the application of the LLM-based decision-making system.

Lack of domain knowledge. Correct and sufficient knowledge is the prerequisite for correct decisions.
However, there is no guarantee that all knowledge across all fields are introduced in the pre-training
phase As a result, LLMs may not realize that 49 additional supplies are far beyond the demand for
StarCraft II games, or know that shields recharge in the 2s_vs_1sc scenario.

Hallucinations and mistakes. Hallucinations and mistakes have an inevitable impact on the decision-
making process. LLM suffers from (1) input-conflicting hallucinations that generate invalid actions;
(2) fact-conflicting hallucinations that mistake ally units for enemy units; and (3) context-conflicting
hallucinations that mistake screen coordinates for minimap coordinates.

Inefficient collaboration. Effective information exchange is critical for multi-agent collaboration.
However, LLMs generate communication messages with a lot of non-essential and incorrect informa-
tion. At the same time, they tend to unconditionally trust their teammates and ignore possible errors
in the incoming information, which severely damages the performance in StarCraft II games.

These problems hinder the further application of LLM-based intelligent decision-making systems,
waiting for further research and solutions. Examples of these problems are provided in Appendix E.

5 Conclusion

In this paper, we introduce a new environment for LLM decision-making, the first environment
that accommodates the complete continuous PySC2 actions, and the first LLM StarCraft II environ-
ment with a multi-agent framework and communication system. In experiments, we evaluated the
performance of mainstream LLMs in complete StarCraft II games and both the LLM-SMAC and
LLM-PySC2 task groups, among which the LLM-PySC2 task group is a brand-new experimental
scenario that we designed for large models. Results show that LLMs can make decisions and generate
valid actions but cannot make effective decisions consistently. Still, the quality of the decision is
relatively low and there are several problems such as hallucinations, poor utilization of knowledge of
the game, and lack of understanding of the world. Results indicate that learning in the deployment
environment is necessary for LLM-based decision-making solutions. We hope the LLM-PySC2
environment can promote research on LLM learning methods, helping LLM-based decision-making
methods better adapt to task scenarios.

6 Acknowledgement

We thank the anonymous reviewers for their insightful comments. This work was supported in part
by the National Natural Science Foundation of China under Grant 62293510/62293513. The views
expressed herein are those of the authors and do not reflect the views of the funding agencies.

10

References
[1] Tan, W., Ding, Z., Zhang, W., Li, B., Zhou, B., Yue, J., Xia, H., Jiang, J., Zheng, L., Xu, X., Bi,

Y., Gu, P., Wang, X., Karlsson, B. F., An, B.,et al., Lu, Z. Towards General Computer Control:
A Multimodal Agent for Red Dead Redemption II as a Case Study. In ICLR 2024 Workshop on
Large Language Model (LLM) Agents, January 2024.

[2] Xu, Y., Wang, S., Li, P., Luo, F., Wang, X., Liu, W.,et al., Liu, Y. Exploring Large Lan-
guage Models for Communication Games: An Empirical Study on Werewolf. arXiv preprint
arXiv:2309.04658, 2023.

[3] Qian, C., Liu, W., Liu, H., Chen, N., Dang, Y., Li, J., Yang, C., Chen, W., Su, Y., Cong, X., Xu,
J.,et al., Sun, M. ChatDev: Communicative Agents for Software Development. arXiv preprint
arXiv:2307.07924, 2023.

[4] Hua, W., Liu, O., Li, L., Amayuelas, A., Chen, J., Jiang, L., Jin, M., Fan, L., Sun, F., Wang,
W., et al., Zhang, Y. Game-Theoretic LLM: Agent Workflow for Negotiation Games. arXiv
preprint arXiv:2411.05990, 2024.

[5] Shao, X., Jiang, W., et al.,Liu, M. SwarmBrain: Embodied Agent for Real-Time Strategy Game
StarCraft II via Large Language Models. In arXiv preprint arXiv:2401.17749, 2024. URL:
https://arxiv.org/abs/2401.17749.

[6] Ma, W., Mi, Q., Zeng, Y., Yan, X., Wu, Y., Lin, R., et al., Wang, J. Large Language Models
Play StarCraft II: Benchmarks and a Chain of Summarization Approach. In Advances in Neural
Information Processing Systems, volume 37, pages 133386–133442, 2024.

[7] Z. Li, C. Lu, X. Xu, R. Qi, Y. Ni, L. Jiang, et al., X. Guo. Hierarchical Expert Prompt for
Large-Language-Model: An Approach Defeat Elite AI in TextStarCraft II for the First Time.
arXiv preprint arXiv:2502.11122, 2025.

[8] Xu, X., Li, Z., Lu, C., Qi, R., Ni, Y., Jiang, L., Liu, X., Zhang, X., Fang, Y., Huang, et al., Li,
Z. Reflection of Episodes: Learning to Play Game from Expert and Self Experiences arXiv
preprint arXiv:2502.13388, 2025.

[9] Zhu, X., Chen, Y., Tian, H., Tao, C., Su, W., Yang, C., Huang, G., Li, B., Lu, L., Wang,
X., Qiao, Y.,et al., Dai, J . Ghost in the minecraft: Generally capable agents for open-world
environments via large language models with text-based knowledge and memory arXiv preprint
arXiv:2305.17144, 2023.

[10] Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C.,et al., Anandkumar, A. Voyager: An
open-ended embodied agent with large language models. arXiv preprint arXiv:2305.16291,
2023.

[11] Feng, Y., Wang, Y., et al., Lu, Z. Llama rider: Spurring large language models to explore the
open world. arXiv preprint arXiv:2310.08922, 2023.

[12] Y. Li, S. Liu, T. Zheng, M. Song. Parallelized Planning-Acting for Efficient LLM-based
Multi-Agent Systems. arXiv preprint arXiv:2503.03505, 2025.

[13] Liu, H., Zhu, Y., Kato, K., Tsukahara, A., Kondo, I., et al., Hasegawa, Y. Enhancing the
LLM-Based Robot Manipulation Through Human-Robot Collaboration. IEEE Robotics and
Automation Letters, 2024.

[14] D. Shah, B. Osiński, S. Levine. LM-Nav: Robotic Navigation with Large Pre-Trained Models
of Language, Vision, and Action. In Conference on Robot Learning, pages 492–504, March
2023.

[15] P. Doma, A. Arab, X. Xiao. LLM-Enhanced Path Planning: Safe and Efficient Autonomous
Navigation with Instructional Inputs. arXiv preprint arXiv:2412.02655, 2024.

[16] Jin, Y., Li, D., Shi, J., Hao, P., Sun, F.,et al., Fang, B. RobotGPT: Robot Manipulation Learning
From ChatGPT. IEEE Robotics and Automation Letters, vol. 9, no. 3, pp. 2543–2550, 2024.

11

https://arxiv.org/abs/2401.17749

[17] Dorbala, V. S., Mullen, et al.,Manocha, D. Can an Embodied Agent Find Your “Cat-Shaped
Mug”? LLM-Based Zero-Shot Object Navigation. IEEE Robotics and Automation Letters, vol.
9, no. 5, pp. 4083–4090, 2023.

[18] Xiao, Y., Sun, E., et al., Wang, W. TradingAgents: Multi-Agents LLM Financial Trading
Framework. arXiv preprint arXiv:2412.20138, 2024.

[19] Ouyang, K., Liu, Y., Li, S., Bao, R., et al., Sun, X. Modal-adaptive Knowledge-enhanced Graph-
based Financial Prediction from Monetary Policy Conference Calls with LLM. In Proceedings
of the Joint Workshop of the 7th Financial Technology and Natural Language Processing, the
5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop
on Economics and Natural Language Processing, pages 59–69. Association for Computational
Linguistics, Torino, Italia, 2024.

[20] Y. Li, S. Wang, H. Ding, H. Chen. Large Language Models in Finance: A Survey. In Proceedings
of the Fourth ACM International Conference on AI in Finance, pages 374–382, November 2023.

[21] Z. Zeng, W. Watson, N. Cho, S. Rahimi, S. Reynolds, et al., M. Veloso. FlowMind: Automatic
Workflow Generation with LLMs. In Proceedings of the Fourth ACM International Conference
on AI in Finance, pages 73–81, November 2023.

[22] J. Xu, W. Du, X. Liu, X. Li. LLM4Workflow: An LLM-Based Automated Workflow Model
Generation Tool. In Proceedings of the 39th IEEE/ACM International Conference on Automated
Software Engineering, pages 2394–2398, October 2024.

[23] Fan, L., Wang, G., Jiang, Y., Mandlekar, A., Yang, Y., Zhu, H., Tang, A., Huang, D., et al.,
Anandkumar, A. MineDojo: Building Open-Ended Embodied Agents with Internet-Scale
Knowledge. Advances in Neural Information Processing Systems, vol. 35, pages 18343–18362,
2022.

[24] Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., et al., Bernstein, M. Generative Agents:
Interactive Simulacra of Human Behavior. In Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology, pages 1–22, October 2023.

[25] Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W., Zambaldi, V., Jaderberg, M., Lanctot,
M., Sonnerat, N., Leibo, et al., Graepel, T. Value-Decomposition Networks for Cooperative
Multi-Agent Learning. In arXiv preprint arXiv:1706.05296, 2017. URL: https://arxiv.
org/abs/1706.05296.

[26] Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G., Foerster, et al.J.,Whiteson, S. Mono-
tonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning. In Journal
of Machine Learning Research, volume 21, number 178, pages 1–51, 2020.

[27] Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A.,et al.,Wu, Y . The Surprising
Effectiveness of PPO in Cooperative Multi-Agent Games. In Advances in Neural Information
Processing Systems, volume 35, pages 24611–24624, 2022.

[28] Vinyals, O., Babuschkin, I., Czarnecki, W., Mathieu, M., Dudzik, A., Chung, J., Choi, D.,
Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I., Huang,
A., Sifre, L., Cai, T., Agapiou, J., Jaderberg, M., Vezhnevets, A., Leblond, R., Pohlen, et al.,
C., Silver, D. Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement Learning.
Nature, vol. 575, no. 7782, pages 350–354, 2019.

[29] DI-star Contributors. DI-star: An Open-source Reinforcement Learning Framework for Star-
Craft II. 2021.

[30] Ma, W., Fu, Y., Zhang, Z., Li, G.,et al. Ghanem, B. VLMs Play StarCraft II: A Benchmark and
Multimodal Decision Method. arXiv e-prints, arXiv:2503, 2025.

[31] Y Deng, Y Yu, W Ma, Z Wang, W Zhu, J Zhao, Y Zhang SMAC-Hard: Enabling Mixed
Opponent Strategy Script and Self-play on SMAC arXiv preprint arXiv:2412.17707, 2024.

12

https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296

[32] Tang, J., Gao, H., Pan, X., Wang, L., Tan, H., Gao, D., Chen, Y., Chen, X., Lin, Y., Li, Y., Ding,
B., Zhou, J., Wang, J., et al. ,Wen, J. GenSim: A General Social Simulation Platform with
Large Language Model Based Agents. arXiv preprint arXiv:2410.04360, 2024.

[33] Hua, W., Fan, L., Li, L., Mei, K., Ji, J., Ge, Y., Hemphill, L., Zhang, Y. War and Peace
(WarAgent): Large Language Model-Based Multi-Agent Simulation of World Wars. arXiv
preprint arXiv:2311.17227, 2023.

[34] Gürcan,Ö. LLM-Augmented Agent-Based Modelling for Social Simulations: Challenges and
Opportunities. In HHAI 2024: Hybrid Human AI Systems for the Social Good, pages 134–144,
2024.

[35] Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A., Yeo, M., Makhzani, A.,
Küttler, H., Agapiou, J., Schrittwieser, J., Quan, J., Gaffney, S., Petersen, S., Simonyan, K.,
Schaul, T., van Hasselt, H., Silver, D., Lillicrap, T., Calderone, K., Keet, P., Brunasso, A.,
Lawrence, D., Ekermo, A., Repp, J., et al. Tsing, R. StarCraft II: A New Challenge for
Reinforcement Learning. arXiv preprint arXiv:1708.04782, 2017.

[36] Blizzard Entertainment. StarCraft II. StarCraft Wiki, [Online]. Available: https://
starcraft.fandom.com/wiki/StarCraft_II.

[37] Samvelyan, M., Rashid, T., de Witt, C., Farquhar, G., Nardelli, N., Rudner, T., Hung, C., Torr,
P., Foerster, J., et al. Whiteson, S. The StarCraft Multi-Agent Challenge. In arXiv preprint
arXiv:1902.04043, 2019. URL: https://arxiv.org/abs/1902.04043.

13

https://starcraft.fandom.com/wiki/StarCraft_II
https://starcraft.fandom.com/wiki/StarCraft_II
https://arxiv.org/abs/1902.04043

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims presented in the abstract and introduction align precisely with
the contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed both the problems of LLM decision-making in the Discuss
section and listed some limitations of our environment in supplementary materials Appendix
G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our code is available in Anonymous GitHub (link: https://anonymous.
4open.science/r/LLM-PySC2-Anonymous-0E0D), and the experiment results men-
tioned in the paper can be reproduced by source code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

https://anonymous.4open.science/r/LLM-PySC2-Anonymous-0E0D
https://anonymous.4open.science/r/LLM-PySC2-Anonymous-0E0D

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is available in Anonymous GitHub (link: https://anonymous.
4open.science/r/LLM-PySC2-Anonymous-0E0D), with source code of the environment,
quick start script, documents, and other material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiment setup and results are mentioned in the Experiment section.
More detailed settings and examples of the model’s input and output are also listed in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The two indices (Winning Rate and Kill/Death ratio) involved in our experiment
usually do not use error bars (1). The winning rate itself is a statistical value, and the raw
data of winning and losing are distributed in 1, 0 (i.e. winning/losing). (2) For a single game,
the KD ratio has the possibility of dividing by zero (i.e. no unit lost). Directly calculating the
ratio of each game before calculating the mean and variance may lead to errors. Therefore,
the KD ratio is calculated by dividing the total loss of enemy units of all experiments by the
total loss of ours, to avoid the error of dividing by zero.

16

https://anonymous.4open.science/r/LLM-PySC2-Anonymous-0E0D
https://anonymous.4open.science/r/LLM-PySC2-Anonymous-0E0D
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We introduced the hardware settings for the environments in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We claim the Code of Ethics in Appendix G.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

17

https://neurips.cc/public/EthicsGuidelines

Justification: We claim the Broader Impacts in Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our works developed the former RL environment into an LLM decision-
making environment, all the experiments dealt within the StarCraft II game. We do not
release a new model, dataset or image generators that may lead to misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide citations and source links for existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

18

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduced LLM-PySC2, an environment with complete pysc2 action
space. All the assets (such as game maps) are already released in Anonymous GitHub (link:
https://anonymous.4open.science/r/LLM-PySC2-Anonymous-0E0D).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

19

paperswithcode.com/datasets
https://anonymous.4open.science/r/LLM-PySC2-Anonymous-0E0D

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: This paper introduces an LLM decision-making environment and evaluates the
performance of some LLMs in it.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix A. Pseudo Code

A.1 LLM-PySC2 Rollout Process

Algorithm 1 LLM-PySC2 Rollout Process
Require: Map name. Max waiting time T for a step. Profiles for each agent, with model-name,

api-key, api-url for remote LLMs.

Initialize environment Env
Initialize player with its agents according to the profile
Initialize LLM client for agents
while not Env.is_terminated() do

Add the tags of new units to relevant agent’s data cache
Remove the tags of dead units from relevant agent’s data cache
while current step waiting time < max waiting time do

time.sleep(0.05s)
if any agent is waiting for querying remote LLMs then

Collect observations for these agents and wrap the observation into text form
Generate independent threads and query remote LLMs in the threads

end if
if all agents have already got responses then

for i in agents’ indexes do
Recognize text actions and generate pysc2 actions into agent_i’s data cache
Recognize communication messages and send to assigned agents
Move camera to the agent’s unit team, execute generated pysc2 actions

end for
end if

end while
num_step += 1

end while
Store the final state and the game result(win/draw/lose)

A.2 Query Process for an Agent

Algorithm 2 Query Process for an Agent

Require: Max retry times n, max waiting time T
′

for query.
Generate OpenAI message using collected image observation and text information
current retry time i = 0
while i < n do

Reset current waiting time t to 0
Initialize an independent thread and query remote LLM in the thread
while t < T

′
do

time.sleep(0.05s), t += 0.05s
if response received successfully then

Recognize valid actions and generate pysc2 functions for the agent
Break the query process.

end if
end while
waiting for 2i seconds to avoid remote service error
i += 1

end while
return default action if no valid response received

21

Appendix B. Action Space

Table B1: Default Protoss Action Space, Basic Actions

Unit Text action pysc2 functions (id, function, args)

All unit <No_Operation()> (0, F.no_op, ())
<Hold_Position()> (274, F.HoldPosition_quick, (’queued’))
<Move_Screen(screen)> (331, F.Move_screen, (’queued’, ’screen’))
<Move_Minimap(minimap)> (332, F.Move_minimap, (’queued’, ’minimap’))
<Select_Unit_Move_Screen(screen)> (3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))

(331, F.Move_screen, (’now’, ’screen’))
<Select_Unit_Move_Minimap(minimap)> (3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))

(332, F.Move_minimap, (’queued’, ’minimap’))

Attackable <Attack_Unit(tag)> (12, F.Attack_screen, (’queued’, ’screen_tag’))
<Select_Unit_Attack_Unit(tag, tag)> (3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))

(12, F.Attack_screen, (’queued’, ’screen_tag’))

Most units share the actions above, so we listed here to avoid mention repetitive unit control actions
in subsequent appendices. Here, F refers to pysc2.lib.actions.FUNCTION , the same as in the
following.

Table B2: Default Protoss Action Space, Standard Building Actions

Unit Text action pysc2 functions (id, function, args)

Probe <Build_Nexus_Near(tag)> (573, F.llm_pysc2_move_camera, (’world_tag’))
(65, F.Build_Nexus_screen, (’queued’, ’screen_tag’))

<Build_Assimilator_Near(tag)> (573, F.llm_pysc2_move_camera, (’world_tag’))
(40, F.Build_Assimilator_screen, (’queued’, ’screen_tag’))

<Build_Nexus_Screen(screen)> (65, F.Build_Nexus_screen, (’queued’, ’screen_tag’))
<Build_Assimilator_Screen(screen)> (40, F.Build_Assimilator_screen, (’queued’, ’screen_tag’))
<Build_Pylon_Screen(screen)> (70, F.Build_Pylon_screen, (’queued’, ’screen’))
<Build_Gateway_Screen(screen)> (57, F.Build_Gateway_screen, (’queued’, ’screen’))
<Build_CyberneticsCore_Screen(screen)> (48, F.Build_CyberneticsCore_screen, (’queued’, ’screen’))
<Build_Forge_Screen(screen)> (55, F.Build_Forge_screen, (’queued’, ’screen’))
<Build_PhotonCannon_Screen(screen)> (69, F.Build_PhotonCannon_screen, (’queued’, ’screen’))
<Build_ShieldBattery_Screen(screen)> (525, F.Build_ShieldBattery_screen, (’queued’, ’screen’))
<Build_TwilightCouncil_Screen(screen)> (101, F.Build_TwilightCouncil_screen, (’queued’, ’screen’))
<Build_TemplarArchive_Screen(screen)> (100, F.Build_TemplarArchive_screen, (’queued’, ’screen’))
<Build_DarkShrine_Screen(screen)> (49, F.Build_DarkShrine_screen, (’queued’, ’screen’))
<Build_Stargate_Screen(screen)> (88, F.Build_Stargate_screen, (’queued’, ’screen’))
<Build_FleetBeacon_Screen(screen)> (54, F.Build_FleetBeacon_screen, (’queued’, ’screen’))
<Build_RoboticsBay_Screen(screen)> (81, F.Build_RoboticsBay_screen, (’queued’, ’screen’))
<Build_RoboticsFacility_Screen(screen)> (82, F.Build_RoboticsFacility_screen, (’queued’, ’screen’))
<Lock_Nexus_Near(tag)> (70, F.Build_Pylon_screen, (’queued’, ’screen_tag’))
<Lock_Assimilator_Near(tag)> (40, F.Build_Assimilator_screen, (’queued’, ’screen_tag’))

In standard building mode, a worker will be chosen as building-worker at the beginning of the game
or the time the worker dead. The ’Builder’ agent will control the worker to build buildings using the
actions mentioned above.

22

Table B3: Default Protoss Action Space, Building Actions (easy mode1, for Builder)

Unit Text action pysc2 functions (id, function, args)

Probe <Build_Nexus_Near(tag)> (573, F.llm_pysc2_move_camera, (’world_tag’))
(65, F.Build_Nexus_screen, (’queued’, ’screen_tag’))

<Build_Assimilator_Near(tag)> (573, F.llm_pysc2_move_camera, (’world_tag’))
(40, F.Build_Assimilator_screen, (’queued’, ’screen_tag’))

<Build_Pylon_Near(tag)> (70, F.Build_Pylon_screen, (’queued’, ’screen_tag’))
<Build_Gateway_Near(tag)> (57, F.Build_Gateway_screen, (’queued’, ’screen_tag’))
<Build_CyberneticsCore_Near(tag)> (48, F.Build_CyberneticsCore_screen, (’queued’, ’screen_tag’))
<Build_Forge_Near(tag)> (55, F.Build_Forge_screen, (’queued’, ’screen_tag’))
<Build_PhotonCannon_Near(tag)> (69, F.Build_PhotonCannon_screen, (’queued’, ’screen_tag’))
<Build_ShieldBattery_Near(tag)> (525, F.Build_ShieldBattery_screen, (’queued’, ’screen_tag’))
<Build_TwilightCouncil_Near(tag)> (101, F.Build_TwilightCouncil_screen, (’queued’, ’screen_tag’))
<Build_TemplarArchive_Near(tag)> (100, F.Build_TemplarArchive_screen, (’queued’, ’screen_tag’))
<Build_DarkShrine_Near(tag)> (49, F.Build_DarkShrine_screen, (’queued’, ’screen_tag’))
<Build_Stargate_Near(tag)> (88, F.Build_Stargate_screen, (’queued’, ’screen_tag’))
<Build_FleetBeacon_Near(tag)> (54, F.Build_FleetBeacon_screen, (’queued’, ’screen_tag’))
<Build_RoboticsBay_Near(tag)> (81, F.Build_RoboticsBay_screen, (’queued’, ’screen_tag’))
<Build_RoboticsFacility_Near(tag)> (82, F.Build_RoboticsFacility_screen, (’queued’, ’screen_tag’))
<Lock_Nexus_Near(tag)> (70, F.Build_Pylon_screen, (’queued’, ’screen_tag’))
<Lock_Assimilator_Near(tag)> (40, F.Build_Assimilator_screen, (’queued’, ’screen_tag’))

In easy-build mode-1, the agent ’Builder’ does not need to provide precision position, but a tag of
nearby buildings. The LLM-PySC2 program will autonomously find a position near the unit with
given tag and build new buildings there.

Table B4: Default Protoss Action Space, Building Actions (easy mode2, for Developer)

Unit Text action pysc2 functions (id, function, args)

Probe <Build_Nexus()> (65, F.Build_Nexus_screen, (’queued’, ’auto’))
<Build_Assimilator()> (40, F.Build_Assimilator_screen, (’queued’, ’auto’))
<Build_Pylon()> (70, F.Build_Pylon_screen, (’queued’, ’auto’))
<Build_Gateway()> (57, F.Build_Gateway_screen, (’queued’, ’auto’))
<Build_CyberneticsCore()> (48, F.Build_CyberneticsCore_screen, (’queued’, ’auto’))
<Build_Forge()> (55, F.Build_Forge_screen, (’queued’, ’auto’))
<Build_PhotonCannon()> (69, F.Build_PhotonCannon_screen, (’queued’, ’auto’))
<Build_ShieldBattery()> (525, F.Build_ShieldBattery_screen, (’queued’, ’auto’))
<Build_TwilightCouncil()> (101, F.Build_TwilightCouncil_screen, (’queued’, ’auto’))
<Build_TemplarArchive()> (100, F.Build_TemplarArchive_screen, (’queued’, ’auto’))
<Build_DarkShrine()> (49, F.Build_DarkShrine_screen, (’queued’, ’auto’))
<Build_Stargate()> (88, F.Build_Stargate_screen, (’queued’, ’auto’))
<Build_FleetBeacon()> (54, F.Build_FleetBeacon_screen, (’queued’, ’auto’))
<Build_RoboticsBay()> (81, F.Build_RoboticsBay_screen, (’queued’, ’auto’))
<Build_RoboticsFacility()> (82, F.Build_RoboticsFacility_screen, (’queued’, ’auto’))

In easy-build mode-2, the agent ’Builder’ does not need to provide any additional information
of where to build the building. the program will automatically find a position for above actions.
Experiments of ECEB mode and SCEB mode use these actions as the Developer’s building actions.

23

Table B5: Default Protoss Action Space, Researching Actions

Text action pysc2 functions (id, function, args)

<Research_ProtossAirArmor()> (381, F.Research_ProtossAirArmor_quick, (’queued’))
<Research_ProtossAirWeapons()> (385, F.Research_ProtossAirWeapons_quick, (’queued’))
<Research_WarpGate()> (428, F.Research_WarpGate_quick, (’queued’))
<Research_ProtossGroundArmor()> (389, F.Research_ProtossGroundArmor_quick, (’queued’))
<Research_ProtossGroundWeapons()> (393, F.Research_ProtossGroundWeapons_quick, (’queued’))
<Research_ProtossShields()> (397, F.Research_ProtossShields_quick, (’queued’))
<Research_Charge()> (359, F.Research_Charge_quick, (’queued’))
<Research_Blink()> (356, F.Research_Blink_quick, (’queued’))
<Research_AdeptResonatingGlaives()> (351, F.Research_AdeptResonatingGlaives_quick, (’queued’))
<Research_PhoenixAnionPulseCrystals()> (379, F.Research_PhoenixAnionPulseCrystals_quick, (’queued’))
<Research_ExtendedThermalLance()> (364, F.Research_ExtendedThermalLance_quick, (’queued’))
<Research_GraviticBooster()> (366, F.Research_GraviticBooster_quick, (’queued’))
<Research_GraviticDrive()> (367, F.Research_GraviticDrive_quick, (’queued’))
<Research_PsiStorm()> (401, F.Research_PsiStorm_quick, (’queued’))
<Research_ShadowStrike()> (404, F.Research_ShadowStrike_quick, (’queued’))

Researching actions are actually complex actions of combination pysc2 functions, they require first
selecting a research building and then starting the research. The program will autonomously find
idle building for these functions, select the building and execute the pysc2 functions for technology
upgrades.

Table B6: Default Protoss Action Space, Unit Training Actions

Unit Text action pysc2 functions (id, function, args)

Nexus <Train_Mothership()> (541, F.Train_Mothership_quick, (’queued’))

Gateway <Train_Adept()> (457, F.Train_Adept_quick, (’queued’))
<Train_DarkTemplar()> (465, F.Train_DarkTemplar_quick, (’queued’))
<Train_HighTemplar()> (471, F.Train_HighTemplar_quick, (’queued’))
<Train_Sentry()> (491, F.Train_Sentry_quick, (’queued’))
<Train_Stalker()> (493, F.Train_Stalker_quick, (’queued’))
<Train_Zealot()> (503, F.Train_Zealot_quick, (’queued’))

Stargate <Train_Oracle()> (482, F.Train_Oracle_quick, (’queued’))
<Train_Phoenix()> (484, F.Train_Phoenix_quick, (’queued’))
<Train_VoidRay()> (500, F.Train_VoidRay_quick, (’queued’))
<Train_Tempest()> (495, F.Train_Tempest_quick, (’queued’))
<Train_Carrier()> (461, F.Train_Carrier_quick, (’queued’))

RoboticBay <Train_Observer()> (481, F.Train_Observer_quick, (’queued’))
<Train_WarpPrism()> (501, F.Train_WarpPrism_quick, (’queued’))
<Train_Immortal()> (473, F.Train_Immortal_quick, (’queued’))
<Train_Colossus()> (462, F.Train_Colossus_quick, (’queued’))
<Train_Disruptor()> (466, F.Train_Disruptor_quick, (’queued’))

Unit training actions share the same pre-process of researching actions. To avoid stocking a lot of
resources in the training queue, the program only trains units in idle buildings. To avoid spending too
many tokens on finding suitable buildings, the program autonomously searches idle buildings for
these actions.

24

Table B7: Default Protoss Action Space, Unit Warp Actions and Warp Actions in easy mode

Unit Text action pysc2 functions (id, function, args)

WarpGate <Warp_Adept_Near(tag)> (8, F.select_warp_gates, (’select’))
(573, F.llm_pysc2_move_camera, (’world_tag’))
(505, F.TrainWarp_Adept_screen, (’queued’, ’screen_tag’))

<Warp_DarkTemplar_Near(tag)> (8, F.select_warp_gates, (’select’))
(573, F.llm_pysc2_move_camera, (’world_tag’))
(506, F.TrainWarp_DarkTemplar_screen, (’queued’, ’screen_tag’))

<Warp_HighTemplar_Near(tag)> (8, F.select_warp_gates, (’select’))
(573, F.llm_pysc2_move_camera, (’world_tag’))
(507, F.TrainWarp_HighTemplar_screen, (’queued’, ’screen_tag’))

<Warp_Sentry_Near(tag)> (8, F.select_warp_gates, (’select’))
(573, F.llm_pysc2_move_camera, (’world_tag’))
(505, F.TrainWarp_Sentry_screen, (’queued’, ’screen_tag’))

<Warp_Stalker_Near(tag)> (8, F.select_warp_gates, (’select’))
(573, F.llm_pysc2_move_camera, (’world_tag’))
(506, F.TrainWarp_Stalker_screen, (’queued’, ’screen_tag’))

<Warp_Zealot_Near(tag)> (8, F.select_warp_gates, (’select’))
(573, F.llm_pysc2_move_camera, (’world_tag’))
(507, F.TrainWarp_Zealot_screen, (’queued’, ’screen_tag’))

WarpGate <Warp_Zealot()> (510, F.TrainWarp_Zealot_screen, (’queued’, ’auto’))
<Warp_Stalker()> (509, F.TrainWarp_Stalker_screen, (’queued’, ’auto’))
<Warp_Sentry()> (508, F.TrainWarp_Sentry_screen, (’queued’, ’auto’))
<Warp_Adept()> (505, F.TrainWarp_Adept_screen, (’queued’, ’auto’))
<Warp_HighTemplar(screen)> (507, F.TrainWarp_HighTemplar_screen, (’queued’, ’auto’))
<Warp_DarkTemplar(minimap)> (506, F.TrainWarp_DarkTemplar_screen, (’queued’, ’auto’))

For protoss, some of the unit training actions will change to unit warpping actions after WarpGate
technology upgrades. They need to choose a tag for power field provider (such as Pylon) to warp
unit there. In easy-warp mode, the program will autonomously find valid position for unit warping
actions.

Table B8: Default Protoss Action Space, Easy Control Actions

Text action pysc2 functions (id, function, args)

<All_Units_Attack()> (13, F.Attack_minimap, (’auto’))
<All_Units_Defend()> (331, F.Move_screen, (’queued’, ’auto’))
<All_Units_Retreat()> (331, F.Move_screen, (’now’, ’auto’))

<Worker_Scan()> (332, F.Move_minimap, (’queued’, ’auto’))
<Zealot_Scan()> (332, F.Move_minimap, (’queued’, ’auto’))
<Adept_Scan()> (332, F.Move_minimap, (’queued’, ’auto’))
<Pheonix_Scan()> (332, F.Move_minimap, (’queued’, ’auto’))
<Oracle_Scan()> (332, F.Move_minimap, (’queued’, ’auto’))
<Observer_Scan()> (332, F.Move_minimap, (’queued’, ’auto’))

We provide easy control actions, a series of actions similar to TextStarCraft-II unit control actions.
For researchers who focus on studying LLM-based planning (develop the economy) or VLM-
based decision making(precisely build buildings), simplifying unit control actions can provide great
convenience.

25

Table B9: Default Protoss Action Space, Unit Skills (Part1, control a unit team)

Unit Text action pysc2 functions (id, function, args)

Adept <Ability_AdeptPhaseShift_Minimap((547, F.Effect_AdeptPhaseShift_minimap,
minimap)> (’now’, ’minimap’))
<Ability_AdeptPhaseShift_Screen(screen)> (177, F.Effect_AdeptPhaseShift_screen, (’now’, ’screen’))
<Ability_CancelPhaseShift> (141, F.Cancel_AdeptPhaseShift_quick, (’now’))

Stalker <Ability_Blink_Screen(screen)> (180, F.Effect_Blink_screen, (’now’, ’screen’))

Sentry <Ability_ForceField_Screen(screen)> (193, F.Effect_ForceField_screen, (’queued’, ’screen’))
<Ability_GuardianShield()> (197, F.Effect_GuardianShield_quick, (’queued’))

HighTeplar <Ability_PsiStorm_Screen(screen)> (218, F.Effect_PsiStorm_screen, (’queued’, ’screen’))
<Ability_PsiStorm_Attack_Unit(tag)> (218, F.Effect_PsiStorm_screen, (’queued’, ’screen_tag’))
<Morph_Archon()> (296, F.Morph_Archon_quick, (’queued’))
<Select_Two_Units_Morph_Archon((3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
tag, tag)> (3, F.select_rect, (’select’, ’screen1_tag2’, ’screen2_tag2’))

(296, F.Morph_Archon_quick, (’queued’))

DarkTeplar <Ability_ShadowStride_Unit(tag)> (182, F.Effect_ShadowStride_screen,
(’queued’, ’screen_tag’))

<Morph_Archon()> (296, F.Morph_Archon_quick, (’queued’))

Observer <Morph_SurveillanceMode()> (538, F.Morph_SurveillanceMode_quick, (’queued’))
<Morph_ObserverMode()> (535, F.Morph_ObserverMode_quick, (’queued’))

Disruptor <Ability_PurificationNova_Attack(tag)> (219, F.Effect_PurificationNova_screen,
(’queued’, ’screen_tag’))

Oracle <Ability_PulsarBeamOn()> (38, F.Behavior_PulsarBeamOn_quick, (’queued’))
<Ability_OracleRevelation_Screen(screen)> (214, F.Effect_OracleRevelation_screen,

(’queued’, ’screen’))
<Build_StasisTrap_Screen(screen)> (90, F.Build_StasisTrap_screen, (’queued’, ’screen’))

Pheoenix <Ability_GravitonBeam> (196, F.Effect_GravitonBeam_screen
<Cancel_GravitonBeam_For_All()> (140, F.Cancel_quick, (’now’))

WarpPrism <Morph_WarpPrismPhasingMode()> (329, F.Morph_WarpPrismPhasingMode_quick, (’queued’))
<Load_Unit(tag)> (287, F.Load_screen, (’queued’, ’screen_tag’))
<Unload_Screen(screen)> (516, F.UnloadAllAt_screen, (’queued’, ’screen’))
<Morph_WarpPrismTransportMode> (330, F.Morph_WarpPrismTransportMode_quick

, (’queued’))

MotherShip <Ability_TimeWarp_Attack(tag)> (241, F.Effect_TimeWarp_screen, (’queued’, ’screen_tag’))
<Ability_TimeWarp_Screen(screen)> (241, F.Effect_TimeWarp_screen, (’queued’, ’screen’))

In LLM-PySC2 environment, agent controls its unit in a group, using above actions. The program
will select the units belong to the agent, and then execute LLM-generated actions.

In some senerios, precisely controlling single unit is key to the victory, especially in SMAC tasks
and early stage of the game (against high level opponent). We provide single unit control actions
for this senarios, and LLM can use the actions whenever they need to improve performance of
micro-operations.

26

Table B10: Default Protoss Action Space, Unit Skills (Part2, control specific unit)

Unit Text action pysc2 functions (id, function, args)

Adept <Select_Unit_Ability_AdeptPhaseShift (3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
_Minimap(minimap)> (547, F.Effect_AdeptPhaseShift_minimap,

(’now’, ’minimap’))
<Select_Unit_Ability_AdeptPhaseShift (3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
_Screen(screen)> (177, F.Effect_AdeptPhaseShift_screen, (’now’, ’screen’))
<Select_Unit_Ability_CancelPhaseShift((3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
tag)> (141, F.Cancel_AdeptPhaseShift_quick, (’now’))

Stalker <Select_Unit_Blink_Screen(tag, screen)> (3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
(180, F.Effect_Blink_screen, (’now’, ’screen’))

Sentry <Select_Unit_Ability_ForceField_Screen((3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
tag, screen)> (193, F.Effect_ForceField_screen, (’queued’, ’screen’))
<Select_Unit_Ability_GuardianShield((3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
tag)> (197, F.Effect_GuardianShield_quick, (’queued’))

HighTeplar <Select_Two_Units_Morph_Archon((3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
tag, tag)> (3, F.select_rect, (’add’, ’screen1_tag2’, ’screen2_tag2’))

(296, F.Morph_Archon_quick, (’queued’))
<Select_Unit_Ability_PsiStorm_Screen (3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
(tag, screen)> (218, F.Effect_PsiStorm_screen, (’queued’, ’screen’))
<Select_Unit_Ability_PsiStorm_Attack_Unit((3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
(tag, tag)> (218, F.Effect_PsiStorm_screen, (’queued’, ’screen_tag’))

Disruptor <Select_Unit_Ability_PurificationNova (3, F.select_rect, (’add’, ’screen1_tag2’, ’screen2_tag2’))
_Attack(tag)> (219, F.Effect_PurificationNova_screen,

(’queued’, ’screen_tag’))

DarkTeplar <Select_Two_Units_Morph_Archon((3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
tag, tag)> (3, F.select_rect, (’add’, ’screen1_tag2’, ’screen2_tag2’))

(296, F.Morph_Archon_quick, (’queued’))

Oracle <Select_Unit_Ability_PulsarBeamOn(tag)> (3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
(38, F.Behavior_PulsarBeamOn_quick, (’queued’))

<Select_Unit_OracleRevelation_Screen((3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
screen)> (214, F.Effect_OracleRevelation_screen,

(’queued’, ’screen’))
<Select_Unit_Build_StasisTrap_Screen((3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
tag, screen)> (90, F.Build_StasisTrap_screen, (’queued’, ’screen’))

Pheoenix <Select_Phoenix_Ability_GravitonBeam> (3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))
_Unit(tag) (196, F.Effect_GravitonBeam_screen,

(’queued’, ’screen_tag2’))
<Cancel_GravitonBeam_For_Phoenix(tag)> (3, F.select_rect, (’select’, ’screen1_tag’, ’screen2_tag’))

(140, F.Cancel_quick, (’now’))

27

Appendix C. Query message, Prompt, Examples of Observations and
Responses

C1. Query message and Prompt

Example of Observation Prompt (Agent Builder, Standard Build Mode)LLM Query Message

messages = [
 {"role": "system", "content": system_prompt},
 {"role": "user", "content": example_i_prompt},
 {"role": "assistant", "content": example_o_prompt},
 {"role": "user", "content": text_observation},
]

messages = [
 {"role": "system", "content": system_prompt},
 {"role": "user", "content": example_i_prompt},
 {"role": "assistant", "content": example_o_prompt},
 {"role": "user", "content": [
 {"type": "text", "text": f'This is the {img_name1} image:'},
 {"type": "image_url", "image_url":
 {"url": f"data:image/png;base64,{base64_images[img_name1]}"}}
]}
 {"role": "user", "content": [
 {"type": "text", "text": f'This is the {img_name2} image:'},
 {"type": "image_url", "image_url":
 {"url": f"data:image/png;base64,{base64_images[img_name2]}"}}
]}

 {"role": "user", "content": text_observation},
]

LLM Query Message with image observation

System Prompt

1.Identity
You are a {agent.config.AGENTS[agent.name]['describe']}.
Your should command your units, complete the tasks assigned by the superior agent. You may have
several teams of units, you can command these teams to fight together or perform different tasks.

2.Rules
{get_rules(agent_name)}

3.Action Output
You should make decisions according to observed information, tactic task and rules, give analysis and
decisions for each team. For example, if you have 2 teams name as 'TeamName-1' and 'TeamName-2',
you should output as:

Analysis:
 xxxxx
Actions:
 Team TeamName-1:
 <ActionName1(...)> # **ActionName1()** or -ActionName1()- are invalid format, must use < >
 <ActionName2(...)>
 Team TeamName-2:

 <ActionName1(...)>

Note that actions must in the shape <ActionName(...)>, do not generate action like 'ActionName(...)' or
ActionName(...).

Figure C1: OpenAI LLM query message and system prompt in LLM-PySC2.

28

Decision Rules of the System Prompt

BASIC_COMMAND_RULES = """
Analyse following aspect in your decision process:

1. (Combat Deployment) Analyse the situation, always make deployment for attack/defend/retreat
at each step. As default choice, ask your units to defend your area. If you have enough units, rise
attack to defeat your enemy.

2. (Scan Deployment) If you are prepared for combat, make scan deployment to find out enemy's
strengths. Note that unit for scan will be killed by enemy units.

3. (Final Combat) If game time > 12:00 and you have enough units (DO NOT have to be 200
supply), raise attack to defeat the enemy."""

BASIC_DEVELOP_RULES = """
Analyse following aspect in your decision process:

1. (Supply) If run out of supply (less than 10) and no building for supply is under construction,
build Pylon/OverLord/SupplyDepot (depend on your race).

2. (Economy Building: Base) If you have enough minerals (more than 400), build
Nexus/Hatchery/CommandCenter (depend on your race).

3. (Economy Building: Gas) If you run out of gas (much less than minerals), build
Assimilator/Extractor/Refinery (depend on your race).

4. (Building: Unit Training) If you have too less unit training buildings, or there are abundant
resources but all the unit training buildings are working, build unit training buildings.

5. (Building: Research) If you have too less research buildings, or there are abundant resources but
all the research buildings are working, build research buildings.

6. (Unit Training/Warping) If you have enough idle unit training buildings but few combat units, or
have a lot resource, train/warp units as much as possible.

7. (Tech Upgrading) If you have idle research buildings and enough resource, or have a lot resource,
update your technology.

8. (Early Stage Expand) If you do not have 'the second base building (such as Nexus)', the
'CyberneticCore', the 'TwilightCouncil' and 'first two Gateway', try to build them as quick as
possible.

9. (Middle Stage Develop) During the middle stage of the game, try to build buildings for training
high value units, and train units as much as possible (especially high value units) to increase
strength.

10. (Final Stage Develop) During the final stage of the game, train or warp more units to fight with
enemy, do not build building if we have enough buildings."""

BASIC_BUILD_RULES = """
Analyse following aspect in your decision process:

1. (Minimap Position) According to image 'rgb_minimap', where is/are our base/bases and where
should we go? give minimap position. (Our base units and buildings are green points/squares in
the minimap)

2. (Build) You can build on any position of the screen (unless it is blocked by other buildings) direct
use the action <Build_XXX_Screen([x, y])>. You can build more than one buildings at a step by
generate many action <Build_XXX_Screen([x, y])>.

3. (Move) You should move to a plain location near the base building, and build buildings there.
Don't be far away from the base building, keep base building in your sight(screen), unless you are
building a new one.

4. (Actions Sequence) First <Build_xxx_Screen(screen)> or <Build_xxx_Near(tag)> then
<Move_xxx(xxx)> (note that, do not move and build at the same screen position)"""

BASIC_COMBAT_RULES = \"""
1. Concentrating firepower is always necessary, attack different unit at the same time will definitely

reduce killing speed and leading to terrible result. Always concentrating all teams' fire at one unit
that (1)with highest DPS(most valuable) (2)most vulnerable (3)closest."""

Figure C2: Basic Rules for agent Commander, Developer, Builder, CombaGroups.

29

C2. Examples of Textual Observations

Example of Observation Prompt (Agent Commander, Easy Control Mode)

Game Info:
Time: 0:20
Minerals: 1190 \n\t Vespene: 0
Supply Total: 15 \n\t Supply Left: -1 \n\t Supply Used: 16

Unit Counts:
Our Unit:

{'Probe': 29, 'Adept': 2}
Our Buildings:

{'Pylon': 2, 'Assimilator': 1, 'Gateway': 2, 'CyberneticsCore': 1, 'Nexus': 2}
Our Unit (in warping/morphing):

None
Our Buildings (in construction):

None
Military Buildings:

{'Gateway': '2 (1 is working, 1 is idle)'}
Research Buildings:

{'CyberneticsCore': '1 (0 is working, 1 is idle)'}
Spotted Enemy Unit:

{'SCV': 1}

Valid Actions
Team Protoss-Units-1:
<All_Units_Attack()>
<All_Units_Defend()>
<All_Units_Retreat()>
<Worker_Scan()>
<Adept_Scan()>

Last Step Actions:
<All_Units_Defend()>

Available Communication Targets:
Developer: Protoss logistics commander. Responsible for unit trainning, unit warp trainning,
technology upgrade and order the Builder to build.

Available Communication Functions:
<MessageTo(AgentName, message)>
<MessageTo(ChannelName, message)>
<ListenTo(ChannelName)>

Args explanation:
(1)AgentName: refers to a name mentioned in Available Communication Targets.
(2)ChannelName: shape as Channel-i, i refers to an integer.
(2)message: any text wrapped between ''' and '''.

Tasks:
Team Protoss-Units' task: Command your units through 'Actions' to defeat the enemy.
Please note that **Tasks** are the most important information, all your decisions must aimed at
completing the tasks.

As the supreme military commander, you should not directly give actions, instead, tell your
subordinates what to do through communication.
Now, start analysis, making macro decisions in military deployments:

Figure C3: Example textual observation of agent ’Commander’ in easy control mode.

30

Example of Observation Prompt (Agent Commander, Standard Control Mode)

Game Info:{game_info}

Unit Counts: {unit_count_info}

Global agent info:
Agent CombatGroup4: Team Probe-0: Protoss.Probe x1, minimap position [13, 31]
Agent CombatGroup7: Team Adept-1: Protoss.Adept x2, minimap position [21, 31]

Relevant Knowledge:
Protoss.Probe

The builder of the protoss race. Gathers gas and minerals.
Unit properties: ['ground', 'light', 'mechanical']
Weapon info: Attack Range 0.2, target: ['ground'], DPS(damage per second) 3
unit abilities:

WorkerAbilities: Always available. The probe warps in structures and harvests minerals and
vespene gas.

Protoss.Adept
Ground-only ranged attack unit, armed with psionic transfer(AdeptPhaseShift) ability to teleport to
nearby locations for harassment.
Unit properties: ['ground', 'light', 'biological'], Weapon info: Attack Range 4, target: ['ground'], anti:
['light'], DPS(damage per second) 4, DPS-anti 9
unit abilities:

AdeptPhaseShift: Active skill.Always avaliable. Cooldowm 11 seconds.Projects an invulnerable
psionic image that can move but not attack. After 7 seconds, the adept teleports to the images
location. The shade may be canceled at any time, and the adept would not teleport. The shade has
a sight radius of 2.

Available Communication Targets:
Developer: Protoss logistics commander. Responsible for unit trainning, unit warp trainning,

technology upgrade and order the Builder to build.
CombatGroup4: Protoss reconnaissance commander, controls Observer and several Probe.

Responsible for providing reconnaissance infomation and detect cloak unit for main force
CombatGroup7: Protoss special force commander, controls Adept and DarkTemplar. Responsible

for infiltrating the enemy's rear and disrupt economic production, sometimes collecting
reconnaissance infomation, participating in frontline combat.

Available Communication Functions:
<MessageTo(AgentName, message)>
<MessageTo(ChannelName, message)>
<ListenTo(ChannelName)>

Args explanation:
(1)AgentName: refers to a name mentioned in Available Communication Targets.
(2)ChannelName: shape as Channel-i, i refers to an integer.
(2)message: any text wrapped between ''' and '''.

Tasks:
Team Protoss-Units' task: Command your units through 'Actions' to defeat the enemy.
Please note that **Tasks** are the most important information, all your decisions must aimed at
completing the tasks.

As the supreme commander, you should not directly give actions, instead, tell your subordinates what to
do through communication.
Now, start analysis, making macro decisions in military deployments by sending message to other
agents:

Figure C4: Example textual observation of agent ’Commander’ in standard control mode.

31

Example of Observation Prompt (Agent CombatGroup7, Standard Control Mode)

Game Info:
Time: 3:50

Team Adept-1 Info:
Team minimap position: [33, 41] (minimap coordinate valid range for actions: 0 < x < 64, 0 < y < 64)
Team screen edge (screen coordinate valid range for actions: 0 < x < 23, 0 < y < 23)
Controlled Team Units:

Unit: Adept Tag: 0x102180001 ScreenPos: [11, 12] Health: 140(100 %)
Nearby Ally Units:

Unit: Probe Tag: 0x101340001 ScreenPos: [22, 16] Health: 40(100 %)
Unit: Probe Tag: 0x101bc0001 ScreenPos: [22, 17] Health: 40(100 %)
Unit: Probe Tag: 0x101940001 ScreenPos: [22, 16] Health: 40(100 %)
Unit: Probe Tag: 0x101280001 ScreenPos: [20, 12] Health: 40(100 %)
Unit: Nexus Tag: 0x101200001 ScreenPos: [19, 16] Health: 2000(100 %) Energy: 131
Unit: Pylon Tag: 0x1018c0001 ScreenPos: [12, 15] Health: 400(100 %)
Unit: Gateway Tag: 0x101b00001 ScreenPos: [14, 12] Health: 1000(100 %)

Last Step Event:
Team Adept-1 Event:

Ally Unit Event:
unit 0x101440001(Protoss.Probe) ally unit enter sight
unit 0x101d40001(Protoss.Probe) ally unit enter sight

Relevant Knowledge:{relevant knowledge}

Valid Actions:
Team Adept-1 Valid Actions:

<Move_Minimap(minimap)>
<Move_Screen(screen)>
<Attack_Unit(tag)>
<Select_Unit_Attack_Unit(tag, tag)>
<Select_Unit_Move_Screen(tag, screen)>
<Ability_AdeptPhaseShift_Minimap(minimap)>

Action Args:
(1) tag: tag refers to a hexadecimal number, shape as 0x000000000.
(2) screen: screen refers to a screen coordinate, shape as [x, y], where 0 < x < 23, 0 < y < 23.
(3) minimap: minimap refers to a minimap coordinate, shape as [x, y], where x and y range from 0 to
64.

Available Communication Targets: {available_communication_targets}
Available Communication Functions: {communication_functions}
Args explanation: {communication_functions_args_explanation}

Tasks:
Team Adept-1' task: Controls your unit teams through 'Actions' to fight with enemies or support allys.
Complete tasks assigned by the Commander

Please note that **Tasks** are the most important information, all your decisions must aimed at
completing the tasks.

Give each team no more than 3 actions, these actions will be executed in the following 10.0 seconds,
among which activity release should usually before attack and move.
Now, start generating your analysis, strategy, actions and communication:

Figure C5: Example textual observation of agent ’CombatGroup7’ in standard control mode.

32

Example of Observation Prompt (Agent Developer, Easy Build Mode)

Game Info:{game_info}

Unit Counts: {unit_count_info}

Valid actions:
Team Protoss-Buildings-1:

<Research_ProtossAirArmor()> cost: {'mineral': 100, 'gas': 100}
<Research_ProtossAirWeapons()> cost: {'mineral': 100, 'gas': 100}
<Research_WarpGate()> cost: {'mineral': 50, 'gas': 50}
<Train_Adept()> cost: {'mineral': 100, 'gas': 25, 'supply': 2}
<Train_Sentry()> cost: {'mineral': 50, 'gas': 100, 'supply': 2}
<Train_Stalker()> cost: {'mineral': 125, 'gas': 50, 'supply': 2}
<Train_Zealot()> cost: {'mineral': 100, 'gas': 0, 'supply': 2}

Team Protoss-Workers-1:
<Build_Nexus()> cost: {'mineral': 400, 'gas': 0}
<Build_Assimilator()> cost: {'mineral': 75, 'gas': 0}
<Build_Pylon()> cost: {'mineral': 100, 'gas': 0}
<Build_Gateway()> cost: {'mineral': 150, 'gas': 0}
<Build_CyberneticsCore()> cost: {'mineral': 150, 'gas': 0}
(note: 'New Buildings!’ in the following part We do not have this building yet, it may unlock new
buildings/technologies/units for us')
<Build_Forge()> cost: {'mineral': 150, 'gas': 0}
<Build_ShieldBattery()> cost: {'mineral': 100, 'gas': 0}
<Build_TwilightCouncil()> cost: {'mineral': 150, 'gas': 100}
<Build_Stargate()> cost: {'mineral': 150, 'gas': 150}
<Build_RoboticsFacility()> cost: {'mineral': 150, 'gas': 100}

Relevant Knowledge:
{relevant knowledge}

Available Communication Targets:
Commander:

Protoss military supreme commander. Responsible for making macro decision through
communication, and controls nexus for massrecall for tactical objectives. When make deployment,
describe the time, location, and objectives of the mission as clearly as possible

Available Communication Functions:
{communication_functions}

Args explanation:
{communication_functions_args_explanation}

Tasks:
Team Protoss-Buildings' task:

Organize the agent 'Builder' through 'Communication' to build buildings. Develop economy,
technology, and train units through 'Actions' to win the game.

Team Protoss-Workers' task:
Organize the agent 'Builder' through 'Communication' to build buildings. Develop economy,
technology, and train units through 'Actions' to win the game.

Please note that **Tasks** are the most important information, all your decisions must aimed at
completing the tasks.

As a senior commander, the max number of your actions is not limited, when you warp units, try to use
all the WarpGate as much as possible, and warp all units near a single WarpTrain Field Provider.
Now, start generating your analysis, actions and communication:

Figure C6: Example textual observation of agent ’Developer’ in easy build mode.

33

Example of Observation Prompt (Agent Developer, Standard Build Mode)

Game Info:{game_info}

Unit Counts: {unit_count_info}

Valid actions:
Team Protoss-Buildings-1:

<Research_ProtossAirArmor()> cost: {'mineral': 100, 'gas': 100}
<Research_ProtossAirWeapons()> cost: {'mineral': 100, 'gas': 100}
<Research_WarpGate()> cost: {'mineral': 50, 'gas': 50}
<Train_Adept()> cost: {'mineral': 100, 'gas': 25, 'supply': 2}
<Train_Sentry()> cost: {'mineral': 50, 'gas': 100, 'supply': 2}
<Train_Stalker()> cost: {'mineral': 125, 'gas': 50, 'supply': 2}
<Train_Zealot()> cost: {'mineral': 100, 'gas': 0, 'supply': 2}

Agent Builder's Valid actions:
<Build_Nexus_Near(tag)> cost: {'mineral': 400, 'gas': 0}
<Build_Assimilator_Near(tag)> cost: {'mineral': 75, 'gas': 0}
<Build_Pylon_Screen(screen)> cost: {'mineral': 100, 'gas': 0}
<Build_Gateway_Screen(screen)> cost: {'mineral': 150, 'gas': 0}
<Build_CyberneticsCore_Screen(screen)> cost: {'mineral': 150, 'gas': 0}
(note: 'New Buildings!’ in the following part We do not have this building yet, it may unlock new
buildings/technologies/units for us')
<Build_Forge_Screen(screen)> cost: {'mineral': 150, 'gas': 0}
<Build_ShieldBattery_Screen(screen)> cost: {'mineral': 100, 'gas': 0}
<Build_TwilightCouncil_Screen(screen)> cost: {'mineral': 150, 'gas': 100}
<Build_Stargate_Screen(screen)> cost: {'mineral': 150, 'gas': 150}
<Build_RoboticsFacility_Screen(screen)> cost: {'mineral': 150, 'gas': 100}

Action Args: {action_arg_explanation}

Relevant Knowledge:{relevant knowledge}

Available Communication Targets:
Builder: Protoss builder, controls several Probe. Responsible for build buildings
Commander:

Protoss military supreme commander. Responsible for making macro decision through
communication, and controls nexus for massrecall for tactical objectives. When make deployment,
describe the time, location, and objectives of the mission as clearly as possible

Available Communication Functions:
{communication_functions}

Args explanation:
{communication_functions_args_explanation}

Tasks:
Team Protoss-Buildings' task:

Organize the agent 'Builder' through 'Communication' to build buildings. Develop economy,
technology, and train units through 'Actions' to win the game.

Please note that **Tasks** are the most important information, all your decisions must aimed at
completing the tasks.

As a senior commander, the max number of your actions is not limited, when you warp units, try to use
all the WarpGate as much as possible, and warp all units near a single WarpTrain Field Provider.
Now, start generating your analysis, actions and communication:

Figure C7: Example textual observation of agent ’Developer’ in standard build mode.

34

Example of Observation Prompt (Agent Builder, Standard Build Mode)

Game Info:{game_info}

Unit Counts: {unit_count_info}

Team Builder-Probe Info:
Team minimap position: [40, 44] (minimap coordinate valid range for actions: 0 < x < 64, 0 < y < 64)
Team screen edge (screen coordinate valid range for actions: 0 < x < 17, 0 < y < 23)
Controlled Team Units:

Unit: Probe Tag: 0x101340001 ScreenPos: [12, 12] Health: 40(100 %)
Nearby Ally Buildings:

Unit: Nexus Tag: 0x101200001 ScreenPos: [9, 12] Health: 2000(100 %) Energy: 139
Unit: Pylon Tag: 0x101c80001 ScreenPos: [12, 1] Health: 400(100 %)
Unit: Pylon Tag: 0x1018c0001 ScreenPos: [3, 10] Health: 400(100 %)
Unit: Assimilator Tag: 0x101a00001 ScreenPos: [16, 9] Health: 600(100 %)
Unit: Gateway Tag: 0x101b00001 ScreenPos: [4, 8] Health: 1000(100 %)
Unit: Gateway Tag: 0x102080001 ScreenPos: [9, 6] Health: 790(79 %)

Unit Counts:
Our Buildings: {'CyberneticsCore': 1, 'Nexus': 2, 'Gateway': 2, 'Pylon': 2, 'Assimilator': 1}
Our Buildings (in construction): {'Gateway': '1 in total (0x102080001 79%)'}

Last Step Event:
Team Builder-Probe Event:

Ally Unit Event:
unit 0x102080001(Protoss.Gateway) is training/building, process +22% (current process 79%)

Relevant Knowledge:{relevant knowledge}

Valid Actions:
Team Builder-Probe:

<Move_Minimap(minimap)>
<Move_Screen(screen)>
<Build_Nexus_Near(tag)> cost: {'mineral': 400, 'gas': 0}
<Build_Assimilator_Near(tag)> cost: {'mineral': 75, 'gas': 0}
......
(note: 'New Buildings!’ in the following part We do not have this building yet, it may unlock new
buildings/technologies/units for us')
<Build_TwilightCouncil_Screen(screen)> cost: {'mineral': 150, 'gas': 100}
......

Action Args: {action_arg_explanation}
Available Communication Targets: {available_communication_targets}
Available Communication Functions: {communication_functions}
Args explanation: {communication_functions_args_explanation}

Tasks:
Team Builder-Probe' task: Build buildings through 'Actions', Complete tasks assigned by the
Developer or Commander, or based on your own judgment.

Please note that **Tasks** are the most important information, all your decisions must aimed at
completing the tasks.

As a builder, you need to move the worker to an open location and complete the construction of the
building.Now, start generating your analysis, actions and communication:

Figure C8: Example textual observation of agent ’Builder’ in standard build mode.

35

C3. Examples of Image Observation

(c1) step 0, buildable
(feature map screen)

(d1) step 0, power
(feature map screen)

(b1) step 0, minimap (a1) step 0, screen

(c2) step 10, buildable
(feature map screen)

(d2) step 10, power
(feature map screen)

(b2) step 10, minimap (a2) step 10, screen

(c3) step 50, buildable
(feature map screen)

(d3) step 50, power
(feature map screen)

(b3) step 50, minimap (a3) step 50, screen

(c4) step 90, buildable
(feature map screen)

(d4) step 90, power
(feature map screen)

(b4) step 90, minimap (a4) step 90, screen

(c5) step 130, buildable
(feature map screen)

(d5) step 130, power
(feature map screen)

(b5) step 130, minimap (a5) step 130, screen

Figure C9: Examples of image observation of agent ’Builder’ in standard control mode.

36

(c1) step 175, screen
(CombatGroup1)

(a1) step 175, screen
(CombatGroup0)

(d1) step 175, minimap
(CombatGroup1)

(c3) step 195, screen
(CombatGroup1)

(a3) step 195, screen
(CombatGroup0)

(d3) step 195, minimap
(CombatGroup1)

(c4) step 205, screen
(CombatGroup1)

(a4) step 205, screen
(CombatGroup0)

(d4) step 205, minimap
(CombatGroup1)

(c5) step 215, screen
(CombatGroup1)

(a5) step 215, screen
(CombatGroup0)

(d5) step 215, minimap
(CombatGroup1)

(b3) step 195, minimap
(CombatGroup0)

(b4) step 205, minimap
(CombatGroup0)

(b5) step 215, minimap
(CombatGroup0)

(b1) step 175, minimap
(CombatGroup0)

(c2) step 185, screen
(CombatGroup1)

(a2) step 185, screen
(CombatGroup0)

(d2) step 185, minimap
(CombatGroup1)

(b2) step 185, minimap
(CombatGroup0)

Figure C10: Examples of image observation of agent ’CombatGroup0’ (controls Zealots) and
agent ’CombatGroup1’ (controls Stalkers) in standard control mode.

37

C4. Examples of LLM Responses

Example of Response (Agent Commander, Easy Control Mode)

Analysis:
 The enemy is currently defending with a small group of units, including a Stalker and a Zealot. The
enemy base has minimal defense, with only one Warp Gate and Pylon in the area. Our Zealots have
already begun the assault on enemy workers, but reinforcements are still on the way. We need to
reinforce our offensive, manage resources, and ensure the continued supply of troops.
 Our current resources (340 minerals and 502 vespene) are enough to reinforce with additional units if
necessary. The Warp Gates are idle, so more reinforcements can be warped in. Additionally, the Shield
Battery and Pylon construction are progressing, which will help maintain our position. However, the
limited supply (26 supply left) means we must carefully consider which units to produce.

Actions:
 Team Protoss-Units-1:
 <All_Units_Attack()>

Communications:
 <MessageTo(Developer, '''Request reinforcements: warp in more Zealots to sustain the attack on
enemy workers. Consider warping in additional Stalkers as well for support against any enemy Stalker
reinforcements. The Shield Battery and Pylon construction must be prioritized for sustainability.
Deploy more Probes for resource gathering if necessary to maintain unit production. Proceed with
caution to avoid detection by enemy Queens in the vicinity. We need to overwhelm the enemy
quickly.''')>

Example of Response (Agent Developer, Easy Build Mode)

Analysis:
 We have a strong mineral and gas economy with 2820 minerals and 282 vespene gas. Our supply is
currently at 58 out of 102, leaving us with 44 supply available. We have 2 Gateways that are both
currently working, which limits our unit production. The Commander has instructed us to initiate the
Warp Gate technology upgrade and train additional Zealots, as well as construct an extra Gateway to
enhance our unit production capabilities. Given our current resources and the need to bolster our forces,
we should prioritize the Warp Gate research, train as many Zealots as possible, and build an additional
Gateway.

Actions:
 Team Protoss-Buildings-1:
 <Research_WarpGate()>
 <Train_Zealot()>
 <Build_Gateway()>

Communications:
 <MessageTo(Commander, '''Initiating Warp Gate technology upgrade, training additional Zealots,
and constructing an extra Gateway to enhance unit production capabilities. All actions are aligned with
your directives.''')>
Communications:
 <MessageTo(Commander, '''Engaging SCVs as instructed. Targeting the damaged SCV first. Will
report any changes in enemy movements.''')>

Figure C11: Example response of agent ’Commander’ in easy control mode.

Example of Response (Agent Commander, Easy Control Mode)

Analysis:
 The enemy is currently defending with a small group of units, including a Stalker and a Zealot. The
enemy base has minimal defense, with only one Warp Gate and Pylon in the area. Our Zealots have
already begun the assault on enemy workers, but reinforcements are still on the way. We need to
reinforce our offensive, manage resources, and ensure the continued supply of troops.
 Our current resources (340 minerals and 502 vespene) are enough to reinforce with additional units if
necessary. The Warp Gates are idle, so more reinforcements can be warped in. Additionally, the Shield
Battery and Pylon construction are progressing, which will help maintain our position. However, the
limited supply (26 supply left) means we must carefully consider which units to produce.

Actions:
 Team Protoss-Units-1:
 <All_Units_Attack()>

Communications:
 <MessageTo(Developer, '''Request reinforcements: warp in more Zealots to sustain the attack on
enemy workers. Consider warping in additional Stalkers as well for support against any enemy Stalker
reinforcements. The Shield Battery and Pylon construction must be prioritized for sustainability.
Deploy more Probes for resource gathering if necessary to maintain unit production. Proceed with
caution to avoid detection by enemy Queens in the vicinity. We need to overwhelm the enemy
quickly.''')>

Example of Response (Agent Developer, Easy Build Mode)

Analysis:
 We have a strong mineral and gas economy with 2820 minerals and 282 vespene gas. Our supply is
currently at 58 out of 102, leaving us with 44 supply available. We have 2 Gateways that are both
currently working, which limits our unit production. The Commander has instructed us to initiate the
Warp Gate technology upgrade and train additional Zealots, as well as construct an extra Gateway to
enhance our unit production capabilities. Given our current resources and the need to bolster our forces,
we should prioritize the Warp Gate research, train as many Zealots as possible, and build an additional
Gateway.

Actions:
 Team Protoss-Buildings-1:
 <Research_WarpGate()>
 <Train_Zealot()>
 <Build_Gateway()>

Communications:
 <MessageTo(Commander, '''Initiating Warp Gate technology upgrade, training additional Zealots,
and constructing an extra Gateway to enhance unit production capabilities. All actions are aligned with
your directives.''')>
Communications:
 <MessageTo(Commander, '''Engaging SCVs as instructed. Targeting the damaged SCV first. Will
report any changes in enemy movements.''')>

Figure C12: Example response of agent ’Developer’ in easy build mode.

38

Example of Response (Agent Commander, Standard Control Mode)

Analysis:
 The current situation shows that we have a total of 5 Zealots engaged in combat against enemy SCVs.
The enemy has a significant number of SCVs (9) and is operating a Barracks and an Orbital Command,
indicating they are likely preparing for a larger military presence. Our resources are sufficient to train
additional units, and we are currently researching Warp Gate technology. Given that the game time is
6:12, we should continue to disrupt the enemy's economy while preparing for a larger assault.

Actions:
 Team Protoss-Units-1:
 <All_Units_Attack()>

Communications:
 <MessageTo(CombatGroup0, '''Continue targeting SCVs to disrupt their economy. Reinforcements
are on the way, and we will prepare for a larger assault once we have sufficient forces. Maintain
pressure!''')>
 <MessageTo(Developer, '''Initiate training of additional Zealots and continue Warp Gate research.
We need to strengthen our forces for the upcoming attack. Current resources are sufficient for multiple
unit trainings.''')>

Example of Response (Agent CombatGroup0, Standard Control Mode)

Analysis:
 The current situation shows that Team Zealot-1 has already engaged the enemy and is in close
proximity to several enemy units, including SCVs and a BarracksTechLab. The Commander has
instructed to focus on eliminating SCVs quickly, which are vulnerable and have low health. The Zealots
are in a good position to attack the SCVs, especially since one of them is already damaged. The
previous action of selecting a unit to attack another unit is still in progress, and the movement towards
[14, 12] is also relevant for positioning.

Actions:
 Team Zealot-1:
 <Select_Unit_Attack_Unit(0x1020c0001, 0x101680001)> # Targeting the SCV with 45 health
 <Attack_Unit(0x101680001)> # Attack the SCV
 <Move_Screen([14, 12])> # Move to a better position if needed

Communications:
 <MessageTo(Commander, '''Engaging SCVs as instructed. Targeting the damaged SCV first. Will
report any changes in enemy movements.''')>

Figure C13: Example response of agent ’Commander’ in standard control mode.

Example of Response (Agent Commander, Standard Control Mode)

Analysis:
 The current situation shows that we have a total of 5 Zealots engaged in combat against enemy SCVs.
The enemy has a significant number of SCVs (9) and is operating a Barracks and an Orbital Command,
indicating they are likely preparing for a larger military presence. Our resources are sufficient to train
additional units, and we are currently researching Warp Gate technology. Given that the game time is
6:12, we should continue to disrupt the enemy's economy while preparing for a larger assault.

Actions:
 Team Protoss-Units-1:
 <All_Units_Attack()>

Communications:
 <MessageTo(CombatGroup0, '''Continue targeting SCVs to disrupt their economy. Reinforcements
are on the way, and we will prepare for a larger assault once we have sufficient forces. Maintain
pressure!''')>
 <MessageTo(Developer, '''Initiate training of additional Zealots and continue Warp Gate research.
We need to strengthen our forces for the upcoming attack. Current resources are sufficient for multiple
unit trainings.''')>

Example of Response (Agent CombatGroup0, Standard Control Mode)

Analysis:
 The current situation shows that Team Zealot-1 has already engaged the enemy and is in close
proximity to several enemy units, including SCVs and a BarracksTechLab. The Commander has
instructed to focus on eliminating SCVs quickly, which are vulnerable and have low health. The Zealots
are in a good position to attack the SCVs, especially since one of them is already damaged. The
previous action of selecting a unit to attack another unit is still in progress, and the movement towards
[14, 12] is also relevant for positioning.

Actions:
 Team Zealot-1:
 <Select_Unit_Attack_Unit(0x1020c0001, 0x101680001)> # Targeting the SCV with 45 health
 <Attack_Unit(0x101680001)> # Attack the SCV
 <Move_Screen([14, 12])> # Move to a better position if needed

Communications:
 <MessageTo(Commander, '''Engaging SCVs as instructed. Targeting the damaged SCV first. Will
report any changes in enemy movements.''')>

Figure C14: Example response of agent ’CombatGroup0’ in standard control mode.

39

Example of Response (Agent Builder, Standard Build Mode)

Analysis:
 Our current base is located at the minimap position [15, 27]. We have a Nexus at [16, 5] and several
Pylons nearby. The last actions attempted to build a Gateway and a Pylon, but the Gateway construction
failed. We need to prioritize building a Cybernetics Core and an additional Gateway as per the
Developer's instructions. We have enough minerals (3850) and supply (21 left) to build these structures.
The Pylon at [12, 14] is currently under construction (89% complete), so we should wait for it to finish
before building more structures in that area.

Actions:
 Team Builder-Worker-1:
 <Build_CyberneticsCore_Screen([12, 15])>
 <Build_Gateway_Screen([12, 16])>
 <Move_Screen([12, 13])>

Communications:
 <MessageTo(Developer, '''Initiating construction of Cybernetics Core and additional Gateway. Will
keep you updated on progress.''')>

Example of Response (Agent Developer, Standard Build Mode)

Analysis:
 We currently have 49 supply used and 21 supply left, which means we can train more units. We have
3850 minerals available, allowing us to build additional structures and train more Zealots. The Builder
is already constructing a Pylon, which will help with our supply issues. However, we need to prioritize
building a Cybernetics Core and additional Gateways to enhance our unit production capabilities. The
Commander has recommended sending our Zealots to attack the enemy SCV, which will disrupt their
operations. We should also continue training Zealots to prepare for a larger attack.

Actions:
 Team Protoss-Buildings-1:
 <Train_Zealot()>
 <Train_Zealot()>
 <Train_Zealot()>
 <Train_Zealot()>
 <Train_Zealot()>
 <Build_CyberneticsCore_Screen(screen)> # Note:This action will not be executed by Developer
 <Build_Gateway_Screen(screen)> # Note:This action will not be executed by Developer

Communications:
 <MessageTo(Builder, '''Please prioritize the construction of the Cybernetics Core and additional
Gateways to maximize our unit production capabilities. We will send our Zealots to attack the enemy
SCV to disrupt their operations. Continue building as planned.''')>
 <MessageTo(Commander, '''We are training additional Zealots and constructing the Cybernetics
Core and Gateways as per your recommendation. We will prepare for a larger attack soon.''')>

Figure C15: Example response of agent ’Developer’ in standard build mode.

Example of Response (Agent Builder, Standard Build Mode)

Analysis:
 Our current base is located at the minimap position [15, 27]. We have a Nexus at [16, 5] and several
Pylons nearby. The last actions attempted to build a Gateway and a Pylon, but the Gateway construction
failed. We need to prioritize building a Cybernetics Core and an additional Gateway as per the
Developer's instructions. We have enough minerals (3850) and supply (21 left) to build these structures.
The Pylon at [12, 14] is currently under construction (89% complete), so we should wait for it to finish
before building more structures in that area.

Actions:
 Team Builder-Worker-1:
 <Build_CyberneticsCore_Screen([12, 15])>
 <Build_Gateway_Screen([12, 16])>
 <Move_Screen([12, 13])>

Communications:
 <MessageTo(Developer, '''Initiating construction of Cybernetics Core and additional Gateway. Will
keep you updated on progress.''')>

Example of Response (Agent Developer, Easy Build Mode)

Analysis:
 We currently have 49 supply used and 21 supply left, which means we can train more units. We have
3850 minerals available, allowing us to build additional structures and train more Zealots. The Builder
is already constructing a Pylon, which will help with our supply issues. However, we need to prioritize
building a Cybernetics Core and additional Gateways to enhance our unit production capabilities. The
Commander has recommended sending our Zealots to attack the enemy SCV, which will disrupt their
operations. We should also continue training Zealots to prepare for a larger attack.

Actions:
 Team Protoss-Buildings-1:
 <Train_Zealot()>
 <Train_Zealot()>
 <Train_Zealot()>
 <Train_Zealot()>
 <Train_Zealot()>
 <Build_CyberneticsCore_Screen(screen)> # Note: This action will not be executed by Developer
 <Build_Gateway_Screen(screen)> # Note: This action will not be executed by Developer

Communications:
 <MessageTo(Builder, '''Please prioritize the construction of the Cybernetics Core and additional
Gateways to maximize our unit production capabilities. We will send our Zealots to attack the enemy
SCV to disrupt their operations. Continue building as planned.''')>
 <MessageTo(Commander, '''We are training additional Zealots and constructing the Cybernetics
Core and Gateways as per your recommendation. We will prepare for a larger attack soon.''')>

Figure C16: Example response of agent ’Builder’ in standard build mode.

40

Recognized actions of agent Commander (Easy Control mode, step 0 to 218, partial)

{"0": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Defend()>"}

{"10": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Defend()>"}

{"20": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Defend()>"}

{"30": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Defend()>\n\t\t<Worker_Scan()>"}

{"40": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Attack()>"}

{"50": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Attack()>"}

{"60": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Defend()>"}

{"70": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Attack()>"}

{"80": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Attack()>"}

{"90": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Defend()>\n\t\t<Worker_Scan()>"}

{"100": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Defend()>\n\t\t<Worker_Scan()>"}

{"110": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Defend()>"}

{"120": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Defend()>\n\t\t<Worker_Scan()>"}

{"130": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Defend()>"}

{"140": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Attack()>"}

{"150": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Attack()>\n\t\t<Worker_Scan()>"}

{"160": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Attack()>"}

{"170": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Attack()>"}

{"180": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Attack()>"}

{"190": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Attack()>"}

{"200": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Attack()>"}

{"210": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Attack()>"}

{"218": "Actions:\n\tTeam Protoss-Units-1:\n\t\t<All_Units_Attack()>"} # game end

Figure C17: Examples of recognized actions of agent Commander.

41

Recognized actions of agent Developer (Easy Build mode, step 0 to 200, partial)

{"0":"Actions:\n\tTeam Protoss-Buildings-1:\n\t\t<ChronoBoost_Economy()> "}

{"10":"Actions:\n\tTeam Protoss-Buildings-1:\n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()>
\n\t\t<Build_Pylon()> "}

{"20":"Actions:\n\tTeam Protoss-Buildings-1:\n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()>
\n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Build_Gateway()> "}

{"30":"Actions:\n\tTeam Protoss-Buildings-1:\n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()>
\n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Build_Pylon()> \n\t\t<Build_Gateway()>
\n\t\t<ChronoBoost_Military()> "}

{"40":"Actions:\n\tTeam Protoss-Buildings-1:\n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()>
\n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()>
\n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()>
\n\t\t<Train_Zealot()> \n\t\t<Build_Pylon()> "}

{"50":"Actions:\n\tTeam Protoss-Buildings-1:\n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()>
\n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Build_Assimilator()> \n\t\t<Research_WarpGate()>
"}

{"60":"Actions:\n\tTeam Protoss-Buildings-1:\n\t\t<Research_WarpGate()> \n\t\t<Train_Zealot()>
\n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Build_Pylon()> "}

{"70":"Actions:\n\tTeam Protoss-Buildings-1:\n\t\t<Build_Pylon()> \n\t\t<Research_WarpGate()>
\n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()>
\n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()>
\n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()> \n\t\t<Train_Zealot()>
\n\t\t<Train_Zealot()> "}

{"80":"Actions:\n\tTeam Protoss-Buildings-1:\n\t\t<Build_Pylon()> \n\t\t<Warp_Zealot()>
\n\t\t<Warp_Zealot()> \n\t\t<Warp_Zealot()> \n\t\t<Warp_Zealot()> "}

{"90":"Actions:\n\tTeam Protoss-Buildings-1:\n\t\t<Build_Pylon()> \n\t\t<Build_Forge()>
\n\t\t<Warp_Zealot()> \n\t\t<Warp_Zealot()> \n\t\t<Warp_Zealot()> \n\t\t<Warp_Zealot()>
\n\t\t<Warp_Zealot()> \n\t\t<Warp_Zealot()> \n\t\t<Warp_Zealot()> \n\t\t<Warp_Zealot()>
\n\t\t<Warp_Zealot()> \n\t\t<Warp_Zealot()> \n\t\t<Warp_Zealot()> \n\t\t<Warp_Zealot()>
\n\t\t<Warp_Zealot()> "}

{"100":"Actions:\n\tTeam Protoss-Buildings-1:\n\t\t<Build_Pylon()> "}

......

{"180":"Actions:\n\tTeam Protoss-Buildings-1:\n\t\t<Build_Pylon()> \n\t\t<Warp_Zealot()>
\n\t\t<Warp_Zealot()> \n\t\t<Warp_Zealot()> \n\t\t<Warp_Zealot()> \n\t\t<Warp_Stalker()>
\n\t\t<Warp_Stalker()> "}

{"190":"Actions:\n\tTeam Protoss-Buildings-1: \n\t\t<Build_Pylon()> \n\t\t<Build_Nexus()>
\n\t\t<Warp_Zealot()> \n\t\t<Warp_Stalker()> "}

{"200":"Actions:\n\tTeam Protoss-Buildings-1: \n\t\t<Build_Pylon()> \n\t\t<Build_Pylon()>
\n\t\t<Build_Pylon()> "}

Figure C18: Examples of recognized actions of agent Developer.

42

Recognized actions of agent CombatGroup0 (Standard Control mode, step 0 to 200, partial)

{"0":""} # agent disabled because of no Zealot exists at the begining of the game

......

{"20": "Actions:\n\tTeam Zealot-1:\n\t\t<Move_Screen([13, 10])> \n\t\t<Move_Minimap([21, 24])> "}

{"30": "Actions:\n\tTeam Zealot-1:\n\t\t<Attack_Unit(0x102480001)> \n\t\t<Move_Screen([14, 13])>
\n\t\t<Select_Unit_Attack_Unit(0x102640002, 0x102480001)>"}

{"40": "Actions:\n\tTeam Zealot-1:\n\t\t<Move_Minimap([30, 30])>
\n\t\t<Select_Unit_Move_Screen(0x102640002, [12, 12])>
\n\t\t<Select_Unit_Move_Screen(0x101f40001, [14, 10])>"}

{"50": "Actions:\n\tTeam Zealot-1:\n\t\t<Attack_Unit(0x102280002)>
\n\t\t<Select_Unit_Move_Screen(0x102580002, [15, 14])>
\n\t\t<Select_Unit_Move_Screen(0x102880002, [15, 15])>"}

{"60": "Actions:\n\tTeam Zealot-1:\n\t\t<Attack_Unit(0x102280002)>\n\t\t<Move_Screen([16, 11])>
\n\t\t<Select_Unit_Attack_Unit(0x102c40001, 0x102c40001)>"}

{"70": "Actions:\n\tTeam Zealot-1:\n\t\t<Select_Unit_Attack_Unit(0x103400001, 0x103400001)>
\n\t\t<Attack_Unit(0x103400001)>\n\t\t<Move_Screen([18, 10])>"}

{"80": "Actions:\n\tTeam Zealot-1:\n\t\t<Select_Unit_Attack_Unit(0x103400001, 0x103400001)>
\n\t\t<Attack_Unit(0x103400001)>\n\t\t<Move_Screen([16, 12])>"}

{"90": "Actions:\n\tTeam Zealot-
1:\n\t\t<Attack_Unit(0x103840001)>\n\t\t<Select_Unit_Attack_Unit(0x1033c0002, 0x1033c0002)>
\n\t\t<Move_Screen([15, 12])>"}

{"100": "Actions:\n\tTeam Zealot-1:\n\t\t<Select_Unit_Attack_Unit(0x103540001, 0x103540001)>
\n\t\t<Select_Unit_Attack_Unit(0x1033c0002, 0x1033c0002)>
\n\t\t<Select_Unit_Attack_Unit(0x101940001, 0x101940001)>"}

{"110": "Actions:\n\tTeam Zealot-1:\n\t\t<Select_Unit_Attack_Unit(0x1033c0002, 0x1033c0002)>
\n\t\t<Select_Unit_Attack_Unit(0x103540001, 0x103540001)>\n\t\t<Move_Screen([15, 15])>"}

......

{"160": "Actions:\n\tTeam Zealot-1:\n\t\t<Select_Unit_Attack_Unit(0x102e00006, 0x102e00006)>
\n\t\t<Select_Unit_Attack_Unit(0x103540001, 0x103540001)>\n\t\t<Move_Screen([12, 14])>"}

{"170": "Actions:\n\tTeam Zealot-1:\n\t\t<Select_Unit_Attack_Unit(0x1033c0002, 0x1033c0002)>
\n\t\t<Select_Unit_Attack_Unit(0x103540001, 0x103540001)>\n\t\t<Move_Screen([11, 11])>"}

{"180": "Actions:\n\tTeam Zealot-1:\n\t\t<Select_Unit_Attack_Unit(0x103540001, 0x103540001)>
\n\t\t<Select_Unit_Attack_Unit(0x1033c0002, 0x1033c0002)>\n\t\t<Move_Screen([12, 12])>"}

{"190": "Actions:\n\tTeam Zealot-1:\n\t\t<Select_Unit_Attack_Unit(0x10318000d, 0x10318000d)>
\n\t\t<Select_Unit_Attack_Unit(0x10320002a, 0x10320002a)>\n\t\t<Move_Screen([12, 5])>"}

{"200": "Actions:\n\tTeam Zealot-1:\n\t\t<Select_Unit_Attack_Unit(0x103680001, 0x103680001)>
\n\t\t<Move_Screen([12, 11])>\n\t\t<Select_Unit_Attack_Unit(0x103580001, 0x103580001)>"}

Figure C19: Examples of recognized actions of agent Combatgroup0.

43

Recognized actions of agent Builder (Standard Build mode, step 0 to 200, partial)

{"0":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Move_Screen([12, 12])> "}

{"10":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Move_Screen([12, 18])>
\n\t\t<Build_Gateway_Screen([12, 18])> "}

{"20":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Build_Pylon_Screen([15, 3])>
\n\t\t<Move_Screen([15, 4])> "}

{"30":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Move_Screen([12, 12])>
\n\t\t<Build_Forge_Screen([12, 12])> "}

{"40":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Move_Screen([12, 15])>
\n\t\t<Build_CyberneticsCore_Screen([12, 12])> "}

{"50":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Build_Pylon_Screen([12, 10])>
\n\t\t<Move_Screen([12, 10])> "}

{"60":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Build_Gateway_Screen([12, 15])>
\n\t\t<Build_Pylon_Screen([10, 16])> "}

{"70":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Build_Pylon_Screen([12, 18])>
\n\t\t<Build_Assimilator_Near(0x1030c0001)> "}

{"80":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Build_Gateway_Screen([12, 16])>
\n\t\t<Build_Gateway_Screen([12, 17])> \n\t\t<Build_Pylon_Screen([12, 18])>
\n\t\t<Move_Screen([10, 12])> "}

{"90":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Build_Pylon_Screen([12, 14])>
\n\t\t<Build_Gateway_Screen([11, 12])> \n\t\t<Move_Screen([10, 12])> "}

{"100":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Build_Pylon_Screen([10, 17])>
\n\t\t<Build_Pylon_Screen([11, 17])> \n\t\t<Build_Assimilator_Near(0x100800001)> "}

{"110":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Build_Pylon_Screen([12, 15])>
\n\t\t<Move_Screen([12, 16])> "}

{"120":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Build_Pylon_Screen([12, 12])>
\n\t\t<Build_Pylon_Screen([12, 15])> \n\t\t<Build_Pylon_Screen([15, 12])> "}

......

{"170":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Build_Assimilator_Near(0x100200001)>
\n\t\t<Build_Gateway_Screen([12, 18])> \n\t\t<Move_Screen([15, 10])> "}

{"180":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Build_Pylon_Screen([15, 10])>
\n\t\t<Build_Gateway_Screen([15, 14])> \n\t\t<Build_Gateway_Screen([15, 15])> "}

{"190":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Build_Pylon_Screen([14, 15])>
\n\t\t<Build_Pylon_Screen([15, 15])> \n\t\t<Build_Gateway_Screen([16, 15])>
\n\t\t<Move_Screen([15, 11])> "}

{"200":"Actions:\n\tTeam Builder-Worker-1:\n\t\t<Build_Pylon_Screen([15, 10])>
\n\t\t<Build_Pylon_Screen([14, 10])> \n\t\t<Move_Screen([15, 11])> "}

Figure C20: Examples of recognized actions of agent Builder.

44

C5. Examples of Received Communication Messages

Received Communication of agent Commander (first 20 steps, partial)

{"0":""}

{"1":"Communication information:\n\tFrom Developer:\n\t\tInitiating Chrono Boost on Nexus to
enhance mineral production. Current resources are low, and I will focus on building supply structures as
soon as resources allow.\n\n"}

{"2":"Communication information:\n\tFrom Developer:\n\t\tInitiating construction of a Pylon to
increase supply capacity. Once completed, I will prioritize building a Gateway for unit production as
per your instructions.\n\n"}

{"3":"Communication information:\n\tFrom Developer:\n\t\tPylon construction is underway to increase
supply capacity. I will initiate Chrono Boost on the Nexus to enhance mineral production as per your
instructions. We will prepare to construct a Gateway as soon as resources allow. Confirming the
plan.\n\n"}

{"4":"Communication information:\n\tFrom Developer:\n\t\tPylon construction is nearly complete. I
will prioritize the construction of a Gateway immediately after. We will enhance our military presence
to prepare for potential enemy engagements.\n\n"}

{"5":"Communication information:\n\tFrom Developer:\n\t\tInitiating Chrono Boost on the Nexus to
enhance mineral production. Building an additional Pylon to increase supply capacity. Gateway
construction is ongoing. Will keep you updated on resource availability.\n\n"}

{"6":"Communication information:\n\tFrom Developer:\n\t\tWe are prioritizing the completion of the
Gateway and will build an additional Pylon to increase supply capacity. This will enable us to train
military units as soon as the Gateway is operational. Current resources are being managed
effectively.\n\n"}

{"7":"Communication information:\n\tFrom Developer:\n\t\tThe Gateway is currently at 64%
completion. I will use Chrono Boost on the Nexus to enhance mineral production. We are also building
an additional Pylon to increase our supply capacity. I will keep you updated on resource
availability.\n\n"}

{"8":"Communication information:\n\tFrom Developer:\n\t\tWe are prioritizing the construction of an
additional Pylon and the Gateway to ensure we can start training military units promptly. The Gateway
is currently 87% complete. We will keep you updated on our progress.\n\n"}

{"9":"Communication information:\n\tFrom Developer:\n\t\tThe Gateway is operational, and I am
initiating the construction of a Nexus to expand our economy. I will also train five Zealots to bolster our
forces. Chrono Boost will be activated on the Nexus as soon as it is completed to enhance mineral
production. We are preparing for unit production swiftly.\n\n"}

{"10":"Communication information:\n\tFrom Developer:\n\t\tWe are currently low on resources and
cannot train units or build additional structures at this time. I will construct a Pylon to increase our
supply capacity as soon as we gather enough minerals. We will prioritize the completion of the
Gateway and initiate unit training once resources allow. Thank you for your guidance.\n\n"}
......

{"20":"Communication information:\n\tFrom Developer:\n\t\tWe are training additional Zealots to
bolster our forces while the new Nexus and Pylon are under construction. We will be ready for potential
enemy engagements shortly.\n\tFrom CombatGroup0:\n\t\tTeam Zealot-1 is maintaining defensive
positions and ready to engage if any enemy units are spotted. We are moving slightly forward to
enhance our defensive stance. Awaiting further instructions.\n\n"}

Figure C21: Examples of received messages of agent ’Commander’ in standard control mode.
(part-1)

45

Received Communication of agent Commander (steps 25 to 105, partial)

{"25":"Communication information:\n\tFrom Developer:\n\t\tWe are training additional Zealots and
constructing another Gateway to enhance our unit production capabilities. The process is being
expedited as we prepare for potential engagements. Current resources are sufficient for this
operation.\n\tFrom CombatGroup0:\n\t\tTeam Zealot-1 is engaging an enemy Probe and will maintain
defensive positions as instructed. We will report any further threats detected.\n\n"}

{"35":"Communication information:\n\tFrom Developer:\n\t\tWe are training additional Zealots and
building a Pylon to support our supply needs. The Cybernetics Core is nearing completion, and we will
be ready for an offensive shortly.\n\tFrom CombatGroup0:\n\t\tContinuing to maintain pressure on the
enemy. No enemy units sighted yet. Moving towards the designated coordinates for regrouping. Will
report any sightings immediately.\n\n"}

{"45":"Communication information:\n\tFrom Developer:\n\t\tWe are training additional Zealots and
building another Assimilator to enhance gas production. This will help us maintain momentum for
future upgrades and unit production. We will keep you updated on our progress.\n\tFrom
CombatGroup0:\n\t\tWe are continuing to engage the Zergling and holding our position as instructed.
Reinforcements are welcomed. We will remain vigilant for any incoming threats.\n\n"}

{"55":"Communication information:\n\tFrom Developer:\n\t\tWe are initiating Warp Gate research and
training additional Zealots as per your request. Expect reinforcements shortly for the upcoming
offensive.\n\tFrom CombatGroup0:\n\t\tWe are maintaining pressure on the enemy and preparing for a
coordinated attack. Current position is [22, 37]. Reinforcements are expected soon. Will continue to
engage.\n\n"}

{"65":"Communication information:\n\tFrom Developer:\n\t\tWe are constructing a Pylon to increase
our supply capacity and training additional Zealots as requested. We will maintain pressure on the
enemy. Expect reinforcements shortly.\n\tFrom CombatGroup0:\n\t\tWe are engaging the enemy unit
and will continue to press the attack. Moving to a better position for a coordinated assault.\n\n"}

{"75":"Communication information:\n\tFrom Developer:\n\t\tWe are building a Pylon to increase
supply capacity and warping additional Zealots as requested. Reinforcements will be ready shortly.
Maintain offensive momentum!\n\tFrom CombatGroup0:\n\t\tWe are engaging the ChangelingZealot
and will prepare for the coordinated attack. Awaiting additional Zealots for support.\n\n"}

{"85":"Communication information:\n\tFrom Developer:\n\t\tWe are initiating the warp-in of additional
Zealots to reinforce our frontline. A Pylon is being constructed to increase our supply capacity. Expect
reinforcements shortly.\n\tFrom CombatGroup0:\n\t\tWe are currently engaging enemy Changeling
Zealots. Holding position and preparing for follow-up attack as instructed. Will remain vigilant against
potential Mutalisks and Zerglings.\n\n"}

{"95":"Communication information:\n\tFrom Developer:\n\t\tBuilding a Pylon to increase supply and
will initiate Charge upgrade for Zealots immediately after. We will warp in additional Zealots as soon
as supply allows.\n\tFrom CombatGroup0:\n\t\tEngaging the Mutalisks and focusing fire on the
Changeling Zealot as instructed. Reinforcements are welcomed!\n\n"}

{"105":"Communication information:\n\tFrom Developer:\n\t\tWe are constructing an additional Pylon
to increase our supply capacity and have initiated research on Warp Gate technology to expedite unit
training. Reinforcements will be ready shortly.\n\tFrom CombatGroup0:\n\t\tWe are holding our
position and focusing fire on the Mutalisks as instructed. Reinforcements are awaited. We will stay
strong!\n\n"}

......

Figure C22: Examples of received messages of agent ’Commander’ in standard control mode.
(part-2)

46

Received Communication of agent Commander (steps 105 to 125, partial)

{"115":"Communication information:\n\tFrom Developer:\n\t\tWe are constructing an additional Pylon
to increase our supply capacity and will warp in Zealots immediately to counter the Mutalisks. Expect
reinforcements shortly.\n\tFrom CombatGroup0:\n\t\tWe are focusing fire on the Mutalisks as
instructed and holding our position. Reinforcements are awaited.\n\n"}

{"125":"Communication information:\n\tFrom Developer:\n\t\tWe are constructing an additional Pylon
to increase our supply capacity for reinforcements. Over.\n\tFrom CombatGroup0:\n\t\tWe are engaging
the Mutalisks and securing the area as instructed. Current status:attacking the closest Mutalisk and
moving to a safer position. Over.\n\n"}

{"135":"Communication information:\n\tFrom Developer:\n\t\tWe are constructing additional Pylons to
increase our supply capacity. This will allow us to train more units and strengthen our forces.
Over.\n\tFrom CombatGroup0:\n\t\tWe are engaging the enemy Changeling Zealots and pushing
forward. The Nexus is under attack, but we will maintain pressure on the enemy. Over.\n\n"}

{"145":"Communication information:\n\tFrom Developer:\n\t\tWe are warping in additional Zealots as
requested to strengthen our frontline. The new Pylon is under construction and will be completed
shortly. We are also researching Warp Gate technology to enhance our capabilities. Over.\n\tFrom
CombatGroup0:\n\t\tWe are engaging the enemy Hydralisks and Roach as instructed. Continuing to
apply pressure. Over.\n\n"}

{"155":"Communication information:\n\tFrom Developer:\n\t\tWe are warping in additional Zealots
and Adepts to strengthen our forces. An Assimilator is being constructed to enhance gas income, and
Warp Gate technology is being researched to improve unit production efficiency. Over.\n\tFrom
CombatGroup0:\n\t\tWe are engaging the Mutalisks as instructed and will provide cover for the
advancing Zealots. Over.\n\n"}

{"165":"Communication information:\n\tFrom Developer:\n\t\tReinforcements are being warped in.
Four additional Zealots will be ready shortly to strengthen our forces. Over.\n\tFrom
CombatGroup0:\n\t\tWe are engaging the Mutalisks as instructed and will focus fire to eliminate them
quickly. Over.\n\tFrom CombatGroup7:\n\t\tWe are engaging the enemy Changeling Zealot and will
scout for additional units. Maintaining pressure on their production. Over.\n\n"}

{"175":"Communication information:\n\tFrom Developer:\n\t\tPylon construction initiated to increase
supply. Warping multiple Stalkers to counter air threats as per your directive. Over.\n\tFrom
CombatGroup0:\n\t\tWe are focusing fire on the Mutalisks as instructed and moving to a safer position.
Reinforcements are welcomed. Over.\n\tFrom CombatGroup1:\n\t\tWe are engaging the enemy forces
while ensuring the safety of our units. Moving to a safer position near the Pylon. Requesting support if
needed.\n\tFrom CombatGroup7:\n\t\tWe are currently engaging the Mutalisk and Zergling. Once these
threats are neutralized, we will proceed to disrupt the enemy's economic structures as instructed.
Over.\n\n"}

{"185":"Communication information:\n\tFrom Developer:\n\t\tWe are warping additional Zealots and
Stalkers to reinforce our forces. A Pylon is also being constructed to increase supply capacity.
Reinforcements will be ready shortly. Over.\n\tFrom CombatGroup0:\n\t\tWe are continuing to focus
fire on the Mutalisks and Zerglings as instructed. Moving to a strategic position for better coverage.
Over.\n\tFrom CombatGroup1:\n\t\tWe are engaging the Mutalisks as instructed. Focusing fire on the
one with low health. Over.\n\tFrom CombatGroup7:\n\t\tWe are currently engaging the Mutalisk and
Zergling. Once these threats are neutralized, we will proceed to disrupt the enemy's economic structures
as instructed. Over.\n\n"}

.......

Figure C23: Examples of received messages of agent ’Commander’ in standard control mode.
(part-3)

47

C6. Examples of Communication Actions

Communication Messages from agent Commander (steps 0 to 200, partial)

{"0": "Communications:\n <MessageTo(Developer, '''We need to prioritize building a Gateway for
unit production. Currently, we have enough Probes for resource gathering, but we need military units to
prepare for potential enemy encounters. Please initiate construction of a Gateway as soon as
possible.''')>"}

{"10": "Communications:\n <MessageTo(Developer, '''We need to prioritize gathering minerals to
increase our supply capacity and complete the Gateway. Please proceed with constructing a Pylon as
soon as we have enough resources.''')>"}

{"20": "Communications:\n <MessageTo(Developer, '''Please prioritize the training of additional
Zealots to strengthen our frontline. We need to be prepared for any potential enemy engagements as we
expand our economy.''')>\n <MessageTo(CombatGroup0, '''Maintain your defensive positions and
continue to scout for enemy movements. Be ready to engage if any threats are detected.''')>"}

......

{"90": "Communications:\n <MessageTo(Developer, '''Please prioritize building a Pylon to increase
our supply capacity. We need to warp in additional Zealots to strengthen our forces against the enemy's
aerial units.''')>\n <MessageTo(CombatGroup0, '''Coordinate with the Zealots to prepare for a
potential assault from the Mutalisks. Ensure we have cover for our ground units and be ready to
reposition as necessary.''')>"}

{"100": "Communications:\n <MessageTo(Developer, '''Please initiate the construction of additional
Pylons to increase our supply capacity for more Zealots. We need to prepare for a potential offensive
against the enemy.''')>\n <MessageTo(CombatGroup0, '''Continue focusing fire on the Mutalisks and
maintain defensive positions. We will reinforce with additional Zealots shortly.''')>"}

......

{"170": "Communications:\n <MessageTo(CombatGroup0, '''Continue focusing fire on the Mutalisks
and regroup for a coordinated attack. We need to eliminate them quickly to reduce pressure on our
forces. Over.''')>\n <MessageTo(CombatGroup7, '''Prepare to disrupt enemy economic structures as
soon as the Mutalisks are dealt with. Your infiltration will be crucial for our victory. Over.''')>\n
<MessageTo(Developer, '''Reinforcements are needed as soon as supply allows. Focus on building
additional Zealots to maintain pressure on the enemy. Over.''')>"}

{"180": "Communications:\n <MessageTo(CombatGroup0, '''Continue focusing fire on the Mutalisks.
Ensure they are neutralized to protect our ground forces. Reinforcements are on the way. Over.''')>\n
<MessageTo(CombatGroup1, '''Maintain pressure on the Overseer. Once it is neutralized, regroup with
the Zealots to assist in taking down the remaining air threats. Over.''')>\n <MessageTo(Developer,
'''We need to prioritize warping in additional Stalkers to counter the Mutalisks and build a Nexus for
economic expansion. Over.''')>"}

{"190": "Communications:\n <MessageTo(CombatGroup0, '''Continue focusing fire on the Mutalisks
and engage any Zerglings that approach. Maintain optimal positioning for maximum effectiveness.
Over.''')>\n <MessageTo(CombatGroup1, '''Keep engaging the Mutalisks and use Blink to reposition
as necessary. Ensure the Zealots are covered. Over.''')>\n <MessageTo(Developer, '''Pylon
construction is critical to address our supply issues. Please expedite the warping of additional Stalkers
to counter the air threats. Over.''')>"}

Figure C24: Examples of sent messages of agent ’Commander’ in standard control mode.

48

Communication Messages from agent Developer (Easy Build mode, steps 0 to 200, partial)

{"0": "Communications:\n <MessageTo(Builder, '''We need to gather more minerals to build a Pylon
and expand our supply. Please focus on mining to increase our resources.''')>\n
<MessageTo(Commander, '''Current status: We are low on resources and unable to build any military or
research buildings. Requesting support to gather more minerals.''')>"}

{"10": "Communications:\n <MessageTo(Builder, '''Confirming the construction plan for the Gateway.
Please ensure it is built immediately after the Pylon is completed. We need to ramp up our military unit
production as soon as possible.''')>\n <MessageTo(Commander, '''We are currently waiting for
resources to complete the Gateway. Probes are gathering minerals to expedite the process. Will keep
you updated on the construction status.''')>"}

{"20": "Communications:\n <MessageTo(Builder, '''Please proceed with building the Pylon to
increase our supply capacity. We need to ensure we can train more units as soon as possible.''')>\n
<MessageTo(Commander, '''We are prioritizing the training of additional Zealots and will build a Pylon
to increase supply. We will also focus on gathering Vespene gas for future upgrades.''')>"}

{"30": "Communications:\n <MessageTo(Builder, '''Please proceed to build the Cybernetics Core
immediately after the Pylon is completed. We need to enhance our technology for unit upgrades. Keep
me updated on the progress.''')>\n <MessageTo(Commander, '''We are training additional Zealots and
will build the Cybernetics Core as soon as the Pylon is complete. Defensive posture is maintained with
current units. Will keep you updated on our progress.''')>"}

......

{"120": "Communications:\n <MessageTo(Builder, '''Please proceed to build an Assimilator
immediately after the Pylon is completed. We need to ensure a steady gas supply for future unit
production and upgrades.''')>\n <MessageTo(Commander, '''We are prioritizing the warp-in of
additional Zealots to maintain a defensive posture as instructed. Research on ground weapons and
armor is also underway.''')>"}

......

{"180": "Communications:\n <MessageTo(Builder, '''Continue building the additional Gateways at
[15, 12] and [15, 13]. We need to increase our unit production capacity quickly.''')>\n
<MessageTo(Commander, '''We are warping in additional Zealots and Adepts to bolster our forces.
Researching ground weapons and armor for enhanced combat effectiveness.''')>"}

{"190": "Communications:\n <MessageTo(Builder, '''Please continue building additional Pylons and
an Assimilator to increase our supply capacity and gas income. We need to ensure we can support our
unit production. Also, confirm the status of the Pylon construction.''')>\n <MessageTo(Commander,
'''The previous attack has completed successfully. We are currently reinforcing our units and upgrading
our technology. We will continue the assault once we have sufficient forces and upgrades.''')>"}

{"200": "Communications:\n <MessageTo(Builder, '''Please prioritize building additional Pylons to
increase our supply capacity. We need to ensure we can support our upcoming assault with enough
reinforcements. Confirm once completed.''')>\n <MessageTo(Commander, '''We are preparing
reinforcements with Stalkers and Sentries. Upgrades for ground weapons and armor are also in progress.
We will maintain pressure on the enemy's Hatchery and Overseers as planned.''')>"}

Figure C25: Examples of sent messages of agent ’Developer’ in standard control mode.

49

Appendix D. Experimental Settings with Multi-Agent Settings

Table D1: System settings

Module Recommand Minimum requirements

System Windows-10 or 11 Windows-10
CPU i9-14900, 24 cores 32 threads 8 core
GPU GeForce RTX 4090, 24G GeForce GTX 1080
Storage 64G RAM +2T SSD 8G RAM + 100G SSD
Starcraft II Version 9.0.14(93333) Version 9.0.14(93333)

Table D2: Multi-agent settings for complete game and LLM-PySC task group

Agent name Unit team names Details of each unit team

Commander Protoss-Units A virtual team, enable in easy control mode, directly
control all combat units attack, defend or retreat, or call
for scan. But unable to use skills or precise control.

Developer Protoss-Buildings A virtual team, always enable, available for unit train-
ing/warping and technology upgrade actions. In easy
build mode, this team also available for build building.

Builder Builder-Probe-1 Enable in standard build mode. Controls Probes.

CombatGroup0 Zealot-1 Enable in standard control mode. Controls Zealots.

CombatGroup1 Stalker-1 Enable in standard control mode. Controls Stalkers.

CombatGroup2 Immortal-1 Enable in standard control mode. Controls Immortal.
Colossus-1 Enable in standard control mode. Controls Colossus.
Archon-1 Enable in standard control mode. Controls Archon.

CombatGroup3 VoidRay-1 Enable in standard control mode. Controls Void-Ray.
Carrier-1 Enable in standard control mode. Controls Carrier.
Tempest-1 Enable in standard control mode. Controls Tempest.

CombatGroup4 Observer-1 Enable in standard control mode. Controls Observer.

CombatGroup5 HighTemplar-1 Enable in standard control mode. Controls HighTemplar.
Disruptor-1 Enable in standard control mode. Controls Disruptor.

CombatGroup6 Sentry-1 Enable in standard control mode. Controls Sentry.
Mothership-1 Enable in standard control mode. Controls Mothership.

CombatGroup7 Adept-1 Enable in standard control mode. Controls Adept.
AdeptPhase-1 Enable in standard control mode. Controls AdeptPhase.
DarkTemplar-1 Enable in standard control mode. Controls DarkTemplar.

CombatGroup8 Oracle-1 Enable in standard control mode. Controls Oracle.
Phoenix-1 Enable in standard control mode. Controls Phoenix.

CombatGroup9 WarpPrism-1 Enable in standard control mode. Controls WarpPrism.

50

Table D3: Agent settings in LLM-SMAC tasks

Tasks Details of each agent

3s_vs_nz 1 agent with 1 teams: Team Stalker-1(3x Stalker)

2c_vs_64zg 1 agent with 2 teams: Team Colossus-1(1x Colossus), Team Colossus-2(1x Colossus)

2s_vs_1sc 1 agent with 2 teams: Team Stalker-1(1x Stalker), Team Stalker-2(1x Stalker)

2s3z 1 agent with 3 teams: Team Zealot-1 (2x Zealot), Team Zealot-2 (1x Zealot), Team
Stalker-1 (2 Stalker)

3s5z 1 agent with 4 teams: Team Zealot-1 (2x Zealot), Team Zealot-2 (2x Zealot),
3s5z_vs_3s6z Team Zealot-3 (1x Zealot), Team Stalker-1 (3 Stalker)

1c3s5z 1 agent with 5 teams: Team Zealot-1 (2x Zealot), Team Zealot-2 (2x Zealot), Team
Zealot-3 (1x Zealot), Team Stalker-1 (3 Stalker), Team Colossus-1 (1x Colossus)

Table D4: Victory conditions and evaluated aspect of LLM-PySC2 tasks level-1

Task name max time victory condition evaluated aspect

task1 1min kill at least 7 workers task understanding, unit skills
task2 1min kill at least 7 workers task understanding, unit skills
task3 1min defend all the airdrops and save

more than 6 workers
task understanding, memory

task4 1min defeat enemy units unit skills, multi agent cooperation
task5 1min defeat enemy units unit skills, multi agent cooperation
task6 1min defeat enemy units unit skills, multi agent cooperation
task7 1min defeat enemy units unit skills, multi agent cooperation
task8 1.5min defeat enemy units and kill at

least 7 workers
unit skills, multi agent cooperation,
communication, planning

Table D5: Unit settings of LLM-PySC2 tasks level-1

Task name Controlled Enemy

task1 (2a_harass) 2 Adapt 2 Queen + 12 Drone

task2 (3ph_harass) 3 Phoenix 2 Queen + 12 Drone

task3 (6s_defend) 6 Stalker 4x2 OverlordTransport with
several Zergling / Baneling

task4 (12s_combat) 12 Stalker 15 Roach

task5 2 Colossus + 3 Disruptor + 4 Sentry + 24 Roach + 9 Ravagers + 2 Queen
(3d_ma_combat) 12 Stalkers

task6 1 Archon + 6 HighTemplar + 4 Sentry + 64 Zergling + 32 Banelings + 1 Ultralisk
(6h_ma_combat) 12 Stalkers

task7 1 Mothership + 3 Carrier + 3 Tempest + 18 Hydralisk + 7 Corruptor +
(1m_ma_combat) 6 Void-Ray + 12 Stalkers 4 BoordLord + 3 Viper

task8 2 Warpprism + 8 Warpgate + 15 Roach + 3 Ravager + 4 Queen.
(8bg_ma_combat) 12 Stalker + 1600 minerals

51

Table D6: Details of LLM-PySC2 tasks from level-1 to level-3

Task name Difficulty Important changes

task1 (2a_harass) level-1 Adept upgrade enabled (+45% attack speed).
Enemy 2 Queens.

level-2 Adept upgrade enabled (+45% attack speed).
Enemy 2 Queens with 4 Zerglings.

level-3 Adept upgrade disabled.
Enemy 2 Queens with 4 Zerglings.

task2 (3ph_harass) level-1 Phoenix upgrade enabled (+2 attack range).
Enemy 2 Queens.

level-2 Phoenix upgrade enabled (+2 attack range).
Enemy 2 Queens, with 1 Spore Crawler.

level-3 Phoenix upgrade disabled.
Enemy 2 Queens, with 1 Spore Crawler.

task3 (6s_defend) level-1 One PhotonCannon helps for anti-air combat.
Enemy OverlordTransport no upgrade.

level-2 One PhotonCannon helps for anti-air combat.
Enemy OverlordTransport upgrade enable (higher speed).

level-3 No PhotonCannon helps for anti-air combat.
Enemy OverlordTransport upgrade enable (higher speed speed).

task4 (12s_combat) level-1 Enemy 15 Roach, 1 Ravager.
level-2 Enemy 15 Roach, 2 Ravager, 1 Queen.
level-3 Enemy 15 Roach. 3 Ravager, 2 Queen, 1 Overseer.

task5 (3d_ma_combat) level-1 Enemy 24 Roach, 9 Ravager, 2 Queen.
level-2 Enemy 24 Roach, 9 Ravager, 2 Queen, 1 Ultralisk.
level-3 Enemy Enemy 24 Roach. 9 Ravager, 2 Queen, 1 Ultralisk, 2 SwarmHost.

task6 (6h_ma_combat) level-1 Enemy 64 Zergling, 32 Banelings, 1 Ultralisk.
level-2 Enemy 64 Zergling, 32 Banelings, 3 Ultralisk.
level-3 Enemy 64 Zergling, 32 Banelings, 3 Ultralisk, 4 Queen.

task7 (1m_ma_combat) level-1 Enemy 18 Hydralisk, 7 Corruptor, 4 BoordLord, 3 Viper.
level-2 Enemy 18 Hydralisk, 7 Corruptor, 4 BoordLord, 3 Viper,

4 Queen, 2 Infestor.
level-3 Enemy 21 Hydralisk, 9 Corruptor, 6 BoordLord, 3 Viper,

4 Queen, 2 Infestor.

task8 (8bg_ma_combat) level-1 Controls 2 WarpPrism, 8 WarpGates, 1600 minerals.
Enemy 15 Roach. 3 Ravager, 4 Queen.

level-2 2 WarpPrism, 8 WarpGates, 1600 minerals.
Enemy 15 Roach. 3 Ravager, 4 Queen, 3 Spore Crawler.

level-3 1 WarpPrism, 8 WarpGates, 1600 minerals.
Enemy 15 Roach. 3 Ravager, 4 Queen, 3 Spore Crawler.

52

Appendix E. Examples of the problems in LLM decision-making

E.1 Hallucination Examples in Complete StarCraft II Games (standard contorl mode)

our zealots

enemy sentry

enemy units
(long-range attack)

our units
(melee attack)

all zealots lost

3 <Move_Screen([11, 12])>

1 <Attack_Unit(0x101dc0001)>
2 <Attack_Unit(0x102280001)>

enemy air unit

our zealots
(melee attack，ground only)

cannot attack air units,
but try to attack

(1) Example-1, misjudge the situation of unit
strength (before query). 2 Zealots engage with a
lot of enemy units.

(2) Example-1 misjudge the situation of unit
strength (after executing actions). LLM tries to
kill the sentry but is killed by enemy units.

(3) Example-2, poor understanding of combat
mechanism (before query). 3 Zealots engage
with 5 long-range-attack units.

(4) Example-2, poor understanding of combat
mechanism (after executing actions). LLM tries to
kill two units then retreat but finally fails.

(5) Example-3, try to attack unattackable units
(before query). CombatGroup0 find an enemy
Raven in the road to enemy base.

(6) Example-3, try to attack unattackable units
(after executing actions). LLM tries to kill the
Raven using ground units melee attack.

<Attack_Unit(0x103880002)>

Figure E1: Hallucination Examples in Complete StarCraft II Games (combat).

53

Observation of CombatGroup0 in Example-1

Game Info:
Time: 6:43

Team Zealot-1 Info:
Team minimap position: [22, 35] (minimap coordinate valid range for actions: 0 < x < 64, 0 < y < 64)
Team screen edge (screen coordinate valid range for actions: 0 < x < 23, 0 < y < 23)
Controlled Team Units:

Unit: Zealot Tag: 0x102a00002 ScreenPos: [13, 11] Health: 150(100 %)
Unit: Zealot Tag: 0x103180001 ScreenPos: [13, 11] Health: 134(89 %)

Nearby Enemy Units:
Enemy Unit: Zealot Tag: 0x102f40001 ScreenPos: [12, 10] Distance: 1 Health: 117(78 %)
Enemy Unit: Zealot Tag: 0x102c80001 ScreenPos: [11, 10] Distance: 2 Health: 150(100 %)
Enemy Unit: Zealot Tag: 0x101ec0001 ScreenPos: [12, 11] Distance: 1 Health: 134(89 %)
Enemy Unit: Stalker Tag: 0x103440001 ScreenPos: [8, 15] Distance: 6 Health: 160(100 %)
Enemy Unit: Stalker Tag: 0x103040006 ScreenPos: [11, 19] Distance: 7 Health: 160(100 %)
Enemy Unit: Stalker Tag: 0x1031c0001 ScreenPos: [7, 16] Distance: 7 Health: 160(100 %)
Enemy Unit: Stalker Tag: 0x1036c0001 ScreenPos: [10, 17] Distance: 6 Health: 160(100 %)
Enemy Unit: Stalker Tag: 0x102b00001 ScreenPos: [6, 13] Distance: 7 Health: 160(100 %)
Enemy Unit: Stalker Tag: 0x103900006 ScreenPos: [11, 16] Distance: 5 Health: 160(100 %)
Enemy Unit: Stalker Tag: 0x1021c0001 ScreenPos: [7, 14] Distance: 6 Health: 160(100 %)
Enemy Unit: Stalker Tag: 0x102900001 ScreenPos: [13, 17] Distance: 5 Health: 160(100 %)
Enemy Unit: Stalker Tag: 0x1026c0001 ScreenPos: [9, 16] Distance: 5 Health: 160(100 %)
Enemy Unit: Sentry Tag: 0x102d00001 ScreenPos: [9, 17] Distance: 7 Health: 26(32 %)
Energy: 51
Enemy Unit: Probe Tag: 0x101580001 ScreenPos: [11, 15] Distance: 4 Health: 40(100 %)
Enemy Unit: Adept Tag: 0x102500001 ScreenPos: [10, 14] Distance: 3 Health: 140(100 %)
Enemy Unit: Adept Tag: 0x1023c0001 ScreenPos: [6, 15] Distance: 8 Health: 140(100 %)

Last Step Event:\n\tTeam Zealot-1 Event:
Controlled Unit Event:

unit 0x102580005(Protoss.Zealot) dead, lost the final 150 health
unit 0x103180001(Protoss.Zealot) is attacked, health -16
unit 0x103780001(Protoss.Zealot) dead, lost the final 79 health

Enemy Unit Event:
unit 0x101ec0001(Protoss.Zealot) is attacked, health -16
unit 0x101580001(Protoss.Probe) enemy unit enter sight
unit 0x103440001(Protoss.Stalker) enemy unit enter sight
unit 0x103040006(Protoss.Stalker) enemy unit enter sight
unit 0x1031c0001(Protoss.Stalker) enemy unit enter sight
unit 0x102d00001(Protoss.Sentry) enemy unit enter sight
unit 0x1036c0001(Protoss.Stalker) enemy unit enter sight
unit 0x102b00001(Protoss.Stalker) enemy unit enter sight
unit 0x102c80001(Protoss.Zealot) enemy unit enter sight
unit 0x102500001(Protoss.Adept) enemy unit enter sight
unit 0x103900006(Protoss.Stalker) enemy unit enter sight
unit 0x1021c0001(Protoss.Stalker) enemy unit enter sight
unit 0x102900001(Protoss.Stalker) enemy unit enter sight
unit 0x1026c0001(Protoss.Stalker) enemy unit enter sight
unit 0x1023c0001(Protoss.Adept) enemy unit enter sight

......

Now, start generating your analysis, strategy and actions:

Figure E2: Observation of CombatGroup0 in Example-1.

54

Response of CombatGroup0 in Example-1

Analysis:
The current situation shows that Team Zealot-1 is engaged with enemy units, specifically two enemy
Zealots and a Sentry with low health. The Commander has instructed to maintain pressure on the enemy
Probe and prepare for engagement with the Stalkers. The enemy Sentry is vulnerable with only 26
health remaining, making it a prime target. Additionally, the enemy Probe has 40 health and is also a
valid target. Concentrating fire on the Sentry first will likely eliminate it quickly, allowing for a more
effective engagement with the Stalkers afterward.

Actions:
Team Zealot-1:
<Select_Unit_Attack_Unit(0x102d00001, 0x102d00001)> # Attack the Sentry
<Select_Unit_Attack_Unit(0x101580001, 0x101580001)> # Attack the Probe
<Move_Screen([12, 12])> # Move to a better position for engagement）

Hallucination Analysis of the Response in Example-1

(1) The primary issue under this observation is the overwhelming number of enemies, and the
reasonable decision is to retreat to preserve strength.
(2) What the LLM concernes about is that three units of the enemy are in the state of low health value
Zealot(Tag: 0x102f40001, Health: 117(78%)), Zealot(Tag: 0x101ec0001, Health: 134(89%)), and
Sentry(Tag: 0x102d00001, Health: 26(32 %)). However, it is impossible to eliminate any of the unit
under such powerful long-range attacks.
(3) The LLM also make mistakes in actions. In StarCraft II, we cannot select enemy unit, the correct
actions for attack the Sentry and Probe should be:
<Attack_Unit(0x102d00001)>
<Attack_Unit(0x101580001)>
or
<Select_Unit_Attack_Unit(0x102a00002, 0x102d00001)>
<Select_Unit_Attack_Unit(0x103180001, 0x101580001)>
instead of
<Select_Unit_Attack_Unit(0x102d00001, 0x102d00001)> # Attack the Sentry
<Select_Unit_Attack_Unit(0x101580001, 0x101580001)> # Attack the Probe

Figure E3: Response and Hallucination Analysis of CombatGroup0 in Example-1

55

E.2 Hallucination Examples in Complete StarCraft II Games (develop and build)

too many zealots
which can not attack air units

<Train_Zealot()>

hard to defeat heavy units

game time 5:23

start building
Cybernetics Core first

Cybernetic Core

(3) Example-5, train too many low-level units
(before query). Developer has already trained a
lot of zealot at game time 7:26.

(4) Example-5, train too many low-level units
(after executing actions). LLM call for Zealot
training even after Stalker/Adept/Sentry available.

game time 7:26

(1) Example-4, build important building too
late. Cybernetics Core usually built before 3min,
without this building, most unit will be locked.

(2) Example-4, build important building too late.
Construction of Cybernetics Core finishes after
game time 5:40.

(5) Example-6, build too many buildings
around base building 1 (standard build mode,
screen of base building 1). Builder only build
around the first base and they do not build enough
unit training buildings due to frequently calling
for build at invalid position.

(6) Example-6, build too many buildings around
base building 1 (standard build mode, screen of
base building 2). There is enough area for build
buildings around the second base. But the Builder
never ask the probe go to the second base to build
buildings.

a lot buildings built
near the first Nexus

nearly no building built
around the second Nexus

game time 5:43

Figure E4: Hallucination Examples in Complete StarCraft II Games (standard build mode).

56

Observation of CombatGroup0 in Example-5

Game Info:
Time: 7:26, Minerals: 3230, Vespene: 218
Supply Total: 110, Supply Left: 13, Supply Used: 97

Unit Counts:
Our Unit:

{'Probe': 49, 'Zealot': 20}
Our Buildings:

{'Gateway': 3, 'Assimilator': 2, 'CyberneticsCore': 1, 'Pylon': 10, 'Nexus': 2}
Military Buildings:

{'Gateway': '3 (2 is working, 1 is idle)'}
Research Buildings:

{'CyberneticsCore': '1 (1 is working, 0 is idle)'}
Our Unit (in warping/morphing):

None
Our Buildings (in construction):

None

Valid actions:
Team Protoss-Buildings-1:

<Train_Adept()> cost: {'mineral': 100, 'gas': 25, 'supply': 2}, note: we can afford 8 at most
<Train_Sentry()> cost: {'mineral': 50, 'gas': 100, 'supply': 2}, note: we can afford 2 at most
<Train_Stalker()> cost: {'mineral': 125, 'gas': 50, 'supply': 2}, note: we can afford 4 at most
<Train_Zealot()> cost: {'mineral': 100, 'gas': 0, 'supply': 2}, note: we can afford 32 at most
<Research_WarpGate()> cost: {'mineral': 50, 'gas': 50}
<Build_Assimilator()> cost: {'mineral': 75, 'gas': 0}
<Build_Pylon()> cost: {'mineral': 100, 'gas': 0}
<Build_Gateway()> cost: {'mineral': 150, 'gas': 0}
<Build_CyberneticsCore()> cost: {'mineral': 150, 'gas': 0}
<Build_Forge()> cost: {'mineral': 150, 'gas': 0}
<Build_TwilightCouncil()> cost: {'mineral': 150, 'gas': 100}
<Build_Stargate()> cost: {'mineral': 150, 'gas': 150}
<Build_RoboticsFacility()> cost: {'mineral': 150, 'gas': 100}
<ChronoBoost_Research()>

......

Communication information:
From Commander:

Please expedite the training of additional Zealots and ensure the Pylon is completed as soon as
possible to support our ongoing assault. We need to maintain pressure on the enemy.

Available Communication Targets: {available_communication_targets}
Available Communication Functions: {available_communication_functions}
Args explanation: {args_explanation}

Tasks:
Team Protoss-Buildings' task: Develop economy, technology, train units through 'Actions' to win the
game.

Please note that **Tasks** are the most important information, all your decisions must aimed at
completing the tasks.

As a senior commander, the max number of your actions is not limited, when you warp units, try to use
all the WarpGate as much as possible, and warp all units near a single WarpTrain Field Provider.
Now, start generating your analysis, actions and communication:

Figure E5: Observation of Developer in Example-5.

57

Response of Developer in Example-5

Analysis:
 We currently have 13 supply left, which is quite low. We need to build a Pylon to increase our supply
capacity. Additionally, we have a significant amount of minerals (3230) and some gas (218), allowing
us to train more units. The Commander has requested the expedited training of additional Zealots,
which aligns with our current strategy to maintain pressure on the enemy...
Actions:
 Team Protoss-Buildings-1:
 <Build_Pylon()>
 <Train_Zealot()>
 <Train_Zealot()>

Communications:
<MessageTo(Commander, '''We are building a Pylon to increase supply and training additional Zealots
to maintain pressure on the enemy. ''')>"

Hallucination Analysis of the Response in Example-5

(1) Agent Commander do not realise that we already have too mant Zealots, and continues sending
messages to Developer to train more Zealots.

(2) Agent Developer completely followed the commander's intention but lost his own thinking. Even
the Developer knows that actions like <Train_Stalker()> and <Train_Adept()> is available, it do not
send the information to Commander and ask for pemission for training other units.

Figure E6: Response and Hallucination Analysis of Developer in Example-5

58

E.3 Hallucination Examples in micro-operation scenarios

(3) Example-8, skill use (before query). Last
step Pheonixes use its skill GravitonBeam raise a
worker to the air and finished it successfully.

(4) Example-8, skill use (after executing actions).
LLM tries to kill another worker but forget to use
skill to raise it into the air.

enemy workers

our Pheonix
(can noly
attack air units)

skill GravitonBeam
(raise a unit into air)

<Attack_Unit(0x1012c0001)>
our Pheonix

enemy anti-air
units

(5) Example-9, collaboration (before query).
Our combat group engage with enemy units.

(6) Example-9, collaboration (after executing
actions). Disruptors retreat before using skills to
kill any of the enemy unit.

3 Disruptors
(powerful area
attack units)

two abandoned
the teammates

one Disruptor
killed by enemy

skills available
(they do not use it)

screen [32, 32]
(code v0.1, screen 128x128)

minimap
[32, 32] <Ability_PsiStorm_Screen([32, 32])>

HighTemplar
(area attack unit)

Enemy
units

(7) Example-10, mistaken coordinate system
(before query). CombatGroup5 are assigned with
a task to go to minimap [32, 32].

(8) Example-10, mistaken coordinate system
(after executing actions). LLM tries to use
PsiStorm to attack enemy units but release at a
wrong place.

(1) Example-7, skill use (correct strategy).
Adepts should use the shadow to avoid damages.

(2) Example-7, skill use (incorrect strategy). Some
times LLM tries to directly enter enemy’s base.

our Adepts
Adept
shadows

Enemy
units

Enemy
units

our Adepts
(direct move
to enemy base)

Figure E7: Hallucination Examples in micro-operation scenarios

59

Observation of CombatGroup8 in Example-8

Game Info:
Time: 0:19

Team Phoenix-1 Info:
Team minimap position: [51, 31] (minimap coordinate valid range for actions: 0 < x < 64, 0 < y < 64)
Team screen edge (screen coordinate valid range for actions: 0 < x < 11, 0 < y < 23)
Warning! controlled team near the map edge! Pay attention to using coordinates within the
boundary!(0 < x < 11, 0 < y < 23)
Controlled Team Units:

Unit: Phoenix Tag: 0x1005c0001 ScreenPos: [12, 11] Health: 72(40 %) Energy: 101
Unit: Phoenix Tag: 0x100040001 ScreenPos: [12, 12] Health: 156(86 %) Energy: 200
Unit: Phoenix Tag: 0x100400001 ScreenPos: [1, 4] Health: 54(30 %) Energy: 200

Nearby Enemy Units:
Enemy Unit: Drone Tag: 0x101380001 ScreenPos: [8, 13] Distance: 4 Health: 40(100 %)
Enemy Unit: Drone Tag: 0x101400001 ScreenPos: [9, 14] Distance: 4 Health: 40(100 %)
Enemy Unit: Drone Tag: 0x1013c0001 ScreenPos: [8, 16] Distance: 7 Health: 40(100 %)
Enemy Unit: Drone Tag: 0x1014c0001 ScreenPos: [7, 15] Distance: 5 Health: 40(100 %)
Enemy Unit: Drone Tag: 0x1012c0001 ScreenPos: [9, 15] Distance: 6 Health: 40(100 %)
Enemy Unit: Drone Tag: 0x101300001 ScreenPos: [0, 0] Distance: 12 Health: 40(100 %)
Enemy Unit: Drone Tag: 0x101340001 ScreenPos: [9, 12] Distance: 3 Health: 40(100 %)
Enemy Unit: Drone Tag: 0x101480001 ScreenPos: [1, 0] Distance: 11 Health: 40(100 %)
Enemy Unit: Drone Tag: 0x101280001 ScreenPos: [9, 8] Distance: 0 Health: 40(100 %)
Enemy Unit: Hatchery Tag: 0x101100001 ScreenPos: [4, 11] Distance: 4 Health: 1500(100
%) Buff: Buffs.QueenSpawnLarvaTimer
Enemy Unit: Queen Tag: 0x100240001 ScreenPos: [3, 14] Distance: 7 Health: 175(100 %)
Energy: 40
Enemy Unit: Queen Tag: 0x100540001 ScreenPos: [4, 8] Distance: 4 Health: 175(100 %)
Energy: 15
Enemy Unit: Cocoon Tag: 0x1011c0001 ScreenPos: [3, 14] Distance: 7 Health: 200

Relevant Knowledge: {relevant knowledge}

......

Valid Actions:
Team Phoenix-1 Valid Actions:

<Move_Minimap(minimap)>
<Move_Screen(screen)>
<Attack_Unit(tag)>
<Select_Unit_Attack_Unit(tag, tag)>
<Select_Unit_Move_Screen(tag, screen)>
<Select_Phoenix_Ability_GravitonBeam_Unit(tag, tag)>

Tasks:
Team Phoenix-1' task: Kill as much as enemy **Drones** as possible until all units dead.
Please note that **Tasks** are the most important information, all your decisions must aimed at
completing the tasks.

Give each team no more than 3 actions, these actions will be executed in the following 1.0 seconds,
among which activity release should usually before attack and move.
Now, start generating your analysis, strategy and actions:

Figure E8: Observation of CombatGroup8 in Example-8.

60

Response of CombatGroup0 in Example-8

Hallucination Analysis of the Response in Example-8

(1) As shown in the observation text, no Drone has the buff “Buffs.GravitonBeam”,which means all the
enemy workers are on the ground, and our Pheonix can not attack ground units.

(2) As shown in Fig. E6 (3), the agent used to release the skill
<Select_Phoenix_Ability_GravitonBeam_Unit(tag, tag)>
to successfully killed a worker, but it do not realise this skill is the key to make enemy units attackable.

Analysis:
- The task is clear: we need to kill as many enemy Drones as possible until all units are dead.
- **Team Phoenix-1** has three units, two of which are low on health, and one with significant health
remaining. We also need to pay attention to the proximity of the enemy Drones to maximize damage.
- The Drones are spread across the map, but the most immediate threat is the Drone at [9, 8] which is
directly in range (distance 0) from the team. The other nearby Drones are also very close, at distances of
3 to 7.
- Two Phoenix units are under attack, and one is being healed. The situation suggests that focusing on
eliminating nearby Drones quickly is the best course of action.

Strategy:
1. Focus fire on the Drone at [9, 8], as it is closest and will reduce the enemy's presence on the map
significantly.
2. After eliminating the Drone at [9, 8], shift attention to the Drone at [9, 12] and [8, 13] (next closest
units).
3. Prioritize attacking Drones over other enemy units (like the Hatchery or Queens) to complete the task
efficiently.

Actions:
Team Phoenix-1:
1. <Attack_Unit(0x101280001)> # Target the closest Drone at [9, 8]
2. <Attack_Unit(0x101340001)> # Target the Drone at [9, 12] next
3. <Attack_Unit(0x101380001)> # Target the Drone at [8, 13] to ensure damage continues

The actions focus on eliminating the nearest Drones and continuing the task of killing as many Drones
as possible.

Figure E9: Response and Hallucination Analysis of CombatGroup8 in Example-8

61

Appendix F. Examples pf Structured StarCraft II Wiki Knowledge

Knowledge Schema (Wikipedia-Derived)

{
 'name': str,
 'description': str,
 'type_self': list[str],
 'type_anti': list[str],
 'health': int, 'shield': int, 'health_armor': int,
 'speed': float,
 'weapon': {
 'target': list[str],
 'damage': int,
 'bonus': dict,
 'range': int,
 'cooldown': float
 },
 'cost': { 'mineral': int, 'gas': int, 'supply': int },
 'produce_from': str,
 'ability': dict,
 'upgrade': dict,
 'requirements': {
 'building': list[str],
 'tech': list[str]
 }
}

Figure F1: Knowledge schema of the structured StarCraft II wiki database used in LLM-PySC2

Example: Protoss Unit “Adept”

{
 'name': 'Adept',
 'description': 'Ranged light infantry with psionic transfer for harassment.',
 'type_self': ['light', 'biological'],
 'type_anti': ['light'],
 'health': 70, 'shield': 70, 'health_armor': 1,
 'speed': 2.5,
 'weapon': {
 'target': ['ground'],
 'damage': 10,
 'bonus': {'light': 12},
 'range': 4,
 'cooldown': 2.25
 },
 'cost': {'mineral': 100, 'gas': 25, 'supply': 2},
 'produce_from': 'Gateway / WarpGate',
 'ability': {'Psionic Transfer': 'Teleport via shade after short delay.'},
 'upgrade': {'ResonatingGlaives': '+45% attack speed'},
 'requirements': {
 'building': ['Gateway', 'Cybernetics Core'],
 'tech': []
 }
}

Figure F2: Example Protoss unit entry (“Adept”) from the structured wiki knowledge base.

62

Appendix G. Other supplementary materials

Limitations.

Although the LLM-PySC2 environment provides a lot more features than existing environments,
there are still some limitations. For example: (1) We found problems in LLM-based decision-making
but have not yet found a solution that is good enough. How to learn domain-specific knowledge in
the environment effectively remains a problem. (2) Due to the limited decision-making ability of the
LLMs, many professional operations (such as multi-line attacks, invisible units harassment, airdrop,
changing homes, etc.) have not appeared in our experiments. As a result, it is quite challenging for us
to test these advanced tactics, leading to potential bugs when dealing with advanced strategies. (3)
Considering that Protoss is enough for decision-making method verification, we suspend the work of
Terran and Zerg. Full support for these two races will be provided in the future.

Impact Statements.

This work presents a new environment for evaluating LLM decision-making performance and
developing learning algorithms. With complete StarCraft II action space, our environment provides
far more complexity than other decision-making platforms. With the asynchronous query architecture,
the environment efficiently interacts with LLMs that maintain a constant latency regardless of the
scale of the agents’ population. Advancement in the environment reduces the obstacles of large model
decision research and prepares conditions for post-training LLMs in sequential decision problems.
The phenomena observed in the experiments will attract more attention to the LLM hallucinations
and lack of knowledge in specific domains.

Broader Impact.

Our work opens up new opportunities for applying LLM in gaming and other multi-agent collaboration
applications. Given that a lot of work on LLM learning methods is still supervised learning or human
feedback reinforcement learning on data sets, our environment may promote the research of LLM
in-environment learning. Potential negative impacts include misuse of the environment to develop
autonomous decision-making systems without enough safety control and human control interfaces,
which may generate uncontrolled, unexpected, or dangerous behavior in the application. We suggest
strengthening the research on LLM security while promoting the research on large-model autonomous
decision making.

Code Of Ethics.

This research fully adheres to the NeurIPS Code of Ethics. Violence behaviors of LLMs, such as
attacking and harassing are confined entirely to the Real-Time Strategy game StarCraft II, just like
previous similar works like SC2LE and SMAC. Potential risks of misuse and our suggestions are
discussed in Section Broader Impact. This work does not involve or address any topics related to
discrimination, races mentioned in the paper are the camps in the StarCraft II game.

63

	Introduction
	LLM-PySC2 environment
	Framework
	Actions
	Observation
	Text Observation.
	Image Observation.

	Multi-Agent System

	Experiments
	Experiments for Macro-Decisions
	Experiment Settings
	Experiment Results

	Experiments for Micro-Operations
	Experiment Settings
	Experiment Results

	Latency and Token Cost.

	Discussion
	Conclusion
	Acknowledgement

