
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOOL DECODING: A PLUG-AND-PLAY APPROACH TO
ENHANCING LANGUAGE MODELS FOR TOOL USAGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the significant advancements in large language models (LLMs), their tool-
use capabilities remain limited. This limitation stems from the fact that exist-
ing approaches often merely adapt strategies designed for basic natural language
tasks, overlooking the specific challenges inherent in tool usage, such as precise
tool selection, strict predefined formats, and accurate parameter assignment. To
bridge this gap, we conduct a fine-grained analysis of the tool usage process,
breaking it down into three critical stages: tool awareness, tool selection, and
tool call. Our analysis reveals that most failures stem from selection errors, for-
mat violations, and parameter mis-assignments. Building on these insights, we
propose Tool Decoding, a novel, training-free approach that directly incorporates
tool-specific information into the decoding process. Tool Decoding employs con-
strained decoding to ensure format correctness and eliminate hallucinations, while
leveraging order consistency to improve parameter accuracy through structured
sampling and a majority-voting mechanism. This approach effectively addresses
many common tool-use errors in a plug-and-play manner, allowing for seamless
generalization to new tools as long as they are accompanied by well-structured
documentation to guide the decoding process. Experimental evaluations on bench-
marks like API-Bank and BFCL V2 • Live show that Tool Decoding leads to
significant improvements across a diverse set of more than 10 models, including
both generalist and tool-finetuned models. Almost all models demonstrate perfor-
mance gains exceeding 70% on both benchmarks. Among the 7B-level models,
five outperform GPT-3.5 on key tasks, with two even surpassing GPT-4.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have significantly expanded their applica-
tions beyond basic natural language processing (NLP) tasks to more complex and dynamic func-
tionalities (Qian et al., 2024; Li et al., 2024; Lu et al., 2024a). There is growing interest in equipping
LLMs with external tools, allowing them to perform tasks that extend beyond traditional language
generation, such as interacting with APIs to retrieve information, control devices, or even make
complex decisions (Schick et al., 2024; Qin et al., 2024; Yao et al., 2023). Improving the tool-use
capabilities of LLMs has emerged as a critical area of development, with the potential to significantly
enhance their utility in various real-world scenarios.

As exemplified in Figure 1, when faced with some complex tasks, tool-augmented language models
initially attempt to complete the task using natural language. If unsolvable, they transit to the tool-
usage mode, generating tool calls to query the tool server and subsequently leveraging the server’s
response to complete the task (Qin et al., 2024; Huang et al., 2024). Specifically, to integrate external
tools into LLM workflows, each tool is assigned a unique name, and a predefined tool call format
is established, typically structured as [ToolName(key1=value1, key2=value2)](Schick
et al., 2024; Li et al., 2023). The tool usage process of LLMs can be divided into three key steps:
(1) Tool Awareness, where the model identifies the need for external tools to accomplish the task,
signaled by outputting the character [to enter tool mode; (2) Tool Selection, in which the model
selects the most appropriate tool by generating its specific name immediately after [; and (3) Tool
Call, where the model provides the correct parameters and completes the tool call according to the
predefined format, then waits for the tool server’s response.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Text

Tool UsageTool Awareness
If you exchange 5,200 US
dollars at the current
exchange rate of 142.32,
you would receive
[

Reasoning

If you exchange 5, 200 US
dollars at the current
exchange rate of 142.32, you
......

Reasoning

If you exchange 5,200 US dollars at the
current exchange rate of 142.32, you would
receive
[calculate_exchange_amount
(amount=5200, exchange_rate=142.32,
currency_to="JPY") —> 740, 064 JPY]
yen. Therefore, You will get 740, 064 yen.

If you exchange 5,200 US dollars at the
current exchange rate of 142.32, you
would receive
[calculate_exchange_amount
(amount=5200, exchange_rate=142.32,
currency_to="JPY") —> 740, 064 JPY]
yen.
Therefore, you will get 740, 064 yen.

Tool Call
If you exchange 5,200 US dollars at the
current exchange rate of 142.32, you
would receive
[calculate_exchange_amount
(amount=5200, exchange_rate=142.32,
currency_to="JPY") —> 740, 064 JPY]

Tool Selection

If you exchange 5,200 US
dollars at the current exchange
rate of 142.32, you would
receive
[calculate_exchange_amount(

The current exchange rate
from USD to JPY is 142.32. Please
calculate how much yen I would get
for exchanging 5, 200 US dollars.

Tool Documents:
............

Figure 1: The simplified workflow of tool-augmented language models. During inference, tool-
augmented language models continuously assess in real time whether tool usage is necessary. Once
required, the model enters the tool-usage mode, selects the appropriate tool, and generates a tool call
following the predefined format. The corresponding tool server detects the tool call, processes the
request, and returns the response to the model, allowing it to proceed with the task.

Error Type Example Solution
Awareness You would receive 5200 yen. no tool –

Selection
You would receive [currency exchange rate(currency from=
‘USD’, currency to=‘JPY’) → 142.32] yen.

Call

Format
You would receive [calculate exchange amount(amount=5200, Constrained
exchange rate=142.32, currency to=‘JPY’] yen. Missing a) Decoding

Key

You would receive [calculate exchange amount(amount=5200,
exchange rate=142.32, currency to=‘JPY’), from=‘USD’)] yen.
You would receive [calculate exchange amount(amount=5200,
currency to=‘JPY’)] yen. Missing required exchange rate Order

Value
You would receive [calculate exchange amount(amount=200, Consistency
exchange rate=142.32, currency to=‘JPY’)] yen.

Table 1: Examples and our solutions for each error type across the three stages of tool usage.

While LLMs use tools by generating specific tokens, similar to basic NLP tasks, tool usage involves
distinct characteristics, such as specific parameter requirements and the specialized structure of the
tool call format. We notice that these unique features introduce a range of specific challenges, lead-
ing to most of the failure cases in practice. However, most prior research has neglected this aspect.
Existing approaches can be broadly divided into two main categories: those based on supervised
fine-tuning for task-specific tool usage (Schick et al., 2024; Patil et al., 2024; Qin et al., 2024),
and those focusing on optimizing prompts for in-context learning by providing demonstrations (Yao
et al., 2023; Liu et al., 2024b; Paranjape et al., 2023). These methods simply transfer approaches
from basic NLP tasks without fully exploiting the unique potential inherent in tool usage.

In this work, we perform a fine-grained analysis of the tool usage process to explore the connection
between failure cases and the unique characteristics of tool usage mentioned earlier. Based on the
insights gained, we propose Tool Decoding, a novel plug-and-play method specifically designed to
address the key challenges identified in this analysis without any additional training or fine-tuning.
As illustrated in Figure 2, our analysis indicates that tool awareness is relatively straightforward
and can be effectively handled even by less powerful models. However, tool selection and tool
call are much more challenging due to their specific content and format requirements. Given the
complexity of tool calls, we categorize call errors into three types: format errors, key errors, and
value errors, as exemplified in Table 1. A comprehensive analysis of the five error types across all
three stages reveals that tool usage failures are predominantly due to selection, format, and value

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

errors, as depicted in Figure 3. To address these issues, we propose Tool Decoding, which allows
LLMs to better meet the specific requirements of tool usage while effectively addressing various
types of errors. As shown in Table 1, constrained decoding is employed to eliminate format errors
and reduce selection errors. while order consistency is applied to mitigate key and value errors.
Tool Decoding combines these strategies, enabling models to accurately recognize and invoke tools
without requiring additional training.

Tool Decoding is highly adaptable, as it does not depend on training data to learn tool interactions.
Instead, it dynamically applies tool-related knowledge during the decoding stage, significantly im-
proving the ability of a wide range of models to accurately select and invoke tools. Since no training
is required, Tool Decoding can easily generalize to new tools, as long as they are accompanied by
well-organized documentation to guide the decoding process. Moreover, Tool Decoding is also flex-
ible to be combined with previous methods such as supervised fine-tuning, allowing for seamless
integration and joint usage. By eliminating the need for extensive training or fine-tuning, our method
offers a more efficient and flexible solution for enhancing LLM tool usage, making it suitable for a
wide variety of models and scenarios.

In summary, the main contributions of this paper are:

• We conduct a fine-grained analysis of the three stages of the tool usage process and their
associated errors, identifying the key bottlenecks in LLMs’ tool usage capabilities.

• We propose Tool Decoding, a novel, training-free method that enhances tool usage in LLMs
based on our analysis. This method leverages tool-specific information and structure during
the decoding process to effectively address the primary errors in LLMs’ tool usage.

• We validate Tool Decoding’s superior performance by integrating it with a wide range of
generalist and tool-finetuned models, evaluating them on the API-Bank1 (Li et al., 2023)
and BFCL V2 • Live2. Our experiments demonstrate that Tool Decoding significantly
enhances performance across all models. Almost all models exhibit performance gains
exceeding 70% across both benchmarks. Among the 7B-level models, five outperform
GPT-3.5 on key tasks, and two even surpass GPT-4.

This work highlights the critical importance of tool-specific features and lays a foundation for future
research aimed at improving LLMs’ tool-use capabilities by exploiting these unique features. It also
underscores the significant potential of decoding methods.

2 FINE-GRAINED ANALYSIS OF TOOL USAGE

In this section, we analyze the key challenges faced by LLMs in tool usage. By breaking down the
tool usage process into distinct stages and performing detailed error analysis, we aim to pinpoint
the primary bottlenecks and error patterns in the models’ performance. This comprehensive evalu-
ation sheds light on the unique demands of tool usage and provides insights into how LLMs can be
improved to better handle these tasks.

Analysis of Stages To better understand the tool-use capabilities of LLMs, we divide the entire
tool usage process into three stages: Tool Awareness, Tool Selection, and Tool Call. LLMs must
successfully complete all three steps to use tools correctly. By evaluating the model’s performance
at each of these stages separately, we aim to identify the bottlenecks in its tool usage capabilities.
To achieve this, we conduct detailed experiments for each stage using the Qwen1.5 models, across
scales ranging from 1.8B to 72B parameters, within the UltraTool benchmark (Huang et al., 2024).
For a detailed introduction to UltraTool, please refer to Appendix B.3. As illustrated in Figure 2,
our analysis reveals that the difficulty of the tool usage process increases progressively across the
three stages. While tool awareness is relatively straightforward and can be effectively managed even
by small models, the challenges intensify in the tool selection and tool call stages due to specific
content and format requirements. Notably, tool call presents the greatest complexity, with the best
performing model achieving around 75% accuracy in this stage, underscoring the need for more
targeted approaches to improve performance in this stage.

1https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/api-bank
2https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard

3

https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/api-bank
https://gorilla.cs.berkeley.edu/blogs/12_bfcl_v2_live.html

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1.8 7.0 14.0 32.0 72.0
Qwen1.5 Model Size (Billion Parameters)

20

40

60

80
Ac

cu
ra

cy

Performance Comparison by Model Size

Tool Awareness
Tool Selection
Tool Call

Figure 2: Performance comparison across
the three stages of tool usage for a series of
Qwen1.5 models, ranging in size from 1.8B
to 72B, evaluated on the UltraTool dataset.

Figure 3: Proportion of error types for different
LLMs on the API-Bank (Call) dataset (Li et al.,
2023). The color schemes represent the tool-use
stages corresponding to the error types.

Analysis of Errors While some existing works have conducted coarse error analyses, their evalu-
ations are not sufficiently comprehensive and lack a systematic approach. For instance, the analysis
in API-Bank (Li et al., 2023) overlooks value errors and includes ambiguous error types such as
Has Exception, limiting both clarity and utility. In contrast, we conduct a stage-specific and
comprehensive error analysis, systematically identifying errors at each stage to derive fine-grained
insights. Given the complexity of tool calls, we categorize call errors into three types: (1) Key Er-
ror: LLMs generate incorrect keys or the missing required parameter keys3; (2) Value Error: LLMs
assign incorrect values to certain parameters; (3) Format Error: LLMs generate a tool call that does
not adhere to the predefined format, rendering it undetectable by the tool server. Table 1 provides
examples of each error type. As shown in Figure 3, errors in the tool call stage account for the
highest proportion, followed by the tool selection stage, which is consistent with the experimental
results presented in Figure 2. The Error type distribution of 70B-level models are exhibited in Fig-
ure 7, which is almost consistent with that of smaller models Awareness errors account for only
a small proportion and are almost impossible to improve through non-training methods, so we set
them aside in this work. The most common errors, including selection errors, format errors, and
value errors, arise from the specific format and functional demands of tool usage. Tool selection
limits models to generate content within a specific range, while the format requirements of tool calls
constrain models to adhere to a predefined structure. Additionally, the parameter values for tool
calls require the model to fill them in sequentially, similar to completing a cloze test. These unique
requirements highlight the mismatch between tool usage and standard language generation. By ad-
justing the decoding process of models to accommodate these specific requirements, these issues
can be alleviated.

3 TOOL DECODING

In Section 2, we demonstrate that the main causes of failure in tool usage include selection errors,
format errors, and value errors. To minimize these errors, we introduce Tool Decoding, a novel
plug-and-play method that integrates tool-specific information into the LLMs’ decoding process,
as illustrated in Figure 4. This approach efficiently enhances the tool-use capabilities of LLMs by
providing comprehensive support for both the tool selection and the tool call stages. Tool Decod-
ing consists of two key components: constrained decoding and order consistency. The details of
constrained decoding are discussed in subsection 3.1. For tool selection, constrained decoding is
applied to restrict candidate tokens to valid tool names, preventing model hallucinations. During the
tool call stage, it ensures the correctness of both the tool call format and optional parameter keys.

3Tool parameters are typically divided into required parameters and optional parameters, which are usually
presented in a well-structured format in the tool documentation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

calculate_exchange_amount

Required
amount: integer
exchange_rate: number
currency_to: string

Optional currency_from: string

The current exchange rate
from USD to JPY
is 142.32. Please calculate
how much yen I would get
for exchanging 5, 200 US
dollars.

Tool DocumentsTask Description
calculate_percentage

Required part: float
whole: float

Optional precision: integer

If you exchange 5,
200 US dollars at the
current exchange
rate of 142.32 you
would receive
[

[calculate_exchange_amount(
amount=5200,
exchange_rate=142.32,
currency_to="JPY")
—> 740, 064 JPY]
Therefore, you will get 740,
064 yen.

Tool Decoding

[[calculate_exchange_amount(

[calculate_exchange_amount(
amount=200, exchange_rate=142.32,
currency_to="JPY")]

[calculate_exchange_amount(
exchange_rate=142.32, amount=5200,
currency_to="JPY")]

[calculate_exchange_amount(
currency_to="JPY", exchange_rate=142.32,
amount=5200, currency_from="USD")]

)]

, currency_from=

[calculate_exchange_amount(
amount=5200,
exchange_rate=142.32,
currency_to="JPY")]

Order Consistency

Majority vote

amount 5200 5
200 1

exchange_rate 143.32 6

currency_to "JPY" 4
"USD" 2

currency_from "" 3
"USD" 3

currency_exchange_rate

Required currency_from: string
curency_to: string

Optional

Constrained Decoding

Decode optional parameter keys under
constraints in each candidate

Marginalize out parameter
orders to aggregate each value

0.7

0.3

1.0

Decode tool name under
constraints

Diverse set of different
required parameter orders

...... You would receive [

You would receive [currency_exchange_rate(currency_from='USD',
currency_to='JPY') → 142.32] yen.

You would receive [calculate_exchange_amount(amount=5200,
exchange_rate=142.32, currency_to=‘JPY’] yen. Missing a)

You would receive [calculate_exchange_amount(amount=5200,
currency_to=‘JPY’)] yen. Missing required_exchange_rate

You would receive [calculate_exchange_amount(amount=200,
exchange_rate=142.32, currency_to=‘JPY’)] yen.

Selection Error

Format Error

Key Error

Value Error

Greedy Decoding

Tool Decoding

Possible Results

...... You would receive [

[calculate_exchange_amount(

currency_

calulate_
percentage(

exchange_ amount(

0.8

0.2

0.7

0.3

1.0

currency_

calulate_
percentage(

exchange_ amount(

0.8

0.2

0.7

0.3

1.0

Constrained Decoding

Order Consistency

[calculate_exchange_amount(
amount=200, exchange_rate=142.32,
currency_to="JPY")]

[calculate_exchange_amount(
exchange_rate=142.32, amount=5200,
currency_to="JPY")]

[calculate_exchange_amount(
currency_to="JPY", exchange_rate=142.32,
amount=5200, currency_from="USD")]

)]

, currency_from=

[calculate_exchange_amount(
amount=5200,
exchange_rate=142.32,
currency_to="JPY")]

Majority vote

amount 5200 5
200 1

exchange_rate 143.32 6

currency_to "JPY" 4
"USD" 2

currency_from "" 3
"USD" 3

Decode optional parameter keys under
constraints in each candidate

Marginalize out parameter
orders to aggregate each value

0.7

0.3

1.0

Diverse set of different
required parameter orders

[calculate_exchange_amount(
amount=5200,
exchange_rate=142.32,
currency_to="JPY")
—> 740, 064 JPY]

Marginalize out parameter
orders to aggregate each value

Decode tool name
under constraints

Tool Documentation

Figure 4: Illustration of the Tool Decoding process. The model is provided with a tool-use task
description and a set of candidate tools, along with their respective documentation. Once the model
recognizes the need for tool usage, the Tool Decoding method is invoked. Constrained decoding is
applied to generate the tool name and optional parameter keys, while order consistency improves the
accuracy of each parameter value. In the model’s response, black text represents content generated
through regular decoding, brown text indicates content generated through constrained decoding, and
blue text highlights required parameter keys directly supplied to guide different orders.

Order consistency, detailed in subsection 3.2, is used to sample multiple candidate values for each
parameter, with majority voting employed to eliminate key errors and minimize value errors.

3.1 CONSTRAINED DECODING

Figure 4 illustrates the complete Tool Decoding process, with constrained decoding as a crucial
part of this method. If the model generates by regular decoding, the unrestricted vocabulary space
could potentially result in an incorrect format or a non-existent tool name. To address these issues,
our approach restricts the model to consider only a specific set of tokens, guided by the constraints
imposed by the predefined format and tool information.

Since tool documentation is typically well-structured, extracting constraints using simple rules is
feasible. We use regular expressions to extract each tool name, along with its required and optional
parameters, and store these constraints in a lookup dictionary. During the inference stage, we query
the lookup dictionary to retrieve the relevant constraints as the model begins generating the tool
name and optional parameter keys. These constraints are then used to restrict the vocabulary space
at each step until this portion is completed.

For example, as shown in Figure 4, when the model generates [and enters the tool selection stage,
all tool names are retrieved from the lookup dictionary and tokenized into a constrained token tree,
along with the corresponding format element (. In the subsequent steps, the model is constrained
to decode within the subtree of the current node at each step, ensuring that the vocabulary space is
limited to the child nodes, which guarantees that the generated tool name is one of the provided tools.
Similarly, after all required parameters have been assigned, the model may either use some optional

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

model vanilla reverse shuffle aggregation
mistral-7b-v0.1 63.7 63.2 62.7 63.9

FILM-7b 68.4 65.4 69.7 69.7
deepseek-coder-6.7b 68.9 70.2 69.4 70.7

xLAM-7b-r 70.2 72.5 69.9 72.5

Table 2: Accuracy (%) of various models on the API-Bank (Call) dataset under different required
parameter orders. The aggregation column shows the accuracy after applying majority voting across
the results of the three orders. Underlined results indicate the best performance for each model across
different parameter orders.

parameters or terminate parameter assignment with a closing parenthesis). Therefore, we construct
a constrained token tree using all unused optional parameter keys and the closing parenthesis).

3.2 ORDER CONSISTENCY

While constrained decoding effectively eliminates format errors and mitigates selection errors, it
falls short in addressing value errors. To address this, we introduce order consistency, which fully
utilizes the property that tool calls remain functionally equivalent as long as the parameter values are
consistent, regardless of the order in which the parameters are provided. By guiding the model to
assign parameters in different orders, we can generate multiple tool calls for the same scenario and
then apply majority voting to identify the most consistent value for each parameter. This method
improves overall accuracy by reducing value errors and ensuring robustness across different param-
eter configurations. Our method is inspired by self-consistency, which improves reasoning ability of
LLMs by generating multiple answers via different reasoning paths and then aggregating them, but
overcomes the barrier to apply its thought to tool usage due to the absence of reasoning process.

In Table 2, we evaluate the accuracy on the API-Bank (Call) dataset across three generalist models
and one tool-finetuned model under different parameter orders. The results indicate that changing
the parameter order only leads to slight variations in the models’ performance when generating tool
calls. In some cases, using a parameter order different from that specified in the tool documentation
even improves the model’s performance. However, no single order proves to be universally superior,
while the aggregated results from all orders surpass even the best individual order. This prelim-
inary experiment highlights the need for introducing order consistency to further enhance overall
performance.

Specifically, we fetch the required parameter keys from the lookup dictionary and shuffle them. As
illustrated in Figure 4, after the model finishes generating the tool name, we sequentially append
the parameter keys to the input, guiding the model to generate the corresponding values one by
one. Once all required parameter values are generated, constrained decoding is applied to allow the
model to determine whether any optional parameters are needed. Note that the transition between
two parameters is triggered when the previous value is detected as fully generated. Consequently,
we can obtain a set of candidate values for each parameter by sampling tool calls with different
required parameter orders and retaining only those that meet the parameter type requirements. We
then aggregate the tool calls by marginalizing over the orders and selecting the most consistent value
for each parameter across the generated tool calls. Finally, the tool call derived from majority voting
is used to request a response from the tool server. This method not only reduces value errors but
also ensures the completeness of required parameters, preventing issues such as missing keys. For
tools with many required parameters, there can be multiple parameter orders. We set an upper limit
for the number of sampled tool calls, denoted as oc, with oc ≤ 12 unless otherwise specified.

4 EXPERIMENTS

4.1 SETUP

Tasks and Datasets We evaluate Tool Decoding on the following benchmarks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Mistr
al-

7b
-v0

.1

Yi-
1.5

-6b

de
ep

see
k-c

od
er-

6.7
b

Yi-
Cod

er-
1.5

b

FIL
M-7b

xLA
M-7b

-r
0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

GPT-4

GPT-3.5

API-Bank

Greedy Search
Beam Search
Tool Decoding

Mistr
al-

7b
-v0

.1

Yi-
1.5

-6b

de
ep

see
k-c

od
er-

6.7
b

Yi-
Cod

er-
1.5

b

FIL
M-7b

xLA
M-7b

-r
0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

GPT-4

GPT-3.5

0.0 0.0 0.0 0.1

BFCL V2 Live

Greedy Search
Beam Search
Tool Decoding

Figure 5: Total accuracy on the API-Bank and BFCL V2 • Live datasets, comparing Tool Decoding
with greedy search and beam search across five generalist models and one tool-finetuned model.
Additional results and evaluations on a broader range of models can be found in Appendix G.

Model Decoding Method ICL Example Numbers
0 2 4 6 8

GPT-4 Greedy Search 76.2 72.7 72.2 73.7 73.4

Mistral-7b-v0.1 Greedy Search 31.3 47.1 45.1 50.4 43.6
Tool Decoding 65.7 70.2 69.2 70.5 70.9

deepseek-coder-6.7b Greedy Search 46.9 66.7 69.2 69.2 70.2
Tool Decoding 70.9 74.4 76.7 76.9 77.4

Table 3: Performance comparison of different decoding methods across varying numbers of in-
context examples on API-Bank (Call). Bold highlights the results that surpass GPT-4 under the
same prompt settings.

• Tool-use dialogues. An important task for tool-augmented language models is to function
as tool-enabled chatbots, capable of solving more complex user problems and address-
ing advanced needs. Therefore, API-Bank (Li et al., 2023), a widely used benchmark for
tool-use dialogues, is well-suited for evaluating our method. API-Bank comprises three
evaluation categories: Call, Retrieve+Call, and Plan+Retrieve+Call. Since the third cate-
gory primarily evaluates the model’s planning capabilities and is unrelated to tool usage,
we concentrate on the first two categories. For detailed information on API-Bank, please
refer to Appendix B.1.

• Tool usage. Our method is specifically designed to enhance the tool-use capabilities of
tool-augmented language models, particularly in the stages of tool selection and tool call.
To evaluate its effectiveness, we assess performance on the BFCL V2 • Live, focusing
on improvements in these two stages. The BFCL V2 • Live consists of six evaluation
categories, with Relevance and Irrelevance primarily evaluating the model’s tool awareness,
which is not the main focus of our study. Therefore, we concentrate on the other four
categories for our evaluation. For further details on the BFCL V2 • Live, please refer to
Appendix B.2.

Base LLMs We evaluate Tool Decoding across a diverse set of models, including chat models,
long-context models, code models, and lightweight models. Additionally, we assess its performance
on two tool-finetuned models: xLAM-7b-r (Zhang et al., 2024) and Toolformer (Schick et al., 2024).
A detailed introduction to these models is provided in Appendix A.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.2 MAIN RESULTS

We present the results for six models in Figure 5, with additional details and results for more models
provided in Appendix G. The first chart displays the results from API-Bank, and the second chart
shows the results from the BFCL V2 • Live. Each model is assessed using three decoding methods:
Tool Decoding, greedy search, and beam search. The bars in the charts represent the total accuracy
achieved by each model on the corresponding benchmark.

API-Bank The results, as shown in the left chart of Figure 5, indicate that Tool Decoding sig-
nificantly improves the performance of all models in tool-use dialogues, enabling them to better
leverage tools for executing user instructions. The method demonstrates strong performance across
various model types and serves as a valuable complement to tool-finetuned models. Notably, when
integrated with Tool Decoding, some models, such as deepseek-coder-6.7b-base and xLAM-7b-r,
even outperform GPT-4 in this benchmark. As a plug-and-play method, Tool Decoding can inte-
grate seamlessly with prompt engineering. Table 3 presents the performance of different numbers
of in-context learning (ICL) examples on API-Bank (Call). The results demonstrate that our method
effectively combines with prompt engineering, significantly enhancing the model’s tool usage capa-
bilities. Notably, this combination even enables a 7B-level generalist model, deepseek-coder-6.7b,
to surpass GPT-4 under the same prompt settings.

BFCL V2 • Live The right chart of Figure 5 presents the results. Tool Decoding consistently
enhances the tool-use capabilities of all models, with total accuracy more than doubling compared
to greedy search and beam search. Notably, even weaker models like Yi-1.5-6b and Yi-Coder-1.5b,
which fail on nearly all test cases with greedy search and beam search, achieve significant improve-
ments with Tool Decoding. Furthermore, the tool-finetuned model xLAM-7b-r, when combined with
Tool Decoding, surpasses GPT-3.5 and approaches GPT-4 levels of performance. Similarly, other
models such as deepseek-coder-6.7b-base and FILM-7b outperform GPT-3.5 on this benchmark.

Tool Decoding enables seamless integration with various existing approaches and models. Appendix
E presents results obtained using our method with larger generalist models and more advanced
tool-finetuned models. Appendix F compares our approach with other decoding methods for tool
usage, while Appendix C provides a latency analysis, showcasing the computational efficiency of
our method.

4.3 ERROR ANALYSIS AND ABLATION STUDY

In this subsection, we perform an analysis of the reduction in different error types after applying Tool
Decoding, assessing the effectiveness of the method in addressing each error category. Furthermore,
we conduct ablation studies to specifically assess the role of order consistency in mitigating value
errors.

Error Analysis We perform a fine-grained analysis of several representative models using both
greedy search and Tool Decoding. The results, presented in Figure 6, show the performance with
greedy search in the first row and Tool Decoding in the second row. The comparison reveals that Tool
Decoding almost entirely eliminates format and key errors, while significantly reducing selection
errors. However, there is a slight increase in value errors, which arises because the resolution of
format, key, and selection errors uncovers underlying value errors that were previously masked by
these other issues.

Ablation Study on Order Consistency To evaluate the effect of order consistency on reducing
value errors, we conduct comparative experiments using different oc upper limits, which control the
number of sampled tool calls. The results are presented in Table 4. We first record the number of
value errors for each model when using Tool Decoding without order consistency (oc ≤ 1), and
then compare the reduction in value errors across different oc limits. Each row in Table 4 displays
the proportion of value error reductions for each model at the corresponding oc limit. The results
indicate a positive correlation between the reduction in value errors and the number of tool calls
allowed with different parameter orders, thereby confirming the effectiveness of order consistency.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Error type distribution comparison of four LLMs on the API-Bank (Call) dataset, with
and without Tool Decoding. The first row shows the results by greedy search, while the second row
presents the results by Tool Decoding.

Order Samples Mistral-7b-v0.1 gemma-7b deepseek-coder-6.7b FILM-7b

oc ≤ 4 4.7 4.8 0.0 5.3
oc ≤ 9 7.8 8.1 9.3 2.7
oc ≤ 12 12.5 9.7 8.0 6.7

Table 4: Proportion (%) of value error reduction across 4 models on API-Bank when applying Tool
Decoding with varying oc limits (the upper limits for order samples) for order consistency, compared
to results without order consistency (oc ≤ 1).

5 RELATED WORK

Tool-Augmented Language Models Language models are constrained by the knowledge within
their training data, limiting the range of tasks they can handle independently. For tasks involving nu-
merical calculations, real-time information, or device control, models cannot perform autonomously
and must rely on external tools (Feng et al., 2024; Shen et al., 2024; Li et al., 2024). Qin et al. (2024)
describes the workflow of tool-augmented language models as a multi-step process: first, decom-
pose the task and create a plan, which may be adjusted based on environmental feedback; second,
use appropriate tools for each subtask; and finally, solve each subtask with the tool responses. Fig-
ure 1 provides a simplified example of this process. Various efforts aim to enhance the capability
of LLMs with external tools. Yao et al. (2023); Liu et al. (2024b); Paranjape et al. (2023) utilize
prompt engineering to enable models to interact with tools, but the effectiveness of this approach is
limited by the model’s inherent capabilities. Schick et al. (2024); Yang et al. (2024b); Tang et al.
(2023); Liu et al. (2023); Qin et al. (2024); Li et al. (2023); Lu et al. (2024b) develop tool-augmented
datasets to fine-tune models, enhancing their overall performance. While effective, this method is
resource-intensive and lacks the flexibility to generalize to new tools.

Tool Usage for Language Models Tool-augmented language models need to manage the entire
process of planning, tool usage, and response analysis. Some studies focus specifically on the tool
usage step, also referred to as function calling. These studies require the model to generate appro-
priate tool calls directly, treating this as the task itself, rather than depending on external tools to
complete additional tasks. In detail, Liu et al. (2024a); Xu et al. (2024); Du et al. (2024); Chen et al.
(2024) propose novel methods for retrieving tools from large-scale tool libraries. Patil et al. (2024);
Liu et al. (2024c); Mok et al. (2024) construct high-quality tool-use datasets to fine-tune models.
However, these approaches merely adapt methods from basic NLP tasks to tool usage, which limits
their ability to adequately address the specific demands of tool use or generalize effectively to new
tools. Zhang et al. (2023); Wang et al. (2023a) introduce constrained decoding to enforce tool syntax
in LLMs. While these methods reduce syntax errors, they do not address issues such as incorrect

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

parameter values. Wang et al. (2024) propose reranking to tackle this problem, but it requires train-
ing an additional scorer. In contrast, our Tool Decoding method mitigates various potential errors in
tool usage without requiring any training.

Sampling and Decoding in Language Models A variety of decoding strategies have been pro-
posed to improve language model performance, including top-k sampling (Fan et al., 2018; Holtz-
man et al., 2018), temperature-based sampling (Ficler & Goldberg, 2017), and nucleus sampling
(Holtzman et al., 2020). Beyond these, more refined algorithms have been developed to enhance
reasoning capabilities. Wang et al. (2023b); Wang & Zhou (2024) introduce self-consistency as a
method to improve Chain-of-Thought (CoT) reasoning by generating multiple candidate answers
via different reasoning paths and aggregating them using majority voting. This approach enhances
both the accuracy and robustness of reasoning tasks. Constrained decoding (Willard & Louf, 2023;
Chen et al., 2022; Fang et al., 2023; Lu et al., 2022) improves generation quality by limiting the vo-
cabulary to a smaller set of candidate tokens, effectively reducing the risk of hallucinations. While
these methods have proven effective for basic NLP tasks, they are not directly applicable to tool
usage. Our work bridges this gap by integrating these techniques with the unique features of tool
usage.

6 CONCLUSION AND DISCUSSION

This paper introduces Tool Decoding, a training-free method that enhances LLMs’ tool-use capabil-
ities. A fine-grained analysis of tool usage reveals key errors in tool awareness, selection, and call
stages, with most issues arising from incorrect tool selection, non-compliant format , and erroneous
parameter assignments. Tool Decoding addresses these challenges by employing constrained de-
coding to ensure format correctness and leveraging order consistency to enhance the value accuracy
of each parameter through majority voting. Experiments on API-Bank and BFCL V2 • Live show
that Tool Decoding significantly boosts tool-use performance, with improvements exceeding 200%
in some cases, enabling open-source models to match even surpass GPT-4 without training.

Looking ahead, Tool Decoding holds potential to improve the pass rate in tool-augmented dataset
construction by ensuring accurate tool calls, thereby facilitating more efficient generation of fine-
tuning data (Liu et al., 2024c). Its adaptability to new tools without the need for retraining makes
it particularly valuable in dynamic, resource-constrained environments, opening the door to broader
applications in both research and real-world scenarios.

7 ETHICS STATEMENT

This work does not involve any direct ethical concerns, as it focuses on developing a method for
improving tool usage in large language models (LLMs) without introducing new ethical challenges.
However, the widespread deployment of LLMs with enhanced tool-use capabilities could have im-
plications for automation and human interaction with AI systems. It is important to consider the
potential biases in the tools or data being used, as well as ensuring that LLMs are transparent in
their decision-making processes. Developers should also be cautious in applying these systems
to sensitive areas such as medical diagnosis or legal advice, where the accuracy and reliability of
the model are critical. Furthermore, as our method does not require additional training, it offers
an energy-efficient alternative to fine-tuning, reducing the carbon footprint associated with training
large-scale models. However, we encourage continuous monitoring and evaluation of AI deploy-
ments to prevent unintended consequences and ensure they align with ethical guidelines.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide detailed explanations of our methods and
experiments in the main paper and the appendix. In Section 2, we break down the tool usage process
and error types, while Section 3 introduces the Tool Decoding method. Furthermore, we include
comprehensive experimental setups in Section 4 and detailed benchmark descriptions in Appendix
B.1 and B.2. In Appendix A, we provide information on the models and their configurations used
in the experiments. All code and data used in the experiments will be released upon acceptance to
ensure full transparency and reproducibility of our results.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, and Jian-Guang Lou. Make your LLM fully
utilize the context. arXiv preprint arXiv:2404.16811, 2024.

Xiang Chen, Zhixian Yang, and Xiaojun Wan. Relation-constrained decoding for text generation.
In Advances in Neural Information Processing Systems, 2022.

Yanfei Chen, Jinsung Yoon, Devendra Singh Sachan, Qingze Wang, Vincent Cohen-Addad, Mo-
hammadhossein Bateni, Chen-Yu Lee, and Tomas Pfister. Re-Invoke: Tool invocation rewriting
for zero-shot tool retrieval. arXiv preprint arXiv:2408.01875, 2024.

Yu Du, Fangyun Wei, and Hongyang Zhang. Anytool: Self-reflective, hierarchical agents for large-
scale API calls. In International Conference on Machine Learning, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), 2018.

Hao Fang, Anusha Balakrishnan, Harsh Jhamtani, John Bufe, Jean Crawford, Jayant Krishnamurthy,
Adam Pauls, Jason Eisner, Jacob Andreas, and Dan Klein. The whole truth and nothing but
the truth: Faithful and controllable dialogue response generation with dataflow transduction and
constrained decoding. In Findings of the Association for Computational Linguistics, 2023.

Xueyang Feng, Zhi-Yuan Chen, Yujia Qin, Yankai Lin, Xu Chen, Zhiyuan Liu, and Ji-Rong Wen.
Large language model-based human-agent collaboration for complex task solving. arXiv preprint
arXiv:2402.12914, 2024.

Jessica Ficler and Yoav Goldberg. Controlling linguistic style aspects in neural language generation.
In Proceedings of the Workshop on Stylistic Variation, 2017.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-Coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, and Yejin Choi. Learn-
ing to write with cooperative discriminators. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), 2018.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan
Zeng, Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng Xu, and Qun Liu. Planning, creation,
usage: Benchmarking LLMs for comprehensive tool utilization in real-world complex scenarios.
In Findings of the Association for Computational Linguistics, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. API-bank: A comprehensive benchmark for tool-augmented LLMs. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, Xin Chen, Ling Chen, and Yunchao Wei.
Appagent v2: Advanced agent for flexible mobile interactions. arXiv preprint arXiv:2408.11824,
2024.

Xukun Liu, Zhiyuan Peng, Xiaoyuan Yi, Xing Xie, Lirong Xiang, Yuchen Liu, and Dongkuan Xu.
Toolnet: Connecting large language models with massive tools via tool graph. arXiv preprint
arXiv:2403.00839, 2024a.

Yanming Liu, Xinyue Peng, Yuwei Zhang, Jiannan Cao, Xuhong Zhang, Sheng Cheng, Xun Wang,
Jianwei Yin, and Tianyu Du. Tool-planner: Dynamic solution tree planning for large language
model with tool clustering. arXiv preprint arXiv:2406.03807, 2024b.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, et al. BOLAA: Benchmarking and orchestrat-
ing LLM-augmented autonomous agents. arXiv preprint arXiv:2308.05960, 2023.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, et al. APIGen: Automated pipeline for generating verifiable and
diverse function-calling datasets. arXiv preprint arXiv:2406.18518, 2024c.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The AI scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024a.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
els. In Advances in Neural Information Processing Systems, 2024b.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras,
Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith, and Yejin Choi. NeuroLogic a*esque
decoding: Constrained text generation with lookahead heuristics. In Proceedings of the Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2022.

Jisoo Mok, Mohammad Kachuee, Shuyang Dai, Shayan Ray, Tara Taghavi, and Sungroh Yoon.
LLM-based frameworks for API argument filling in task-oriented conversational systems. In Pro-
ceedings of the Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 6: Industry Track), 2024.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. ART: Automatic multi-step reasoning and tool-use for large language mod-
els. arXiv preprint arXiv:2303.09014, 2023.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive APIs. In Advances in Neural Information Processing Systems, 2024.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. ChatDev: Com-
municative agents for software development. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
16000+ real-world APIs. In International Conference on Learning Representations, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. In Advances in Neural Information Processing Systems, 2024.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
gingGPT: Solving AI tasks with chatGPT and its friends in hugging face. In Advances in Neural
Information Processing Systems, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Shufan Wang, Sébastien Jean, Sailik Sengupta, James Gung, Nikolaos Pappas, and Yi Zhang. Mea-
suring and mitigating constraint violations of in-context learning for utterance-to-API semantic
parsing. In Findings of the Association for Computational Linguistics: EMNLP, 2023a.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. arXiv preprint
arXiv:2402.10200, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
In International Conference on Learning Representations, 2023b.

Zhuoer Wang, Leonardo FR Ribeiro, Alexandros Papangelis, Rohan Mukherjee, Tzu-Yen Wang,
Xinyan Zhao, Arijit Biswas, James Caverlee, and Angeliki Metallinou. Fantastic sequences and
where to find them: Faithful and efficient API call generation through state-tracked constrained
decoding and reranking. In Findings of the Association for Computational Linguistics: EMNLP,
2024.

Brandon T Willard and Rémi Louf. Efficient guided generation for large language models. arXiv
preprint arXiv:2307.09702, 2023.

Qiancheng Xu, Yongqi Li, Heming Xia, and Wenjie Li. Enhancing tool retrieval with iterative
feedback from large language models. arXiv preprint arXiv:2406.17465, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024a.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. GPT4tools: Teach-
ing large language model to use tools via self-instruction. In Advances in Neural Information
Processing Systems, 2024b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations, 2023.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou,
Chao Gong, Yang Shen, et al. A comprehensive capability analysis of GPT-3 and GPT-3.5 series
models. arXiv preprint arXiv:2303.10420, 2023.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01.AI. arXiv preprint
arXiv:2403.04652, 2024.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, et al. xLAM: A family of large action models to empower
AI agent systems. arXiv preprint arXiv:2409.03215, 2024.

Kexun Zhang, Hongqiao Chen, Lei Li, and William Wang. Syntax error-free and generalizable tool
use for llms via finite-state decoding. arXiv preprint arXiv:2310.07075, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DETAILS FOR MODELS

• GPT-4 (Achiam et al., 2023): GPT-4, developed by OpenAI, is a large-scale multimodal
model capable of processing both text and images. It is more reliable, creative, and nuanced
in its responses than its predecessors like GPT-3.5. In our experiments, we employ the gpt-4
(1106-Preview) version.

• GPT-3.5 (Ye et al., 2023): This model is an improvement over GPT-3, focusing on reducing
the hallucinations and factual errors present in GPT-3. It serves as the backbone for Chat-
GPT and other similar applications. While it lacks the multimodal capabilities of GPT-4,
it is still widely used for text-based tasks. In our experiments, we employ the gpt-35-turbo
(0613) version.

• Mistral-7B-v0.1 (Jiang et al., 2023): The Mistral-7B-v0.1 Large Language Model (LLM)
is a pretrained generative text model with 7 billion parameters, developed by Mistral AI.

• FILM-7B (An et al., 2024): FILM-7B is a 32K-context LLM that overcomes the lost-in-
the-middle problem. It is trained from Mistral-7B-Instruct-v0.2 by applying Information-
Intensie (In2) Training.

• deepseek-coder-6.7B-base (Guo et al., 2024): Deepseek Coder is composed of a series of
code language models, each trained from scratch on 2T tokens, with a composition of 87%
code and 13% natural language in both English and Chinese.

• gemma-7B (Team et al., 2024): Gemma is a family of lightweight, state-of-the-art open
models from Google, built from the same research and technology used to create the Gem-
ini models.

• Llama3-8B (Dubey et al., 2024): Llama3-8B is part of Meta’s LLaMA series, a family of
models focused on providing a low-resource alternative to the more resource-intensive GPT
models. It strikes a balance between efficiency and accuracy for text-based AI applications.

• Qwen2-7B (Yang et al., 2024a): Qwen2-7B is developed for Chinese and multilingual text
processing. It is optimized for high-performance language understanding across various
languages, making it a versatile choice for global applications.

• Yi-1.5-6B & Yi-1.5-6B-Chat (Young et al., 2024): Yi-1.5 is an upgraded version of Yi.
It is continuously pre-trained on Yi with a high-quality corpus of 500B tokens and fine-
tuned on 3M diverse fine-tuning samples. Compared with Yi, Yi-1.5 delivers stronger
performance in coding, math, reasoning, and instruction-following capability, while still
maintaining excellent capabilities in language understanding, commonsense reasoning, and
reading comprehension.

• Yi-Coder-1.5B (Young et al., 2024):: Yi-Coder is a series of open-source code language
models that delivers state-of-the-art coding performance.

• Yi-1.5-34B (Young et al., 2024): Yi-1.5 is an upgraded version of the Yi model family, with
Yi-1.5-34B being the largest and most advanced model in this series.

• deepseek-coder-33b (Guo et al., 2024) Deepseek Coder is composed of a series of code
language models with deepseek-coder-33b being the largest and most advanced model in
this series.

• gorilla-openfunctions-v2 (Patil et al., 2024) gorilla-openfunctions-v2 is one of the most
powerful 7B-level tool-finetuned models.

• xLAM-7b-r (Zhang et al., 2024): Large Action Models (LAMs) are advanced large lan-
guage models designed to enhance decision-making and translate user intentions into exe-
cutable actions that interact with the world. LAMs autonomously plan and execute tasks to
achieve specific goals, serving as the brains of AI agents.

• Toolformer (Schick et al., 2024): Toolformer is a specialized language model that can
select and interact with external tools dynamically during inference, enhancing its ability
to solve real-world problems without the need for retraining.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B DETAILS FOR DATASETS

B.1 API-BANK

API-Bank is one of the pioneering benchmarks for tool-augmented LLMs, consisting of 2,202 dia-
logues involving 2,211 APIs across 1,008 domains. The dataset includes 934 dialogues in the Call
category, 769 in the Retrieve+Call category, and 499 in the Plan+Retrieve+Call category. On aver-
age, each dialogue contains 2.76 turns in the training set and 2.91 turns in the testing set. Since the
Plan+Retrieve+Call category primarily evaluates a model’s planning capabilities, which is not our
focus, we limit our experiments to the Call and Retrieve+Call categories.

Example B.3 shows a query and the corresponding prompt in API-Bank.

B.2 BFCL V2 • LIVE

BFCL V2 • Live is a dataset designed to evaluate the function-calling (tool-use) capabilities of
LLMs. It leverages live, user-contributed function documentation and queries, addressing issues
of dataset contamination and biased benchmarks. By incorporating user-provided data, BFCL V2
• Live aims to more accurately assess LLM function-calling performance in real-world scenarios,
highlighting the importance of models performing effectively in diverse and dynamic environments.
The dataset comprises 258 simple, 7 multiple, 16 parallel, 24 parallel multiple, 875 irrelevance
detection, and 41 relevance detection entries. Each test category is outlined in the Evaluation Cat-
egories section, providing a comprehensive assessment of various function-calling scenarios. Since
irrelevance and relevance detection focus on tool awareness, which is not central to our work, we
focus our experiments on the first four categories.

• Simple Function: Single function evaluation contains the simplest but most commonly
seen format, where the user supplies a single JSON function document, with one and only
one function call will be invoked.

• Multiple Function: Multiple function category contains a user question that only invokes
one function call out of 2 to 4 JSON function documentations. The model needs to be
capable of selecting the best function to invoke according to user-provided context.

• Parallel Function: Parallel function is defined as invoking multiple function calls in par-
allel with one user query. The model needs to digest how many function calls need to be
made and the question to model can be a single sentence or multiple sentence.

• Parallel Multiple Function: Parallel Multiple function is the combination of parallel func-
tion and multiple function. In other words, the model is provided with multiple function
documentation, and each of the corresponding function calls will be invoked zero or more
times.

Example B.3 presents a query and its corresponding prompt from the parallel-multiple category of
BFCL V2 • Live. The structure of other categories is similar to this.

B.3 ULTRATOOL

UltraTool is a comprehensive benchmark designed to evaluate the ability of LLMs to effectively
utilize tools in real-world scenarios. It focuses on the entire workflow of tool-augmented language
models, covering each stage from initial planning and tool creation to their application in complex
tasks. The benchmark provides a rich dataset that supports fine-grained analysis of each stage in this
workflow, allowing for a deeper understanding of how models perform in various aspects of tool
usage.

In our analysis, we focus on three key stages of tool usage—Tool Awareness, Tool Selection, and
Tool Call—using the data provided by UltraTool, as shown in Figure 2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Dataset Example of API-Bank

Based on the given API description and the existing conversation history 1..t, please
generate the API request that the AI should call in step t+1 and output it in the format
of [ApiName(key1=’value1’, key2=’value2’, ...)], replace the ApiName with the actual
API name, and replace the key and value with the actual parameters. Your output should
start with a square bracket ”[” and end with a square bracket ”]”. Do not output any other
explanation or prompt or the result of the API call in your output. This year is 2023.

Input Template:
User: [User’s utterence]]
AI: [AI’s utterence]

Expected output:
API: [ApiName(key1=’value1’, key2=’value2’, ...)]

API descriptions:
{

"name": "GetUserToken",
"description":......,
"input_parameters": {

"username": {
"type": "str",
"description": "The username of the user."

},
"password": {

"type": "str",
"description": "The password of the user."

}
},
"output_parameters": {

"token": {
"type": "str",
"description": "The token of the user."

}
}
............

}

Input:
User: Can you add a schedule for me at 2pm on September 12th called ”Meeting with John”
at the office?
AI: Sure, I can add that schedule for you. When would you like the alarm to remind you?
User: Can you remind me 10 minutes before the schedule?
AI: Absolutely. To schedule the meeting, I first need to authenticate your account. Please
provide your username, email, and password.
User: My username is JaneSmith, my email is janesmith@example.com, and my password
is password.
AI: Thank you.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Dataset Example of the Parallel-Multiple Category of BFCL V2 • Live

system:
You are an expert in composing functions. You are given a question and a set of possible
functions. Based on the question, you will need to make one or more function/tool calls to
achieve the purpose.
If none of the function can be used, point it out. If the given question lacks the parameters
required by the function, also point it out. You should only return the function call in tools
call sections.
If you decide to invoke any of the function(s), you MUST put it in the for-
mat of [func name1(params name1=params value1, params name2=params value2...),
func name2(params)]
You SHOULD NOT include any other text in the response.

Here is a list of functions in JSON format that you can invoke.

[
{

"name": "view_service_provider_profile",
"description":,
"parameters": {

"type": "dict",
"required": ["professional_id"],
"properties": {

"professional_id": {
"type": "integer",
"description":,

}
}

}
............

}
]

user:
I need to find a maid for cleaning services who is available on March 19, 2024, starting at
noon. Can you find someone with good ratings, maybe around 4 or 5 stars, and no record of
quality problems?

C LATENCY ANALYSIS

We conduct a latency analysis for Tool Decoding in comparison with greedy search and beam search
on the API-Bank (Call) dataset, as shown in Table 5. The results show that Tool Decoding with oc ≤
1 introduces only slight latency, while Tool Decoding with oc ≤ 6 is faster than beam search with
the same number of samples. This is because order consistency maintains multiple candidates only
during the generation of the tool call, which constitutes just a portion of the entire response. Note

Decoding Method Mistral-7b-v0.1 deepseek-coder-6.7b
Greedy Search 7.92 7.69

Tool Decoding (oc ≤ 1) 8.57 8.41
Beam Search (beam = 6) 13.82 15.25
Tool Decoding (oc ≤ 6) 9.74 10.7

Table 5: Inference speed (sec/sample) for Tool Decoding in comparison with greedy search and
beam search.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: Error type distribution of two 70B-level LLMs on the API-Bank (Call) dataset. The
accuracy of qwen2-72b-instruct is 71.4%, while qwen1.5-72b-chat achieves 69.9%.

Model Greedy Search Tool Decoding TOOLDEC
gorilla-openfunctions-v2 51.9 77.2 69.4

Toolformer 13.5 31.8 7.7
deepseek-coder-6.7b 46.9 70.9 65.7

Table 6: Performance comparison across different models using various decoding methods on API-
Bank (Call). Bold highlights the best results for each model across the different decoding meth-
ods. The results demonstrate the advantages of our method over TOOLDEC across a range of
tool-finetuned and code models.

that our current implementation applies constraints at the level of logits. For practical deployment,
these constraints could be implemented at the language head layer, which would further reduce
computational requirements and enhance processing speed.

D ADDITIONAL ERROR ANALYSIS

As shown in Figure 7, the error type distributions of the two 70B-level models share similar features
with smaller models. Format errors and value errors remain the most prevalent, underscoring the
challenges arising from the tool call stage.

E COMBINE WITH MORE POWERFUL MODELS

To provide a more comprehensive evaluation, we supplement our experiments with results on more
powerful models, as shown in Table 7. Among these, gorilla-openfunctions-v2 represents one of
the most advanced tool-finetuned models, while Yi-1.5-34B and deepseek-coder-33b are both 30B-
level LLMs. Tool Decoding demonstrates significant improvements across all three models, with
both deepseek-coder-33b and gorilla-openfunctions-v2 outperforming GPT-4.

F COMPARISON WITH EXISTING CONSTRAINED DECODING METHODS

There are two existing decoding methods for tool usage. In this section, we highlight how our
method differs from them.

FANTASE (Wang et al., 2024) is not a plug-and-play method, as it requires additional training of
a reranker. It introduces state-tracked constrained decoding to ensure the correct format but still
relies on LLMs to generate all keys, including both required and optional parameters. This approach
cannot effectively address issues like missing certain parameters, as illustrated in Figure 2 of Wang
et al. (2024). To mitigate this limitation, a separate reranker should be trained to select the optimal
tool call from multiple generated samples. In contrast, our method does not require any additional
training and inherently avoids parameter absence, ensuring robustness in tool usage.

TOOlDEC (Zhang et al., 2023) is not universally applicable due to its specific requirements for tool
call formats. It employs multiple Finite-State Machines (FSMs) to perform constrained decoding,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

relying on a special token to signal transitions between FSMs as shown in Figure 4 of Zhang et al.
(2023) . For instance, in their implementation, formats like [Action: ToolName, Action
Input: {key1=value1,<0x0A>key2=value2}] are supported, where <0x0A> serves as
an indicator for transition from the first value FSM to the next key FSM. Since values are generated
freely, the model must independently generate this special token, which is then detected to trigger
the FSM transition. This reliance introduces two key limitations: (1) If the model fails to adhere
to the predefined format and omits the required special token during value generation, it remains
stuck in the value mode, freely generating tokens. This disrupts the FSM transitions, rendering
constrained decoding ineffective. (2) For tool-finetuned models or code models, such specialized
formats may deviate from the data encountered during their fine-tuning or pretraining, potentially
resulting in decreased performance.

It is important to note that punctuation marks, such as commas, spaces, and quotation marks, can-
not serve as special tokens since most models encode them as part of surrounding tokens rather
than as independent tokens. This makes TOOLDEC incompatible with common formats like
[ToolName(key1=value1, key2=value2)]. In contrast, Tool Decoding determines tran-
sitions by verifying whether a complete variable of the specified type has been generated to assign
the value, eliminating the reliance on special tokens. Table 6 demonstrates the robustness of our
method compared to TOOLDEC across various tool-finetuned and code models.

G ADDITIONAL EXPERIMENT RESULTS

Due to space constraints, we present the detailed results in this section. Table 7 provides a com-
prehensive overview of the results from API-Bank, covering 7B-level models such as chat models,
long-context models, code models, and lightweight models with 2B-level parameters. Table 8 dis-
plays the detailed results from BFCL V2 • Live. For brevity, weaker models that scored zero with
both greedy search and beam search have been omitted.

Both Table 7 and Table 8 compare the performance of three decoding methods—greedy search,
beam search, and Tool Decoding. The results consistently demonstrate that Tool Decoding signifi-
cantly outperforms the other two methods across all evaluated models and benchmarks, with perfor-
mance improvements exceeding twofold on certain tasks. This substantial enhancement highlights
the effectiveness of Tool Decoding in addressing the limitations of greedy search and beam search,
particularly in complex tool-use scenarios. Finally, Table 9 presents a comparison of the models’
performance with and without order consistency under Tool Decoding on both benchmarks, further
illustrating the effectiveness of our method in improving tool-use accuracy.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Model Decoding Method Call Retrieve+Call Total
Closed-Source Models

GPT-4 Greedy Search 76.2 47.4 61.8
GPT-3.5 Greedy Search 66.7 46.7 56.7

Generalist Models

Mistral-7b-v0.1
Tool Decoding 65.7 50.4 58.1
Greedy Search 31.3 31.9 31.6
Beam Search 35.3 26.7 31.0

FILM-7b
Tool Decoding 70.4 52.6 61.5
Greedy Search 37.3 43.7 40.5
Beam Search 35.6 42.2 38.9

deepseek-coder-6.7b
Tool Decoding 70.9 55.6 63.3
Greedy Search 46.9 43.0 45.0
Beam Search 48.4 34.1 41.3

gemma-7b
Tool Decoding 67.4 46.7 57.1
Greedy Search 53.9 34.8 44.4
Beam Search 55.1 26.7 40.9

Llama3-8b
Tool Decoding 54.4 48.9 51.7
Greedy Search 33.1 45.2 39.2
Beam Search 34.6 32.6 33.6

Qwen2-7b
Tool Decoding 53.9 46.7 50.3
Greedy Search 33.1 34.1 33.6
Beam Search 32.8 38.5 35.7

Yi-1.5-6b
Tool Decoding 50.4 49.6 50.0
Greedy Search 33.1 28.6 30.9
Beam Search 38.9 21.9 30.4

Yi-1.5-6b-Chat
Tool Decoding 27.8 26.7 27.3
Greedy Search 21.6 21.5 21.6
Beam Search 19.3 18.5 18.9

Yi-Coder-1.5b
Tool Decoding 49.9 44.4 47.2
Greedy Search 39.9 13.3 26.6
Beam Search 41.9 11.9 26.9

Yi-1.5-34B
Tool Decoding 68.9 53.3 61.1
Greedy Search 60.4 45.2 52.8

deepseek-coder-33b
Tool Decoding 74.4 57.0 65.7
Greedy Search 57.9 46.7 52.3

Tool-Finetuned Models

gorilla-openfunctions-v2
Tool Decoding 77.2 51.9 64.6
Greedy Search 51.9 48.9 50.4
Beam Search 48.4 45.2 46.8

xLAM-7b-r
Tool Decoding 73.9 54.8 64.4
Greedy Search 36.1 41.5 38.8
Beam Search 32.3 41.9 37.1

Toolformer
Tool Decoding 31.8 27.4 29.6
Greedy Search 13.5 4.4 8.9
Beam Search 23.3 8.2 15.8

Table 7: Detailed results on API-Bank, evaluated across a wide range of models.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Model Decoding Method Simple Multiple Parallel Parallel Total
Multiple

Closed-Source Models
GPT-4 Greedy Search 68.2 76.4 81.3 58.3 71.1

GPT-3.5 Greedy Search 54.3 57.5 62.5 41.7 54.0
Generalist Models

Mistral-7b-v0.1
Tool Decoding 57.0 41.9 43.8 41.7 46.1
Greedy Search 15.9 18.9 12.5 0.0 11.8
Beam Search 14.7 19.3 18.8 0.0 13.2

FILM-7b
Tool Decoding 64.3 69.1 62.5 33.3 57.3
Greedy Search 53.1 61.4 0.0 8.3 30.7
Beam Search 50.4 57.0 0.0 8.3 28.9

deepseek-coder-6.7b
Tool Decoding 65.9 55.8 68.8 58.3 62.2
Greedy Search 23.3 1.1 12.5 4.2 10.3
Beam Search 21.3 7.4 18.8 12.5 15.0

Yi-Coder-1.5b
Tool Decoding 52.3 28.0 37.5 16.7 33.6
Greedy Search 0.0 0.0 0.0 0.0 0.0
Beam Search 0.39 0.0 0.0 0.0 0.1

Yi-1.5-6b
Tool Decoding 61.6 38.1 50.0 41.7 47.9
Greedy Search 0.0 0.0 0.0 0.0 0.0
Beam Search 0.0 0.0 0.0 0.0 0.0

Qwen2-7b
Tool Decoding 58.1 60.7 50.0 45.8 53.7
Greedy Search 44.2 34.3 12.5 29.2 30.1
Beam Search 42.6 34.6 6.3 33.3 29.2

Tool-Finetuned Models

xLAM-7b-r
Tool Decoding 69.8 67.7 56.3 75.0 67.2
Greedy Search 42.1 29.1 31.3 16.7 29.8
Beam Search 40.7 33.9 31.3 20.8 31.68

Table 8: Detailed results on the BFCL V2 • Live, evaluated across a wide range of models. Some
weak models that scored nearly zero with both greedy search and beam search have been omitted
for brevity.

Model Decoding Method API-Bank BFCL V2 • Live
Generalist Models

Mistral-7b-v0.1 Tool Decoding w/ oc 58.1 46.1
Tool Decoding w/o oc 56.2 43.4

FILM-7b Tool Decoding w/ oc 61.2 57.3
Tool Decoding w/o oc 59.5 54.7

deepseek-coder-6.7b Tool Decoding w/ oc 63.0 62.2
Tool Decoding w/o oc 61.4 58.7

Yi-Coder-1.5b Tool Decoding w/ oc 47.2 33.6
Tool Decoding w/o oc 45.3 32.1

Yi-1.5-6b Tool Decoding w/ oc 50.0 47.9
Tool Decoding w/o oc 48.1 44.7

Qwen2-7b Tool Decoding w/ oc 50.3 53.7
Tool Decoding w/o oc 48.2 50.6

Tool-Finetuned Models

xLAM-7b-r Tool Decoding w/ oc 64.4 67.2
Tool Decoding w/o oc 62.7 64.1

Table 9: Comparison of tool decoding with and without order consistency.

21

	Introduction
	Fine-Grained Analysis of Tool Usage
	Tool Decoding
	Constrained Decoding
	Order Consistency

	Experiments
	Setup
	Main Results
	Error Analysis and Ablation Study

	Related Work
	Conclusion and Discussion
	Ethics Statement
	Reproducibility Statement
	Details for Models
	Details for Datasets
	API-Bank
	BFCL V2 • Live
	UltraTool

	Latency Analysis
	Additional Error Analysis
	Combine with More Powerful Models
	Comparison with Existing Constrained Decoding Methods
	Additional Experiment Results

