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Abstract. Cone-Beam Computed Tomography (CBCT) is a widely used
3D imaging technique in dentistry, providing volumetric information
about the anatomical structures of jaws and teeth. Accurate segmen-
tation of these anatomies is critical for clinical applications such as diag-
nosis and surgical planning, but remains time-consuming and challeng-
ing. In this paper, we present U-Mamba2, a neural network architecture
designed for multi-anatomy CBCT segmentation in the context of the
ToothFairy3 challenge. U-Mamba2 integrates the Mamba2 state space
models into the U-Net architecture, enforcing stronger structural con-
straints for higher efficiency without compromising performance. In ad-
dition, we integrate interactive click prompts with cross-attention blocks,
pre-train U-Mamba2 using self-supervised learning, and incorporate den-
tal domain knowledge into the model design to address key challenges
of dental anatomy segmentation in CBCT. Extensive experiments, in-
cluding independent tests, demonstrate that U-Mamba2 is both effec-
tive and efficient, securing first place in both tasks of the Toothfairy3
challenge. In Task 1, U-Mamba2 achieved a mean Dice of 0.84, HD95
of 38.17 with the held-out test data, with an average inference time of
40.58s. In Task 2, U-Mamba2 achieved the mean Dice of 0.87 and HD95
of 2.15 with the held-out test data. The code is publicly available at
https://github.com /zhiqin1998 /UMamba2.
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1 Introduction

Cone-Beam Computed Tomography (CBCT) is a widely used imaging modality
in dentistry. It provides comprehensive 3D volumetric information and excellent
visualization of the orofacial region, including jaws, teeth, nerves [15]. Accurate
segmentation of individual anatomical structures in CBCT images is crucial in
applications such as dental diagnosis, treatment, and surgical planning [14},[20]
26]. However, manual segmentation of CBCT scans requires specialized domain
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expertise and is extremely time-consuming due to their three-dimensional nature
[4]. Thus, there is a strong demand for robust and efficient CBCT segmentation
algorithms to improve the accuracy and efficiency of dental care and ultimately
lead to better patient outcomes.

Generally, network architectures for semantic segmentation can be catego-
rized into three: 1) Convolutional neural networks (CNN) such as U-Net |11}22]
and DeepLab [5] with translation-invariant convolutions that can effectively cap-
ture hierarchical image features and are parameter-efficient with their shared ker-
nel weights; 2) Transformers |28] such as SETR [30] and SwinTransformer [16]
that treat images as a sequence of patches instead of extracting image features
hierarchically to capture the global information better; and 3) Hybrid CNN-
Transformer architectures such as nnFormer [31] and SwinUNETR [24] that
attempt to exploit the best of both worlds by combining their architectures.

While the hybrid architectures have improved the global feature capabilities
of CNNs, transformers are highly resource-intensive due to the attention mech-
anism which scales quadratically with input size. This limitation reduces their
suitability for healthcare applications, which often involve high-resolution 3D
data and constrained computational resources in real-world settings. Recently,
structured state space sequence models [9], particularly the Mamba [8] model,
have emerged as an efficient and effective alternative to the transformer model.
By selectively capturing relevant input features and scaling linearly with input
size, Mamba outperforms transformers across multiple modalities [8}13}/19]. U-
Mamba [18] presented the first work to leverage Mamba for image segmentation,
achieving superior performance and surpassing transformer-based networks in a
range of medical image segmentation tasks. More recently, Dao et al. |7]| pro-
posed Mamba2, based on the structured state-space duality (SSD) framework,
which dramatically improves speed without weakening its performance.

In this paper, we propose U-Mamba2, a hybrid CNN-SSD architecture for
3D image segmentation. U-Mamba2 extends the previous U-Mamba model 8] by
leveraging the Mamba2 SSD framework that simplifies the Mamba architecture
with stronger constraints imposed on the hidden space structure. Mamba2 intro-
duced several architectural changes to enable tensor and sequence parallelism,
providing a significant speedup without compromising performance. Similar to
U-Mamba, U-Mamba2 can effectively extract local spatial features via CNN and
capture global long-range dependencies with Mamba2. We implement interac-
tive click prompts with cross-attention blocks and incorporate several domain
knowledge to address key challenges of dental anatomy segmentation in CBCT.
Our extensive experiments demonstrate the superior performance of U-Mamba?2
for CBCT segmentation, outperforming previous alternatives and achieving first
place for Tasks 1 and 2 of the ToothFairy3 challenge.

2 Method

This section describes our method, designed in the scope of the two tasks of the
ToothFairy3 |2}3,/17] challenges. Task 1 extends the previous ToothFairy2 chal-
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Fig. 1: (Left): Overall architecture of the U-Mamba2 model. U-Mamba2 employs
the encoder-decoder framework with residual connections between each stage
and the U-Mamba2 block in the bottleneck. The number of stages is configurable
depending on the dataset input size. (Right): The U-Mamba2 block contains the
SSD-based Mamba2 and an optional click position encoder and cross-attention
blocks. The output of Mamba2 follows the solid line for tasks without interactive
clicks, while it follows the dashed line when clicks are present.

lenge by adding segmentation of pulps, incisive nerves, and the lingual foramen
to the existing 42 anatomy classes (e.g. jaws, sinuses, and 32 teeth), and includes
inference time to the evaluation criteria. The dataset contains 532 CBCT scans
with shapes ranging from (170,272, 345) to (298,512,512), along with the seg-
mentation labels of 46 anatomy classes. On the other hand, Task 2 focuses on the
interactive segmentation of the inferior alveolar nerves, allowing interactive user
clicks as prompts to segment the inferior alveolar nerves. Fig. [[|shows the overall
structure of the U-Mamba2 model and the details of the U-Mamba2 block.

2.1 U-Mamba2: Integrating Mamba2 to U-Net

Inspired by U-Mamba [18], we propose U-Mamba2, which integrates the strengths
of U-Net and Mamba2 to efficiently capture global information. As shown in
Fig.[l} U-Mamba2 follows a structure similar to U-Net, with a symmetric encoder-
decoder architecture that extracts image features across multiple scales. Resid-
ual connections between the encoder and decoder blocks at each stage facilitate
the fusion of low-level and high-level features. As convolutional operations are
inherently localized, we leverage Mamba2 to enhance the vanilla U-Net’s lim-
ited capability to model global long-range dependencies in images by treating
the features as long sequences. Similar to Mamba, Mamba2 scales linearly with
sequence length but leverages the SSD framework to constrain the internal recur-
rent structure and uses matrix multiplication instead of selective scan, thereby
improving efficiency through parallelism.

The encoder blocks consist of two consecutive Residual blocks |10], followed
by a strided downsampling convolution, while the decoder blocks are composed of
Residual blocks and transposed convolutions for upsampling. In the U-Mamba2
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block, image features of shape (B, C, H,W, D) are reshaped and transposed to
(B, T,C) where B denotes the batch size, C' the number of channels, and H, W, D
are the spatial dimensions, with T'= H x W x D. Then, Layer Normalization
|1] is applied to the features before they are passed to Mamba2 to capture the
global contexts. The output features are then reshaped and transposed back to
(B,C,H,W,D). We apply the U-Mamba2 block exclusively in the bottleneck
stage, as it results in the best empirical performance for 3D computed tomog-
raphy modality, consistent with Ma et al. |18|. Finally, Softmax is applied to
the final decoder feature to produce the segmentation class probabilities, and
U-Mamba2 is trained with a combination of cross-entropy loss and Dice loss.

2.2 Cross-Attention with Point Encoder

We introduce an optional interactive branch to enable the model to incorporate
user-provided clicks to refine the output of U-Mamba2, improve accuracy, and
support human-in-the-loop collaboration. Following the SAM2 framework [21],
this branch employs a position embedding and two cross-attention blocks, as
illustrated in Fig. [l The optional clicks data contain a varying number of N
clicks consisting of the X, Y, Z coordinates, and class labels. These clicks are first
encoded with a learnable position embedding depending on their spatial positions
and class labels. Next, the embedded click prompts and the output features of
Mamba?2 are fused through two-way cross-attention blocks as queries and keys,
respectively. The cross-attention blocks, followed by Layer Normalization, are
repeated twice to allow the model to integrate click information with the image
features. The final output of the cross-attention block is then reshaped and
transposed back to the original spatial dimensions.

2.3 Pre-training with Self-Supervised Learning

Recent studies [25,27] have shown that pre-training models on large datasets
with self-supervised learning (SSL) produces stronger models that can extract
meaningful feature representations, leading to improved performance of down-
stream segmentation tasks, particularly when there is limited labeled data.

In addition to the 532 scans of ToothFairy3, we utilize the ST'S-3D-Tooth |29|
dataset consisting of 371 unlabeled CBCT scans to pre-train U-Mamba2 with
the disruptive autoencoder (DAE) [27] framework. DAE aims to reconstruct
the original 3D volume after it is corrupted by several low-level perturbations.
Specifically, we corrupt the input volume by randomly applying local masks,
downsampling, and adding Gaussian noise to the input. The disrupted input is
then passed through the U-Mamba2 to learn to reconstruct the original image
with an L1 loss function. The pre-trained weights are then used to initialize U-
Mamba2 (except for the weights of the optional interactive branch and the final
segmentation layer) for effective downstream training.
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2.4 Domain Knowledge for Dental Anatomy Segmentation

Label Smoothing of Related Anatomies. Anatomies in the orofacial region are
not always distinct and often share similar shapes and properties. For instance,
similar tooth types (incisor, canine, molar, premolar) between left-right counter-
parts, as well as the inferior alveolar and incisive nerves, exhibit close structural
relationships. Therefore, to guide the model in recognizing similar classes and
their spatial relationship, we introduce label smoothing for related anatomies
instead of learning with hard one-hot labels. For each pixel with class k, we set
the k-th class’s target probability to 0.9 and distribute the remaining 0.1 evenly
across the related classes. Specifically, for each voxel with a ground truth class
label, k, and a set of related classes, .S, we first initialize a zero vector, p, as the
soft label, then set pr = 0.9 and p, = %,Vr € S,. We apply this strategy to
all anatomies with left-right counterparts, neighboring teeth, and to the inferior
alveolar and incisive nerves.

Weighted Loss for Tiny Structures. ToothFairy3 introduced three additional
classes corresponding to the left and right incisive nerves and the lingual fora-
men, which house thin, sensitive nerves in the mandible. These structures are
considerably smaller than other anatomies in the dataset. We account for the vol-
ume differences by applying a class weight of 10 to these three tiny classes, so that
their contribution to the overall loss is not overshadowed by larger anatomies.

Left-Right Mirroring Augmentation. The findings of the previous ToothFairy?2
challenge [4,/12] showed that left-right mirroring augmentation can degrade the
model’s capability to reliably differentiate the left/right orientation. In den-
tistry, even dentists may struggle to identify a horizontally-flipped 2D image re-
liably without visual cues 6], due to the structural symmetry between left /right
anatomies in the sagittal plane. However, we can exploit this anatomical sym-
metry with careful pre-processing and post-processing, enabling left-right mir-
roring augmentation without reducing model performance. We propose to swap
the class labels of anatomies opposite to the sagittal plane whenever left-right
mirroring occurs during data augmentation (e.g. ‘Upper left canine’ and ‘Upper
right canine’). Additionally, we also switch the predicted logits of the corre-
sponding left /right anatomies if the image is mirrored in the left-right axis dur-
ing test-time augmentation (TTA). With proper processing during training and
inference, the number of possible axes combinations for mirroring augmentation
is expanded from 3 to 7, substantially increasing the generalization capabilities
and performance of U-Mamba2.

Post-processing. We incorporate anatomical priors of the orofacial region that
voxels belonging to the same anatomy should be connected and not separated
into blobs, as a post-processing step. Unlike the first-place solution [12]| of the
previous ToothFairy2 challenge, we perform post-processing to remove small
predictions that are likely false positives based on the volume of the computed
connected components |23] instead of the total volume of each class. Specifically,
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Table 1: Validation set evaluation metrics.  indicates applying post-processing.
Task 1 Task 2

Dice HD95 Dicet HD95t Time | Dice HD95 Dicet HD95t Time

SwinUNETR [24] 0.858 48.86 0.874 40.09 7.23 - - - - -

nnU-Net ResE [11] | 0.861 45.28 0.887 32.05 6.20 | 0.901 198 0.905 1.71 5.06

U-Mamba |18| 0.865 42.06 0.896 25.88 6.98 | 0.903 1.65 0.913 1.58 5.88

U-Mamba2 (ours) | 0.873 41.08 0.908 21.35 6.81 |0.905 1.63 0.913 1.57 5.70

Model

we select the threshold as the 0.5th percentile of the connected components’ vol-
ume computed using the ground truth for each class. Importantly, this threshold
is determined through the statistics of the ground truth rather than model pre-
dictions, ensuring that it is not model-specific. The threshold for each class is
pre-computed using the entire ToothFairy3 training dataset.

3 Experiment Results

We implement U-Mamba2 with the nnU-Net [11] framework. We perform a 9:1
stratified train-validation split on the ToothFairy3 dataset to ensure the same
proportion of data sources (with different fields of view and imaging machines)
in the train and validation datasets. All models are pre-trained with SSL (Sec-
tion following the original training configuration of DAE [27]. Each model
employs seven encoder-decoder stages, an input patch size of 128x256x256, the
native voxel spacing of 0.3mm? (leading to no downsampling or upsampling
during model training and inference), and a batch size of 1. During training,
we disable left /right mirroring augmentation for all models except U-Mamba2,
while during inference, we use sliding window inference with a tile size of 0.5
and disable left /right mirroring in TTA for all models, including U-Mamba2,
for fair comparison. Other hyperparameters follow the default values of nnU-
Net. Model training and time computation are performed on an RTX4090 GPU.
We evaluate the models with the Dice coefficient, the Hausdorff Distance at the
95th percentile (HD95), and the average inference time in seconds, where lower
is better for all metrics except Dice.

3.1 Quantitative Results

Table [1| compares the proposed U-Mamba2 with nnU-Net ResE [11], U-Mamba
[18] which utilizes the original Mamba layer [§], and SwinUNETR [24] on the
ToothFairy3 dataset. For Task 2, we incorporate a point prompt encoder to
nnU-Net ResE and U-Mamba at the bottleneck stage, similar to U-Mamba2.
U-Mamba2 outperforms all benchmark models, achieving the best mean Dice
score of 0.873 and 0.905 for Tasks 1 and 2, respectively. After applying post-
processing, U-Mamba2 further improves to a mean Dice score of 0.908 and 0.913
for Tasks 1 and 2, respectively. U-Mamba?2 delivers the best performance with
an average inference time of 6.81 and 5.70 seconds per scan for the two tasks,
demonstrating a slight speedup over U-Mamba.
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Table 2: Ablation Study of U-Mamba2 for the validation set of Task 1. ILN
indicates the metrics for the left and right incisive nerves and the lingual nerve.

Sm%)itt’}elling W?i?:ed Mil;ré }r{ing Dice HD95 Dice (ILN) HD95 (ILN)
x x x 0.867 42.36  0.617 38.41
v x x 0.872 4074  0.628 38.15
x v x 0.870 4131  0.635 37.99
x x v 0.871 4120  0.642 36.48
v v v 0.873 41.08  0.646 35.21

(a) Ground Truth (b) Prediction

Fig. 2: Qualitative results of U-Mamba2 on the validation set of Task 1. The 3D
render and a representative 2D slice are shown for: (Top) the best scoring case
and (Bottom) the worst scoring case.

Furthermore, we perform an ablation study on U-Mamba2 by individually
applying the dental domain knowledge introduced in Section [2:4] excluding the
post-processing step (See Table [I| for post-processing results). Table [2[ shows
that these techniques lead to small performance improvements. In particular,
the weighted loss and left/right mirroring techniques improve the mean Dice
score on the three tiny structures, i.e. the left and right incisive nerves and the
lingual nerve (ILN) from 0.617 to 0.635 and 0.642, respectively. When all three
techniques are applied, U-Mamba2 achieves the best performance, with a mean
Dice score of 0.873 and 0.646 for all classes and the ILN classes, respectively.

3.2 Qualitative Results

Fig. [2] visualizes the qualitative comparison between the ground truth and our
model’s predictions of the scans with the highest and lowest Dice score in the
validation set, in the top and bottom rows, respectively. We observe that in
most cases, U-Mamba2 produces precise segmentation predictions, showcasing
the effectiveness of incorporating dental domain knowledge into the model de-
sign. Furthermore, we observe that U-Mamba2 can accurately localize the three
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Fig.3: (Left): Effect of the tile size on the metrics with ‘0,1’ mirror axes in
TTA. (Right): Effect of various mirror axes combinations in TTA on the met-
rics when tile size is set to 0.9. Axis definition: ‘0’ is superior/inferior, ‘1’ is
anterior /posterior, and ‘2’ is left /right.

tiny structures (ILN), producing visually acceptable segmentations. In the worst-
case scenario, although the scan is imperfect due to image artifacts caused by
metallic objects, false positives are primarily confined around the image edge
or confusion between the actual tooth and the crown or implant, underscoring
U-Mamba2’s robustness under noisy conditions.

3.3 Optimizing Speed in Sliding Window Inference

As the inference time is an important metric in the ToothFairy 3 challenge,
we optimize the sliding window inference parameters to improve speed with-
out significantly deteriorating model accuracy. Specifically, we optimize the tile
size parameter, where a larger value results in less border overlap during sliding
window inference, and the mirror axes combinations in TTA. Fig. [3| shows the
tradeoff between Dice score and inference time for different tile sizes and mirror
axes combinations in TTA. By setting the tile size to 0.9, we can reduce the
inference time by 12.9% with a negligible drop of only 0.002 Dice score. More-
over, Fig. [ also demonstrates that the optimal mirror axes combination is ‘1,2’,
representing anterior/posterior and left/right, offering the best Dice score with
an average inference time of only 6.02 seconds. We believe this is due to the
larger spatial dimension in these axes containing more information.

3.4 Final Challenge Submission

For the final submission, we extended training to 1500 epochs using all available
data with a batch size of 2 and increased the input patch size to 160x288x288.
During inference, we use a sliding window inference with a tile size of 0.9 and
enable mirroring in the anterior/posterior and left/right axes during TTA. The
final U-Mamba2 model achieved a mean Dice of 0.84, HD95 of 38.17, with an
average inference time of 40.58s, computed on the Grand Challenge platform
using a T4 GPU, securing first place in Task 1 of the ToothFairy3 challenge
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with a 3.1 overall ranking while obtaining first place in Task 2 with a mean
Dice, HD95 and overall rank of 0.87, 2.15 and 1.66, respectively, on the hidden
test set.

4 Conclusion

We presented a new architecture, U-Mamba2, designed for multi-anatomy seg-
mentation of CBCT images in the scope of the ToothFairy3 challenge. U-Mamba2
integrates the Mamba2 SSD framework into the U-Net backbone, achieving
higher efficiency without compromising performance compared to U-Mamba.
By incorporating domain-specific knowledge of dental anatomy, we improved
the model’s performance on multi-anatomy segmentation of CBCT scans. Both
the validation and independent test results demonstrate the effectiveness and
efficiency of U-Mamba2, securing first place in both Tasks 1 and 2 of the Tooth-
Fairy3 challenge.
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