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Abstract

Collaborative robots and machine learning-based virtual agents are increasingly en-
tering the human workspace with the aim of increasing productivity and enhancing
safety. Despite this, we show in a ubiquitous experimental domain, Overcooked-AI,
that state-of-the-art techniques for human-machine teaming (HMT), which rely on
imitation or reinforcement learning, are brittle and result in a machine agent that
aims to decouple the machine and human’s actions to act independently rather than
in a synergistic fashion. To remedy this deficiency, we develop HMT approaches
that enable iterative, mixed-initiative team development allowing end-users to
interactively reprogram interpretable AI teammates. Our 50-subject study provides
several findings that we summarize into guidelines. While all approaches underper-
form a simple collaborative heuristic (a critical, negative result for learning-based
methods), we find that white-box approaches supported by interactive modification
can lead to significant team development, outperforming white-box approaches
alone, and that black-box approaches are easier to train and result in better HMT
performance, highlighting a tradeoff between explainability and interactivity versus
ease-of-training. Together, these findings present three important future research
directions: 1) Improving the ability to generate collaborative agents with white-box
models, 2) Better learning methods to facilitate collaboration rather than individu-
alized coordination, and 3) Mixed-initiative interfaces that enable users, who may
vary in ability, to improve collaboration.

1 Introduction
Successful human-machine teaming (HMT) has long been sought after for its wide utility across
potential applications, ranging from virtual agents such as “clippy" that provide on-demand support
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for improving documents to embodied robotic healthcare aides that can provide doctors with a helping
hand [29]. While promising, achieving fluent HMT is challenging because interactions with humans
can be incredibly complex due to the diversity across users [26], human teammates benefit from
explainable systems to support the development of mental models [31], and the lack of bidirectional
communication (i.e., unclear how humans can “tell" a machine online to perform a desired behavior)
[46]. In this paper, we transition from the conventional approach of crafting an HMT solution that
aims for flawless out-of-the-box performance to a paradigm where end-users can actively interact
with and program AI teammates, fostering a more dynamic and developmental interaction between
humans and AI. Specifically, we explore enabling humans to perform user-specific modifications to
a collaborative AI’s interpretable policy representation across repeated iterations of teaming episodes
and provide a set of design guidelines to support team development in HMT drawn from a large-scale
user study.

Recently, data-driven techniques (e.g., imitation and reinforcement learning) have become popular
in HMT, allowing for the generation of collaborative agent behavior without cumbersome manual
programming [40, 5]. However, these prior works utilize opaque, black-box models, limiting human’s
ability to develop a shared mental model and maintain situational awareness [27], crucial for high-
performance teaming [37]. We posit that successful, real-world HMT is not feasible without the use
of white-box methods, especially in safety-critical domains such as healthcare and manufacturing.
Furthermore, collaborative interactions with machines have often lacked the ability to effectively
learn with and adapt to human teammates in real-time [19]. In ad hoc human-human teams, effective
teaming is often developed through an iterative process [43]. Bi-directional communication is often a
key component of this process, enabling the development of successful coordination strategies [36].
In our work, we build towards such a team development paradigm in HMT by 1) creating a pathway of
bi-directional communication, utilizing interpretable policy representations as a mechanism to allow
users to understand their machine teammates and allowing for explicit teammate policy modification
through an interface (users can modify the machine’s tree-based policy via a GUI), and 2) allowing
for the process of iterative mixed-initiative team development through repeated teaming episodes. We
believe this paradigm is necessary because human-partnered systems need explainable components
and adaptable systems. We provide the following contributions:

• We provide a case study regarding prior work in HMT [5, 40], finding that the generated machine
behavior is unable to adapt to human-preferred strategies, and that high performance is typically
driven by independent machine actions rather than collaboration, which can ultimately result in a
higher team score.

• We create a novel InterpretableML architecture to support the creation of tree-based cooperative
agent policies via reinforcement learning and a GUI to allow users to modify the AI’s behavior to
their specifications. This capability is promising, enabling end-users to “go under-the-hood" of
machine learning models and tune affordances or interactively and iteratively reprogram behavior.

• We conduct a 50-participant between-subjects user study assessing the effects of interpretability
and interactive policy modification across repeated interactions with an AI. We summarize our
study findings into a set of design guidelines to support future HMT research.

2 Preliminaries

Here, we introduce prior work in HMT and Explainable AI, our experimental domain, Overcooked-
AI, a model of team development used to understand our findings, Tuckman’s Model, and the
mathematical framework under which we generate agents, Markov Games.

Human-Machine Teaming – The field of HMT is concerned with understanding, designing, and
evaluating machines for use by or with humans [6, 44, 30]. A popular technique that has been used
to produce collaborative AI agents is Reinforcement Learning (RL) [28], where researchers have
concentrated efforts on reducing the dissimilarity between synthetic human training partners and
testing with human end-users. Approaches that have achieved some success include utilizing human
gameplay data to finetune simulated training partners to behave more human-like [5], which can
be expensive, and training with a diverse-skilled population of synthetic partners to create an agent
that can better generalize to non-expert end-users [40], which may bias the AI teammate to exhibit
individualized strategies, as we display in Section 3. We note our work focuses on an interaction
different from AI-assisted decision-making or decision support. Here, a human and an agent must
collaborate across a series of timesteps, aiming to maximize a multifaceted joint objective function.
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Explainable AI – xAI is concerned with understanding and interpreting the behavior of AI systems
[23]. In our work, we follow recent trends that show black-box methods paired with local explanations
can be harmful [34] and utilize interpretable, white-box tree-based models in a multi-agent sequential
decision-making problem. These models have been shown to be beneficial in improving the user’s
ability to simulate a decision-making model [42] and providing users with increased situational
awareness over a teammate’s behavior in an HMT setting [31]. While tree-based models can provide
users insight into the model, the complexity of the tree-based model limits its utility [24]. While
we note this as a potential weakness of utilizing tree-based models, effective state representations
can provide a tradeoff between granular control and tree depth. Accordingly, we design our trees
to reason over a state-space with high-level binary features and multi-step macro-actions, expanded
on below. Furthermore, in our work, we explore a paradigm where a user can directly modify and
visualize a tree-based AI teammate the user is interacting with after a teaming episode. Prior work in
explainable debugging [18] and robotics [33, 9] has explored similar paradigms, creating interactive
systems that allow end-users to modify agent behavior to increase performance, but has not explored
deploying tree-based models trained via RL in a collaborative HMT setting. We provide a working
definition of what we mean by “interpretable" within the Appendix Section G.

Overcooked-AI – Overcooked-AI [5] is a testbed to evaluate human-AI interaction and has been
used across HMT research concerned with collaboration [40], teammate identification [14], intention
prediction [45], and behavior influence [16]. Here, two agents are tasked with creating and delivering
as many soups as possible within a given time. Achieving a high score requires agents to navigate a
kitchen and repeatedly complete a set of sequential high-level actions, including collecting ingredients,
placing ingredients in pots, cooking ingredients into a soup, collecting a dish, getting the soup, and
delivering it. Both players receive the same score increase upon delivering the soup. We modify the
original Overcooked-AI game to be a simultaneous-move game as opposed to the original formulation
of allowing agents to perform actions asynchronously. This modification prevents the collaborative
score metric from being dominated by super-human AI speed, causing the overall score to be more
reliant upon effective collaboration and strategy. We provide details about the state and action space
below and complete details in the appendix.

State-Space: Policies reason over a semantically meaningful feature space as opposed to pixel space,
detailing the objects each agent is holding, pot statuses, and counter objects. This state space allows
for learning an interpretable tree-based policy that can be understood and manipulated by end-users.

Action-Space: Instead of using cardinal actions, we allow the AI to utilize macro-actions that can
accomplish high-level objectives such as ingredient collection, ingredient placement, and soup serving.
Macro-actions are planned using an A* planner, and we perform dynamic replanning at each timestep.
Constructing trees on a higher level of abstraction results in smaller trees that are easier to interpret.

Tuckman’s Model – Tuckman [43] describes the different stages that a team goes through before
reaching high performance, including “Forming", “Storming", “Norming" and “Performing," often
seeing a drop in performance as team members acclimate, followed by a rise as team members
understand how to collaborate. Assuming that human-machine teams will follow similar stages to
human-human teams, this paper looks into how we can support human-machine teams in reaching
the Performing stage, where the team is achieving its full potential and exhibiting the highest level of
cooperation. We provide a depiction of these stages as part of Figure 2.

Markov Game – We formulate our setting as a Markov Game [25], defined by a set of global states,
S1, S2 ∈ S, a set of actions, A1, A2 ∈ A, transition function, T : S × A1 × A2 7→ S. and reward
function ri : S ×Ai 7→ R. Agent i aims to maximize its discounted reward Ri =

∑T
t=0 γ

trti , where
γ ∈ [0, 1] is a discount factor. For training, we utilize agent-agent collaborative training, which trains
two separate agents jointly via single-agent PPO. We utilize PantheonRL [38] for training our agents,
incorporating our novel tree-based architecture (Section 4.1) into the codebase.

3 A Gap in Teaming Performance
In this section, we present two examples to display a gap in the quality of AIs in HMT. Specifically,
we look at two recent approaches to produce collaborative AI agents [40, 5]. We argue and display
that the AIs trained via these approaches are rigid and exhibit individualized behaviors, missing out
on collaborative teaming strategies that can ultimately result in higher team scores. We require AI
agents that can effectively reach a consensus with humans on a teaming strategy that ultimately
results in high performance. In cases where the human has a preferred strategy, the AI teammate
should be able to support said strategy.
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(a) We display the human-preferred collaboration
behavior that focuses on minimizing agent movement
and efficient handoffs using the middle counter. This
unsuccessful HMT receives a score of 0.

(b) We display a human adapting to an AI-preferred
suboptimal teaming strategy, where agents act indi-
vidually. This individualized coordination results in
minor success, achieving a low score of 40.

Figure 1: Case Study in Human-Machine Teaming with Different Teaming Strategies. It is clear
that the models are not robust to multiple strategies of play and can result in agents performing
nonsensical behavior (e.g., stuck in place).

In Figure 1, we display the Coordination Ring scenario. A simple collaboration strategy (which
we term “human-preferred") in this domain is to utilize the counter to continuously pass objects,
minimizing agent movement through efficient handoffs. To test a set of collaboration strategies, we
utilize agents publicly available from Carroll et al. [5]. In Figure 1, we display a frame-by-frame
of the human-preferred coordination strategy (Figure 1a) and AI-preferred coordination strategy
(Figure 1b), which was a strategy where agents act individually to collect ingredients and place
them in pots. The latter behavior was inferred through repeated play with the publicly-available AI.
With the human-preferred strategy, the AI agent freezes for the majority of the game, creating an
extremely frustrating and low-performing AI teammate. In this scenario, the human (green) picks up
an ingredient and places it on the counter at the start of the game. The AI agent (blue), unfamiliar
with this teaming strategy, freezes for approximately 80% of the remaining episode before finally
placing an onion in the pot. With the AI-preferred strategy, the human is able to successfully team
with the AI, with each agent retrieving and placing ingredients while moving in a clockwise motion,
but the strategy is not optimal or what the human prefers. As the AI produced by Carroll et al. [5]
is created via RL teaming human-like AI teammates, the generated behavior may not be ideal for
the current teammate, especially if the current teammate’s preferred strategy was not present in the
original training dataset used to create human-like AI training partners. This highlights a need for
systems that can explain strategies exhibited by trained agent policies and allow humans to adapt
these pre-trained policies toward human-preferred behavior.

In a second example, we utilize the Optional Collaboration domain, displayed on the right-hand side
of Figure 4b, which is also utilized in our human-subjects experiment. This domain was designed
to incentivize collaboration, where creating mixed-ingredient dishes facilitated by agents passing
ingredients across the central counter will result in a higher score per dish. Here, we program two
intelligent deterministic heuristics: In the first, each agent acts completely individually, cooking
single-ingredient dishes and serving. In the second, agents share ingredients, which costs additional
timesteps, but are able to successfully cook mixed ingredient dishes. We find that the collaboration
strategy achieves a 408 cumulative team score, approximately 30% more score compared to the
individualized strategy of 306. However, we find that trained policies under Ficticious Co-Play [40]
exhibit similar team score to that of the individual coordination strategy and further, find that real
human end-users collaborating with these agents are unable to far surpass the individual strategy score.
As Strouse et al. [40] trains an agent to work well with a population of agents, where approximately
a third of the diverse-skilled population of agents used in training are completely random agents,
we posit that the teammate agent must compensate and exhibit individualized behavior, limiting the
algorithm’s ability to effectively learn effective team coordination strategies. In line with the first
case study, the trained collaborative agent policies miss out on high-performance teaming behaviors,
and thus, we need systems where humans can iteratively improve agent behavior online.

Thus, in the rest of the paper, we look to explore xAI techniques as a mechanism for closing this
gap and allowing agents within a human-machine team to facilitate collaborative strategies that
outperform the individualized and rigid behaviors trained agents assume.

4 Methodology
In this section, we first present our architecture for training interpretable AI teammates. We then
present a contextual pruning algorithm, allowing for ease-of-training and enhanced interpretability
for neural tree-based models. We display an overview of our training procedure as part of Figure 2.
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4.1 Interpretable Discrete Control Trees

We create an interpretable machine learning architecture, Interpretable Discrete Control Trees (ID-
CTs), that can be used directly with RL to produce interpretable teammate policies. Below, we briefly
detail our architecture, as well as advancements to enhance ease-of-training and interpretability.

Architecture Our IDCTs are based on differentiable decision trees (DDTs) [41] – a neural network
architecture that takes the topology of a decision tree (DT). DDTs contain decision nodes and leaf
nodes; however, each decision node within the DDT utilizes a sigmoid activation function (i.e.,
a “soft" decision) instead of a Boolean decision (i.e., a “hard" decision). Each decision node, i,
is represented by a sigmoid function, displayed as yi = (1 + exp(−α(w⃗T

i x⃗ − bi)))
−1. As this

representation is difficult to interpret, Paleja et al. [32] presented differentiable crispification, which
recasts each decision node to split upon a single dimension of the input feature and translates the
outcome of a decision node so that the outcome is a Boolean decision rather than a set of probabilities.
This, in turn, allows for an interpretable forward propagation through the model that traces down
a single branch of a tree as well as gradient flow afforded by the straight-through trick to update
parameters of the neural tree model. We utilize this approach to learn interpretable tree-based
teammate policies via reinforcement learning.

Figure 2: Here, we provide an overview of the steps to produce
a collaborative AI teammate with an interpretable policy and the
proposed policy modification scheme evaluated in our user study.

We initialize our IDCTs to be
symmetric DTs with Nl decision
leaves and Nl−1 decision nodes.
Each decision leaf is represented
by a sparse categorical probabil-
ity distribution over actions. At
each timestep, a state variable
is propagated through each de-
cision node, split on a single de-
cision rule, with the output be-
ing a Boolean causing the deci-
sion to proceed via the left or
right branch until arrival at a leaf
node. At each leaf node, we sam-
ple from the respective distribu-
tion to produce a macro-action
(e.g., in Overcooked-AI, “get an
onion" or “place ingredient on
counter"). Further, we improve
model predictability by applying
an L1 norm loss over leaf node
distributions to ensure sparsity,
penalizing high entropy action distributions at a leaf1. Importantly, the resultant representation after
training is that of a simple decision tree with categorical probability distributions at each leaf node.

Contextual Pruning As we focus on creating agents that must cooperate with and be interpreted
by humans, we must limit the size of our tree-based models to a certain depth to promote user
understanding. Analogous to the “lottery ticket hypothesis" in network training that supports the
practicality of employing large models [11], a small tree with a limited number of sub-trees (lottery
tickets) may not have the representational power to learn a high-performing policy. Thus, the ability
to effectively train IDCTs is at odds with maintaining user readability and simulatability. Following
work in neural network pruning [22], we design a post-hoc contextual pruning algorithm that allows
us to simplify large IDCT models while precisely adhering to model behavior by accounting for:

1. Boundaries of a variable’s state distribution: We utilize the minimum and maximum of each
variable’s range to parse impossible subspaces of a tree.

2. Node hierarchy: Ancestor nodes for a specific decision node may have already captured a specific
splitting criterion and, thus, may lead to redundancy. By detecting redundancies, we can prune
subspaces of the tree.

1While utilizing deterministic AI policies may be easier to understand for users, we found these models could
not converge to similar performance as the stochastic-leaf IDCT policies during training.
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We provide further details and an algorithm for contextual pruning in the supplementary material. This,
in turn, allows us the benefit of training large tree-based models, greatly improving ease-of-training,
while still being able to simplify the resultant model to a smaller, equivalent representation.

4.2 Modifying an Interpretable Policy
While the above architecture can be used alongside RL to produce a collaborative AI policy, the result
may not actually be helpful or what the human wants. Humans, when teaming with machines, should
be able to intuitively update what the robot has learned or change it based upon preferences that
may evolve over time. Such is critical in the positive development of coordination strategies and is
associated with the calibration of trust, assignment of roles, and development of a shared mental model.
As such, we propose a policy modification scheme that allows the user to repeatedly team with an AI
maintaining an IDCT policy, visualize the current behavior in tree form, and modify its AI’s behavior.

Figure 3: Users have several capabilities in creating an ef-
fective teammate, including modifying the tree structure by
adding or removing decision nodes, changing state features
the tree is conditioned on, and modifying actions and/or their
respective probabilities at leaf nodes.

The iterative process generated
through this scheme can facilitate
a feedback loop, allowing for the
possibility of team development and
improved HMT performance over
teaming episodes.

We term our modification scheme
human-led policy modification. We
provide humans with an explicit path-
way to “communicate" with an AI af-
ter each teaming interaction through
a GUI, with capabilities displayed in
Figure 3. Within this interface, users
start with the pre-trained collabora-
tive AI IDCT policy and can modify
the AI’s behavior by creating a new
tree structure that may vary in what
state features appear in the decision
nodes, actions taken in leaf nodes, and
the respective probabilities of actions
within the leaf node. It is important to
note that users are limited to expand-
ing the tree to a depth of four (i.e., a
max of 16 leaves), and the modifica-
tion is not timed.

4.3 Trained Collaborative Teammate Policies

Across our experiment, we study collaboration in two domains, Forced Coordination and Optional
Collaboration, displayed on the left-hand side of Figure 4. In each domain, we train an IDCT policy
via agent-agent collaborative training and a neural network (NN) policy following the population-
based training scheme in Strouse et al. [40]. In the first domain of Forced Coordination, the IDCT
policy converged to a policy with an average reward of 315.22±14.59, and the neural network policy
converged to an average reward of 403.16± 16.08 evaluated over 50 teaming simulations with the
synthetic human teammate the policy was trained with. In the second domain, Optional Collaboration,
the IDCT policy converged to a policy with an average reward of 171.46 ± 18.89, and the neural
network policy converged to an average reward of 295.02± 1.86. Thus, a consequent confound due
to the current difference in performance capabilities between interpretable vs. black-box models is
that the NN policy outperforms the IDCT policy in both domains. This displays a need for improving
optimization algorithms for interpretable models representing collaborative agent policies. However
importantly, while the initial simulated performance of interpretable models may underperform
black-box models, the ability for humans to understand machine behavior and improve upon behavior
may allow these approaches to compete or even outperform black-box NN models. We can also
compare to the heuristic policies presented in Section 3, observing that the training performance of
the IDCT and NN policies in the Optional Collaboration domain underperform the collaborative
heuristic (408 vs. 295.02 and 171.46). We provide visualizations of the trained IDCT policies for
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each domain in the appendix, finding that after contextual pruning, the AI IDCT policy has two and
three leaves, respectively.

5 Human-Subjects Study
Here, we discuss our between-subjects user study that seeks to understand how users interact with an
AI across repeated play under different factors. Below, we introduce our research questions, provide
a description of the independent variables and procedure, and discuss our findings.

Research Questions The presented research questions below seek to understand changes in overall
human-machine teaming performance and performance changes across repeated gameplay. The latter
question pivots from an episodic attitude of teaming to a longer-term gauge, allowing us to study the
process of adaptation in HMT.

1. RQ1: How does human-machine teaming performance vary across factors?
2. RQ2: How does team development vary across factors?

Independent Variables We have two independent variables, IV1: the teaming method, and IV2: the
domain. For IV1, we consider the following conditions (abbreviated by IV1-C):

1. IV1-C1: Human-Led Policy Modification: After interacting with the agent (one teaming
episode), the user can modify the policy via the GUI, allowing the user to update decision nodes
and action nodes in the tree as well as tune affordances. Upon completion, the user can visualize
the updated policy in its tree form prior to the next interaction.

2. IV1-C2: AI-Led Policy Modification: After interacting with the agent, the AI utilizes recent
gameplay to fine-tune a human gameplay model via Behavioral Cloning and performs reinforce-
ment learning for five minutes2 to optimize its own policy to better support the human teammate.
Upon completion of policy optimization, the user can visualize the updated AI policy in its
interpretable tree form prior to the next interaction. This is similar to HA-PPO [5], adapted to an
online setting.

3. IV1-C3: Static Policy - Interpretability: After interacting with the agent, the user can visualize
the AI’s policy in its interpretable tree form prior to the next interaction. Throughout this condition,
the AI’s policy is static.

4. IV1-C4: Static Policy - Black-Box: After interacting with the agent, the user does not see the
AI’s policy. Here, the AI policy is the same as IV1-C3, but the human has lost access to direct
insight into the model.

5. IV1-C5: Static Policy - Fictitious Co-Play: [40]: User teams with an AI maintaining a static
black-box, neural network (NN) policy trained across a diverse partner set. As this is a baseline,
we utilize an NN rather than the legible IDCT policy used in other conditions (IV1:C1-4).

For IV2, we consider the following domains displayed on the left-hand side of Figure 4:

1. IV2-D1: Forced Coordination: Users team with an AI that is separated by a barrier and must
pass over items in a timely manner. Here, agents are forced to collaborate.

2. IV2-D2: Optional Collaboration: In this domain, the team can operate individually or collabo-
ratively. This domain has increased complexity, both with respect to the size of the domain and
the types of soups that can be cooked. Collaboration is incentivized through a higher reward for
mixed-ingredient dishes (combining onions and tomatoes) over single-ingredient dishes.

Table 1: A comparison across different IV1 factors.

Explicit Policy Changes Base
Approaches Interaction Across Iterations White-Box Policy

IV1-C1 ✓ ✓ ✓ IDCT
IV1-C2 ✗ ✓ ✓ IDCT
IV1-C3 ✗ ✗ ✓ IDCT
IV1-C4 ✗ ✗ ✗ IDCT
IV1-C5 ✗ ✗ ✗ NN

Procedure: A participant is first randomly
placed into one of the five conditions in IV1.
The participant starts with a pre-experiment sur-
vey collecting demographic information, expe-
rience with video games and decision trees, and
the Big Five Personality Questionnaire [7]. Af-
terward, a participant conducts a brief tutorial in
Overcooked with a random AI agent, improving

2We limit the online optimization time for the AI teammate to five minutes to create a feasible user-study.
This RL optimization is challenging as only a limited number of samples can be obtained in this time, and thus,
the policy is not guaranteed to improve. In cases where the policy degrades, we use the original policy prior to
optimization.
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(a) Performance Data in IV2-D1: Forced Coordination.

(b) Performance Data in IV2-D2: Optional Collaboration

Figure 4: User gameplay scores across teaming iterations with per-iteration means connected by the
red dotted line and the per-iteration standard deviation shaded in red.

the user’s understanding of game controls and the assigned task. Once completed, the primary experi-
mentation begins. Users will team with an AI four times in each domain (randomly ordered), starting
with the unique domain-specific pre-trained agent, and are told that their goal is to maximize their
score in the last teaming interaction, the “performance round." After each teaming interaction, in the
first three factors, the user will modify and visualize the AI’s policy (IV1-C1), the AI will optimize
its own policy proceeded by user visualization (IV1-C2), or the user will solely view the policy
(IV1-C3). In IV1-C4 and IV1-C5, as the AI is black-box (perceived to be black-box in IV1-C4 and
truly black-box in IV1-C5), transitionary pages are shown to the participant, providing them a pause
before they team with the agent again. Upon completion of the condition-specific (or lack of) actions,
users complete a NASA-TLX Workload Survey. After users have completed a domain, providing
us with four episodes of teaming data and workload assessments, we administer several post-study
scales, including the Human-Robot Collaborative Fluency Assessment [15], Inclusion of Other in the
Self scale [1], and Godspeed Questionnaire [2]. Upon completion of the two domains, the experiment
concludes.

5.1 Results
Our experiment is a 5 (teaming method; between-subjects) × 2 (no. of domains; within-subjects)
× 4 (no. of repeated evaluations; within-subjects) mixed-factorial experiment. We recruited 50
participants under an IRB-approved protocol, whose ages range from 18 to 32 (Mean age: 24.14; Std.
Dev.: 4.10; 46% Female, 52% Male, 2% Non-Binary), with participants randomly assigned to each of
the factor levels, with ten total subjects per level. The duration of the experiment was 70.98± 19.71
minutes 3. Our data was modeled as a full-factorial, between-subjects ANOVA. We test for normality
and homoschedascity (see appendix) and employed a corresponding non-parametric test if the data
failed to meet these assumptions. We display our objective findings in the right-hand side of Figure 4.

RQ1: Team Performance: In analyzing reward, we find trends with respect to the maximum reward
participants obtained within a domain across iterations (Figure 5). Using Friedman’s test, we find a
significant difference across domains (χ2(1)=46.08, p < 0.001) and analyze the domains separately.

3The significant variance in experiment duration arises from the granularity across our conditions. The
increase in human effort to understand and interact with the policy results in an increase in duration. We note
that as our experiment is relatively short, it is unlikely that experiment fatigue played a role in our results as
would be common in experiments with large task variances.
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In IV2-D1, a Kruskal-Wallis Test was conducted to analyze differences in maximum performance
obtained across teaming paradigms, finding a significant effect (χ2(4) = 20.146, p < 0.001). We
conduct post-hoc pairwise comparisons, utilizing Dunn’s test, and find that IV1-C5 (Fictitious Co-
Play) is significantly better than IV1-C1 (p < 0.001), IV1-C2 (p < 0.01), IV1-C3 (p < 0.01), and
IV1-C4 (p < 0.05). Even though Fictitious Co-Play (IV1-C5) outperformed the tree-based models,
likely due to its ability to converge to a higher-performance teaming policy, it is interesting that
Human-Led Policy Modification (IV1-C1) has several participants that outperform the maximum
performance of IV1-C5 in teaming iterations three and four (Figure 4a).

In IV2-D2, a Kruskal-Wallis Test was conducted to analyze differences in participant teaming
performance across conditions, finding a significant effect (χ2(4) = 29.922, p < 0.001). We conduct
post-hoc pairwise comparisons, utilizing Dunn’s test, and find that IV1-C5 (Ficticious Co-Play)
is significantly better than IV1-C2 (p < 0.001), IV1-C3 (p < 0.001), and IV1-C4 (p < 0.001),
and IV1-C1 (Human-Led Policy Modication) is significantly better than IV1-C2 (p < 0.05), IV1-
C3 (p < 0.05), and IV1-C4 (p < 0.05). For white-box AI teammates (IV1:C1-3), the latter
finding displays the benefit of Human-Led Policy Modification in improving HMT performance for
interpretable models. These findings display that 1) white-box approaches supported with policy
modification can outperform white-box approaches alone, 2) black-box models can outperform
white-box approaches in HMT, and 3) by comparing IV1-C3 to IV1-C4, interpretability alone
afforded via tree visualizations did not provide any direct objective benefits. Finally, in Optional
Collaboration, across all conditions we see that HMT scores are not near that of the collaborative
heuristic, displaying a gap that must be addressed to achieve effective HMT.

RQ2: Team Development: In analyzing RQ2, we look at the change in reward across iterations one
to four and relate our findings to Tuckman’s model. Utilizing a Friedman’s test, we find a difference
across domains (χ2(1)=20.48, p<0.001) and analyze the domains separately. In IV2-D1, we see that
none of the conditions results in a significant improvement in teaming performance over repeated
iterations. In IV2-D2, we see IV1-C1 (p < 0.01) and IV1-C2 (p < 0.01) significantly improve over
repeated teaming interactions. The improving interactions can be connected to the Norming stage
in team development, where teams begin to develop a strategy and team mental models. We see
conditions that facilitate Norming have the attribute of policy adaptation and are white-box.

Next, we analyze whether different person-specific factors allow HMT to improve more quickly than

Figure 5: Maximum Reward and Subjective Ratings Across IV1
Factors.

others. In IV2-D1, we find
that conscientiousness is trend-
ing in its correlation with im-
provement (0.05 < p < 0.1).
In IV2-D2, we find that partic-
ipants with high familiarity with
Trees improve more across it-
erations (F (1) = 7.448, p <
0.01). These findings signify
that positive interaction with in-
terpretable models may be more
beneficial to those with an engi-
neering background and specific
personality traits.

Finally, we detect an interesting
trend in IV2-D1 under the IV1-
C1 condition. We see a drop
in performance between the first
teaming iteration and later iter-
ations, followed by a rise. We
believe this relates to the Form-
ing and Storming stages, where
team members are still develop-
ing effective strategies to coordinate. As the last iteration shows an improvement in performance, we
hypothesize that the team was shifting into the Norming stage. In future, it would be interesting to
evaluate a larger number of iterations to see if the behavior would continue to uptrend. This requires
further research due to the additional resources and time needed for more teaming iterations.
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Subjective Findings: In IV2-D1, we find that users did not find any subjective differences toward the
teaming interaction across conditions. In IV2-D2 (Figure 5), we find that users find collaboration with
AIs under condition IV1-C2 and IV1-C4, on average as less fluent than IV1-C1 (p<0.01, p<0.01),
and IV1-C4 as less fluent than IV1-C5 (p < 0.05). Users also trusted the AI and perceived the AI
contributed more in IV1-C5 than in IV1-C2 (p<0.05, p<0.05) and IV1-C4 (p < 0.05, p < 0.05).
Furthermore, the users viewed the AI more positively in IV1-C1 and IV1-C5 than in both IV1-
C2 (p<0.05, p<0.05) and IV1-C4 (p<0.05, p<0.01). Overall, participants generally assessed
higher-performing agents more positively in their subjective ratings. In considering conditions
that utilized a tree-based model (IV1-C1, IV1-C2, IV1-C3, and IV1-C4), we see the addition of
interaction with the tree policy provides significant subjective benefits in positive teaming traits
and collaborative fluency (defined within the Human-Robot Collaborative Fluency Assessment [2]).
In including the remaining condition, which utilizes a black-box model, IV1-C5: Fictitious Co-
Play, and comparing it to IV1-C1: Human-Led Policy Modification, we see that even though
Fictitious Co-Play outperformed Human-Led Policy Modification in terms of team reward (though
not significantly in the domain of Optional Collaboration), no significant subjective differences
were observed between these two conditions. This presents an interesting relationship between
transparency, interaction, and performance in relation to subjective perception that warrants future
research.

Design Guidelines: To achieve fluent HMT, we specify the following forward-facing guidelines.

1. The creation of white-box learning approaches that can produce interpretable collaborative agents
that achieve competitive initial performance to that of black-box agents. This guideline is critical
to providing humans with the subjective benefits obtained from interactivity with white-box
models, objective benefits of black-box models, and the ability to interact with policies to facilitate
team development.

2. The design of learning schemes to support the generation of collaborative AI behaviors rather
than individual coordination. We need techniques that avoid converging to the local maxima of
individual coordination and scenarios that allow for properly evaluating cooperation.

3. The creation of mixed-initiative interfaces that enable users, who may vary in ability and experi-
ence, to improve team collaboration across and within interactions. As we found a large diversity
in perceived usability of our interface (finding an average score of 58.25± 27.61, with some users
finding the interface good (>75) and others poor (<35)), effective interfaces are vital in shifting
from only a subset of users benefiting to all users being able to create effective teammates.

4. The evaluation of teaming in a larger number of interactions. As agents are deployed, team perfor-
mance will change over time, going through a transient period before reaching peak performance.
Understanding this process of team development is essential in creating high-performance HMT.

6 Conclusion

This work investigates repeated interactions with machine learning models within a sequential
decision-making HMT paradigm. We present a key gap in HMT, displaying that current methods do
not facilitate human-machine collaboration to the fullest. We find that human-led policy modification
allows for a team to achieve higher performance than white-box models without this capability.
However, as interpretable models are more difficult to generate, Fictitious Co-Play is able to better
support high performance. Given these mixed findings, future work must focus on developing better
white-box teammates, study the modality of communication in HMT, and explore mechanisms to
allow HMT to scale beyond individual coordination and toward effective collaboration.
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A Appendix

In the Appendix, we provide further information regarding our testbed for Human-Machine Collabo-
ration, Overcooked-AI (Section B), additional model and training details for our interpretableML
architecture, the Interpretable Discrete Control Tree (Section C), complete information regarding
our statistical analysis (Section E), further discussion regarding our paper’s results, limitations, and
future work (Section F), and finally, a working definition of what we mean by “interpretable".

B Overcooked-AI

Overcooked-AI [5] is a testbed to evaluate human-AI interaction and has been used across numerous
prior work studying human-AI collaboration [40, 10]. Here, two agents are tasked with creating and
delivering as many soups as possible within a given time. Achieving a high score requires agents to
navigate a kitchen and repeatedly complete a set of sequential high-level actions, including collecting
ingredients, placing ingredients in pots, cooking ingredients into a soup, collecting a dish, getting the
soup, and delivering it. Both players receive the same score increase upon delivering the soup. We
modify the original Overcooked-AI game to be a simultaneous-move game as opposed to the original
formulation of allowing agents to perform actions asynchronously. This modification prevents the
collaborative score metric from being dominated by super-human AI speed, causing the overall score
to be more reliant upon effective collaboration and strategy.

We utilize two map configurations we term, Forced Coordination and Optional Collaboration,
displayed in Figure 4 of the main paper. Each domain was chosen so that collaborating with the
teammate would result in a higher score than working individually. In our newly-created domain,
Optional Collaboration, creating mixed-ingredient dishes (combining onions and tomatoes) will
receive a higher score than single-ingredient dishes. Teammates have 200 timesteps to collaborate
and cook as many dishes as possible.
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State-Space, Action-Space, and Reward Scheme Policies reason over a semantically meaningful
13-dimensional feature space as opposed to pixel space, detailing the objects each agent is holding,
pot statuses, and counter objects. Each of these features is binary. For the action space, instead
of using cardinal actions, we allow the AI to utilize macro-actions that can accomplish high-level
objectives such as ingredient collection, ingredient placement, and soup serving. Macro-actions are
planned using an A* planner, and we perform dynamic replanning at each timestep. Prior work has
shown macro-actions can enhance interpretability [4]. This state and action space allow forlearning
an interpretable tree-based policy that can be understood and manipulated by end-users.

In Forced Coordination, for the reward scheme, we follow a similar distribution as prior work and
give a reward score of 60 per dish served, 3 for an item placed into a pot, 3 for a useful dish pickup,
and 5 for a soup pickup. In Optional Collaboration, for the reward scheme, we give a reward score of
50 for a mixed-ingredient dish, 30 for a single ingredient dish, 3 for an item placed into a pot, 3 for a
useful dish pickup, and 5 for a soup pickup.

C Additional IDCT Model Details

Here, we provide additional model details for the proposed Interpretable Discrete Control Tree
(IDCT).

C.1 Architecture

Our IDCTs are based on differentiable decision trees (DDTs) [41] – a neural network architecture
that takes the topology of a decision tree (DT). DDTs contain decision nodes and leaf nodes; however,
each decision node within the DDT utilizes a sigmoid activation function (i.e., a “soft" decision)
instead of a Boolean decision (i.e., a “hard" decision). Each decision node, i, is represented by a
sigmoid function, displayed as yi = 1

1+exp(−α(w⃗T
i x⃗−bi))

, where w⃗i and bi represents the weight and
bias terms of the decision node, respectively. As this representation is difficult to interpret, [32]
presented differentiable crispification, consisting of two components: 1) Decision node crispification,
which recasts each decision node to split upon a single dimension of our input feature, and 2) Decision
outcome crispification, which translates the outcome of a decision node so that the outcome is a
Boolean decision rather than a set of probabilities. Both operations utilize the straight-through trick
[3] to maintain gradients, allowing for both an interpretable forward propagation through the model
that traces down a single branch of a tree as well as gradient flow to update parameters of the neural
tree model. We utilize this approach in our IDCTs to maintain interpretability.

We initialize our IDCTs to be symmetric complete decision trees with Nl decision leaves and Nl − 1
decision nodes. Each decision leaf is represented by a sparse categorical probability distribution
over actions. At each timestep, a state variable is propagated through each decision node, split on a
single decision rule, with the output being a Boolean causing the decision to proceed via the left or
right branch until arrival at a leaf node. At each leaf node, we sample from the respective probability
distribution to produce a macro-action (e.g., “get an onion" or “place held ingredient on counter").

C.2 Training

For training this model, we utilize agent-agent collaborative training where an interpretable tree-based
agent (maintaining an IDCT) is paired with a second policy (representing the human player), and
both models are trained via decentralized PPO [39]. It is important to note that each agent maintains
its own buffer and optimizers. Further, we improve model predictability by applying an L1 norm
loss over leaf node distributions for the IDCT agent to ensure sparsity, penalizing high entropy action
distributions at a leaf. Our training procedure mimics that of PPO, utilizing a modified loss function
displayed in Equation 1, and policy update in Equation 2, where θ represents the aggregate set of
weights for the IDCT, Ât represents the advantage estimate at time t, and al represents the distribution
maintained at each leaf, l.
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L(θ) = Eτ

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
+

L∑
1

λ|al|
(1)

θk+1 = argmax
θ

L(θ) (2)

C.3 Contextual Pruning

As we focus on creating agents that cooperate with humans, we must limit the size of our interpretable
tree-based models to a certain depth to promote user understanding. This follows prior work, finding
trees of arbitrarily large depths can be difficult to understand [13] and simulate [24], and that a
sufficiently sparse DT is desirable and considered interpretable [20]. However, this can make training
difficult, as a small tree may not have the representational power to learn a high-performing policy.

Algorithm 1 Contextual Pruning Algorithm
Input: IDCT I(.)
Output: Pruned IDCT
1: SET_NODE_DOMAINS(IDCT=I, minValue=0, maxValue=1)
2: queue = [I.root]
3: while queue is not empty do
4: currentNode← queue.pop()
5: if currentNode.compareValue < currentNode.lowerBound then
6: currentNode.prunable = True
7: end if
8: if currentNode.compareValue > currentNode.upperBound then
9: currentNode.prunable = True

10: end if
11: UPDATE_DOMAINS_FOR_CHILDREN(currentNode, lowerBound, upperBound, currentN-

ode.compareValue)
12: ADD_CHILDREN_TO_QUEUE(currentNode, queue)
13: end while
14: I← PRUNE_NODES_FROM_TREE(I)
15: return I

In Algorithm 1, we present details of how contextual pruning is accomplished. In Step 1, we initialize
a domain vector representing the current minimum and maximum values for each feature. Since
our Overcooked domain utilizes binary features, all bounds are initialized to 0 and 1. Formally, this
can be written as by the Cartesian product B = [0, 1] × · · · [0, 1], of cardinality d (where d is the
dimensionality of the state space). In Step 2, we initialize a queue that will be used to perform a
breadth-first search to visit each node in a hierarchical order. In Step 4, we receive a node from the
queue. In Step 5, we check the threshold value of the current node and compare it to the current
node’s vector of minimum values. This operation looks to see if the node results in a tree sub-space
that is out of bounds (i.e., impossible to reach). We perform a similar computation in step 8, checking
the maximum values. In both cases, we look to find child nodes that do not yield a reduction in the
hyperspace as candidates for pruning. In Step 11, we update the children based on the threshold value
of our current node and its sign (as we can have < or > within a node), creating a new bounding box.
In step 12, we add the children of the current node to the queue, and loop back to Step 4, repeating
steps 5-12 until the queue is empty. In Step 14, we prune tree sub-spaces that are impossible to reach.

C.3.1 Computational Analysis

The computational complexity of our contextual pruning algorithm can be analyzed in terms of both
time and space complexity. In terms of time complexity, it is equivalent to that of Breadth-First Search
(BFS), specifically, O(V + E), where V denotes the number of vertices and E represents the number
of edges in the tree. Regarding space complexity, our algorithm exhibits similar characteristics to
BFS for trees with only two leaves. In such cases, the space complexity of BFS is O(V ), as it stores
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all the vertices at the maximum breadth level in the queue during the traversal. Consequently, the
space complexity of our contextual pruning algorithm is also O(V ), making it efficient and scalable
for trees with a limited number of leaves.

Utilizing contextual pruning alongside our training framework allows us the benefit of training large
tree-based models, greatly improving ease-of-training, while still being able to simplify the resultant
model to a smaller, equivalent representation.

C.3.2 Results of Pruning

To evaluate the utility of pruning, we train models of various sizes (8-leaf, 16-leaf, 32-leaf, 64-
leaf, 128-leaf, 256-leaf) in Forced Coordination and perform pruning on the resultant model.
We find that models of larger size converge to higher performance (i.e., easier-to-train), follow-
ing prior work displaying the utility of larger models. Further, empirically, we find we can re-
duce model sizes by 64-128x in tree depth. We provide a pipeline to allow for model training
and contextual pruning in our GitHub repository https://github.com/CORE-Robotics-Lab/
Team-Development-with-Transparent-Policies.

C.4 Hyperparameters

In IV2-D1: Forced Coordination and IV2-D2, we train an IDCT with 256 leaves, a learning rate of
1e−3, and regularization parameter of 1e−4. This hyperparameters were chosen through trial and
error, where we find larger models with a small learning rate and regularization exhibited greater
learning early on. The rest of the parameters follow default parameters from the PantheonRL codebase
[38] for training Overcooked agents. After contextual pruning, in both domains, we end up with an
AI policy with two and three leaves in Forced Coordination and Optional Collaboration, respectively.

For training fictitious co-play agents, we train 32 models of teammates in each domain, saving
policies at every 100 epochs. At the end of training, we sort the performance of saved policies and
utilize the initial, mid-performing, and highest to create our population of diverse agents, totaling 96
agents. A neural network model is then paired in a multi-task training framework to team with this
agent.

Our models are all trained on a local desktop computer containing a Nvidia RTX 2080 GPU and 16
GB of CPU memory. Training time for each agent took approximately 12 hours across a single core.
We provide further instructions to replicate our models within the above codebase.

We include a high-level diagram of how IDCT agents are generated in Figure 6.

Figure 6: Tree Policy Generation for Conditions IV1-C1-C4
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Figure 7: Trained Interpretable Discrete Control Tree in the Forced Coordination Domain.

Figure 8: Trained Interpretable Discrete Control Tree in the Optional Collaboration Domain.

C.5 Visualization of IDCT Policies in Each Domain

Here, we present visualizations of trained IDCT models in each domain. As seen in Figures 7
and 8, the resultant policies have two and three leaves for the Forced Coordination and Optional
Collaboration domains, respectively. Note that these images are pulled from our interface and thus
have extra annotations to improve readability.

D Additional User Study Information

Our experiment was reviewed and approved by the Institutional Review Board at the Georgia Institute
of Technology under Protocol Number H23043. All participants in our experiment signed a consent
form, received a description of the risks involved in our study, and received compensation for
participating. Below, we describe specifics regarding the consent procedure, additional details that
describe the experiment procedure, and the compensation scheme.

D.1 Consent Procedure

At the start of the experiment, the participant is provided a consent document. This document de-
scribes the purpose of the experiment, exclusion/inclusion criteria, the experiment procedure, the risks
of the experiment, the compensation scheme, and details regarding data storage and confidentiality.

D.2 Additional Information Regarding Specific Conditions

IV1-C1: Human-Led Policy Modification is enabled through the contribution of the interpretable
machine learning architecture to train collaborative AI teammates, a training advancement to enhance
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interpretability, and a mechanism to allow humans to modify the tree in simple ways, including tree
deepening, decision variable modification, and leaf node modification. The following conditions:
IV1-C2: AI-Led Policy Modification, IV1-C3: Static Policy - Interpretability, and IV1-C4:
Static Policy - Black-Box all utilize the same architecture and starting policy but ablate different
components of the interaction and interpretability.

After a teaming episode in the IV1-C2: AI-Led Policy Modification condition, the AI utilizes recent
gameplay to fine-tune a human gameplay model via Behavioral Cloning and performs reinforcement
learning for five minutes to optimize its own policy to better support the human teammate. In this
collaborative agent policy optimization stage, we utilize the parameters described in Section C.4 and
add a timer to stop the optimization. Upon completion of policy optimization, we check if the policy
has improved through simulated interactions with the behavior cloning agent, and if so, update the
policy. In the case that the policy degrades, we use the original policy prior to optimization. The user
can visualize the updated AI policy in its interpretable tree form prior to the next teaming interaction.

IV1-C3: Static Policy - Interpretability and IV1-C4: Static Policy - Black-Box are static poli-
cies that do not change across repeated gameplay. Thus, we do not have any specific additional
hyperparameters to discuss within the appendix.

To improve the transparency of the conditions in our experiment, we provide a flow diagram that
displays the interaction being assumed within each condition in Figure 9.

D.3 Compensation Scheme

Participants were compensated at a rate of 20 US dollars per hour of the experiment.

E Complete Statistical Analysis

Here, we present complete details regarding our analysis, including all test statistics as well as
nonsignificant and trending comparisons.

E.1 RQ1: Team Coordination Performance

As mentioned in the main paper, we allow humans to team with the AI across four episodes, providing
us with four teaming scores. Within the main paper, we reported differences with respect to the
maximum score participants were able to obtain across iterations. Here, we analyze data in the
performance round (the last iteration), where participants were told to maximize performance. We
note that participants self-reported their gaming familiarity (100-point scale) and weekly hours playing
video games. Across all participants, self-reported gaming familiarity was rated as 73.19± 23.80
and weekly gaming hours was 4.44 ± 5.32. This information was used in our statistical analysis,
and significance was not found in performance variation as a function of gaming expertise. Utilizing
a Friedman’s test, we find that there is a significant difference across domains (χ2(1) = 38.7, p <
0.001). Accordingly, we analyze the two domains separately.

In IV2-D1, we find our data does not meet the necessary assumptions and utilize non-parametric
tests. A Kruskal-Wallis Test was conducted to analyze differences in performance round reward
across conditions, and we find a significant effect (χ2(4) = 20.85, p < 0.001) across conditions. We
conduct post-hoc pairwise comparisons, utilizing Dunn’s test, and find that IV1-C5 is significantly
better than IV1-C1 (p < 0.01), IV1-C3 (p < 0.01), and IV1-C4 (p < 0.01). IV1-C5 is trending as
significantly better than IV1-C2 with a p-value of 0.0275 (significance is < 0.025 or (α/2) due to
the Bejamini-Hochberg adjustment).

In IV2-D2, we test for normality and homoschedascity and do not reject the null hypothesis in either
case, using Shapiro-Wilk (p > .50) and Levene’s Test (p > 0.05). An ANOVA was conducted to
analyze differences in performance round reward across conditions, taking several observed variables
into account. We find a significant effect (F (4, 38) = 18.93; p < 0.001) across conditions and
decision tree familiarity (F (1, 38) = 16.12; p < 0.05). We conduct post-hoc pairwise comparisons,
utilizing Tukey HSD, and find that 1) IV1-C5 is significantly better than IV1-C2 (p < 0.01), IV1-C3
(p < 0.01), and IV1-C4 (p < 0.01), and 2) IV1-C1 is significantly better than IV1-C3.
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(a) Experiment Flow for IV1-C1: Human-Led Policy Modification

(b) Experiment Flow for IV1-C2: AI-Led Policy Modification

(c) Experiment Flow for IV1-C3: Static Policy - Interpretability

(d) Experiment Flow for IV1-C4: Static Policy - Black-Box and IV1-C5: Fictitious Co-Play

Figure 9: This figure displays an experiment flow diagram for each condition.
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These results are similar to those in the paper when analyzing the maximum reward and result
in a similar set of conclusions: 1) black-box models can outperform white-box approaches, and
2) white-box approaches with policy modification have some benefit over white-box approaches
alone. Further, as we see that tree familiarity positively correlates with performance round rewards,
exploring alternative paradigms, such as natural language for describing and programming trees may
benefit users unfamiliar with decision trees.

E.2 Team Development

Here, we analyze the trends across iterations (did agents improve from iteration one to four) and
identify characteristics of users that performed well in team development. Utilizing a Friedman’s test,
we find that there is a significant difference across domains (χ2(1)=20.48, p < 0.001).

We conduct separate Wilcoxin signed-rank tests for each condition, and utilize the Bonferroni
correction in determining significance (α/5). In IV2-D1, we see no condition significantly improves
significantly over repeated iterations. In IV2-D2, we find that IV1-C1 (p < 0.01) and IV1-C2
(p < 0.01) significantly improve over repeated teaming interactions.

F Discussion, Limitations, Future Work, and Societal Impacts

Discussion: In this paper, we provide several contributions towards interactive HMT. We first present
weaknesses in prior work, displaying that learned collaborative agents can be individualistic and rigid.
To address these weaknesses, we propose an interactive scheme termed human-led policy modification
to bridge the gap between individualized coordination and adaptive, effective collaboration. We do so
by creating a feedback loop that facilitates team policy changes during HMT. This is accomplished
by 1) utilizing an interpretable policy representation to provide users with insight into the teammate’s
decision-making, specifically the IDCT, an interpretable tree-based model that can be trained via
reinforcement learning and pruned to a smaller, equivalent representation, and 2) creating a user
interface to support the end-user modifying the policy to their evolving specifications. We deploy
and compare our interactive policy modification scheme to several other techniques, including two
popular prior works and variations of our proposed condition. While we do not a direct objective
benefit of human-led policy modification compared to utilizing a black-box model supported with a
population-based training scheme [40], we find important takeaways that motivate the importance
of conducting longer-term, repeated-interaction studies. Specifically, white-box approaches that
facilitate interpretation can be used within a feedback loop to lead to policy improvement, users may
require a larger number of interactions to reach a team consensus and maximal performance, and
there are person-specific characteristics that may lead to some users being able to take advantage of
interpretable models and interaction more than others.

Limitations: This study was conducted at a university. While the population was diverse in age,
gender, and university major, all students had some college education and most students were based
in engineering, presenting a population bias. Furthermore, the population represented by the age
group of 18 to 32 years old (mean of 24.14, std of 4.1) within our experiment may not directly
generalize to an older population with extensive training. Furthermore, the experiment findings
may not generalize to all contexts and scenarios within HMT. We reiterate that our findings are
within a two-agent human-machine team within a relatively low-dimensional and short-horizon game,
Overcooked-AI. In scaling to more complex and dynamic environments, the tree size needed to
represent a high-performing agent will likely increase. In these cases, users may require more time to
interact with and understand an agent’s policy. There may be several capabilities that can be added to
the Human-Led Policy Modification interaction paradigm, which may make the process quicker and
easier. For example, model verification or forward simulation can be used to provide the human with
other types of feedback prior to the next teaming iteration. Furthermore, for increasingly complex
games, agent policies can also operate over different levels of abstraction, providing the human
with a tradeoff with fine-grained control of the agent policy and tree size. Finally, different policy
visualizations may better support certain populations of users, emphasizing the need for collecting
user background information and future research in interpretability for embodied agents.

Future Work: In the future, it would be interesting to conduct a similar experiment to a higher number
of iterations, or until the team converges to a set of coordination strategies (the “performing" stage in
Tuckman’s model). Further, the possibility of adding in feedback from the AI regarding human-led
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policy modification (checking for logic inconsistencies, etc.) may be used to facilitate speedier team
development. It would also be interesting to utilize different paradigms in communicating with the
human as language may be an easier medium than a decision tree interface. Future work should also
be done to optimize the accessibility of GUIs for policy modification via xAI techniques. Finally,
expanding this research to real-world collaborative robot settings in healthcare of manufacturing that
utilize tree-based policies, such as collaborative packaging [12, 17] or agile robotics [8, 21], would
lead to additional insight into human-machine team development with robot teammates.

Positive and Negative Societal Impact: This work investigates repeated interactions with inter-
pretable machine-learning-based agents in a collaborative game. As autonomous agents (e.g., robots)
are deployed in the real world, insights from this work may be applied to assist in creating a fruitful
working relationship between a human and an agent. We do not believe this work has any negative
societal impacts.

G Working Definition of Interpretability

As mentioned in the main paper, our agent representation is that of an Interpretable Discrete Control
Tree, which reasons over a state space with high-level binary features and multi-step macro-actions.
This model (which, in layman’s terms, is a decision tree with action probabilities at each node) is the
true learned model produced via reinforcement learning, not an abstraction created post hoc. This
model is interpretable as its representation is “constrained in model form so that it is either useful to
someone, or obeys structural knowledge of the domain, such as monotonicity, causality, structural
(generative) constraints, additivity, or physical constraints that come from domain knowledge" [35].
In our case, the model constraints are inherent within the novel IDCT architecture, and the utility
of this model to a user is that this model 1) is able to provide users with some awareness over the
agent’s behavior (and possibly, simulate the agent’s decision making) and 2) provides users with the
ability to explicitly modify agent behavior (a capability not possible with black-box models).
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction accurately represent the
contributions of this work and are supported directly by our results. The case study and its
implications are described in Section 3, the interpretableML architecture and modification
scheme is described in Section 4, and the user study and its findings are discussed in Section
5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are clearly described within the Section F within the Appendix.

Guidelines:
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The necessary details to reproduce teaming agents is described within the
text (general model details in Section 4 and specific hyperparameters in Section C.4) and
the experimental procedure to evaluate these agents with real humans is in Section 5.
Furthermore, our GitHub repository contains specific scripts and instructions to reproduce
our models.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide our code in the following anonymous
GitHub repository: https://github.com/CORE-Robotics-Lab/
Team-Development-with-Transparent-Policies. This repository contains in-
formation on how to set up the environment, train agents, and evaluate agents online.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our high-level training details are provided within the text and we report agent
training accuracy (performance of the model with a synthetic human teammate) and agent
testing accuracy with real humans via our human-subjects study. For lower-level training
details, please look to the Appendix in Section C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we provide exact information with regard to the statistical tests used
to analyze our experiment data in Section 5. Further context, which ensures that the
assumptions for these tests are met, is provided in the Appendix Section E. Error bars are
displayed in Figures 4 and 5, and represent the standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]

Justification: We provide compute information within Section C.4, including the type of
computer and its resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that our paper conforms to the NeurIPS Code of Ethics. The
conducted human-subjects study was reviewed by a University Internal Review Board to
comply with ethical practices.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, our paper discusses potential positive and negative societal impact within
the Appendix Section F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have credited the authors of PantheonRL, which was the backbone code-
based for collaborative agent training
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Yes, screenshots of our experiment are provided in the attached codebase as
well as complete code to run our experiment.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We are aware of our use of human-subjects and conducted our experiment
with caution. Our experiment was reviewed and approved by the Institutional Review Board
at the Georgia Institute of Technology under Protocol Number H23043. Furthermore, all
participants signed a consent form, received a description of the risks involved in our study,
and received compensation for participating.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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