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Abstract001

Evaluating Large Language Models (LLMs)002
requires effective methods to assess how well003
they maintain semantic consistency across mul-004
tiple transformations. Traditional methods like005
self-consistency often fail to capture subtle se-006
mantic errors that emerge during multi-step007
tasks. To address this, we introduce Consisten-008
cyChecker, a benchmark-free evaluation frame-009
work that evaluates LLMs’ ability to preserve010
semantic consistency during multi-step pro-011
cesses. Our approach is based on the concept012
of a self-consistency tree, where each node rep-013
resents a state of the text after a transformation014
(e.g., translation, code modification, paraphras-015
ing), and each edge represents the transforma-016
tion itself. By constructing self-consistency017
trees, we measure how accurately the model018
maintains the original meaning across these019
changes. ConsistencyChecker quantifies an020
LLM’s reliability in retaining critical informa-021
tion by analyzing semantic preservation be-022
tween nodes at different tree depths. This ap-023
proach provides insights into model general-024
ization capabilities without requiring extensive025
resources. Experiments show that Consisten-026
cyChecker can accurately measure the general-027
ization ability of models with various sizes on028
translation and coding tasks without the need029
for building benchmarks. By identifying sce-030
narios where models maintain or lose semantic031
fidelity, ConsistencyChecker offers a practical032
tool for understanding LLM robustness in real-033
world applications.034

1 Introduction035

Large Language Models (LLMs) have emerged036

as transformative tools in artificial intelligence,037

demonstrating remarkable capabilities across di-038

verse tasks, including natural language understand-039

ing (Minaee et al., 2024), generation (Minaee et al.,040

2024), and complex reasoning (Brown et al., 2020;041

Chowdhery et al., 2024). Trained in a vast cor-042

pus of text data, these models have achieved un- 043

precedented performance in areas ranging from 044

machine translation (Qian et al., 2024; Zhu et al., 045

2024) to code generation (Jiang et al., 2024; Wang 046

et al., 2023), and from creative writing (Wang et al., 047

2024a; Marco et al., 2024) to scientific analysis 048

(Zhang et al., 2024). Recent architectural advances, 049

coupled with increases in model scale and train- 050

ing data, have led to LLMs that can engage in so- 051

phisticated dialogue, solve complex problems, and 052

exhibit emergent abilities (Wei et al., 2022). 053

However, as LLMs are increasingly deployed in 054

real-world applications, evaluating their general- 055

ization capabilities—particularly in low-resource 056

settings - has become a critical challenge. Dataset- 057

based evaluation methods (e.g., using HumanEval 058

to measure code generation ability) often rely on 059

extensive benchmark datasets and human annota- 060

tions, which are costly, time-intensive, and prone 061

to limitations such as benchmark contamination 062

and dataset bias (Geirhos et al., 2020; Bowman and 063

Dahl, 2021; Magar and Schwartz, 2022). More- 064

over, these dataset-centric approaches struggle to 065

assess how well models maintain semantic consis- 066

tency across diverse transformations, a key indi- 067

cator of their robustness and reliability in practi- 068

cal scenarios (Callison-Burch et al., 2006; Zhang* 069

et al., 2020). This gap is particularly pronounced in 070

low-resource settings, where access to large-scale 071

benchmarks and human evaluators is limited. 072

Recent work has explored alternative evaluation 073

approaches, including human-in-the-loop frame- 074

works (Chiang et al., 2024; Gao et al., 2023) 075

and LLM-as-a-judge paradigms (Zheng et al., 076

2023), which combine human flexibility with au- 077

tomated scalability. However, these methods still 078

often depend on task-specific examples or exter- 079

nal references, limiting their applicability in low- 080

resource or domain-agnostic settings. Addition- 081

ally, the challenge of hallucination—where mod- 082

els generate inconsistent or factually incorrect re- 083
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LLM evaluation involves 
assessing metrics like 
perplexity, accuracy, and 
human judgment on tasks 
such as summarization 
and question answering. 

Return Value

La evaluación de los LLM 
implica valorar métricas 
como la perplejidad, la 
precisión y el juicio 
humano en tareas como la 
resumición y la respuesta 
a preguntas.

The evaluation of LLMs 
involves assessing metrics 
such as perplexity, accuracy, 
and human judgment in tasks 
like summarization and 
question answering.

     prompt: translate 
what "main" function 
returns to Spanish
     prompt: translate 
what "main" function 
returns to English

python3
def main():
    return “LLM evaluation involves” \
           “assessing metrics like...“ 

↔ Spanish ↔ French

↔ German ↔ Japanese

Figure 1: Overview of the ConsistencyChecker Framework. This illustrates the evaluation process in Consisten-
cyChecker, where a tree-based self-consistency approach is used to evaluate LLMs. The root node (r) is a piece
of text generated by the evaluator model given constraints, and subsequent levels. (v1, v2, . . . ) represent nodes
corresponding to nodes of text going through the transform-reverse functions executed by the evaluatee model(e.g.,
round-trip translation (van Zaanen and Zwarts, 2006)), where the functions are generated by the evaluator.

sponses—remains a significant barrier to reliable084

evaluation (Waldo and Boussard, 2024). While085

dataset-free metrics like self-consistency scores086

have emerged, they primarily focus on single-step087

evaluation and fail to capture nuanced semantic dis-088

crepancies in multi-step tasks. Moreover, current089

evaluation metrics such as self-consistency scores090

tend to focus on trivial robustness checks rather091

than identifying the subtle semantic variations that092

emerge during complex multi-step reasoning.093

Inspired by these advances, we introduce Con-094

sistencyChecker, a novel benchmark-free frame-095

work for evaluating LLMs’ generalization capabili-096

ties. ConsistencyChecker operates without requir-097

ing predefined benchmarks or reference datasets,098

enabling rapid assessment of model performance099

across arbitrary domains. At its core, Consistency-100

Checker proposes the concept of self-consistency101

trees where each node represents a transformation102

step (e.g., translation, paraphrasing), each edge de-103

notes a semantic-preserving operation, and each104

path from the root node to any leaf node represents105

a multi-step transformation sequence. By construct-106

ing these self-consistency trees, our work measures107

how accurately the model preserves the original108

meaning across multiple transformations.109

By analyzing semantic preservation between110

nodes at different tree depths, ConsistencyChecker111

quantifies an LLM’s reliability in retaining criti-112

cal information through iterative transformations.113

This approach enables comprehensive evaluation of114

LLMs’ generalization ability in a multi-step man-115

ner without relying on costly benchmark construc-116

tion or annotated datasets. The framework further117

identifies subtle semantic discrepancies that emerge118

during complex reasoning processes, providing a 119

robust and resource-efficient alternative to tradi- 120

tional dataset-dependent evaluation paradigms. 121

Our approach addresses several fundamental 122

challenges in LLM evaluation. First, as a 123

benchmark-free method, it eliminates the need for 124

domain-specific benchmarks or annotated datasets, 125

enabling immediate application to new tasks or do- 126

mains. This ensures evaluation adaptability across 127

evolving models while avoiding traditional pitfalls 128

like dataset overfitting and benchmark contamina- 129

tion. Second, through multi-step semantic evalu- 130

ation across transformation chains, Consistency- 131

Checker analyzes robustness by measuring how 132

models preserve critical information through itera- 133

tive changes—providing deeper insights into gen- 134

eralization capabilities. 135

Our experiments demonstrate that Consisten- 136

cyChecker effectively ranks LLM performance. 137

In code equivalence preservation, Qwen 2.5 32B 138

achieves the highest consistency score with an L3 139

of 85.1. For cross-lingual translation consistency, 140

GPT 4o Mini leads with an L3 of 98.0. Surprisingly, 141

we find that model size does not strictly correlate 142

with robustness - Qwen 2.5 32B outperforms Qwen 143

2.5 72B in AI-assisted programming tasks despite 144

having fewer parameters. 145

2 Related Works 146

Software Verification and Formal Methods. 147

The development of reliable systems has long 148

relied on formal verification techniques such as 149

model checking (Clarke et al., 1999), theorem prov- 150

ing (Nipkow et al., 2002), and satisfiability mod- 151

ulo theories (SMT) solvers (Barrett and Tinelli, 152
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2018). While these methods provide rigorous guar-153

antees, they typically require significant computa-154

tional resources and domain-specific specifications.155

Our work draws inspiration from the iterative re-156

finement principles of model checking but adapts157

them to evaluate LLMs through lightweight, self-158

referential transformations. This shift enables scal-159

able verification without predefined specifications,160

aligning with the challenges of evaluating genera-161

tive models in resource-constrained scenarios.162

The rise of LLMs for code generation has163

spurred benchmarks like CodeXGLUE (Lu et al.,164

2021) and ProblemSolving (Hendrycks et al.,165

2021), which evaluate capabilities such as code166

completion and problem-solving. However, these167

benchmarks require curated datasets of human-168

written code solutions, limiting their applicability169

to novel or under-resourced programming tasks.170

Recent work highlights the importance of code ro-171

bustness—ensuring models generate functionally172

equivalent outputs across stylistic variations (Chen173

et al., 2021). Our work operationalizes this174

idea through bidirectional code transformations175

(e.g., refactoring, language translation), measuring176

whether semantic similarity is preserved.177

Translation Evaluation and Round-Trip178

Consistency. Machine translation evalua-179

tion has evolved from early rule-based sys-180

tems (Weaver, 1952) to modern transformer-based181

approaches (Vaswani et al., 2017). Traditional182

metrics like BLEU (Papineni et al., 2002),183

ROUGE (Lin, 2004), and TER (Snover et al.,184

2006) rely on reference translations, while bench-185

marks like WMT (Barrault et al., 2019) depend186

on human-annotated parallel corpora—resources187

often unavailable in low-resource languages or188

specialized domains. Round-trip translation,189

where text is translated between languages and190

back (van Zaanen and Zwarts, 2006), provides a191

benchmark-free consistency check analogous to192

our transformation chains. ConsistencyChecker193

generalizes this concept, extending it beyond194

translation to arbitrary semantic-preserving195

operations (e.g., code refactoring, summarization),196

thereby enabling evaluation in scenarios where197

parallel data or reference outputs are absent.198

Robustness and Consistency Evaluation Re-199

cent advancements in LLM evaluation empha-200

size structured frameworks to address consistency201

across multi-step interactions. While verbalized202

confidence scoring methods assess self-awareness203

through explicit prompts (Yang et al., 2024), they 204

often conflate calibration with multi-step stabil- 205

ity. The Divide-Conquer-Reasoning approach in- 206

troduces hierarchical evaluation by decomposing 207

comparisons into granular analyses, enabling pre- 208

cise detection of inconsistencies (Cui et al., 2024). 209

This aligns with dynamic frameworks like MT-Eval 210

that benchmark recollection and refinement capa- 211

bilities in multi-turn workflows (Kwan et al., 2024). 212

Such methods contrast with traditional evaluations 213

that miss semantic drift in iterative transforma- 214

tions, particularly evident when applying adversar- 215

ial prompts to preserve functional similarity (Wang 216

et al., 2024b). 217

3 Preliminary 218

A common use case for large language models 219

(LLMs) involves a user providing an initial input 220

(e.g., a code snippet) along with a prompt request- 221

ing specific alterations, which the LLM then ex- 222

ecutes. In real-world scenarios, users often im- 223

pose multiple requirements through multi-step in- 224

teractions, introducing complexity and nuance at 225

each stage. To systematically evaluate LLM con- 226

sistency through such iterative interactions, we pro- 227

pose a tree-structured framework that supports hi- 228

erarchical transformations and multi-step analysis. 229

This structure enables comprehensive evaluation 230

through three key properties: (1) hierarchical orga- 231

nization of code variants, (2) controlled multi-step 232

transformations, and (3) systematic consistency 233

measurement through path analysis. 234

Self-consistency tree A self-consistency tree 235

T = (V, E) is a directed tree structure that sim- 236

ulates multi-step user-LLM interactions. Each 237

node v ∈ V represents a distinct code implemen- 238

tation, while edges e ∈ E represent transforma- 239

tions applied by LLMs through prompt operations. 240

The tree structure enables systematic evaluation 241

of output consistency across multiple transforma- 242

tion steps while preserving functional similarity 243

through shared test inputs. 244

Node Each node v = (d, c, I, l) represents an 245

executable code implementation through four com- 246

ponents: d ∈
∑∗ denotes the natural language 247

task description, c ∈
∑∗ represents the executable 248

code implementation, I = [i1, ..., in] specifies an 249

ordered list of test inputs where each ik ∈
∑∗, 250

and l ∈
∑∗ indicates the tag of a programming 251

language (e.g., "python3"). Here
∑∗ denotes all 252
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potential combinations of strings. Nodes maintain253

functional similarity verification through shared254

test inputs I across transformations.255

Operation An operation is a prompt-driven code256

transformation function executed by an LLM. We257

design operation pairs p and p′ that ideally nullify258

each other’s effects (e.g., "add logging" followed259

by "remove logging"). Formally, an operator is:260

fp : c→ c′ (1)261

where c is input code, p a transformation prompt,262

and c′ the transformed code. Operation pairs test263

the LLM’s transformation consistency.264

Edge Edges enforce functional similarity through265

invariant test inputs while tracking code evolution266

via successive LLM operations. Formally, an edge267

eij = (vi, vj) connects nodes vi = (di, ci, Ii, li)268

and vj = (dj , cj , Ij , lj) if and only if:269 {
di = dj , Ii = Ij , li = lj ,

cj = fp′(fp(ci)).
(2)270

Path A path in the self-consistency tree can be271

formally written as P = (v1, ..., vk). It connects a272

node to any descendant through edges. The length273

of one path equals the number of transformations274

applied (depth difference between nodes).275

Forest A forest F = {T1, ..., Tm} combines mul-276

tiple trees generated from different initial nodes.277

This enables comparative analysis of LLM consis-278

tency across varied tasks, languages, and transfor-279

mation sequences.280

4 ConsistencyChecker: Tree-based LLM281

evaluation for Generalization Ability282

Traditional single-tree evaluation faces inherent283

limitations through three primary biases: task-284

specific difficulty variance (e.g., code translation285

being simpler than algorithm reconstruction), over-286

sensitivity to prompt phrasing variations, and im-287

plementation singularities from unique root node288

configurations. Our forest-based approach ad-289

dresses these challenges through strategic diver-290

sification - roots sample diverse task types across291

the problem space, transformation prompts vary per292

tree to reduce phrasing bias, and architectural con-293

figurations differ across trees to avoid implemen-294

tation lock-in. This multi-axis variation produces295

robust consistency estimates that better reflect real-296

world LLM deployment scenarios.297

Similarity score for node-pair For a pair of 298

nodes vi, vj , where vi = (d, ci, I, l) and vj = 299

(d, cj , I, l), that shares the same task description d, 300

test inputs I, and language l, semantic similarity 301

is computed through a three-stage process. First, 302

execute both codes to get outputs Oi = exec(ci, I) 303

and Oj = exec(cj , I). Then, convert outputs to 304

standardized string representations si = str(Oi) 305

and sj = str(Oj). Finally, functional similarity 306

can be measured as the cosine similarity based on 307

embedding. The whole process can be written as: 308

s(v) = Str(O(v))
E(v) = Emb(s(v))

sim(vi, vj) :=
E(vi) · E(vj)
∥E(vi)∥∥E(vj)∥

(3) 309

where Emb(·) generates semantic embeddings 310

through a pretrained language model. This ap- 311

proach recognizes equivalent functionalities with 312

divergent syntactic outputs (e.g., "42" vs "42.0") 313

while providing granular similarity scores in [0, 1]. 314

Consistency score for path To evaluate whether 315

iterative transformations preserve core functional- 316

ity, we measure the end-to-end similarity between 317

the initial and final nodes in a path. For a path 318

P = (v1, · · · , vk), the consistency score is: 319

C(P ) := sim(v1, vk) (4) 320

This metric measures whether the final output vk re- 321

mains functionally equivalent to the original v1 af- 322

ter multiple modifications. For example, applying 323

"add logging functionality" after "remove logging 324

functionality" should preserve the sorting function- 325

ality, which this score captures. 326

Consistency score for tree To evaluate an 327

LLM’s robustness across all possible transforma- 328

tion sequences of fixed length, we compute path 329

consistency for every N-step path in the tree. For 330

depth parameter N , this metric aggregates all paths 331

PN = {(vi, · · · , vj) | length(P ) = N}: 332

C(T ) := 1

|PN (T )|
∑

P∈PN (T )

C(P ) (5) 333

This measures average functional preservation 334

across all N -transformation sequences, captur- 335

ing both cumulative error propagation and path- 336

specific divergence patterns. For example, a tree 337

with a high L-3 score but a low L-5 score indicates 338

consistent performance for short transformation 339

chains but degradation in longer sequences. 340
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Algorithm 1 Tree Generation Algorithm

Require: Root node r, max depth D, operation
pairs ((p1, p′1), · · · , (pk, p′k))

Ensure: Tree T = (V, E)
1: V ← { r }
2: E ← ∅
3: for d← 1 to D do
4: U ← { v ∈ V | D(v) = d− 1 }
5: for each v ∈ U do
6: for i← 1 to k do
7: c′ ← fpi(v.c)
8: c′′ ← fp′i(c

′)
9: Let v′ ← (d, c′′, v.I, v.l)

10: V ← V ∪ { v′ }
11: E ← E ∪ { (v, v′) }
12: end for
13: end for
14: end for
15: return (V, E)

Consistency score for forest To assess cross-task341

robustness, we compute two key statistics from the342

forest F = {T1, ..., Tk}:343

Cµ(F) :=
1

|F|
∑
T ∈F

C(T ),

Cσ(F) :=
√

1

|F|
∑
T ∈F

(
C(T )− µF

)2
.

(6)344

where µF represents average consistency within345

the task, and σF measures evaluation stability,346

where a larger σF means the average consistency347

score is more reliable. This separation reveals348

whether an LLM achieves high consistency uni-349

formly (σF ≈ 0) or excels only in specific circum-350

stances (σF ≫ 0).351

ConsistencyCheck In ConsistencyCheck, the352

evaluator model first generates the root node r and353

a list of operation pairs (p1, · · · , pk) conditioned354

on the root node, based on meta-prompts that de-355

scribes the desired properties in the root node and356

operations. We then use the evaluatee model to357

build a self-consistency tree given root node r and358

k pairs of operations, (p1, p2, · · · , pk). The tree359

generation process is described in Algorithm 1.360

5 Experimental Setting361

5.1 Models362

We use a total of 4 popular open-source LLMs for363

evaluation: Qwen 2.5 7B, Qwen 2.5 72B, LLaMA364

3.1 8B, and LLaMA 3.1 70B. All 4 models are 365

used as evaluators, which generate the root nodes 366

of self-consistency trees. These models are also be- 367

ing evaluated (as evaluatee) using these generated 368

root nodes. For better prompt-following, all of the 369

models being used are instruction-tuning versions. 370

5.2 Evaluation Metrics 371

For each task, we computed these metrics across 372

multiple levels of transformation (denoted as L1, 373

L2, and L3). The results are reported as mean 374

scores with standard deviations to account for vari- 375

ability across different evaluation instances. 376

Embedding-based metric To comprehensively 377

evaluate the models, we employed the following 378

metrics. First, we used the embedding similarity, 379

computed using the NV-Embed-v2 1, to measure 380

cosine similarity between the embeddings of gen- 381

erated outputs. This metric captures semantic simi- 382

larity, even when the syntactic structure differs. 383

N-gram-based metric We utilized the BLEU 384

score, which measures the precision of n-gram 385

overlaps between generated and reference outputs, 386

providing a quantitative measure of text similarity. 387

5.3 Tasks and Meta Prompts 388

Our evaluation framework is built around two tasks, 389

each defined by a meta prompt that generates a set 390

of root nodes and paired operations. These op- 391

erations expand into trees during benchmarking, 392

enabling a structured evaluation of model perfor- 393

mance across varying levels of complexity. 394

For the translation task, the root node is a 395

randomly sampled English paragraph of approxi- 396

mately 400 words in length. The operations involve 397

translating this paragraph into and from another 398

language. We sample three languages from an eval- 399

uator function, which are typically French, Spanish, 400

and German. This setup ensures that the task cap- 401

tures the nuances of multilingual translation across 402

diverse linguistic contexts. 403

For the AI-assisted programming task, the root 404

node consists of a LeetCode-Hard style program- 405

ming problem, its solution, and 20 accompanying 406

test cases. The operations are based on the root 407

code and involve transformations that request the 408

code to be implemented in a different but valid and 409

equivalent way. This design allows us to evaluate 410

the model’s ability to generate functionally correct 411

1https://huggingface.co/nvidia/NV-Embed-v2
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Table 1: Cross-lingual Machine Translation Consis-
tency Evaluation. Scores(%) evaluate LLMs’ ability
to attain semantics after translating across different lan-
guages. The evaluated models vary in model families,
scale (0.5B-72B) and path length (1-3).

Evaluatee L1 L2 L3

GPT 4o mini 99.2 ± 0.0 98.7 ± 0.0 98.0 ± 0.0

Qwen 2.5 1.5b 91.9 ± 0.1 86.5 ± 0.1 80.3 ± 0.5
Qwen 2.5 7b 96.4 ± 0.1 93.5 ± 0.3 90.0 ± 0.8
Qwen 2.5 14b 97.4 ± 0.0 96.1 ± 0.1 94.7 ± 0.1
Qwen 2.5 32b 97.6 ± 0.1 97.4 ± 0.0 96.4 ± 0.0
Qwen 2.5 72b 99.1 ± 0.0 98.3 ± 0.0 97.2 ± 0.0

LLaMA 3.1 8b 89.5 ± 0.1 75.7 ± 1.6 67.5 ± 3.0
LLaMA 3.1 70b 87.4 ± 0.7 80.7 ± 1.1 71.9 ± 3.2

Table 2: Code Equivalence Preservation in AI-
Assisted Programming Tasks Evaluation. Scores(%)
evaluate LLMs’ ability to attain code equivalence and
functionality when performing algorithm transforma-
tions multiple times.

Evaluatee L1 L2 L3

GPT 4o mini 90.6 ± 0.2 84.7 ± 0.6 76.5 ± 2.7

Qwen 2.5 1.5b 90.2 ± 0.2 80.0 ± 0.6 63.4 ± 1.4
Qwen 2.5 7b 85.4 ± 0.2 80.2 ± 0.2 71.7 ± 0.4
Qwen 2.5 14b 90.3 ± 0.2 83.1 ± 0.6 79.9 ± 1.0
Qwen 2.5 32b 91.1 ± 0.4 88.3 ± 0.7 85.1 ± 1.1
Qwen 2.5 72b 90.8 ± 0.2 85.3 ± 0.5 77.0 ± 1.9

LLaMA 3.1 8b 88.1 ± 0.2 76.0 ± 0.5 60.4 ± 1.0
LLaMA 3.1 70b 87.9 ± 0.4 82.7 ± 0.6 83.5 ± 1.0

and semantically consistent code under varying lev-412

els of abstraction and complexity.413

Both tasks are structured as trees, where the root414

node serves as the starting point, and the opera-415

tions represent branches that expand into increas-416

ingly complex transformations. This hierarchical417

approach provides a systematic way to measure418

model performance across multiple levels of diffi-419

culty and variation.420

In each task, each evaluator model generated421

10 root nodes, which are then used consistently to422

evaluate all LLMs.423

6 Experimental Results424

The results of our experiments are summarized in425

Tables 1 and Table 2. Table1 presents the evalua-426

tion metrics for the translation task, while Table 2427

focuses on the AI-assisted programming task. Each428

table reports the mean scores and standard devia-429

tions for embedding similarity.430

In the translation task, the results indicate that431

larger models consistently outperform their smaller432

counterparts, particularly in handling longer se- 433

quences of linguistic transformations (L3). For 434

instance, the Qwen 2.5 72B model achieves a con- 435

sistency score of 99.1 at L1, 98.3 at L2, and 97.2 at 436

L3, which are significantly higher than the scores 437

of the Qwen 2.5 1.5B model (91.9 at L1, 86.5 at 438

L2, and 80.3 at L3). Similarly, the LLaMA 3.1 70B 439

model shows an improvement over the LLaMA 3.1 440

8B model, with scores increasing from 89.5 to 87.4 441

at L1, from 75.7 to 80.7 at L2, and from 67.5 to 442

71.9 at L3. 443

In the AI-assisted programming task, larger 444

models also demonstrate superior performance in 445

generating functionally correct and semantically 446

consistent code across all levels of transformation. 447

The Qwen 2.5 32B model achieves the highest 448

scores at all levels: 91.1 at L1, 88.3 at L2, and 85.1 449

at L3, compared to the Qwen 2.5 1.5B model’s 450

scores of 90.2 at L1, 80.0 at L2, and 63.4 at L3. 451

The LLaMA 3.1 70B model also shows a notable 452

improvement over the LLaMA 3.1 8B model, with 453

scores increasing from 88.1 to 87.9 at L1, from 454

76.0 to 82.7 at L2, and from 60.4 to 83.5 at L3. 455

These findings underscore the importance of 456

model scale and architecture in achieving robust 457

and consistent performance across diverse tasks 458

and transformation levels. The detailed results are 459

discussed in the following sections. 460

7 Ablation Study 461

Ablation under path length. Figure 2 shows that 462

longer paths have lower consistency scores under 463

increasing levels of transformation complexity. For 464

instance, in the cross-lingual translation task, the 465

LLaMA 3.1 8B model exhibits a decrease in con- 466

sistency scores from 89.5 at L1 to 75.7 at L2 and 467

further down to 67.5 at L3. Similarly, the Qwen 468

2.5 72B model shows a decline from 99.1 at L1 to 469

98.3 at L2 and 97.2 at L3. This trend is consistent 470

across most of the models of varying families and 471

sizes evaluated. In the AI-assisted programming 472

tasks, the Qwen 2.5 7B model also demonstrates a 473

reduction in scores from 85.4 at L1 to 80.2 at L2 474

and 71.7 at L3, further illustrating the impact of 475

path length on consistency. 476

Ablation under evaluator model. As shown in 477

Table 3 and Table 4, different evaluator models 478

(Qwen 2.5 7B, Qwen 2.5 72B) provide similar rank- 479

ings for different models. For instance, in the trans- 480

lation task, the Qwen 2.5 7B evaluator model gives 481

scores of 90.1 at L1, 82.8 at L2, and 76.8 at L3, 482
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Table 3: Cross-lingual Translation Consistency Under Iterative Transformations. Consistency scores(%) across
model scales (7B-72B) and transform complexity (L1-L3) using embedding similarity and text overlap metrics

Evaluatee
Evaluator Qwen 2.5 7B Qwen 2.5 72B

L1 L2 L3 L1 L2 L3

Qwen 2.5 7b 90.1 ± 0.9 82.8 ± 3.0 76.8 ± 5.1 96.4 ± 0.1 93.5 ± 0.3 90.0 ± 0.8
Qwen 2.5 72b 90.0 ± 1.8 84.4 ± 4.2 78.2 ± 7.3 99.1 ± 0.0 98.3 ± 0.0 97.2 ± 0.0

LLaMA 3.1 8b 81.6 ± 0.5 73.0 ± 1.3 61.7 ± 4.8 89.5 ± 0.1 75.7 ± 1.6 67.5 ± 3.0
LLaMA 3.1 70b 82.3 ± 1.8 68.8 ± 2.3 30.8 ± 9.2 87.4 ± 0.7 80.7 ± 1.1 71.9 ± 3.2

Table 4: Code Equivalence Preservation in AI-Assisted Programming Tasks. Consistency scores(%) for
algorithm transformations at varying abstraction levels (L1-L3) across different architectures and model sizes

Evaluatee
Evaluator Qwen 2.5 7B Qwen 2.5 72B

L1 L2 L3 L1 L2 L3

Qwen 2.5 7b 86.2 ± 0.4 78.2 ± 0.8 72.2 ± 1.9 85.4 ± 0.2 80.2 ± 0.2 71.7 ± 0.4
Qwen 2.5 72b 87.2 ± 0.2 80.1 ± 0.6 79.4 ± 2.3 90.8 ± 0.2 85.3 ± 0.5 77.0 ± 1.9

LLaMA 3.1 8b 84.4 ± 0.2 72.1 ± 0.4 61.0 ± 1.1 88.1 ± 0.2 76.0 ± 0.5 60.4 ± 1.0
LLaMA 3.1 70b 91.0 ± 0.5 85.6 ± 1.0 81.5 ± 2.1 87.9 ± 0.4 82.7 ± 0.6 83.5 ± 1.0

while the Qwen 2.5 72B evaluator model provides483

scores of 90.0 at L1, 84.4 at L2, and 78.2 at L3.484

The consistency is more evident as the path length485

increases (L1 to L3).486

Ablation under evaluatee model. The consis-487

tency score of the same evaluated model varies488

between different evaluator models, as is shown in489

Table 4 and Table 3. For example, in the AI-assisted490

programming task, the Qwen 2.5 7B model evalu-491

ated by the Qwen 2.5 7B evaluator achieves scores492

of 86.2 at L1, 78.2 at L2, and 72.2 at L3, while the493

same model evaluated by the Qwen 2.5 72B evalu-494

ator achieves scores of 85.4 at L1, 80.2 at L2, and495

71.7 at L3. However, they all share the trend of con-496

sistency score decreasing when the path becomes497

longer.498

8 Discussion499

BLEU (Papineni et al., 2002) is a traditional metric500

for evaluating translation similarity. We also mea-501

sured similarities using BLEU in the same experi-502

ments referenced in Tables 1, 2, 5, and 6. For the503

translation task, we observed strong correlations504

between embedding similarity and BLEU scores,505

with Pearson coefficients of 0.859 (L-1), 0.743 (L-506

2), and 0.716 (L-3). The Spearman coefficients507

were even higher, at 0.905 (L-1), 0.881 (L-2), and508

0.881 (L-3), indicating a consistent monotonic re-509

lationship. This aligns with expectations, as BLEU510

is designed for textual similarity, and embedding-511

based metrics also capture semantic and structural512

similarities in text.513

Table 5: Cross-lingual Translation BLEU Score Eval-
uation. These BLEU scores(%) evaluate LLMs’ abil-
ity to maintain translation quality across different lan-
guages. The evaluated models vary in model families,
scale (1.5B-72B) and path length (1-3).

Evaluatee L1 L2 L3

GPT 4o mini 86.0 ± 0.0 78.6 ± 0.1 68.0 ± 0.2

Qwen 2.5 1.5b 53.4 ± 0.3 37.6 ± 0.3 25.8 ± 0.3
Qwen 2.5 7b 70.5 ± 0.3 56.0 ± 0.7 41.9 ± 0.7
Qwen 2.5 14b 76.3 ± 0.1 65.1 ± 0.2 53.8 ± 0.2
Qwen 2.5 32b 78.4 ± 0.1 68.2 ± 0.2 57.3 ± 0.3
Qwen 2.5 72b 81.7 ± 0.1 71.2 ± 0.1 57.4 ± 0.2

LLaMA 3.1 8b 59.5 ± 1.2 47.6 ± 1.1 36.6 ± 0.9
LLaMA 3.1 70b 63.1 ± 2.0 57.3 ± 1.8 46.9 ± 2.3

For the coding task, the correlations were surpris- 514

ingly stronger, with Pearson coefficients of 0.981 515

(L-1), 0.967 (L-2), and 0.989 (L-3), and Spearman 516

coefficients of 0.833 (L-1), 0.976 (L-2), and 1.000 517

(L-3). This high correlation is unexpected because 518

BLEU is not designed to compare numerical or 519

functional outputs, such as test case results. How- 520

ever, the results suggest that, in this specific con- 521

text, BLEU is capturing meaningful relationships 522

between the outputs, possibly due to the structured 523

and deterministic nature of the test case results. 524

9 Case Study 525

In this section, we present a case study involv- 526

ing two trees with the same root node. The root 527

node contains a Python function that returns a de- 528

tailed analysis of the integration of artificial in- 529
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Figure 2: Consistency scores(%) for various path
length. The upper one shows consistency score on cross-
lingual translation and the lower one shows consistency
score on code equivalence perservation.

telligence (AI) in healthcare systems. The trees530

are constructed by applying a series of translation531

operations to the return value of the ‘main‘ func-532

tion. The operations include translating the text to533

French, German, and Spanish, and then translating534

it back to English. The trees are evaluated to a535

depth of 3, and we compare the results from two536

different models: Qwen 2.5 72B and LLaMA 3.1537

8B/70B. The code content of these 3 nodes is in538

Appendix§I. The following operations are applied539

to the root node:540

• Translate the return value of ‘main’ to French,541

then translate it back to English.542

• Translate the return value of ‘main’ to Ger-543

man, then translate it back to English.544

• Translate the return value of ‘main’ to Spanish,545

then translate it back to English.546

The first leaf node is generated by the LLaMA547

3.1 8B model, while the second leaf node is gener-548

ated by the LLaMA 3.1 70B model. Both mod-549

els demonstrate the ability to preserve the core550

Table 6: Code Equivalence BLEU Score Evaluation.
These BLEU scores(%) evaluate LLMs’ ability to main-
tain code functionality when performing algorithm trans-
formations multiple times. The evaluated models vary
in model families, scale and path length.

Evaluatee L1 L2 L3

GPT 4o mini 78.4 ± 1.1 65.0 ± 2.5 48.3 ± 8.6

Qwen 2.5 1.5b 79.1 ± 0.6 58.0 ± 1.3 23.3 ± 3.7
Qwen 2.5 7b 64.5 ± 0.7 50.3 ± 1.4 31.4 ± 2.4
Qwen 2.5 14b 76.8 ± 0.6 60.4 ± 2.6 51.6 ± 3.8
Qwen 2.5 32b 79.2 ± 1.1 71.9 ± 2.9 64.3 ± 4.3
Qwen 2.5 72b 78.8 ± 1.1 66.5 ± 2.5 48.9 ± 6.4

LLaMA 3.1 8b 69.4 ± 1.1 42.9 ± 2.4 11.7 ± 2.1
LLaMA 3.1 70b 70.5 ± 1.2 58.3 ± 1.9 61.2 ± 3.0

meaning of the original text after multiple transla- 551

tion operations, although slight variations in word- 552

ing and phrasing are observed. LLaMA 3.1 70B 553

model managed to retain the original text with min- 554

imal changes (Levenshtein Distance of 66), while 555

LLaMA 3.1 8B had introduced more variations 556

(Levenshtein Distance of 215). This is also consis- 557

tent with the L-3 consistency scores measured by 558

embedding similarity and BLEU. This case study 559

highlights the robustness of the models in maintain- 560

ing semantic consistency across iterative transfor- 561

mations. 562

10 Conclusion 563

In this work, we evaluated the consistency of large 564

language models (LLMs) across translation and AI- 565

assisted programming tasks using the Consistency- 566

Checker framework. Our results demonstrate that 567

while larger models generally outperform smaller 568

ones, model scale alone does not guarantee superior 569

performance. Specifically, GPT-4o Mini emerges 570

as the state-of-the-art (SOTA) model for transla- 571

tion tasks, achieving the highest consistency scores 572

across all transformation levels. On the other hand, 573

LLaMA 3.1 70B establishes itself as the SOTA 574

model for AI-assisted programming, excelling in 575

generating functionally correct and semantically 576

consistent code. These findings highlight the im- 577

portance of task-specific optimization and suggest 578

that model scale is not the sole determinant of per- 579

formance in consistency evaluation. 580

Limitations 581

While this study offers valuable insights into the ro- 582

bustness and consistency of large language models 583

(LLMs) through the proposed ConsistencyChecker 584
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framework, it is important to acknowledge its limi-585

tations.586

The evaluation is restricted to only two587

tasks—cross-lingual translation and AI-assisted588

programming. Although these tasks are represen-589

tative of important LLM capabilities, they do not590

encompass the full spectrum of potential applica-591

tions, such as summarization, question answering,592

or creative writing. Expanding the evaluation to593

include a broader range of tasks in future work594

would ensure the generalizability of the findings595

and provide a more comprehensive assessment of596

model performance.597

Additionally, the study evaluates a limited set598

of models, primarily focusing on the Qwen and599

LLaMA families. While these models are widely600

used and representative of current LLM advance-601

ments, they do not cover the full diversity of ar-602

chitectures and training methodologies available603

in the field. Including other state-of-the-art mod-604

els, such as GPT, Claude, or PaLM, would offer a605

more holistic understanding of LLM consistency606

and robustness across different design choices and607

training paradigms.608

Another limitation lies in the scale and resource609

constraints of the evaluation. The study exam-610

ines models ranging from 1.5B to 72B parameters,611

which, while covering a significant portion of the612

model scale spectrum, excludes smaller models613

(e.g., <1B parameters) and extremely large models614

(e.g., >100B parameters). Furthermore, the com-615

putational resources required for generating and616

evaluating self-consistency trees at scale may limit617

the feasibility of applying this framework to even618

larger models or more extensive datasets.619

The chosen tasks may also introduce biases620

based on their inherent difficulty or domain speci-621

ficity. For instance, cross-lingual translation and622

code transformation tasks may favor models with623

specific training data or architectural features, po-624

tentially skewing the results. A more diverse set of625

tasks would help mitigate such biases and provide a626

more balanced assessment of model performance.627

Finally, the study relies solely on automated met-628

rics, such as embedding similarity, BLEU, and629

ROUGE, to measure consistency. While these met-630

rics provide quantitative measures, they do not fully631

capture the nuances of human judgment, particu-632

larly for tasks requiring high levels of creativity633

or subjective interpretation. Incorporating human634

evaluation in future work would enhance the valid-635

ity and reliability of the results.636

Addressing these limitations in future research 637

will strengthen the ConsistencyChecker framework 638

and provide a more comprehensive understanding 639

of LLM consistency and robustness across diverse 640

tasks, models, and evaluation methodologies. 641
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A Potential Risks897

The potential risks associated with this work in-898

clude the misuse of the generated artifacts outside899

of research contexts. To mitigate this, we have in-900

cluded a license in the appendix that specifies the901

intended use of the artifacts and restricts their use902

to research purposes only.903

B Artifact Use Consistent With Intended904

Use905

We confirm that our use of existing artifacts is con-906

sistent with their intended use as specified by their907

respective licenses. For artifacts created in this908

work, we explicitly specify their intended use in909

the documentation, ensuring compatibility with the910

original access conditions. Derivatives of data ac-911

cessed for research purposes are restricted to re-912

search contexts only.913

C Documentation Of Artifacts914

We provide comprehensive documentation for the915

artifacts used and created in this work. This in-916

cludes details on the domains, languages, and lin-917

guistic phenomena covered, as well as the demo-918

graphic groups represented. This study involves919

generation of benchmarks and evaluation log files920

involving English, German, French, and Spanish.921

Japanese is mentioned in this paper, and is also922

mentioned in the prompts which guide the genera-923

tor model to generate operation pairs as benchmark.924

D Statistics For Data925

We report relevant statistics for the data used and926

created in this work. This includes the number927

of examples, details of train/test/dev splits, and928

other relevant metadata. The four evaluator models929

involved in this study each generated 2 benchmark930

files, with one for the translation task and one for931

the ai-assisted programming task. Each of these932

benchmark files contains 10 self-consistency root933

nodes.934

E Model Size And Budget935

We report the number of parameters in the models936

used, the total computational budget (e.g., GPU937

hours), and the computing infrastructure used.938

Specifically, the models used in this work have939

the following configurations:940

• Qwen 2.5 72B: 72 billion parameters.941

• LLaMA 3.1 8B: 8 billion parameters. 942

• LLaMA 3.1 70B: 70 billion parameters. 943

This project is conducted on 10 NVIDIA RTX 944

A6000 GPUs. All LLMs with parameter scale 945

less than 8B were hosted locally with vLLM on 946

the A6000s with seed 42. All other LLMs, such 947

as GPT 4o Mini, Qwen 2.5 14B, Qwen 2.5 70B, 948

LLaMA 3.1 72B, are accessed through API. All 949

the LLMs in the LLaMA and Qwen families are 950

instruction tuned versions. All LLMs are not quan- 951

tized additionally. 952

F Experimental Setup And 953

Hyperparameters 954

We discuss the experimental setup, including hy- 955

perparameter search and the best-found hyperpa- 956

rameter values. The temperature for text generation 957

was set to 0.6. The tree structure used for evalua- 958

tion had an out-degree of 3 (operation pairs) and a 959

height of 3. These parameters were chosen based 960

on preliminary experiments to balance diversity 961

and consistency in the generated outputs. 962

G Parameters For Packages 963

We used the following packages and reported their 964

implementation, model, and parameter settings: 965

• nltk.translate.bleu_score: For 966

calculating BLEU scores, we used 967

the sentence_bleu function with 968

SmoothingFunction().method1. 969

H Information About Use Of AI 970

Assistants 971

We acknowledge the use of AI assistants in the 972

preparation of this work. The AI assistants were 973

used for generating and refining text, as well as for 974

providing suggestions on experimental design and 975

hyperparameter tuning. All outputs generated by 976

AI assistants were reviewed and validated by the 977

authors to ensure accuracy and relevance. 978

I Examples of Case Study 979

We include an example of machine translation con- 980

sistency evaluation here. 981
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Root Node: def main(): return "In the rapidly evolving landscape of artificial intelligence (AI), the
integration of these advanced technologies into healthcare systems represents a significant frontier
with profound implications for medical diagnostics and patient care. Recent advancements have
demonstrated the potential of AI to enhance diagnostic accuracy, streamline clinical workflows,
and personalize treatment plans, thereby improving patient outcomes and reducing healthcare
costs. However, the deployment of AI in this sensitive domain is not without its challenges. Ethical
considerations, such as data privacy, algorithmic bias, and the potential for job displacement,
are paramount. Moreover, the regulatory landscape must adapt to ensure that AI applications
meet stringent safety and efficacy standards. Despite these hurdles, the collaboration between
tech developers, healthcare providers, and regulatory bodies is fostering a cautious yet optimistic
approach to AI integration. The future of healthcare may well be defined by the seamless fusion of
human expertise and machine intelligence, creating a hybrid model that leverages the strengths of
both to deliver more effective and efficient care."

LLaMA 3.1 8B Leaf Node: def main(): return "In the constantly evolving scenario of artificial
intelligence (AI), the integration of these advanced technologies in medical systems represents
a significant frontier with important implications for medical diagnosis and patient care. Recent
advances have demonstrated the potential of AI to improve diagnostic accuracy, simplify clinical
workflows, and personalize treatment plans, leading to better patient outcomes and a reduction
in medical costs. However, implementing AI in this sensitive domain does not come without its
challenges. Ethical considerations, such as data privacy, algorithmic bias, and job displacement, are
fundamental. Furthermore, the regulatory landscape must adapt to ensure that AI applications meet
strict standards of safety and efficacy. Despite these difficulties, collaboration between technology
developers, healthcare providers, and regulatory bodies is promoting a cautious yet optimistic
approach to the integration of AI. The future of healthcare may be defined by the seamless fusion
of human experience and artificial intelligence, creating a hybrid model that leverages the strengths
of both to offer more effective and efficient care."

LLaMA 3.1 70B Leaf Node: def main(): return "In the rapidly evolving landscape of artificial
intelligence (AI), the integration of these advanced technologies into healthcare systems represents
a significant frontier with profound implications for medical diagnosis and patient care. Recent
advances have demonstrated AI’s potential to improve diagnostic accuracy, streamline clinical
workflows, and personalize treatment plans, thereby enhancing patient outcomes and reducing
healthcare costs. However, the deployment of AI in this sensitive domain is not without challenges.
Ethical considerations, such as data privacy, algorithmic bias, and potential job displacement, are
paramount. Moreover, the regulatory landscape must adapt to ensure that AI applications meet
stringent safety and efficacy standards. Despite these obstacles, collaboration between technology
developers, healthcare providers, and regulatory agencies is fostering a cautious yet optimistic
approach to AI integration. The future of healthcare may be defined by the seamless fusion of
human expertise and machine intelligence, creating a hybrid model that leverages the strengths of
both to deliver more effective and efficient care."

Figure 3: An Example of Root Node code, and Leaf Node Code in a Self-Consistency Tree of Height 3.
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