ConsistencyChecker: Tree-based Evaluation of
LLM Generalization Capabilities

Anonymous ACL submission

Abstract

Evaluating Large Language Models (LLMs)
requires effective methods to assess how well
they maintain semantic consistency across mul-
tiple transformations. Traditional methods like
self-consistency often fail to capture subtle se-
mantic errors that emerge during multi-step
tasks. To address this, we introduce Consisten-
cyChecker, a benchmark-free evaluation frame-
work that evaluates LLMs’ ability to preserve
semantic consistency during multi-step pro-
cesses. Our approach is based on the concept
of a self-consistency tree, where each node rep-
resents a state of the text after a transformation
(e.g., translation, code modification, paraphras-
ing), and each edge represents the transforma-
tion itself. By constructing self-consistency
trees, we measure how accurately the model
maintains the original meaning across these
changes. ConsistencyChecker quantifies an
LLM’s reliability in retaining critical informa-
tion by analyzing semantic preservation be-
tween nodes at different tree depths. This ap-
proach provides insights into model general-
ization capabilities without requiring extensive
resources. Experiments show that Consisten-
cyChecker can accurately measure the general-
ization ability of models with various sizes on
translation and coding tasks without the need
for building benchmarks. By identifying sce-
narios where models maintain or lose semantic
fidelity, ConsistencyChecker offers a practical
tool for understanding LLM robustness in real-
world applications.

1 Introduction

Large Language Models (LLMs) have emerged
as transformative tools in artificial intelligence,
demonstrating remarkable capabilities across di-
verse tasks, including natural language understand-
ing (Minaee et al., 2024), generation (Minaee et al.,
2024), and complex reasoning (Brown et al., 2020;
Chowdhery et al., 2024). Trained in a vast cor-

pus of text data, these models have achieved un-
precedented performance in areas ranging from
machine translation (Qian et al., 2024; Zhu et al.,
2024) to code generation (Jiang et al., 2024; Wang
et al., 2023), and from creative writing (Wang et al.,
2024a; Marco et al., 2024) to scientific analysis
(Zhang et al., 2024). Recent architectural advances,
coupled with increases in model scale and train-
ing data, have led to LLMs that can engage in so-
phisticated dialogue, solve complex problems, and
exhibit emergent abilities (Wei et al., 2022).
However, as LLMs are increasingly deployed in
real-world applications, evaluating their general-
ization capabilities—particularly in low-resource
settings - has become a critical challenge. Dataset-
based evaluation methods (e.g., using HumanEval
to measure code generation ability) often rely on
extensive benchmark datasets and human annota-
tions, which are costly, time-intensive, and prone
to limitations such as benchmark contamination
and dataset bias (Geirhos et al., 2020; Bowman and
Dahl, 2021; Magar and Schwartz, 2022). More-
over, these dataset-centric approaches struggle to
assess how well models maintain semantic consis-
tency across diverse transformations, a key indi-
cator of their robustness and reliability in practi-
cal scenarios (Callison-Burch et al., 2006; Zhang*
et al., 2020). This gap is particularly pronounced in
low-resource settings, where access to large-scale
benchmarks and human evaluators is limited.
Recent work has explored alternative evaluation
approaches, including human-in-the-loop frame-
works (Chiang et al., 2024; Gao et al., 2023)
and LLM-as-a-judge paradigms (Zheng et al.,
2023), which combine human flexibility with au-
tomated scalability. However, these methods still
often depend on task-specific examples or exter-
nal references, limiting their applicability in low-
resource or domain-agnostic settings. Addition-
ally, the challenge of hallucination—where mod-
els generate inconsistent or factually incorrect re-

def main():
return “LLM evaluation involves” \
“assessing metrics like..."“

< German :

ReturnVvalee 7500 S

. o Japanese :

Legend

O by evaluator LLM

P1 prompt: translate

what "main" function
returns to Spanish

: LLM evaluation involves :

____________ N Ll
n) H o 70 nr D

O by evaluatee LLM

what "main" function

- assessing metrics like
. perplexity, accuracy, and :
: human judgment on tasks :
: such as summarization :
- and question answering. :
" La evallcion ds los LM o S :
e - > The evaluation of LLMs :
. implica valorar métricas : 7. . .) .
: " :Pp7: involves assessing metrics :
: como la perplejidad, la : : N :
: S VL : such as perplexity, accuracy, :
- precision 'y el juicio : : ; A :
: : :and human judgment in tasks :
- humano en tareas como la : F I :
: L : . like summarizaton and
© resumicién y la respuesta : : . N :
: : * question answering.

...... .
. o French

returns to English p; and p; are pairs of
prompt-based function and
inverse function that feeds
the input and a piece of
prompt to the evaluatee LLM
and obtain the result.

Figure 1: Overview of the ConsistencyChecker Framework. This illustrates the evaluation process in Consisten-
cyChecker, where a tree-based self-consistency approach is used to evaluate LLMs. The root node () is a piece
of text generated by the evaluator model given constraints, and subsequent levels. (vy,vs,...) represent nodes
corresponding to nodes of text going through the transform-reverse functions executed by the evaluatee model(e.g.,
round-trip translation (van Zaanen and Zwarts, 2006)), where the functions are generated by the evaluator.

sponses—remains a significant barrier to reliable
evaluation (Waldo and Boussard, 2024). While
dataset-free metrics like self-consistency scores
have emerged, they primarily focus on single-step
evaluation and fail to capture nuanced semantic dis-
crepancies in multi-step tasks. Moreover, current
evaluation metrics such as self-consistency scores
tend to focus on trivial robustness checks rather
than identifying the subtle semantic variations that
emerge during complex multi-step reasoning.

Inspired by these advances, we introduce Con-
sistencyChecker, a novel benchmark-free frame-
work for evaluating LLMs’ generalization capabili-
ties. ConsistencyChecker operates without requir-
ing predefined benchmarks or reference datasets,
enabling rapid assessment of model performance
across arbitrary domains. At its core, Consistency-
Checker proposes the concept of self-consistency
trees where each node represents a transformation
step (e.g., translation, paraphrasing), each edge de-
notes a semantic-preserving operation, and each
path from the root node to any leaf node represents
a multi-step transformation sequence. By construct-
ing these self-consistency trees, our work measures
how accurately the model preserves the original
meaning across multiple transformations.

By analyzing semantic preservation between
nodes at different tree depths, ConsistencyChecker
quantifies an LLM’s reliability in retaining criti-
cal information through iterative transformations.
This approach enables comprehensive evaluation of
LLMs’ generalization ability in a multi-step man-
ner without relying on costly benchmark construc-
tion or annotated datasets. The framework further
identifies subtle semantic discrepancies that emerge

during complex reasoning processes, providing a
robust and resource-efficient alternative to tradi-
tional dataset-dependent evaluation paradigms.

Our approach addresses several fundamental
challenges in LLM evaluation. First, as a
benchmark-free method, it eliminates the need for
domain-specific benchmarks or annotated datasets,
enabling immediate application to new tasks or do-
mains. This ensures evaluation adaptability across
evolving models while avoiding traditional pitfalls
like dataset overfitting and benchmark contamina-
tion. Second, through multi-step semantic evalu-
ation across transformation chains, Consistency-
Checker analyzes robustness by measuring how
models preserve critical information through itera-
tive changes—providing deeper insights into gen-
eralization capabilities.

Our experiments demonstrate that Consisten-
cyChecker effectively ranks LLM performance.
In code equivalence preservation, Qwen 2.5 32B
achieves the highest consistency score with an L3
of 85.1. For cross-lingual translation consistency,
GPT 40 Mini leads with an L3 of 98.0. Surprisingly,
we find that model size does not strictly correlate
with robustness - Qwen 2.5 32B outperforms Qwen
2.5 72B in Al-assisted programming tasks despite
having fewer parameters.

2 Related Works

Software Verification and Formal Methods.
The development of reliable systems has long
relied on formal verification techniques such as
model checking (Clarke et al., 1999), theorem prov-
ing (Nipkow et al., 2002), and satisfiability mod-
ulo theories (SMT) solvers (Barrett and Tinelli,

2018). While these methods provide rigorous guar-
antees, they typically require significant computa-
tional resources and domain-specific specifications.
Our work draws inspiration from the iterative re-
finement principles of model checking but adapts
them to evaluate LLMs through lightweight, self-
referential transformations. This shift enables scal-
able verification without predefined specifications,
aligning with the challenges of evaluating genera-
tive models in resource-constrained scenarios.

The rise of LLMs for code generation has
spurred benchmarks like CodeXGLUE (Lu et al.,
2021) and ProblemSolving (Hendrycks et al.,
2021), which evaluate capabilities such as code
completion and problem-solving. However, these
benchmarks require curated datasets of human-
written code solutions, limiting their applicability
to novel or under-resourced programming tasks.
Recent work highlights the importance of code ro-
bustness—ensuring models generate functionally
equivalent outputs across stylistic variations (Chen
et al.,, 2021). Our work operationalizes this
idea through bidirectional code transformations
(e.g., refactoring, language translation), measuring
whether semantic similarity is preserved.

Translation Evaluation and Round-Trip
Consistency. Machine translation evalua-
tion has evolved from early rule-based sys-
tems (Weaver, 1952) to modern transformer-based
approaches (Vaswani et al., 2017). Traditional
metrics like BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and TER (Snover et al.,
2006) rely on reference translations, while bench-
marks like WMT (Barrault et al., 2019) depend
on human-annotated parallel corpora—resources
often unavailable in low-resource languages or
specialized domains. Round-trip translation,
where text is translated between languages and
back (van Zaanen and Zwarts, 2006), provides a
benchmark-free consistency check analogous to
our transformation chains. ConsistencyChecker
generalizes this concept, extending it beyond
translation to arbitrary semantic-preserving
operations (e.g., code refactoring, summarization),
thereby enabling evaluation in scenarios where
parallel data or reference outputs are absent.

Robustness and Consistency Evaluation Re-
cent advancements in LLM evaluation empha-
size structured frameworks to address consistency
across multi-step interactions. While verbalized
confidence scoring methods assess self-awareness

through explicit prompts (Yang et al., 2024), they
often conflate calibration with multi-step stabil-
ity. The Divide-Conquer-Reasoning approach in-
troduces hierarchical evaluation by decomposing
comparisons into granular analyses, enabling pre-
cise detection of inconsistencies (Cui et al., 2024).
This aligns with dynamic frameworks like MT-Eval
that benchmark recollection and refinement capa-
bilities in multi-turn workflows (Kwan et al., 2024).
Such methods contrast with traditional evaluations
that miss semantic drift in iterative transforma-
tions, particularly evident when applying adversar-
ial prompts to preserve functional similarity (Wang
et al., 2024b).

3 Preliminary

A common use case for large language models
(LLMs) involves a user providing an initial input
(e.g., a code snippet) along with a prompt request-
ing specific alterations, which the LLM then ex-
ecutes. In real-world scenarios, users often im-
pose multiple requirements through multi-step in-
teractions, introducing complexity and nuance at
each stage. To systematically evaluate LLM con-
sistency through such iterative interactions, we pro-
pose a tree-structured framework that supports hi-
erarchical transformations and multi-step analysis.
This structure enables comprehensive evaluation
through three key properties: (1) hierarchical orga-
nization of code variants, (2) controlled multi-step
transformations, and (3) systematic consistency
measurement through path analysis.

Self-consistency tree A self-consistency tree
T = (V,€) is a directed tree structure that sim-
ulates multi-step user-LLM interactions. Each
node v € V represents a distinct code implemen-
tation, while edges e € & represent transforma-
tions applied by LLMs through prompt operations.
The tree structure enables systematic evaluation
of output consistency across multiple transforma-
tion steps while preserving functional similarity
through shared test inputs.

Node Each node v = (d,c¢,Z,!) represents an
executable code implementation through four com-
ponents: d € " denotes the natural language
task description, ¢ € > represents the executable
code implementation, Z = [iy, ..., i,] specifies an
ordered list of test inputs where each i, € Z*
and [€ >_" indicates the tag of a programming
language (e.g., "python3"). Here > " denotes all

potential combinations of strings. Nodes maintain
functional similarity verification through shared
test inputs Z across transformations.

Operation An operation is a prompt-driven code
transformation function executed by an LLM. We
design operation pairs p and p’ that ideally nullify
each other’s effects (e.g., "add logging" followed
by "remove logging"). Formally, an operator is:

fp:c—>c/ (D)

where c is input code, p a transformation prompt,
and ¢’ the transformed code. Operation pairs test
the LLM’s transformation consistency.

Edge Edges enforce functional similarity through
invariant test inputs while tracking code evolution
via successive LLM operations. Formally, an edge
eij = (v, v;) connects nodes v; = (d;, ¢;,Z;, 1;)
and v; = (dj, ¢, Z;, ;) if and only if:

ey = By (e, *
Path A path in the self-consistency tree can be
formally written as P = (vy, ..., vx). It connects a
node to any descendant through edges. The length
of one path equals the number of transformations
applied (depth difference between nodes).

Forest A forest F = {71, ..., T, } combines mul-
tiple trees generated from different initial nodes.
This enables comparative analysis of LLM consis-
tency across varied tasks, languages, and transfor-
mation sequences.

{di —d;, T =1 li=1j,

4 ConsistencyChecker: Tree-based LLM
evaluation for Generalization Ability

Traditional single-tree evaluation faces inherent
limitations through three primary biases: task-
specific difficulty variance (e.g., code translation
being simpler than algorithm reconstruction), over-
sensitivity to prompt phrasing variations, and im-
plementation singularities from unique root node
configurations. Our forest-based approach ad-
dresses these challenges through strategic diver-
sification - roots sample diverse task types across
the problem space, transformation prompts vary per
tree to reduce phrasing bias, and architectural con-
figurations differ across trees to avoid implemen-
tation lock-in. This multi-axis variation produces
robust consistency estimates that better reflect real-
world LLM deployment scenarios.

Similarity score for node-pair For a pair of
nodes vj,vj, where v; = (d,¢;,Z,1) and v; =
(d, cj,Z,1), that shares the same task description d,
test inputs Z, and language [, semantic similarity
is computed through a three-stage process. First,
execute both codes to get outputs O; = exec(c¢;, Z)
and O; = exec(cj,Z). Then, convert outputs to
standardized string representations s; = str(0;)
and s; = str(O;). Finally, functional similarity
can be measured as the cosine similarity based on
embedding. The whole process can be written as:

s(v) = Str(O(v))
E(v) = Emb(s(v))

im(v;, v;) = M
Sim(vi, 03) = e TTE (03)]

where Emb(-) generates semantic embeddings
through a pretrained language model. This ap-
proach recognizes equivalent functionalities with
divergent syntactic outputs (e.g., "42" vs "42.0")
while providing granular similarity scores in [0, 1].

3)

Consistency score for path To evaluate whether
iterative transformations preserve core functional-
ity, we measure the end-to-end similarity between
the initial and final nodes in a path. For a path
P = (v1,--- ,vg), the consistency score is:

C(P) == sim(vy, vg) 4)

This metric measures whether the final output vy, re-
mains functionally equivalent to the original v; af-
ter multiple modifications. For example, applying
"add logging functionality" after "remove logging
functionality" should preserve the sorting function-
ality, which this score captures.

Consistency score for tree To evaluate an
LLM’s robustness across all possible transforma-
tion sequences of fixed length, we compute path
consistency for every N-step path in the tree. For
depth parameter [V, this metric aggregates all paths
Pn = {(vi, -+ ,v) \ length(P) = N}:

Z C 5)

PE’P

C(T) = ’PN(

This measures average functional preservation
across all N-transformation sequences, captur-
ing both cumulative error propagation and path-
specific divergence patterns. For example, a tree
with a high L-3 score but a low L-5 score indicates
consistent performance for short transformation
chains but degradation in longer sequences.

Algorithm 1 Tree Generation Algorithm

Require: Root node r, max depth D, operation
pairs ((p1,p1), -+, (Pks P})
Ensure: Tree 7 = (V,€)
LV« {r}
2: E+ 0
3: ford < 1to D do
4 U«—{veV|Dw)=d—-1}
5 for each v € U do
6: fori < 1tok do
7 d < fp,(v.c)
8 " < fp ()
9: Let v + (d,d",v.Z,v.0)
10: V<« Vu{v}

11: 5%8U{(U,U/)}
12: end for

13: end for

14: end for

15: return (V,€)

Consistency score for forest To assess cross-task
robustness, we compute two key statistics from the

forest F = {71, ..., Ty }:

Cu(F) = 7 2 C(T),
TeF

1 2
Co(F) = ¢ﬂ;€;(0(7) —W) .

where p r represents average consistency within
the task, and or measures evaluation stability,
where a larger o means the average consistency
score is more reliable. This separation reveals
whether an LLM achieves high consistency uni-
formly (o £ = 0) or excels only in specific circum-
stances (o > 0).

(6)

ConsistencyCheck In ConsistencyCheck, the
evaluator model first generates the root node r and
a list of operation pairs (p1,--- , px) conditioned
on the root node, based on meta-prompts that de-
scribes the desired properties in the root node and
operations. We then use the evaluatee model to
build a self-consistency tree given root node r and
k pairs of operations, (p1,p2,--- ,pr). The tree
generation process is described in Algorithm 1.

S Experimental Setting
5.1 Models

We use a total of 4 popular open-source LL.Ms for
evaluation: Qwen 2.5 7B, Qwen 2.5 72B, LLaMA

3.1 8B, and LLaMA 3.1 70B. All 4 models are
used as evaluators, which generate the root nodes
of self-consistency trees. These models are also be-
ing evaluated (as evaluatee) using these generated
root nodes. For better prompt-following, all of the
models being used are instruction-tuning versions.

5.2 Evaluation Metrics

For each task, we computed these metrics across
multiple levels of transformation (denoted as L1,
L2, and L3). The results are reported as mean
scores with standard deviations to account for vari-
ability across different evaluation instances.

Embedding-based metric To comprehensively
evaluate the models, we employed the following
metrics. First, we used the embedding similarity,
computed using the NV-Embed-v2 !, to measure
cosine similarity between the embeddings of gen-
erated outputs. This metric captures semantic simi-
larity, even when the syntactic structure differs.

N-gram-based metric We utilized the BLEU
score, which measures the precision of n-gram
overlaps between generated and reference outputs,
providing a quantitative measure of text similarity.

5.3 Tasks and Meta Prompts

Our evaluation framework is built around two tasks,
each defined by a meta prompt that generates a set
of root nodes and paired operations. These op-
erations expand into trees during benchmarking,
enabling a structured evaluation of model perfor-
mance across varying levels of complexity.

For the translation task, the root node is a
randomly sampled English paragraph of approxi-
mately 400 words in length. The operations involve
translating this paragraph into and from another
language. We sample three languages from an eval-
uator function, which are typically French, Spanish,
and German. This setup ensures that the task cap-
tures the nuances of multilingual translation across
diverse linguistic contexts.

For the Al-assisted programming task, the root
node consists of a LeetCode-Hard style program-
ming problem, its solution, and 20 accompanying
test cases. The operations are based on the root
code and involve transformations that request the
code to be implemented in a different but valid and
equivalent way. This design allows us to evaluate
the model’s ability to generate functionally correct

"https://huggingface.co/mvidia/NV-Embed-v2

https://huggingface.co/nvidia/NV-Embed-v2

Table 1: Cross-lingual Machine Translation Consis-
tency Evaluation. Scores(%) evaluate LLMs’ ability
to attain semantics after translating across different lan-
guages. The evaluated models vary in model families,
scale (0.5B-72B) and path length (1-3).

Evaluatee L1 L2 L3

GPT 40 mini 992 +00 98.74+0.0 98.0+0.0
Qwen 2.5 1.5b 919+0.1 8654+0.1 80.3£0.5
Qwen 2.5 7b 964 +0.1 935403 90.0+0.8
Qwen 2.5 14b 974 +£00 96.1+0.1 94.7+£0.1
Qwen 2.5 32b 97.6 0.1 974+00 964+0.0
Qwen 2.5 72b 99.1£0.0 9834+0.0 97.2+0.0
LLaMA 3.1 8b 895+0.1 757416 67.5+3.0

LLaMA3.170b 874407 80711 719+£32

Table 2: Code Equivalence Preservation in Al-
Assisted Programming Tasks Evaluation. Scores(%)
evaluate LLMs’ ability to attain code equivalence and
functionality when performing algorithm transforma-
tions multiple times.

Evaluatee L1 L2 L3

GPT 40 mini 906 £02 8474+0.6 765+27
Qwen 2.5 1.5b 902+02 80.0+06 634+14
Qwen 2.5 7b 8544+02 802402 71.74+04
Qwen 2.5 14b 90.3+02 831406 799+1.0
Qwen 2.5 32b 911+04 883+07 851+1.1
Qwen 2.5 72b 90.8 02 853405 77.0+£19
LLaMA 3.1 8b 88.1+02 760+£05 604+1.0

LLaMA 3.170b 879+04 827+06 835+1.0

and semantically consistent code under varying lev-
els of abstraction and complexity.

Both tasks are structured as trees, where the root
node serves as the starting point, and the opera-
tions represent branches that expand into increas-
ingly complex transformations. This hierarchical
approach provides a systematic way to measure
model performance across multiple levels of diffi-
culty and variation.

In each task, each evaluator model generated
10 root nodes, which are then used consistently to
evaluate all LLMs.

6 Experimental Results

The results of our experiments are summarized in
Tables 1 and Table 2. Tablel presents the evalua-
tion metrics for the translation task, while Table 2
focuses on the Al-assisted programming task. Each
table reports the mean scores and standard devia-
tions for embedding similarity.

In the translation task, the results indicate that
larger models consistently outperform their smaller

counterparts, particularly in handling longer se-
quences of linguistic transformations (L3). For
instance, the Qwen 2.5 72B model achieves a con-
sistency score of 99.1 at L1, 98.3 at L2, and 97.2 at
L3, which are significantly higher than the scores
of the Qwen 2.5 1.5B model (91.9 at L1, 86.5 at
L2, and 80.3 at L3). Similarly, the LLaMA 3.1 70B
model shows an improvement over the LLaMA 3.1
8B model, with scores increasing from 89.5 to 87.4
at L1, from 75.7 to 80.7 at L2, and from 67.5 to
71.9 at L3.

In the Al-assisted programming task, larger
models also demonstrate superior performance in
generating functionally correct and semantically
consistent code across all levels of transformation.
The Qwen 2.5 32B model achieves the highest
scores at all levels: 91.1 at L1, 88.3 at L2, and 85.1
at L3, compared to the Qwen 2.5 1.5B model’s
scores of 90.2 at L1, 80.0 at L2, and 63.4 at L3.
The LLaMA 3.1 70B model also shows a notable
improvement over the LLaMA 3.1 8B model, with
scores increasing from 88.1 to 87.9 at L1, from
76.0 to 82.7 at L2, and from 60.4 to 83.5 at L3.

These findings underscore the importance of
model scale and architecture in achieving robust
and consistent performance across diverse tasks
and transformation levels. The detailed results are
discussed in the following sections.

7 Ablation Study

Ablation under path length. Figure 2 shows that
longer paths have lower consistency scores under
increasing levels of transformation complexity. For
instance, in the cross-lingual translation task, the
LLaMA 3.1 8B model exhibits a decrease in con-
sistency scores from 89.5 at L1 to 75.7 at L2 and
further down to 67.5 at L3. Similarly, the Qwen
2.5 72B model shows a decline from 99.1 at L1 to
98.3 at L2 and 97.2 at L3. This trend is consistent
across most of the models of varying families and
sizes evaluated. In the Al-assisted programming
tasks, the Qwen 2.5 7B model also demonstrates a
reduction in scores from 85.4 at L1 to 80.2 at L2
and 71.7 at L3, further illustrating the impact of
path length on consistency.

Ablation under evaluator model. As shown in
Table 3 and Table 4, different evaluator models
(Qwen 2.5 7B, Qwen 2.5 72B) provide similar rank-
ings for different models. For instance, in the trans-
lation task, the Qwen 2.5 7B evaluator model gives
scores of 90.1 at L1, 82.8 at L2, and 76.8 at L3,

Table 3: Cross-lingual Translation Consistency Under Iterative Transformations. Consistency scores(%) across
model scales (7B-72B) and transform complexity (LL1-L3) using embedding similarity and text overlap metrics

Evaluator Qwen 2.5 7B Qwen 2.5 72B
Evaluatee L1 L2 L3 L1 L2 L3
Qwen 2.5 7b 90.1+09 828430 768+51 9644+01 935+£03 90.0+0.8
Qwen 2.5 72b 900+18 844+42 782+73 9914+0.0 983+00 97.2+0.0
LLaMA 3.1 8b 81.64+0.5 73013 61.7+48 89.5+0.1 757+1.6 67.5+3.0
LLaMA 3.1 70b 823+ 18 688+23 308+92 874+0.7 80711 719432

Table 4: Code Equivalence Preservation in AI-Assisted Programming Tasks. Consistency scores(%) for
algorithm transformations at varying abstraction levels (L1-L3) across different architectures and model sizes

Evaluator Qwen 2.57B Qwen 2.5 72B
Evaluatee L1 L2 L3 L1 L2 L3
Qwen 2.5 7b 86.2+04 782+08 722+19 854+02 802+02 71.74+04
Qwen 2.5 72b 8724+02 80.1+£06 794+23 908+02 853+05 77.0+1.9
LLaMA 3.1 8b 844402 721+£04 61.0+1.1 88.1£02 760+05 604+1.0
LLaMA 3.1 70b 910+ 05 856+1.0 815+21 8794+04 827+06 83.5+1.0

while the Qwen 2.5 72B evaluator model provides
scores of 90.0 at L1, 84.4 at L2, and 78.2 at L3.
The consistency is more evident as the path length
increases (L1 to L3).

Ablation under evaluatee model. The consis-
tency score of the same evaluated model varies
between different evaluator models, as is shown in
Table 4 and Table 3. For example, in the Al-assisted
programming task, the Qwen 2.5 7B model evalu-
ated by the Qwen 2.5 7B evaluator achieves scores
of 86.2 at L1, 78.2 at L2, and 72.2 at L3, while the
same model evaluated by the Qwen 2.5 72B evalu-
ator achieves scores of 85.4 at L1, 80.2 at L2, and
71.7 at L3. However, they all share the trend of con-
sistency score decreasing when the path becomes
longer.

8 Discussion

BLEU (Papineni et al., 2002) is a traditional metric
for evaluating translation similarity. We also mea-
sured similarities using BLEU in the same experi-
ments referenced in Tables 1, 2, 5, and 6. For the
translation task, we observed strong correlations
between embedding similarity and BLEU scores,
with Pearson coefficients of 0.859 (L-1), 0.743 (L-
2), and 0.716 (L-3). The Spearman coefficients
were even higher, at 0.905 (L-1), 0.881 (L-2), and
0.881 (L-3), indicating a consistent monotonic re-
lationship. This aligns with expectations, as BLEU
is designed for textual similarity, and embedding-
based metrics also capture semantic and structural
similarities in text.

Table 5: Cross-lingual Translation BLEU Score Eval-
uation. These BLEU scores(%) evaluate LLMs’ abil-
ity to maintain translation quality across different lan-
guages. The evaluated models vary in model families,
scale (1.5B-72B) and path length (1-3).

Evaluatee L1 L2 L3

GPT 40 mini 86.0 0.0 78.6+0.1 68.0+0.2
Qwen 2.5 1.5b 534403 37.6+03 258+0.3
Qwen 2.57b 705+ 03 56.0+0.7 419+0.7
Qwen 2.5 14b 763 +0.1 651+02 538+02
Qwen 2.5 32b 784 +0.1 682+02 573+£03
Qwen 2.5 72b 81.7+0.1 712+£0.1 574+02
LLaMA 3.1 8b 595+12 476+1.1 36.6+£09
LLaMA 3.170b 63.1+£20 573+1.8 469+23

For the coding task, the correlations were surpris-
ingly stronger, with Pearson coefficients of 0.981
(L-1), 0.967 (L-2), and 0.989 (L-3), and Spearman
coefficients of 0.833 (L-1), 0.976 (L-2), and 1.000
(L-3). This high correlation is unexpected because
BLEU is not designed to compare numerical or
functional outputs, such as test case results. How-
ever, the results suggest that, in this specific con-
text, BLEU is capturing meaningful relationships
between the outputs, possibly due to the structured
and deterministic nature of the test case results.

9 Case Study

In this section, we present a case study involv-
ing two trees with the same root node. The root
node contains a Python function that returns a de-
tailed analysis of the integration of artificial in-

1.005— Y
? —e
095 ‘\\
(5]
§ 0.90 ...
N \\\
%0385
5 .
20.80 s
8 \\m
S075 e
0.701[-e- Llama318B —a— Qwen257B \\\\
Llama3.170B —— Qwen2.572B e
06571 02 3
Path Length
095
0.90
© 085
S
» 0.80
)
E) 0.75
‘2070
o
© 065
0.60{|~®- Llama3.18B —A— Qwen257B e
’ Llama3.170B —@— Qwen2.572B
0.55 L1 L2 L3
Path Length

Figure 2: Consistency scores(%) for various path
length. The upper one shows consistency score on cross-
lingual translation and the lower one shows consistency
score on code equivalence perservation.

telligence (Al) in healthcare systems. The trees
are constructed by applying a series of translation
operations to the return value of the ‘main‘ func-
tion. The operations include translating the text to
French, German, and Spanish, and then translating
it back to English. The trees are evaluated to a
depth of 3, and we compare the results from two
different models: Qwen 2.5 72B and LLaMA 3.1
8B/70B. The code content of these 3 nodes is in
Appendix§I. The following operations are applied
to the root node:

¢ Translate the return value of ‘main’ to French,
then translate it back to English.

¢ Translate the return value of ‘main’ to Ger-
man, then translate it back to English.

* Translate the return value of ‘main’ to Spanish,
then translate it back to English.

The first leaf node is generated by the LLaMA
3.1 8B model, while the second leaf node is gener-
ated by the LLaMA 3.1 70B model. Both mod-
els demonstrate the ability to preserve the core

Table 6: Code Equivalence BLEU Score Evaluation.
These BLEU scores(%) evaluate LLMs’ ability to main-
tain code functionality when performing algorithm trans-
formations multiple times. The evaluated models vary
in model families, scale and path length.

Evaluatee L1 L2 L3

GPT 40 mini 784 +£1.1 650425 483+£86
Qwen 2.5 1.5b 79.1+£06 580413 233+37
Qwen 2.5 7b 645+07 503+14 314424
Qwen 2.5 14b 768 0.6 604+26 51.6+£38
Qwen 2.5 32b 792+ 11 71.9+29 643+43
Qwen 2.5 72b 788 1.1 665+25 489+64
LLaMA 3.1 8b 694+11 429424 11.7+2.1
LLaMA3.170b 705+12 583419 612+30

meaning of the original text after multiple transla-
tion operations, although slight variations in word-
ing and phrasing are observed. LLaMA 3.1 70B
model managed to retain the original text with min-
imal changes (Levenshtein Distance of 66), while
LLaMA 3.1 8B had introduced more variations
(Levenshtein Distance of 215). This is also consis-
tent with the L-3 consistency scores measured by
embedding similarity and BLEU. This case study
highlights the robustness of the models in maintain-
ing semantic consistency across iterative transfor-
mations.

10 Conclusion

In this work, we evaluated the consistency of large
language models (LLMs) across translation and Al-
assisted programming tasks using the Consistency-
Checker framework. Our results demonstrate that
while larger models generally outperform smaller
ones, model scale alone does not guarantee superior
performance. Specifically, GPT-40 Mini emerges
as the state-of-the-art (SOTA) model for transla-
tion tasks, achieving the highest consistency scores
across all transformation levels. On the other hand,
LLaMA 3.1 70B establishes itself as the SOTA
model for Al-assisted programming, excelling in
generating functionally correct and semantically
consistent code. These findings highlight the im-
portance of task-specific optimization and suggest
that model scale is not the sole determinant of per-
formance in consistency evaluation.

Limitations

While this study offers valuable insights into the ro-
bustness and consistency of large language models
(LLMs) through the proposed ConsistencyChecker

framework, it is important to acknowledge its limi-
tations.

The evaluation is restricted to only two
tasks—cross-lingual translation and Al-assisted
programming. Although these tasks are represen-
tative of important LLM capabilities, they do not
encompass the full spectrum of potential applica-
tions, such as summarization, question answering,
or creative writing. Expanding the evaluation to
include a broader range of tasks in future work
would ensure the generalizability of the findings
and provide a more comprehensive assessment of
model performance.

Additionally, the study evaluates a limited set
of models, primarily focusing on the Qwen and
LLaMA families. While these models are widely
used and representative of current LLM advance-
ments, they do not cover the full diversity of ar-
chitectures and training methodologies available
in the field. Including other state-of-the-art mod-
els, such as GPT, Claude, or PaLLM, would offer a
more holistic understanding of LLM consistency
and robustness across different design choices and
training paradigms.

Another limitation lies in the scale and resource
constraints of the evaluation. The study exam-
ines models ranging from 1.5B to 72B parameters,
which, while covering a significant portion of the
model scale spectrum, excludes smaller models
(e.g., <1B parameters) and extremely large models
(e.g., >100B parameters). Furthermore, the com-
putational resources required for generating and
evaluating self-consistency trees at scale may limit
the feasibility of applying this framework to even
larger models or more extensive datasets.

The chosen tasks may also introduce biases
based on their inherent difficulty or domain speci-
ficity. For instance, cross-lingual translation and
code transformation tasks may favor models with
specific training data or architectural features, po-
tentially skewing the results. A more diverse set of
tasks would help mitigate such biases and provide a
more balanced assessment of model performance.

Finally, the study relies solely on automated met-
rics, such as embedding similarity, BLEU, and
ROUGE, to measure consistency. While these met-
rics provide quantitative measures, they do not fully
capture the nuances of human judgment, particu-
larly for tasks requiring high levels of creativity
or subjective interpretation. Incorporating human
evaluation in future work would enhance the valid-
ity and reliability of the results.

Addressing these limitations in future research
will strengthen the ConsistencyChecker framework
and provide a more comprehensive understanding
of LLLM consistency and robustness across diverse
tasks, models, and evaluation methodologies.

References

Loic Barrault, Ondfej Bojar, Marta R. Costa-jussa,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Miiller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine trans-
lation (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1-61, Florence, Italy. As-
sociation for Computational Linguistics.

Clark Barrett and Cesare Tinelli. 2018. Satisfiabil-
ity modulo theories. Handbook of model checking,
pages 305-343.

Samuel R. Bowman and George E. Dahl. 2021. What
will it take to fix benchmarking in natural language
understanding? CoRR, abs/2104.02145.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluating the role of Bleu in ma-
chine translation research. In 71th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 249-256, Trento, Italy.
Association for Computational Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles

https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://arxiv.org/abs/2104.02145
https://arxiv.org/abs/2104.02145
https://arxiv.org/abs/2104.02145
https://arxiv.org/abs/2104.02145
https://arxiv.org/abs/2104.02145
https://arxiv.org/abs/2005.14165
https://aclanthology.org/E06-1032
https://aclanthology.org/E06-1032
https://aclanthology.org/E06-1032

Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anasta-
sios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E.
Gonzalez, and Ion Stoica. 2024. Chatbot arena: An
open platform for evaluating llms by human prefer-
ence. Preprint, arXiv:2403.04132.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sashank Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2024. Palm: scaling language mod-
eling with pathways. J. Mach. Learn. Res., 24(1).

Edmund M Clarke, Orna Grumberg, and Doron Peled.
1999. Model checking. MIT press.

Wendi Cui, Zhuohang Li, Damien Lopez, Kamalika
Das, Bradley A. Malin, Sricharan Kumar, and Jiaxin
Zhang. 2024. Divide-conquer-reasoning for consis-
tency evaluation and automatic improvement of large
language models. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing: Industry Track, pages 334-361, Miami,
Florida, US. Association for Computational Linguis-
tics.

Irena Gao, Gabriel Ilharco, Scott Lundberg, and
Marco Tulio Ribeiro. 2023. Adaptive testing of com-
puter vision models. Preprint, arXiv:2212.02774.

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio
Michaelis, Richard S. Zemel, Wieland Brendel,
Matthias Bethge, and Felix A. Wichmann. 2020.
Shortcut learning in deep neural networks. CoRR,
abs/2004.07780.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with APPS. In Thirty-fifth Conference on

10

Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2).

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large
language models for code generation. Preprint,
arXiv:2406.00515.

Wai-Chung Kwan, Xingshan Zeng, Yuxin Jiang, Yufei
Wang, Liangyou Li, Lifeng Shang, Xin Jiang, Qun
Liu, and Kam-Fai Wong. 2024. Mt-eval: A multi-
turn capabilities evaluation benchmark for large lan-
guage models. Preprint, arXiv:2401.16745.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74—81, Barcelona, Spain.
Association for Computational Linguistics.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, MING GONG, Ming Zhou, Nan Duan, Neel
Sundaresan, Shao Kun Deng, Shengyu Fu, and Shu-
jie LIU. 2021. CodeXGLUE: A machine learning
benchmark dataset for code understanding and gener-
ation. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track (Round 1).

Inbal Magar and Roy Schwartz. 2022. Data contamina-
tion: From memorization to exploitation. In Proceed-
ings of the 60th Annual Meeting of the Association
Jfor Computational Linguistics (Volume 2: Short Pa-
pers), pages 157-165, Dublin, Ireland. Association
for Computational Linguistics.

Guillermo Marco, Julio Gonzalo, M.Teresa Mateo-
Girona, and Ramoén Del Castillo Santos. 2024. Pron
vs prompt: Can large language models already chal-
lenge a world-class fiction author at creative text writ-
ing? In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 19654-19670, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,
Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. 2024. Large language
models: A survey. Preprint, arXiv:2402.06196.

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paul-
son. 2002. Isabelle/HOL: a proof assistant for
higher-order logic. Springer-Verlag, Berlin, Heidel-
berg.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://doi.org/10.18653/v1/2024.emnlp-industry.25
https://doi.org/10.18653/v1/2024.emnlp-industry.25
https://doi.org/10.18653/v1/2024.emnlp-industry.25
https://doi.org/10.18653/v1/2024.emnlp-industry.25
https://doi.org/10.18653/v1/2024.emnlp-industry.25
https://arxiv.org/abs/2212.02774
https://arxiv.org/abs/2212.02774
https://arxiv.org/abs/2212.02774
https://arxiv.org/abs/2004.07780
https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=sD93GOzH3i5
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2401.16745
https://arxiv.org/abs/2401.16745
https://arxiv.org/abs/2401.16745
https://arxiv.org/abs/2401.16745
https://arxiv.org/abs/2401.16745
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2024.emnlp-main.1096
https://doi.org/10.18653/v1/2024.emnlp-main.1096
https://doi.org/10.18653/v1/2024.emnlp-main.1096
https://doi.org/10.18653/v1/2024.emnlp-main.1096
https://doi.org/10.18653/v1/2024.emnlp-main.1096
https://doi.org/10.18653/v1/2024.emnlp-main.1096
https://doi.org/10.18653/v1/2024.emnlp-main.1096
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

Shenbin Qian, Archchana Sindhujan, Minnie Kabra,
Diptesh Kanojia, Constantin Orasan, Tharindu Ranas-
inghe, and Fred Blain. 2024. What do large lan-
guage models need for machine translation evalua-
tion? In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 3660-3674, Miami, Florida, USA. Association
for Computational Linguistics.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea
Micciulla, and John Makhoul. 2006. A study of trans-
lation edit rate with targeted human annotation. In
Proceedings of the 7th Conference of the Association
for Machine Translation in the Americas: Technical
Papers, pages 223-231, Cambridge, Massachusetts,
USA. Association for Machine Translation in the
Americas.

Menno van Zaanen and Simon Zwarts. 2006. Unsu-
pervised measurement of translation quality using
multi-engine, bi-directional translation. In Proceed-
ings of the 19th Australian Joint Conference on Ar-
tificial Intelligence: Advances in Artificial Intelli-
gence, A’06, page 1208-1214, Berlin, Heidelberg.
Springer-Verlag.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000-6010, Red Hook, NY,
USA. Curran Associates Inc.

Jim Waldo and Soline Boussard. 2024. Gpts and hallu-
cination: Why do large language models hallucinate?
Queue, 22(4):19-33.

Tiannan Wang, Jiamin Chen, Qingrui Jia, Shuai Wang,
Ruoyu Fang, Huilin Wang, Zhaowei Gao, Chunzhao
Xie, Chuou Xu, Jihong Dai, Yibin Liu, Jialong Wu,
Shengwei Ding, Long Li, Zhiwei Huang, Xinle Deng,
Teng Yu, Gangan Ma, Han Xiao, Zixin Chen, Dan-
jun Xiang, Yunxia Wang, Yuanyuan Zhu, Yi Xiao,
Jing Wang, Yiru Wang, Siran Ding, Jiayang Huang,
Jiayi Xu, Yilihamu Tayier, Zhenyu Hu, Yuan Gao,
Chengfeng Zheng, Yueshu Ye, Yihang Li, Lei Wan,
Xinyue Jiang, Yujie Wang, Siyu Cheng, Zhule Song,
Xiangru Tang, Xiaohua Xu, Ningyu Zhang, Hua-
jun Chen, Yuchen Eleanor Jiang, and Wangchunshu
Zhou. 2024a. Weaver: Foundation models for cre-
ative writing. Preprint, arXiv:2401.17268.

Yiming Wang, Pei Zhang, Baosong Yang, Derek F.
Wong, and Rui Wang. 2024b. Latent space chain-of-
embedding enables output-free 1lm self-evaluation.
Preprint, arXiv:2410.13640.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi
D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
2023. Codet5+: Open code large language mod-
els for code understanding and generation. Preprint,
arXiv:2305.07922.

Warren Weaver. 1952. Translation. In Proceedings of
the Conference on Mechanical Translation.

11

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten

Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903.

Daniel Yang, Yao-Hung Hubert Tsai, and Makoto Ya-

mada. 2024. On verbalized confidence scores for
llms. Preprint, arXiv:2412.14737.

Qiang Zhang, Keyang Ding, Tianwen Lyv, Xinda Wang,

Qingyu Yin, Yiwen Zhang, Jing Yu, Yuhao Wang,
Xiaotong Li, Zhuoyi Xiang, Kehua Feng, Xiang
Zhuang, Zeyuan Wang, Ming Qin, Mengyao Zhang,
Jinlu Zhang, Jiyu Cui, Tao Huang, Pengju Yan, Ren-
jun Xu, Hongyang Chen, Xiaolin Li, Xiaohui Fan,
Huabin Xing, and Huajun Chen. 2024. Scientific
large language models: A survey on biological &
chemical domains. Preprint, arXiv:2401.14656.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.

Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan

Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems,
volume 36, pages 46595-46623. Curran Associates,
Inc.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,

Shujian Huang, Lingpeng Kong, Jiajun Chen, and
Lei Li. 2024. Multilingual machine translation with
large language models: Empirical results and analy-
sis. Preprint, arXiv:2304.04675.

https://doi.org/10.18653/v1/2024.emnlp-main.214
https://doi.org/10.18653/v1/2024.emnlp-main.214
https://doi.org/10.18653/v1/2024.emnlp-main.214
https://doi.org/10.18653/v1/2024.emnlp-main.214
https://doi.org/10.18653/v1/2024.emnlp-main.214
https://aclanthology.org/2006.amta-papers.25/
https://aclanthology.org/2006.amta-papers.25/
https://aclanthology.org/2006.amta-papers.25/
https://doi.org/10.1007/11941439_149
https://doi.org/10.1007/11941439_149
https://doi.org/10.1007/11941439_149
https://doi.org/10.1007/11941439_149
https://doi.org/10.1007/11941439_149
https://doi.org/10.1145/3688007
https://doi.org/10.1145/3688007
https://doi.org/10.1145/3688007
https://arxiv.org/abs/2401.17268
https://arxiv.org/abs/2401.17268
https://arxiv.org/abs/2401.17268
https://arxiv.org/abs/2410.13640
https://arxiv.org/abs/2410.13640
https://arxiv.org/abs/2410.13640
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2412.14737
https://arxiv.org/abs/2412.14737
https://arxiv.org/abs/2412.14737
https://arxiv.org/abs/2401.14656
https://arxiv.org/abs/2401.14656
https://arxiv.org/abs/2401.14656
https://arxiv.org/abs/2401.14656
https://arxiv.org/abs/2401.14656
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2304.04675
https://arxiv.org/abs/2304.04675
https://arxiv.org/abs/2304.04675
https://arxiv.org/abs/2304.04675
https://arxiv.org/abs/2304.04675

A Potential Risks

The potential risks associated with this work in-
clude the misuse of the generated artifacts outside
of research contexts. To mitigate this, we have in-
cluded a license in the appendix that specifies the
intended use of the artifacts and restricts their use
to research purposes only.

B Artifact Use Consistent With Intended
Use

We confirm that our use of existing artifacts is con-
sistent with their intended use as specified by their
respective licenses. For artifacts created in this
work, we explicitly specify their intended use in
the documentation, ensuring compatibility with the
original access conditions. Derivatives of data ac-
cessed for research purposes are restricted to re-
search contexts only.

C Documentation Of Artifacts

We provide comprehensive documentation for the
artifacts used and created in this work. This in-
cludes details on the domains, languages, and lin-
guistic phenomena covered, as well as the demo-
graphic groups represented. This study involves
generation of benchmarks and evaluation log files
involving English, German, French, and Spanish.
Japanese is mentioned in this paper, and is also
mentioned in the prompts which guide the genera-
tor model to generate operation pairs as benchmark.

D Statistics For Data

We report relevant statistics for the data used and
created in this work. This includes the number
of examples, details of train/test/dev splits, and
other relevant metadata. The four evaluator models
involved in this study each generated 2 benchmark
files, with one for the translation task and one for
the ai-assisted programming task. Each of these
benchmark files contains 10 self-consistency root
nodes.

E Model Size And Budget

We report the number of parameters in the models
used, the total computational budget (e.g., GPU
hours), and the computing infrastructure used.
Specifically, the models used in this work have
the following configurations:

* Qwen 2.5 72B: 72 billion parameters.

12

* LLaMA 3.1 8B: 8 billion parameters.
* LLaMA 3.1 70B: 70 billion parameters.

This project is conducted on 10 NVIDIA RTX
A6000 GPUs. All LLMs with parameter scale
less than 8B were hosted locally with vLLM on
the A6000s with seed 42. All other LLMs, such
as GPT 40 Mini, Qwen 2.5 14B, Qwen 2.5 70B,
LLaMA 3.1 72B, are accessed through API. All
the LLMs in the LLaMA and Qwen families are
instruction tuned versions. All LLMs are not quan-
tized additionally.

F Experimental Setup And
Hyperparameters

We discuss the experimental setup, including hy-
perparameter search and the best-found hyperpa-
rameter values. The temperature for text generation
was set to 0.6. The tree structure used for evalua-
tion had an out-degree of 3 (operation pairs) and a
height of 3. These parameters were chosen based
on preliminary experiments to balance diversity
and consistency in the generated outputs.

G Parameters For Packages

We used the following packages and reported their
implementation, model, and parameter settings:

e nltk.translate.bleu_score: For
calculating BLEU scores, we used
the sentence_bleu function with

SmoothingFunction() .method1.

H Information About Use Of Al

Assistants

We acknowledge the use of Al assistants in the
preparation of this work. The Al assistants were
used for generating and refining text, as well as for
providing suggestions on experimental design and
hyperparameter tuning. All outputs generated by
Al assistants were reviewed and validated by the
authors to ensure accuracy and relevance.

I Examples of Case Study

We include an example of machine translation con-
sistency evaluation here.

Root Node: def main(): return "In the rapidly evolving landscape of artificial intelligence (Al), the
integration of these advanced technologies into healthcare systems represents a significant frontier
with profound implications for medical diagnostics and patient care. Recent advancements have
demonstrated the potential of Al to enhance diagnostic accuracy, streamline clinical workflows,
and personalize treatment plans, thereby improving patient outcomes and reducing healthcare
costs. However, the deployment of Al in this sensitive domain is not without its challenges. Ethical
considerations, such as data privacy, algorithmic bias, and the potential for job displacement,
are paramount. Moreover, the regulatory landscape must adapt to ensure that Al applications
meet stringent safety and efficacy standards. Despite these hurdles, the collaboration between
tech developers, healthcare providers, and regulatory bodies is fostering a cautious yet optimistic
approach to Al integration. The future of healthcare may well be defined by the seamless fusion of
human expertise and machine intelligence, creating a hybrid model that leverages the strengths of
both to deliver more effective and efficient care."

LLaMA 3.1 8B Leaf Node: def main(): return "In the constantly evolving scenario of artificial
intelligence (Al), the integration of these advanced technologies in medical systems represents
a significant frontier with important implications for medical diagnosis and patient care. Recent
advances have demonstrated the potential of Al to improve diagnostic accuracy, simplify clinical
workflows, and personalize treatment plans, leading to better patient outcomes and a reduction
in medical costs. However, implementing Al in this sensitive domain does not come without its
challenges. Ethical considerations, such as data privacy, algorithmic bias, and job displacement, are
fundamental. Furthermore, the regulatory landscape must adapt to ensure that Al applications meet
strict standards of safety and efficacy. Despite these difficulties, collaboration between technology
developers, healthcare providers, and regulatory bodies is promoting a cautious yet optimistic
approach to the integration of Al. The future of healthcare may be defined by the seamless fusion
of human experience and artificial intelligence, creating a hybrid model that leverages the strengths
of both to offer more effective and efficient care."

LLaMA 3.1 70B Leaf Node: def main(): return "In the rapidly evolving landscape of artificial
intelligence (Al), the integration of these advanced technologies into healthcare systems represents
a significant frontier with profound implications for medical diagnosis and patient care. Recent
advances have demonstrated AI’s potential to improve diagnostic accuracy, streamline clinical
workflows, and personalize treatment plans, thereby enhancing patient outcomes and reducing
healthcare costs. However, the deployment of Al in this sensitive domain is not without challenges.
Ethical considerations, such as data privacy, algorithmic bias, and potential job displacement, are
paramount. Moreover, the regulatory landscape must adapt to ensure that Al applications meet
stringent safety and efficacy standards. Despite these obstacles, collaboration between technology
developers, healthcare providers, and regulatory agencies is fostering a cautious yet optimistic
approach to Al integration. The future of healthcare may be defined by the seamless fusion of
human expertise and machine intelligence, creating a hybrid model that leverages the strengths of
both to deliver more effective and efficient care."

Figure 3: An Example of Root Node code, and Leaf Node Code in a Self-Consistency Tree of Height 3.

13

	Introduction
	Related Works
	Preliminary
	ConsistencyChecker: Tree-based LLM evaluation for Generalization Ability
	Experimental Setting
	Models
	Evaluation Metrics
	Tasks and Meta Prompts

	Experimental Results
	Ablation Study
	Discussion
	Case Study
	Conclusion
	Potential Risks
	Artifact Use Consistent With Intended Use
	Documentation Of Artifacts
	Statistics For Data
	Model Size And Budget
	Experimental Setup And Hyperparameters
	Parameters For Packages
	Information About Use Of AI Assistants
	Examples of Case Study

