

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM ASSISTANT TO INDEPENDENT DEVELOPER — ARE GPTs READY FOR SOFTWARE DEVELOPMENT?

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable capability in function-level code generation tasks. Unlike isolated functions, real-world applications demand reasoning over the entire software system: developers must orchestrate how different components interact, maintain consistency across states over time, and ensure the application behaves correctly within the lifecycle and framework constraints. Yet, no existing benchmark adequately evaluates whether LLMs can bridge this gap and construct entire software systems from scratch.

To address this gap, we propose APPFORGE, a benchmark consisting of 101 software development problems drawn from real-world Android apps. Given a natural language specification detailing the app functionality, a language model is tasked with **implementing the functionality into an Android app from scratch**. Developing an Android app from scratch requires understanding and coordinating app states, lifecycle management, and asynchronous operations, calling for LLMs to generate context-aware, robust, and maintainable code. To construct APPFORGE, we design a multi-agent system to automatically summarize the main functionalities from app documents and navigate the app to synthesize test cases validating the functional correctness of app implementation. Following rigorous manual verification by Android development experts, APPFORGE incorporates the test cases within an automated evaluation framework that enables reproducible assessment without human intervention, making it easily adoptable for future research. Our evaluation on 12 flagship LLMs show that all evaluated models achieve low effectiveness, with the best-performing model (GPT-5) developing only 18.8% functionally correct applications, highlighting fundamental limitations in current models' ability to handle complex, multi-component software engineering challenges.

1 INTRODUCTION

Large language models (LLMs) are reshaping the horizon of software engineering. Frontier code LLMs (OpenAI, 2023) are deeply integrated into developer's toolchains like GitHub Copilot (GitHub, 2025), Amazon CodeWhisperer (Amazon Web Services, 2025), and Claude Code (Anthropic, 2025). They are advancing from coding assistants to fully autonomous software developers (Yang et al., 2024), which hold significant potential to shape the next generation of software engineering.

Although existing benchmarks have advanced the evaluation of code LLMs, they primarily focus on generating isolated snippets or functions, which differs fundamentally from the system-level reasoning and integration required to build a complete application. As a result, they cannot determine whether current models are capable of end-to-end software development in real-world scenarios. For instance, HumanEval focuses on self-contained, toy-level, function-level code generation (Chen et al., 2021; Austin et al., 2021), while SWE-Bench targets program repair tasks within an existing codebase, requiring only minor modifications to a few lines of code in the target repository (Jimenez et al., 2024). None of the existing benchmarks effectively assess the end-to-end software development capabilities of LLMs in the role of an independent software developer (Liu et al., 2023; Jain et al., 2024; White et al., 2024; Zhu et al., 2024; Rajore et al., 2024). To address the limitations of current benchmarks and evaluate whether LLMs can truly function as software engineers in real-world development scenarios, we argue for the creation of a new benchmark that goes beyond narrow tasks and instead captures the full spectrum of software development.

Building such a benchmark is necessary because (1) it provides a comprehensive and realistic evaluation of LLMs' ability to perform software development tasks end-to-end, (2) bridging the gap between isolated code generation and real-world engineering and (3) providing insight how to leverage LLMs for the next generation software engineering. However, there are several challenges in building such a benchmark: **1 Reflecting the Real-World Software Development Process**: The benchmark should be realistic and faithfully represent the complexities and workflows of actual software development. **2 Ensuring Sufficient Challenge and Diversity**: The benchmark should be sufficiently challenging to differentiate model capabilities, covering diverse tasks such as design, implementation, debugging, and maintenance. **3 Measuring End-to-End Development Performance**: The benchmark should capture not only code correctness but also factors like code quality, maintainability, and integration within larger systems.

To address these challenges, we propose Android application (app) development as our benchmark domain, motivated by three key factors. First, Android represents one of the most significant software ecosystems globally, with over 2.6 million apps available (Technource, 2022), making it highly representative of real-world software development. Android development naturally involves creating complete projects with specific functional requirements, effectively capturing authentic development workflows. Second, developing Android apps from scratch provides inherent complexity through backend logic implementation, state management, UI design, and external API integration, ensuring sufficient difficulty and diversity for comprehensive evaluation. Third, the mature ecosystem of Android development tools, including static analyzers, testing frameworks, and emulation environments, enables rigorous automated assessment of various development aspects (Developers, 2025a;b;c).

Building on this intuition, we propose APPFORGE, the first benchmark for evaluating code LLMs specifically in Android app development. As illustrated in Figure 2, LLMs are tasked with generating complete Android apps from scratch based on natural language specifications. Once the code files are generated, APPFORGE automatically handles compilation into APK files, deployment on Android emulators, and comprehensive functionality validation against automated test case execution and systematic fuzzing. To ease the use of APPFORGE, the evaluation of APPFORGE is fully automated and encapsulated with a standalone docker for out-of-the-box usage.

To construct APPFORGE with scalability and rigor, we first collect real-world Android apps from F-Droid 2025c, a well-curated repository of open-source Android apps that provides real-world and actively maintained projects. Next, we leverage LLMs to automatically extract and summarize functionality specifications from each app's documentation and source code. Subsequently, we leverage a GUI agent (Ran et al., 2024) to interact with the app, capturing its runtime behavior to validate and enrich the specification description to avoid task ambiguity. Finally, we engage Android development experts to verify the correctness of both specifications and synthesized test cases. This combination of automated processing and expert validation ensures both scalability and reliability in benchmark construction.

We evaluate 12 flagship LLMs (OpenAI, 2023; Guo et al., 2024; Di et al., 2024; Jiang et al., 2024; Li et al., 2022) including GPT-5 (OpenAI, 2025) and Claude-4-Opus (Anthropic, 2025) as well as popular coding agents including Claude Code (Anthropic, 2025) on APPFORGE, revealing three key findings. First, all models achieve remarkably low performance with less than 20% of apps being functionally correct, and among these correct apps, half still encounter at least one crash (detailed in Table 1). This contrasts sharply with saturated existing benchmarks (Chen et al., 2021; Jain et al., 2024; White et al., 2024), indicating a significant gap between current LLM capabilities and real-world development tasks, and that APPFORGE represents the next frontier of software engineering challenges. Second, we uncover that some LLMs evade app development tasks by sacrificing functionality integrity for compilation success. When given opportunities to improve their previous generations with compilation errors, GPT-4.1 (OpenAI, 2025) and Kimi-K2 (Kimi Team, 2025) delete the implementation of error-inducing functions instead of fixing them as illustrated in Figure 8, indicating an avoidance strategy that sidesteps error handling instead of demonstrating true debugging competence. Specifically, GPT-4.1 evades development in 91.09% of tasks, while Kimi K2 does so in 65.36% of tasks. Finally, for simple tasks like calculator implementation (Figure 6), LLMs demonstrate promising performance, producing robust apps that surpass typical human-written code quality as illustrated in Figure 7, suggesting significant potential when complexity is appropriately managed for future software development.

We summarize our main contribution as follows:

108 • **New real-world problem** : We introduce end-to-end Android app development from scratch
 109 as a comprehensive evaluation task for LLMs’ software engineering capabilities.
 110

111 • **New Benchmark**: We construct APPFORGE, a benchmark with 101 diverse Android devel-
 112 opment tasks and fully automated evaluation suites.
 113

114 • **Evaluation Results**: We evaluate 12 flagship LLMs and analyze their limited performance
 115 and failure patterns in real-world software engineering scenarios.
 116

117

2 BACKGROUND & RELATED WORK

120 Code large language models (LLMs) have been advancing rapidly, where frontier code LLMs
 121 such as GPT5 (OpenAI, 2025), Claude-Opus (Anthropic, 2025), Gemini-Pro (Google, 2025), and
 122 Qwen3-Coder (Yang et al., 2025) have reshaped the paradigm of software development. As software
 123 ecosystems such as Cursor (Cursor, 2025) and GitHub Copilot (GitHub, 2025) continue to mature,
 124 the application scenarios of code LLMs expand beyond code generation and completion to encompass
 125 debugging, test generation, and even autonomous software development.

126 In contrast to the wide application scenarios of code LLMs,
 127 benchmarks that evaluate code LLMs still largely focus
 128 on (1) function-level code generation and completion,
 129 such as HumanEval (Chen et al., 2021), MBPP (Austin
 130 et al., 2021), and BigCodeBench (Zhuo et al., 2024);
 131 and (2) patch generation and feature implementation with
 132 repository-level context, such as SWE-Bench (Jimenez
 133 et al., 2024), Web-bench Xu et al. (2025) and Lo-
 134 CoBench (Qiu et al., 2025). Some efforts transform static
 135 benchmarks into dynamic ones to combat data contami-
 136 nation, such as SWE-Bench-Live (Zhang et al., 2025) and
 137 LiveCodeBench (Jain et al., 2024). As shown in Figure 1,
 138 APPFORGE goes beyond function-level code generation
 139 and patch generation. Compared to existing benchmarks,
 140 APPFORGE evaluates code LLM’s capability to perform
 141 **automated software development from scratch** at the
 142 repository level. It incorporates rigorous evaluation empowered by automated test cases and system-
 143 atic fuzzing.

144 APPFORGE is the first benchmark for assessing LLM capabilities in Android development to our
 145 knowledge. Android apps are typically built with Java or Kotlin following Material Design and
 146 Android architecture guidelines, comprise multiple interconnected components (2025a). Android
 147 apps represent one of the most significant software ecosystems globally with over 2.6 million
 148 applications available (Technource, 2022), so we believe that Android development is an ideal
 149 code LLM evaluation scenario that largely reflects the real-world software development process. F-
 150 Droid (2025c) is the leading open-source Android app repository, serving millions of users worldwide.
 151 F-Droid apps span diverse categories and their code undergo rigorous review process. APPFORGE is
 152 constructed from a diverse set of high-quality F-Droid apps, and can be dynamically expanded using
 153 latest projects from F-Droid. We defer a more in-depth discussion of related work in Appendix A.

3 APPFORGE

157 APPFORGE is a benchmark designed to evaluate LLMs’ capabilities across the full software develop-
 158 ment lifecycle for Android applications, using real-world apps such as Amaze File Manager (F-Droid,
 159 2025a), Arcticons (F-Droid, 2025b), and Vanilla Music (F-Droid, 2025c). Given the natural language
 160 description of an Android application, the task is to generate the corresponding code implementation
 161 that not only faithfully realizes the described functionality and passes the associated tests, but also
 executes securely within the Android operating system.

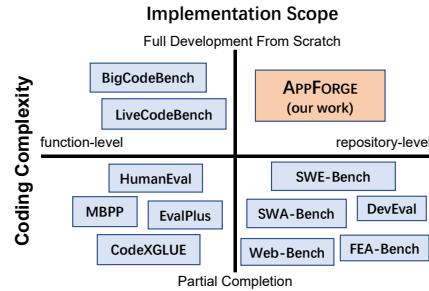


Figure 1: Our Work Compared with Existing Code Generation Benchmarks.

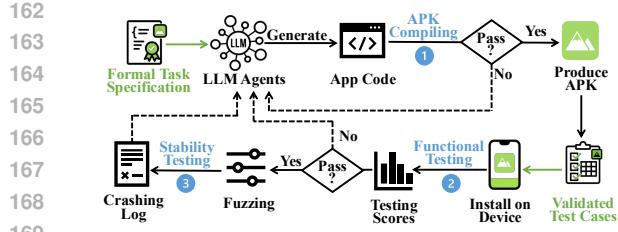


Figure 2: Workflow of APPFORGE.

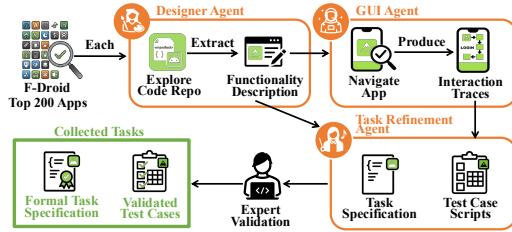


Figure 3: Construction of APPFORGE.

3.1 ANDROID APP DEVELOPMENT TASK FORMULATION

Each task in APPFORGE includes three main fields: *model input*, *model output*, and the *evaluation suite*. An example of task instance is provided in Appendix B.1.

Model Input: The model input is a natural language description that consists of three components: (1) a high-level overview of the app’s functionality along with detailed descriptions of the features corresponding to each functionality, (2) natural language test cases that specify how these functionalities should be implemented and validated, and (3) implementation constraints such as API version requirements and expected output format specifications. Within the detailed feature descriptions, we also provide the specific resource IDs required for implementation. This design streamlining the overall evaluation process.

Expected Model Output: When prompting the LLM for app generation, the model is required to produce output in JSON format, where each key represents a filename and each value contains the corresponding code. This design enables automated project assembly and evaluation.

Evaluation Suite: APPFORGE includes an automated evaluation pipeline consisting of three components: (1) an automatic compiler suite that parses the generated outputs, assembles them into an Android project, and compiles the project into an Android Package (APK); (2) a testing module that installs the APK onto an Android emulator and executes predefined test cases to validate functional correctness; and (3) a lightweight fuzzer that evaluates the robustness and exception-handling capabilities of the application under various edge cases and unexpected inputs. The evaluation reports four metrics: (1) compilation success rate, (2) test pass rate, (3) crash rate, and (4) an overall performance score (detailed in Appendix B.3) representing the model’s effectiveness on the given Android development benchmark (More implementation details could be found in Appendix B.4).

3.2 CONSTRUCTION OF APPFORGE

We construct our benchmark from real-world Android apps collected from F-Droid. Although each app on F-Droid comes with detailed documentation and README files, these resources are too large and unstructured to be directly used as prompts for benchmarking LLMs. To address this limitation, we need to regenerate the task. Specifically, we follow the pipeline below: (1) Seed App selection: We choose apps based on diversity, complexity, and popularity. (2) UI navigation and trace recording: We use a UI navigator tool to explore the selected apps and record the navigation traces along with each UI element’s ID. This step provides detailed interaction data, enabling automatic evaluation. Since our UI navigation is a dynamic process, even the same app can produce different traces. This dynamic mechanism allows us to generate diverse tasks from the same app, reducing the risk of data contamination. (3) Trace summarization: We combine the app documentation and navigation traces, such as the element ID, then use an LLM to summarize each trace into natural language descriptions. (4) Human validation: Finally, we perform human validation to ensure the generated tasks are accurate and meaningful.

App Selection and Scraping. We begin by ranking apps based on a combination of popularity, complexity, diversity, and update frequency; detailed criteria are in Appendix B.5. From this ranking, we select the top 200 highest-scoring apps across different categories as seed apps for subsequent task creation, ensuring balanced coverage of Android development domains. For each selected app, we analyze its code repository to extract metadata, including descriptions from README files and

216 release notes. We then summarize the app’s core functionalities in natural language using a JSON
 217 format. These functionality descriptions are intentionally high-level and may be ambiguous.
 218

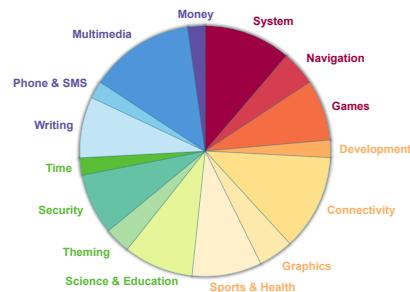
219 **Automatic App Navigation.** We use an existing tool, UIAutomator (Android Developers, 2025), to
 220 install each seed app in an Android emulator and systematically record interaction traces. For every
 221 high-level functionality description, a UI navigator performs goal-based navigation (Ran et al., 2024)
 222 starting from the app’s main screen. Guided by the functionality description, the agent identifies and
 223 interacts with relevant UI elements while maintaining a detailed log of the process. At each step, it
 224 captures the full UI tree using UIAutomator, including element properties such as text, resource-id,
 225 class, and bounds. The agent also documents the sequence of UI actions (e.g., clicks, text inputs,
 226 swipes), the target elements, and the reasoning behind each action, along with the resulting screen
 227 transitions and state changes. Once the target functionality is accomplished (e.g., logging in or
 228 sending a message), the agent records the complete interaction trace. This goal-directed approach
 229 produces precise traces that capture the most natural paths for implementing each functionality.
 230

231 **Task Generation For Trace History.** We then utilize a LLM to synthesizes precise task descriptions
 232 and test suites based on the captured interaction traces. First, the task refinement agent transforms
 233 each interaction trace into a test case. Each test case consists of a sequence of UI actions and an oracle
 234 specifying the expected outcome of executing the action sequence. Each UI action is associated
 235 with a UI element containing clear text or resource-id labels. For UI elements in seed apps that lack
 236 meaningful labels, the refinement agent generates context-appropriate resource-ids to avoid ambiguity.
 237 Each oracle is an assertion determining whether a UI element exists or does not exist. The test case is
 238 implemented as a Python script using the UIAutomator framework, enabling automated evaluation.
 239 Based on the synthesized test suites, the task refinement agent generates a task description detailing
 240 the core functionalities and their implementation. For each test script, the agent produces natural
 241 language descriptions that specify the sequence of UI interactions (e.g., “click the button with login
 242 resource-id”, “enter text in the username field”) and the expected app states after these operations.
 243 This approach eliminates ambiguity by providing precise, actionable specifications that ensure any
 244 LLM or human developer interpreting the task description will implement functionally equivalent
 245 apps that satisfy the same behavioral requirements.
 246

247 **Android Developer Validation.** To ensure quality control, five expert Android developers with a
 248 combined 30 years of experience reviewed all tasks for technical accuracy, feasibility, and alignment
 249 with real-world practices. The validation process included checking task clarity and completeness,
 250 verifying non-trivial and unambiguous requirements, ensuring coverage of essential concepts across
 251 difficulty levels, and confirming the soundness of examples and constraints. Experts also validated
 252 test cases by examining expected outputs and the accuracy of automated testing. Each task underwent
 253 multiple review rounds until consensus was reached, yielding high-quality benchmarks that reflect
 254 authentic Android development challenges.
 255

256 3.3 BENCHMARK SUITE AND DATA STATISTICS

257 We collect 101 high-quality Android development tasks,
 258 each representing the development of a complete Android
 259 application. The task distribution reflects real-world Android
 260 development patterns and emphasizes comprehensive applica-
 261 tion diversity: UI/Layout focused apps comprise 40%,
 262 covering complex view hierarchies, custom components,
 263 and responsive design; Backend Integration apps account
 264 for 32%, including API consumption, data persistence, and
 265 background services; User Interaction apps represent 94%,
 266 focusing on gesture handling, input validation, and navi-
 267 gation flows; and System Integration apps make up 63%,
 268 encompassing permissions, hardware access, and inter-app
 269 communication. Task complexity spans three difficulty lev-
 270 els based on implementation requirements: Beginner (37%,
 271 focusing on single-activity apps with basic Android concepts), Intermediate (48%, requiring multi-
 272 component integration and moderate architectural complexity), and Advanced (15%, involving
 273 sophisticated architectural patterns, performance optimization, and complex system interactions).
 274



275 Figure 4: Distribution of Category.

270 The diversity in app categories and complexity levels ensures that APPFORGE captures the full
 271 spectrum of Android development scenarios in real-world practice.
 272

273 **3.4 KEY FEATURES OF APPFORGE**
 274

275 Traditional code generation benchmarks often focus on toy function-level tasks or partial repository
 276 generation, where much of the context is pre-defined and evaluation is limited to functionality—an
 277 approach shown to be insufficiently rigorous in prior work. In contrast, APPFORGE draws on real-
 278 world Android applications from F-Droid, offering authentic, end-to-end development tasks that more
 279 faithfully capture practical software engineering challenges. Here, we describe some key features:

280 **Real-world Software Development Tasks.** Since each task in APPFORGE is sourced from F-Droid
 281 and represents a real-world Android application that may have been installed on millions of devices
 282 worldwide, solving APPFORGE requires LLMs to demonstrate sophisticated skills and knowledge
 283 in full-stack Android development, including UI design, API integration, state management, and
 284 security considerations—capabilities rarely evaluated in traditional code generation benchmarks.

285 **Diverse Task Categories.** As shown in Figure 4, APPFORGE includes a diverse range of apps.
 286 Each instance of APPFORGE belongs to a unique category, making it significantly more diverse than
 287 existing benchmarks (e.g., SWE-Bench includes only 12 different repositories from Python (Jimenez
 288 et al., 2024) and concurrent work LoCoBench covers only 3 mobile app categories (Qiu et al., 2025)).

289 **Software-level Code Generation.** This task challenges LLMs to generate coherent, end-to-end
 290 Android application code while understanding the semantics of APIs across different versions of the
 291 Android framework and third-party libraries. Unlike function-level tasks, software-level generation
 292 requires reasoning about how components interact, handling version-specific behavior, and integrating
 293 multiple modules correctly. By requiring models to adapt to evolving APIs and manage compatibility,
 294 this task evaluates a deeper level of software engineering capability, beyond simple functionality,
 295 ensuring that generated applications are both correct and maintainable.

296 **Rigorous Functionality & Reliability Evaluation.** Considering the fact that every software may
 297 contain some bug or defect, our benchmark includes both functionality and reliability evaluations.
 298 Our experiments demonstrate that incorporating reliability is essential, as it can uncover hidden
 299 crashes that would be missed by functionality testing alone.

300 **Wide Solution Space.** The task of full-application code generation in APPFORGE provides a level
 301 playing field for evaluating approaches ranging from standard models to autonomous agents capable
 302 of reasoning and acting across an entire Android project. APPFORGE also encourages creative
 303 solutions, allowing models to produce implementations that may diverge from reference apps while
 304 still meeting functional, and security requirements.

306 **4 EVALUATIONS**
 307

308 **4.1 EVALUATION SETUP**
 309

310 We conduct comprehensive experiments on APPFORGE with 12 state-of-the-art LLMs, including 7
 311 proprietary models (Claude-5-Opus, Claude-4-Sonnet(Anthropic, 2025), Gemini-2.5-Pro (Google,
 312 2025), GPT4.1 (OpenAI, 2025), GPT-5-Low, GPT-5-Medium, and GPT-5-High (OpenAI, 2025))
 313 and 5 open-source models (DeepSeek-R1, DeepSeek-V3 (Guo et al., 2024), GLM-4.5 (Zhuo et al.,
 314 2024), Kimi K2 (Kimi Team, 2025), and Qwen3-Coder (Yang et al., 2025)), along with two coding
 315 agents (mini-SWE-agent (Yang et al., 2024) and Claude Code (Anthropic, 2025)) to evaluate the
 316 cutting-edge progress in fully automated software engineering. Details are provided in Appendix C.
 317

318 **4.2 MAIN RESULTS**
 319

320 **All models struggle on APPFORGE.** As shown in Table 1, all models achieve low performance on
 321 APPFORGE, with the best-performing flagship model GPT-5 with high reasoning mode achieving
 322 only 14.85% success rate (developing 14.85% of apps passing all test cases). When given chances to
 323 repair compilation errors in their previous development, the improvement is still marginal, with GPT-5
 achieving only 18.81% success rate. Open-source models perform considerably worse, all achieving

324
325
326 Table 1: Performance of LLMs on APPFORGE.
327
328

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377						329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377							
	#File	#LOC	Compile	Test Pass	Crash	Success	#File	#LOC	Compile	Test Pass	Crash	Success		
<i>Proprietary Models</i>														
Claude-4-Opus	9.11	396.94	80.20%	28.52%	60.49%	11.88%	8.97	386.63	90.10%	34.22%	60.44%	14.85%		
Claude-4-Sonnet	9.61	432.17	40.59%	10.35%	58.54%	0.99%	9.78	437.69	77.23%	18.36%	26.92%	3.96%		
Gemini-2.5-Pro	10.74	380.31	53.47%	19.63%	62.96%	7.92%	10.52	361.94	68.32%	21.63%	75.36%	13.86%		
GPT-5-High	7.76	354.59	45.54%	21.90%	52.17%	14.85%	7.36	340.77	82.18%	29.07%	31.33%	18.81%		
GPT-4.1	8.00	367.43	6.93%	2.44%	28.57%	0.99%	2.68	58.41	74.26%	1.85%	94.67%	0.99%		
<i>Open-source Models</i>														
DeepSeek-R1	7.00	214.33	14.85%	1.90%	73.33%	0.00%	7.33	233.78	44.55%	12.29%	62.22%	4.95%		
DeepSeek-V3	5.17	164.67	5.94%	2.23%	83.33%	0.99%	5.33	250.19	26.73%	10.40%	48.15%	4.95%		
GLM-4.5	7.64	256.16	24.75%	8.74%	72.00%	4.95%	8.51	278.91	44.55%	10.14%	75.56%	4.95%		
Kimi K2	6.82	239.82	16.83%	4.95%	76.47%	1.98%	5.10	168.60	41.58%	7.76%	69.05%	1.98%		
Qwen3-Coder	5.29	209.00	27.72%	4.42%	75.00%	1.98%	6.20	241.21	85.15%	21.45%	29.07%	8.91%		

338 less than 10% functional success rate after repairing compilation errors. While the high compilation
 339 rates of flagship models demonstrate that existing models can generate syntactically correct programs,
 340 the consistently low test pass rates across all models reveal the fundamental challenge of generating
 341 functionally correct Android apps. In addition, over 50% of functionally correct apps crashes during
 342 runtime, highlighting that even when LLMs successfully implement the required functionality, the
 343 generated code often lacks reliability necessary for real-world deployment.

344 **Iterative refinement with compilation feedback does not significantly improve functional correctness.** The compilation error
 345 feedback substantially improves compilation success across all models, with notable improvements for Claude-4-Sonnet (40.59% to 77.23%) and Qwen3-Coder (27.72% to 85.15%). However, this improvement does not translate proportionally to functional correctness, as test pass rates show modest gains. As illustrated in Figure 5, iterative refinement significantly improves compilation success for both Qwen3-Coder (33.7% to 98%) and DeepSeek-V3 (7.9% to 63.4%). However, the functional success rate, measured by passing test cases, saturates quickly after 2-3 iterations, peaking around 23% for Qwen3-Coder and 14% for DeepSeek-V3.

357 **LLMs can develop robust, functionally correct apps on simple development tasks.** Despite overall low success rates, successful cases demonstrate that LLMs can generate surprisingly sophisticated Android applications. As visualized in Figure 6, there is a clear inverse relationship between app complexity and success rates for lower complexity tasks with enough sample sizes below 800 LOCs. Notably, successful cases often showcase proactive exception handling and defensive programming beyond basic functional requirements. Figure 7 illustrates an actual implementation by GPT-5 in the Autostarts app, where it gracefully manages potential exceptions and provides fallback solutions.

370 **Some LLMs evade development tasks rather than repair their compilation errors.** Interestingly, GPT4.1 and Kimi K2 evade development tasks during iterative refinement, where they delete faulty implementations instead of repairing them. GPT-4.1 shows a dramatic reduction in generated number of files (from 8.00 to 2.68) and LOCs (from 367.43 to 58.41) when provided with compilation feedback. As shown in Figure 8, GPT-4.1 replaces the buggy implementation of the function with an empty body. This strategy successfully achieves the highest compilation rate improvement (from 6.93% to 74.26%), but does no good for implementing the required app functionality. Similar patterns are observed in Kimi K2, indicating that some LLMs may strategically simplify their solutions when faced with compilation challenges rather than addressing the underlying issues.

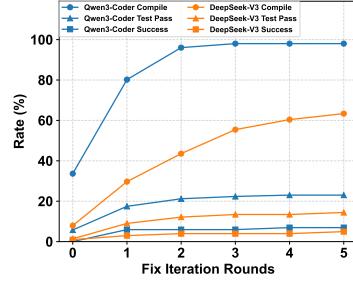


Figure 5: Performance evolution with compilation feedback.

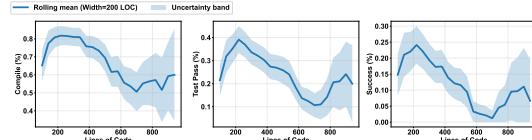


Figure 6: Correlation between Lines of Code (LOC) and evaluation metrics (Compile, Test Pass, and Success). Rolling means with uncertainty bands show performance variability across code complexity.

```

378
379 1 private void openAppInfo(String packageName) {
380 2     try {
381 3         Intent it = new Intent(Settings.ACTION_APPLICATION_DETAILS_SETTINGS);
382 4         it.setData(Uri.parse("package:" + packageName));
383 5         it.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
384 6         startActivity(it);
385 7     } catch (ActivityNotFoundException e) {
386 8         try {
387 9             Intent fallback = new Intent(Settings.ACTION_APPLICATION_DETAILS_SETTINGS);
388 10            fallback.setData(Uri.parse("package:" + getPackageName()));
389 11            startActivity(fallback);
390 12        } catch (Exception ex) {
391 13            Toast.makeText(this, "Unable to open Application Info", Toast.LENGTH_SHORT).show();
392 14        }
393 15    }
394 16    .....
395 17
396 18
397 19
398 20
399 21
400 22
401 23
402 24
403 25
404 26
405 27
406 28
407 29
408 30
409 31
410 32
411 33
412 34
413 35
414 36
415 37
416 38
417 39
418 40
419 41
420 42
421 43
422 44
423 45
424 46
425 47
426 48
427 49
428 50
429 51
430 52
431 53
432 54
433 55
434 56
435 57
436 58
437 59
438 60
439 61
440 62
441 63
442 64
443 65
444 66
445 67
446 68
447 69
448 70
449 71
450 72
451 73
452 74
453 75
454 76
455 77
456 78
457 79
458 80
459 81
460 82
461 83
462 84
463 85
464 86
465 87
466 88
467 89
468 90
469 91
470 92
471 93
472 94
473 95
474 96
475 97
476 98
477 99
478 100
479 101
480 102
481 103
482 104
483 105
484 106
485 107
486 108
487 109
488 110
489 111
490 112
491 113
492 114
493 115
494 116
495 117
496 118
497 119
498 120
499 121
500 122
501 123
502 124
503 125
504 126
505 127
506 128
507 129
508 130
509 131
510 132
511 133
512 134
513 135
514 136
515 137
516 138
517 139
518 140
519 141
520 142
521 143
522 144
523 145
524 146
525 147
526 148
527 149
528 150
529 151
530 152
531 153
532 154
533 155
534 156
535 157
536 158
537 159
538 160
539 161
540 162
541 163
542 164
543 165
544 166
545 167
546 168
547 169
548 170
549 171
550 172
551 173
552 174
553 175
554 176
555 177
556 178
557 179
558 180
559 181
560 182
561 183
562 184
563 185
564 186
565 187
566 188
567 189
568 190
569 191
570 192
571 193
572 194
573 195
574 196
575 197
576 198
577 199
578 200
579 201
580 202
581 203
582 204
583 205
584 206
585 207
586 208
587 209
588 210
589 211
590 212
591 213
592 214
593 215
594 216
595 217
596 218
597 219
598 220
599 221
600 222
601 223
602 224
603 225
604 226
605 227
606 228
607 229
608 230
609 231
610 232
611 233
612 234
613 235
614 236
615 237
616 238
617 239
618 240
619 241
620 242
621 243
622 244
623 245
624 246
625 247
626 248
627 249
628 250
629 251
630 252
631 253
632 254
633 255
634 256
635 257
636 258
637 259
638 260
639 261
640 262
641 263
642 264
643 265
644 266
645 267
646 268
647 269
648 270
649 271
650 272
651 273
652 274
653 275
654 276
655 277
656 278
657 279
658 280
659 281
660 282
661 283
662 284
663 285
664 286
665 287
666 288
667 289
668 290
669 291
670 292
671 293
672 294
673 295
674 296
675 297
676 298
677 299
678 300
679 301
680 302
681 303
682 304
683 305
684 306
685 307
686 308
687 309
688 310
689 311
690 312
691 313
692 314
693 315
694 316
695 317
696 318
697 319
698 320
699 321
700 322
701 323
702 324
703 325
704 326
705 327
706 328
707 329
708 330
709 331
710 332
711 333
712 334
713 335
714 336
715 337
716 338
717 339
718 340
719 341
720 342
721 343
722 344
723 345
724 346
725 347
726 348
727 349
728 350
729 351
730 352
731 353
732 354
733 355
734 356
735 357
736 358
737 359
738 360
739 361
740 362
741 363
742 364
743 365
744 366
745 367
746 368
747 369
748 370
749 371
750 372
751 373
752 374
753 375
754 376
755 377
756 378
757 379
758 380
759 381
760 382
761 383
762 384
763 385
764 386
765 387
766 388
767 389
768 390
769 391
770 392
771 393
772 394
773 395
774 396
775 397
776 398
777 399
778 400
779 401
780 402
781 403
782 404
783 405
784 406
785 407
786 408
787 409
788 410
789 411
790 412
791 413
792 414
793 415
794 416
795 417
796 418
797 419
798 420
799 421
800 422
801 423
802 424
803 425
804 426
805 427
806 428
807 429
808 430
809 431
810 432
811 433
812 434
813 435
814 436
815 437
816 438
817 439
818 440
819 441
820 442
821 443
822 444
823 445
824 446
825 447
826 448
827 449
828 450
829 451
830 452
831 453
832 454
833 455
834 456
835 457
836 458
837 459
838 460
839 461
840 462
841 463
842 464
843 465
844 466
845 467
846 468
847 469
848 470
849 471
850 472
851 473
852 474
853 475
854 476
855 477
856 478
857 479
858 480
859 481
860 482
861 483
862 484
863 485
864 486
865 487
866 488
867 489
868 490
869 491
870 492
871 493
872 494
873 495
874 496
875 497
876 498
877 499
878 500
879 501
880 502
881 503
882 504
883 505
884 506
885 507
886 508
887 509
888 510
889 511
890 512
891 513
892 514
893 515
894 516
895 517
896 518
897 519
898 520
899 521
900 522
901 523
902 524
903 525
904 526
905 527
906 528
907 529
908 530
909 531
910 532
911 533
912 534
913 535
914 536
915 537
916 538
917 539
918 540
919 541
920 542
921 543
922 544
923 545
924 546
925 547
926 548
927 549
928 550
929 551
930 552
931 553
932 554
933 555
934 556
935 557
936 558
937 559
938 560
939 561
940 562
941 563
942 564
943 565
944 566
945 567
946 568
947 569
948 570
949 571
950 572
951 573
952 574
953 575
954 576
955 577
956 578
957 579
958 580
959 581
960 582
961 583
962 584
963 585
964 586
965 587
966 588
967 589
968 590
969 591
970 592
971 593
972 594
973 595
974 596
975 597
976 598
977 599
978 600
979 601
980 602
981 603
982 604
983 605
984 606
985 607
986 608
987 609
988 610
989 611
990 612
991 613
992 614
993 615
994 616
995 617
996 618
997 619
998 620
999 621
1000 622
1001 623
1002 624
1003 625
1004 626
1005 627
1006 628
1007 629
1008 630
1009 631
1010 632
1011 633
1012 634
1013 635
1014 636
1015 637
1016 638
1017 639
1018 640
1019 641
1020 642
1021 643
1022 644
1023 645
1024 646
1025 647
1026 648
1027 649
1028 650
1029 651
1030 652
1031 653
1032 654
1033 655
1034 656
1035 657
1036 658
1037 659
1038 660
1039 661
1040 662
1041 663
1042 664
1043 665
1044 666
1045 667
1046 668
1047 669
1048 670
1049 671
1050 672
1051 673
1052 674
1053 675
1054 676
1055 677
1056 678
1057 679
1058 680
1059 681
1060 682
1061 683
1062 684
1063 685
1064 686
1065 687
1066 688
1067 689
1068 690
1069 691
1070 692
1071 693
1072 694
1073 695
1074 696
1075 697
1076 698
1077 699
1078 700
1079 701
1080 702
1081 703
1082 704
1083 705
1084 706
1085 707
1086 708
1087 709
1088 710
1089 711
1090 712
1091 713
1092 714
1093 715
1094 716
1095 717
1096 718
1097 719
1098 720
1099 721
1100 722
1101 723
1102 724
1103 725
1104 726
1105 727
1106 728
1107 729
1108 730
1109 731
1110 732
1111 733
1112 734
1113 735
1114 736
1115 737
1116 738
1117 739
1118 740
1119 741
1120 742
1121 743
1122 744
1123 745
1124 746
1125 747
1126 748
1127 749
1128 750
1129 751
1130 752
1131 753
1132 754
1133 755
1134 756
1135 757
1136 758
1137 759
1138 760
1139 761
1140 762
1141 763
1142 764
1143 765
1144 766
1145 767
1146 768
1147 769
1148 770
1149 771
1150 772
1151 773
1152 774
1153 775
1154 776
1155 777
1156 778
1157 779
1158 780
1159 781
1160 782
1161 783
1162 784
1163 785
1164 786
1165 787
1166 788
1167 789
1168 790
1169 791
1170 792
1171 793
1172 794
1173 795
1174 796
1175 797
1176 798
1177 799
1178 800
1179 801
1180 802
1181 803
1182 804
1183 805
1184 806
1185 807
1186 808
1187 809
1188 810
1189 811
1190 812
1191 813
1192 814
1193 815
1194 816
1195 817
1196 818
1197 819
1198 820
1199 821
1200 822
1201 823
1202 824
1203 825
1204 826
1205 827
1206 828
1207 829
1208 830
1209 831
1210 832
1211 833
1212 834
1213 835
1214 836
1215 837
1216 838
1217 839
1218 840
1219 841
1220 842
1221 843
1222 844
1223 845
1224 846
1225 847
1226 848
1227 849
1228 850
1229 851
1230 852
1231 853
1232 854
1233 855
1234 856
1235 857
1236 858
1237 859
1238 860
1239 861
1240 862
1241 863
1242 864
1243 865
1244 866
1245 867
1246 868
1247 869
1248 870
1249 871
1250 872
1251 873
1252 874
1253 875
1254 876
1255 877
1256 878
1257 879
1258 880
1259 881
1260 882
1261 883
1262 884
1263 885
1264 886
1265 887
1266 888
1267 889
1268 890
1269 891
1270 892
1271 893
1272 894
1273 895
1274 896
1275 897
1276 898
1277 899
1278 900
1279 901
1280 902
1281 903
1282 904
1283 905
1284 906
1285 907
1286 908
1287 909
1288 910
1289 911
1290 912
1291 913
1292 914
1293 915
1294 916
1295 917
1296 918
1297 919
1298 920
1299 921
1300 922
1301 923
1302 924
1303 925
1304 926
1305 927
1306 928
1307 929
1308 930
1309 931
1310 932
1311 933
1312 934
1313 935
1314 936
1315 937
1316 938
1317 939
1318 940
1319 941
1320 942
1321 943
1322 944
1323 945
1324 946
1325 947
1326 948
1327 949
1328 950
1329 951
1330 952
1331 953
1332 954
1333 955
1334 956
1335 957
1336 958
1337 959
1338 960
1339 961
1340 962
1341 963
1342 964
1343 965
1344 966
1345 967
1346 968
1347 969
1348 970
1349 971
1350 972
1351 973
1352 974
1353 975
1354 976
1355 977
1356 978
1357 979
1358 980
1359 981
1360 982
1361 983
1362 984
1363 985
1364 986
1365 987
1366 988
1367 989
1368 990
1369 991
1370 992
1371 993
1372 994
1373 995
1374 996
1375 997
1376 998
1377 999
1378 1000
1379 1001
1380 1002
1381 1003
1382 1004
1383 1005
1384 1006
1385 1007
1386 1008
1387 1009
1388 1010
1389 1011
1390 1012
1391 1013
1392 1014
1393 1015
1394 1016
1395 1017
1396 1018
1397 1019
1398 1020
1399 1021
1400 1022
1401 1023
1402 1024
1403 1025
1404 1026
1405 1027
1406 1028
1407 1029
1408 1030
1409 1031
1410 1032
1411 1033
1412 1034
1413 1035
1414 1036
1415 1037
1416 1038
1417 1039
1418 1040
1419 1041
1420 1042
1421 1043
1422 1044
1423 1045
1424 1046
1425 1047
1426 1048
1427 1049
1428 1050
1429 1051
1430 1052
1431 1053
1432 1054
1433 1055
1434 1056
1435 1057
1436 1058
1437 1059
1438 1060
1439 1061
1440 1062
1441 1063
1442 1064
1443 1065
1444 1066
1445 1067
1446 1068
1447 1069
1448 1070
1449 1071
1450 1072
1451 1073
1452 1074
1453 1075
1454 1076
1455 1077
1456 1078
1457 1079
1458 1080
1459 1081
1460 1082
1461 1083
1462 1084
1463 1085
1464 1086
1465 1087
1466 1088
1467 1089
1468 1090
1469 1091
1470 1092
1471 1093
1472 1094
1473 1095
1474 1096
1475 1097
1476 1098
1477 1099
1478 1100
1479 1101
1480 1102
1481 1103
1482 1104
1483 1105
1484 1106
1485 1107
1486 1108
1487 1109
1488 1110
1489 1111
1490 1112
1491 1113
1492 1114
1493 1115
1494 1116
1495 1117
1496 1118
1497 1119
1498 1120
1499 1121
1500 1122
1501 1123
1502 1124
1503 1125
1504 1126
1505 1127
1506 1128
1507 1129
1508 1130
1509 1131
1510 1132
1511 1133
1512 1134
1513 1135
1514 1136
1515 1137
1516 1138
1517 1139
1518 1140
1519 1141
1520 1142
1521 1143
1522 1144
1523 1145
1524 1146
1525 1147
1526 1148
1527 1149
1528 1150
1529 1151
1530 1152
1531 1153
1532 1154
1533 1155
1534 1156
1535 1157
1536 1158
1537 1159
1538 1160
1539 1161
1540 1162
1541 1163
1542 1164
1543 1165
1544 1166
1545 1167
1546 1168
1547 1169
1548 1170
1549 1171
1550 1172
1551 1173
1552 1174
1553 1175
1554 1176
1555 1177
1556 1178
1557 1179
1558 1180
1559 1181
1560 1182
1561 1183
1562 1184
1563 1185
1564 1186
1565 1187
1566 1188
1567 1189
1568 1190
1569 1191
1570 1192
1571 1193
1572 1194
1573 1195
1574 1196
1575 1197
1576 1198
1577 1199
1578 1200
1579 1201
1580 1202
1581 1203
1582 1204
1583 1205
1584 1206
1585 1207
1586 1208
1587 1209
1588 1210
1589 1211
1590 1212
1591 1213
1592 1214
1593 1215
1594 1216
1595 1217
1596 1218
1597 1219
1598 1220
1599 1221
1600 1222
1601 1223
1602 1224
1603 1225
1604 1226
1605 1227
1606 1228
1607 1229
1608 1230
1609 1231
1610 1232
1611 1233
1612 1234
1613 1235
1614 1236
1615 1237
1616 1238
1617 1239
1618 1240
1619 1241
1620 1242
1621 1243
1622 1244
1623 1245
1624 1246
1625 1247
1626 1248
1627 1249
1628 1250
1629 1251
1630 1252
1631 1253
1632 1254
1633 1255
1634 1256
1635 1257
1636 1258
1637 1259
1638 1260
1639 1261
1640 1262
1641 1263
1642 1264
1643 1265
1644 1266
1645 1267
1646 1268
1647 1269
1648 1270
1649 1271
1650 1272
1651 1273
1652 1274
1653 1275
1654 1276
1655 1277
1656 1278
1657 1279
1658 1280
1659 1281
1660 1282
1661 1283
1662 1284
1663 1285
1664 1286
1665 1287
1666 1288
1667 1289
1668 1290
1669 1291
1670 1292
1671 1293
1672 129
```

432 **Enhancing reasoning capabilities remain insufficient for Android development.** Table 3 demonstrates that increasing the reasoning level of GPT-5 leads to improved performance across all metrics, with the highest reasoning setting achieving 14.85% functional success compared to 2.97% at the low level. However, even with maximum reasoning enhancement, the absolute performance remains far from satisfactory for practical Android development, highlighting that the fundamental challenges of multi-file coordination, framework-specific knowledge, and complex dependency management require more than enhanced reasoning alone.

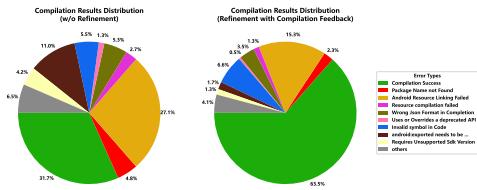
440 4.4 ANALYSIS OF DEVELOPMENT CHALLENGES

441 **Compilation Error Analysis.** Figure 10 presents the distribution of compilation errors. The most 442 prevalent error stems from “Android Resource Linking Failed”, accounting for 39.7% of compilation 443 errors. This compilation error is typically caused by 444 missing or misreferenced resource files in the generated 445 apps, highlighting current models’ inadequate 446 capability in comprehensive software engineering 447 tasks that require systematic coordination across multiple 448 project components. An interesting observation 449 is that GPT series models and Kimi-K2 encounter the issue 450 that apps fail to compile due to missing 451 android:exported declarations (an attribute requirement introduced in 452 Android 12 (Android Developers, 2021)), highlighting a gap between LLM training data and current 453 Android requirements. Though 454 it can be resolved by refinement, this interesting issue reflects models’ strategies when handling 455 conflicts between training data patterns and task instructions.

456 **Crash Analysis.** Table 4 presents the 457 crash analysis results from fuzzing LLM-generated 458 apps (full version available in the 459 Appendix C). First, the “evade development” 460 strategies employed by GPT-4.1 ultimately 461 backfire at runtime. While achieving higher 462 compilation rates, the app fundamentally 463 fail to start when executed, indicating that 464 evasive compilation error fixes often introduce 465 fundamental flaws, such as incomplete resource 466 initialization that prevent proper app bootstrapping. 467 Second, notably all crashes are native crashes rather than Java-level exceptions, indicating 468 that the generated Java code itself is generally robust with proper exception handling. This suggests 469 that existing LLMs excel at defensive programming practices and maintain good exception handling 470 patterns as illustrated in Figure 7. However, crashes occur when calling third-party libraries or 471 interacting with OS services due to parameter validation failures and contract mismatches. While 472 LLMs demonstrate solid understanding of Java code, they lack sufficient knowledge of underlying 473 implementation details and resource constraints. Consequently, seemingly safe Java code can trigger 474 native-level issues when interfacing with lower-level components, highlighting the gap between 475 surface-level language proficiency and deep system understanding required for software engineering.

475 5 CONCLUSION

476 In this paper, we have introduced APPFORGE, a comprehensive benchmark for evaluating LLMs 477 on real-world Android application development from scratch, revealing significant gaps between 478 current capabilities and practical software engineering requirements. Through systematic evaluation 479 of 12 state-of-the-art LLMs across 101 diverse development scenarios, we found that even the 480 best-performing models achieve only modest success rates, contrasting sharply with their high 481 performance on existing code generation benchmarks, suggesting that fundamental innovations rather 482 than incremental improvements may be necessary toward fully automated software engineering.



440 Figure 10: Distribution of compilation errors 441 across generated Android apps.

456 Table 4: Runtime crash analysis across LLMs.

Model	Native Crash		Failed to Start	
	w/o Fix	w/ Fix	w/o Fix	w/ Fix
GPT-4.1	0.0	11.0	2.0	66.0
Claude-Opus	48.0	48.0	9.0	11.0
Gemini-Pro	25.0	37.0	14.0	21.0
GPT-5-High	21.0	0.0	5.0	25.0

486 ETHICS AND REPRODUCIBILITY STATEMENT
487488 This work adheres to the ICLR Code of Ethics. No human subjects or animal experimentation were
489 involved. No personally identifiable information was used, and no experiments posed privacy or
490 security risks. We are committed to transparency and integrity throughout the research process.
491 We believe APPFORGE can be used for various purposes, including evaluating the cutting-edge
492 capabilities of code LLMs for software engineering, training better software engineering models and
493 agents, and as a seed benchmark for building larger benchmarks for application development. We
494 have strictly adhered to the license of open-source apps since we use the runtime behavior of these
495 apps instead of using their source code for constructing APPFORGE. However, we are concerned
496 about potential misuse of APPFORGE for training models to reverse engineer existing Android
497 applications, making the plagiarism of apps a practical concern.
498499 As a benchmark paper, the benchmark has been made publicly available on the fully anonymized
500 project website, providing detailed documentation, leaderboard, and dockerized environment to ensure
501 easy reproduction and customized use. We have detailed the selection criteria in our Appendix and
502 use popular open-source apps in F-Droid to allow reproducibility of task collection. The experimental
503 setup is described in detail.
504505 LLM USAGE
506507 LLMs were employed solely to assist in writing and polishing the manuscript, including refining
508 language, improving readability, and enhancing clarity. The LLM was used for tasks such as sentence
509 rephrasing, grammar checking, and improving overall flow.
510511 The LLM was not involved in ideation, research methodology, or experimental design. All research
512 concepts, analyses, and results were developed and conducted by the authors. The authors take full
513 responsibility for the manuscript content, including any text generated or polished by the LLM, and
514 confirm that all LLM-assisted text adheres to ethical guidelines and does not constitute plagiarism or
515 scientific misconduct.
516517 REFERENCES
518519 Amazon Web Services. Amazon codewhisperer. <https://aws.amazon.com/codewhisperer/>, 2025. Accessed: 2025-09-24.
520521 Android Developers. Behavior changes: Apps targeting android 12 — exported com-
522 ponents requirement. <https://developer.android.com/about/versions/12/behavior-changes-12#exported>, 2021. Accessed: 2025-09-24.
523524 Android Developers. Ui automator. <https://developer.android.com/training/testing/other-components/ui-automator>, 2025. Accessed: 2025-09-24.
525526 Anthropic. Models overview - claude docs. <https://docs.claude.com/en/docs/about-claude/models/overview>, April 2025. Accessed: 2025-09-23.
527528 Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
529 Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian
530 Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng
531 Qian, Murali Krishna Ramanathan, and Ramesh Nallapati. Multi-lingual evaluation of code
532 generation models. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/pdf?id=Bo7eeXm6An8>.
533534 Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
535 Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
536 with large language models. *CoRR*, abs/2108.07732, 2021. URL <https://arxiv.org/abs/2108.07732>.
537538 Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Vageesh D C, Arun Iyer, Suresh Parthasarathy,
539 Sriram Rajamani, Balasubramanyan Ashok, and Shashank Shet. Codeplan: Repository-level
540

540 coding using llms and planning. *Proceedings of the ACM on Software Engineering*, 1(FSE):
 541 675–698, 2024.

542

543 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
 544 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
 545 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
 546 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
 547 teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCand-
 548 dish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
 549 learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Ad-
 550 vances in Neural Information Processing Systems*, volume 33, pp. 1877–1901. Curran Asso-
 551 ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfc4967418bfb8ac142f64a-Paper.pdf.

552

553 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
 554 Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 555 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
 556 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
 557 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
 558 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
 559 Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
 560 Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
 561 Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
 562 McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
 563 large language models trained on code. *CoRR*, abs/2107.03374, 2021. URL <https://arxiv.org/abs/2107.03374>.

564

565 Simin Chen, Soroush Bateni, Sampath Grandhi, Xiaodi Li, Cong Liu, and Wei Yang. Denas:
 566 automated rule generation by knowledge extraction from neural networks. In *Proceedings of the*
 567 *28th ACM joint meeting on European software engineering conference and symposium on the*
 568 *foundations of software engineering*, pp. 813–825, 2020.

569

570 Simin Chen, Xiaoning Feng, Xiaohong Han, Cong Liu, and Wei Yang. Ppm: Automated generation
 571 of diverse programming problems for benchmarking code generation models. *Proceedings of the*
 572 *ACM on Software Engineering*, 1(FSE):1194–1215, 2024a.

573

574 Simin Chen, Pranav Pusarla, and Baishakhi Ray. Dycodeeval: Dynamic benchmarking of reasoning
 575 capabilities in code large language models under data contamination. In *Proceedings of the*
 576 *Forty-Second International Conference on Machine Learning*, Vancouver, Canada, July 2025.
 577 PMLR.

578 Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuguang Deng, and Jianwei Yin. Chatunitest: A
 579 framework for llm-based test generation. In *Companion Proceedings of the 32nd ACM International*
 580 *Conference on the Foundations of Software Engineering*, pp. 572–576, 2024b.

581

582 Cursor. Cursor: The best way to code with ai. <https://cursor.com/>, April 2025. Accessed:
 583 2025-09-23.

584

585 Android Developers. Application fundamentals, 2025a. URL <https://developer.android.com/guide/components/fundamentals>. Accessed: 2025-08-15.

586

587 Android Developers. Fragments, 2025b. URL <https://developer.android.com/guide/fragments>. Accessed: 2025-08-15.

588

589 Android Developers. Services overview, 2025c. URL <https://developer.android.com/develop/background-work/services>. Accessed: 2025-08-15.

590

591 Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting Cai, Yang Cao, Chaoyu Chen, Dajun Chen,
 592 Hongwei Chen, Liang Chen, et al. Codefuse-13b: A pretrained multi-lingual code large language
 593 model. In *Proceedings of the 46th International Conference on Software Engineering: Software*
Engineering in Practice, pp. 418–429, 2024.

594 F-Droid. Amaze file manager — f-droid. <https://f-droid.org/en/packages/com.>
 595 amaze.filemanager/, 2025a. Accessed: 2025-09-24.
 596

597 F-Droid. Arcticons — f-droid. <https://f-droid.org/en/packages/com.donnnno.>
 598 arcticons/, 2025b. Accessed: 2025-09-24.
 599

600 F-Droid. Vanilla music — f-droid. <https://f-droid.org/en/packages/ch.>
 601 blinkleenlights.android.vanilla/, 2025c. Accessed: 2025-09-24.
 602

603 Open Technology Fund. F-droid sustainability. <https://www.opentech.fund/projects-we-support/supported-projects/f-droid-sustainability/>,
 604 2025. Accessed: 2025-08-15.
 605

606 GeeksforGeeks. A complete guide to learn xml for android app develop-
 607 ment, 2025. URL <https://www.geeksforgeeks.org/android/a-complete-guide-to-learn-xml-for-android-app-development/>. Ac-
 608 cessed: 2025-08-15.
 609

610 GitHub. Github copilot. <https://github.com/features/copilot>, April 2025. Accessed:
 611 2025-09-23.
 612

613 Google. Gemini 2.5 pro model card. 2025. URL <https://modelcards.withgoogle.com/assets/documents/gemini-2.5-pro.pdf>.
 614

615 Batu Guan, Xiao Wu, Yuanyuan Yuan, and Shaohua Li. Is your benchmark (still) useful? dynamic
 616 benchmarking for code language models. *arXiv preprint arXiv:2503.06643*, 2025.
 617

618 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
 619 Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
 620 rise of code intelligence. *arXiv preprint arXiv:2401.14196*, 2024.
 621

622 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 623 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 624 evaluation of large language models for code, 2024. URL <https://arxiv.org/abs/2403.07974>.
 625

626 Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang, Qiwei Shang, Ge Li, Zhi Jin, and Wenpin
 627 Jiao. Self-planning code generation with large language models. *ACM Transactions on Software
 628 Engineering and Methodology*, 33(7):1–30, 2024.
 629

630 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
 631 Narasimhan. Swe-bench: Can language models resolve real-world github issues? In *The Twelfth
 632 International Conference on Learning Representations*, 2024.
 633

634 Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey
 635 Svyatkovskiy. Inferfix: End-to-end program repair with llms. In *Proceedings of the 31st ACM
 636 joint european software engineering conference and symposium on the foundations of software
 637 engineering*, pp. 1646–1656, 2023.
 638

639 Kimi Team. Kimi k2: Open agentic intelligence. *arXiv*, 2025. URL <https://arxiv.org/abs/2507.20534>.
 640

641 Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
 642 Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
 643 Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
 644 Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
 645 Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
 646 code generation with alphacode. *CoRR*, abs/2203.07814, 2022. doi: 10.48550/ARXIV.2203.07814.
 647 URL <https://doi.org/10.48550/arXiv.2203.07814>.
 648

649 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
 650 by chatGPT really correct? rigorous evaluation of large language models for code generation.
 651 In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=1qvx610Cu7>.
 652

648 Junwei Liu, Yixuan Chen, Mingwei Liu, Xin Peng, and Yiling Lou. Stall+: Boosting llm-based
 649 repository-level code completion with static analysis. *arXiv preprint arXiv:2406.10018*, 2024.
 650

651 Alex Mathai, Chenxi Huang, Petros Maniatis, Aleksandr Nogikh, Franjo Ivančić, Junfeng Yang, and
 652 Baishakhi Ray. Kgym: A platform and dataset to benchmark large language models on linux
 653 kernel crash resolution. *Advances in Neural Information Processing Systems*, 37:78053–78078,
 654 2024.

655 R. et al. Mayrhofer. The android platform security model (2023), 2019. URL <https://arxiv.org/abs/1904.05572>. Accessed: 2025-08-15.
 656
 657

658 OpenAI. GPT-4 technical report. *CoRR*, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
 659 URL <https://doi.org/10.48550/arXiv.2303.08774>.

660 OpenAI. Gpt-4.1 model. <https://platform.openai.com/docs/models/gpt-4.1>,
 661 April 2025. Accessed: 2025-09-23.

662 OpenAI. Gpt-5 system card. 2025. URL <https://cdn.openai.com/gpt-5-system-card.pdf>.

663 Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation benchmark
 664 for cross-lingual natural language generalization. *arXiv preprint arXiv:2402.16694*, 2024.

665 F-Droid Project. F-droid anti-features documentation. <https://f-droid.org/docs/Anti-Features/>, 2025a. Accessed: 2025-08-15.

666 F-Droid Project. F-droid inclusion how-to. https://f-droid.org/en/docs/Inclusion_How-To/, 2025b. Accessed: 2025-08-15.

667 Styxox / F-Droid Project. F-droid website overview. <https://styxox.gitlab.io/fdroid-website/en/docs/Anti-Features/>, 2025c. Accessed: 2025-08-15.

668 Xingzhi Qian, Xinran Zheng, Yiling He, Shuo Yang, and Lorenzo Cavallaro. Lamd: Context-driven
 669 android malware detection and classification with llms. In *2025 IEEE Security and Privacy
 670 Workshops (SPW)*, pp. 126–136. IEEE, 2025.

671 Jielin Qiu, Zuxin Liu, Zhiwei Liu, Rithesh Murthy, Jianguo Zhang, Haolin Chen, Shiyu Wang, Ming
 672 Zhu, Liangwei Yang, Juntao Tan, et al. Locobench: A benchmark for long-context large language
 673 models in complex software engineering. *arXiv preprint arXiv:2509.09614*, 2025.

674 Tanmay Rajore, Nishanth Chandran, Sunayana Sitaram, Divya Gupta, Rahul Sharma, Kashish Mittal,
 675 and Manohar Swaminathan. Truce: Private benchmarking to prevent contamination and improve
 676 comparative evaluation of llms, 2024. URL <https://arxiv.org/abs/2403.00393>.

677 Dezhi Ran, Hao Wang, Zihe Song, Mengzhou Wu, Yuan Cao, Ying Zhang, Wei Yang, and Tao Xie.
 678 Guardian: A runtime framework for llm-based ui exploration. In *ISSTA*, pp. 958–970, 2024.

679 Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi Wang, Xiaofei Ma, Murali Krishna Ra-
 680 manathan, and Baishakhi Ray. Code-aware prompting: A study of coverage-guided test generation
 681 in regression setting using llm. *Proceedings of the ACM on Software Engineering*, 1(FSE):951–971,
 682 2024.

683 Justin Sahs and Latifur Khan. A machine learning approach to android malware detection. In *2012
 684 European intelligence and security informatics conference*, pp. 141–147. IEEE, 2012.

685 Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of using large
 686 language models for automated unit test generation. *IEEE Transactions on Software Engineering*,
 687 50(1):85–105, 2023.

688 Technource. Google play store statistics: Facts and numbers you must know. <https://www.technource.com/blog/google-play-store-statistics/>, June 2022. Accessed:
 689 2025-08-15.

690

702 Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
 703 Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna Ramanathan,
 704 Dan Roth, and Bing Xiang. Recode: Robustness evaluation of code generation models. In Anna
 705 Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual*
 706 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,*
 707 *Toronto, Canada, July 9-14, 2023*, pp. 13818–13843. Association for Computational Linguistics,
 708 2023. doi: 10.18653/V1/2023.ACL-LONG.773. URL <https://doi.org/10.18653/v1/2023.acl-long.773>.

710 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
 711 Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
 712 free llm benchmark. *arXiv preprint arXiv:2406.19314*, 2024.

713 Chunqiu Steven Xia and Lingming Zhang. Automated program repair via conversation: Fixing
 714 162 out of 337 bugs for \$0.42 each using chatgpt. In *Proceedings of the 33rd ACM SIGSOFT*
 715 *International Symposium on Software Testing and Analysis*, pp. 819–831, 2024.

716 Kai Xu, YiWei Mao, XinYi Guan, and ZiLong Feng. Web-bench: A llm code benchmark based on
 717 web standards and frameworks, 2025. URL <https://arxiv.org/abs/2505.07473>.

718 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 719 Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 720 2025.

721 John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
 722 and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
 723 *Advances in Neural Information Processing Systems*, 37:50528–50652, 2024.

724 Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang
 725 Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative pre-
 726 trained models. In *Proceedings of the 46th IEEE/ACM International Conference on Software*
 727 *Engineering*, pp. 1–12, 2024.

728 Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
 729 Maoquan Wang, Yufan Huang, Shengyu Fu, et al. Swe-bench goes live! *arXiv preprint*
 730 *arXiv:2505.23419*, 2025.

731 Qin Zhu, Qinyuan Cheng, Runyu Peng, Xiaonan Li, Ru Peng, Tengxiao Liu, Xipeng Qiu, and Xuan-
 732 jing Huang. Inference-time decontamination: Reusing leaked benchmarks for large language model
 733 evaluation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association*
 734 *for Computational Linguistics: EMNLP 2024*, pp. 9113–9129, Miami, Florida, USA, November 2024.
 735 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.532.
 736 URL <https://aclanthology.org/2024.findings-emnlp.532/>.

737 Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
 738 Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
 739 generation with diverse function calls and complex instructions. *arXiv preprint arXiv:2406.15877*,
 740 2024.

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

A DETAILED DISCUSSION OF RELATED WORK

ML for Software Engineering. Machine learning, including large language models (LLMs), is increasingly used to address real-world software engineering tasks due to their advantages over traditional program analysis techniques. Typical use cases include automatic code generation (Chen et al., 2021; Austin et al., 2021; Liu et al., 2023; Chen et al., 2024a), malware detection (Qian et al., 2025; Sahs & Khan, 2012; Chen et al., 2020), test generation (Chen et al., 2024b; Ryan et al., 2024; Schäfer et al., 2023), and program repair (Jimenez et al., 2024; Jin et al., 2023; Xia & Zhang, 2024; Yang et al., 2024).

Most relevant to our APPFORGE are works that apply LLMs to automated code generation or code completion (Chen et al., 2025; Wang et al., 2023; Athiwaratkun et al., 2023). However, existing code generation datasets are largely limited to the function level (Chen et al., 2021; Austin et al., 2021; Liu et al., 2023; Chen et al., 2025; Yu et al., 2024), and repository-level work focuses mainly on code completion rather than generation from scratch (Liu et al., 2024; Bairi et al., 2024). Compared with existing datasets, APPFORGE introduces a more realistic and challenging setting for evaluating the capability of LLMs to perform software development from scratch. This setting better reflects real-world development scenarios where models must synthesize coherent, functional, and maintainable codebases instead of completing the missing lines in an existing codebases.

Code Generation Benchmarks. Many benchmarks have been proposed to evaluate the code generation capabilities of LLMs (Guan et al., 2025; Chen et al., 2024a; Yu et al., 2024; Jimenez et al., 2024; Mathai et al., 2024). HumanEval and MBPP introduced human-crafted datasets focused on synthesizing function-level code from natural language descriptions and have become standard benchmarks (Chen et al., 2021; Austin et al., 2021). Building on this, HumanEval-XL (Peng et al., 2024) extended HumanEval to support multilingual settings. Moreover, EvalPlus (Liu et al., 2023) highlighted limitations in HumanEval and MBPP, particularly their limited test case coverage, and proposed a more rigorous evaluation benchmark. BigCodeBench (Zhuo et al., 2024) introduced a larger-scale benchmark designed to further evaluate LLMs’ code generation capabilities. Beyond these function-level code generation benchmarks, recent repository-level benchmarks have also been proposed. For example, SWE-Bench (Jimenez et al., 2024) focuses on evaluating LLMs’ patch generation ability at the repository level. Although effective, most benchmarks are static and lag behind LLM advancements, prompting the emergence of dynamic benchmarks for up-to-date, contamination-free evaluation. LiveCodeBench (Jain et al., 2024) collects newly released programming completion problems from online coding platforms to minimize data contamination. PPM (Chen et al., 2024a) and DyCodeEval (Chen et al., 2025) propose an automated method to generate new benchmark data at the evaluation stage, mitigating potential data contamination. SWE-Bench-Live (Zhang et al., 2025) follows the LiveCodeBench schema to collect new patches from GitHub repositories, providing a continuous and realistic evaluation environment.

Compared to existing code generation benchmarks, APPFORGE operates at the repository level and includes rigorous evaluation. It can be dynamically constructed by collecting latest projects from F-Droid, preserving a much broader range of challenges rooted in real-world software development—going beyond closed-form completion or patch generation.

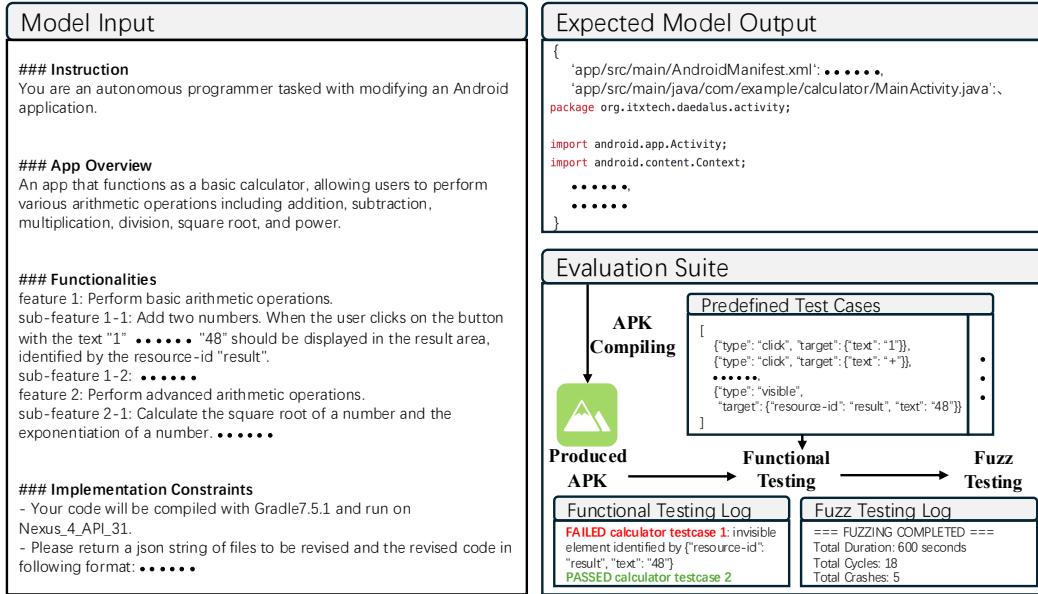
Android Application Ecosystem. Android applications represent one of the most significant software ecosystems globally, with over 2.6 million applications available on Google Play Store and millions more distributed through alternative channels (Technource, 2022). In Android ecosystems, F-Droid (2025c) is the leading open-source repository, serving millions of users worldwide. Its rigorous review process and anti-feature labeling ensure high-quality software that often exemplifies Android development best practices. The repository spans diverse categories—productivity, multimedia, utilities, games, and specialized professional tools—many maintained by experienced developers and organizations (2025a; 2025b; 2025).

Android apps, typically built with Java or Kotlin following Material Design and Android architecture guidelines, comprise multiple interconnected components such as Activities, Fragments, XML layouts, and manifest configurations (2025a). Developing robust apps demands expertise across UI design, background services, data persistence, networking, device optimization, and security (Mayrhofer, 2019; Developers, 2025b; GeeksforGeeks, 2025; Developers, 2025c). Given the prevalence and

810 complexity of the Android ecosystem, developing Android applications automatically provides
 811 significant commercial and practical impact. APPFORGE, filling a critical gap, provides the first
 812 benchmark for assessing LLM capabilities in Android development.
 813

814 B DETAILS OF APPFORGE

815 B.1 TASK INSTANCES

839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
Figure 11: Example of Task Instance.

840 B.2 STATISTICS OF SEED APPS.

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
Table 5: Statistics of Seed Apps used for Constructing APPFORGE.

	# LoC	# Acts	# Files
Range	194–53K	1–21	2–508
Avg.	6367.2	3.7	44.0
Median	4530	3	26

854 B.3 EVALUATION METRIC CALCULATION

855 We employ four primary metrics that directly correspond to the three evaluation stages to comprehensively assess the quality and functionality of generated Android code.

856 The **compilation rate** (Eq. 1) measures the percentage of generated code that successfully compiles
 857 into valid APKs without syntax or dependency errors during the compilation stage, indicating the
 858 basic correctness and completeness of the generated code structure. Here, N_{compiled} denotes the
 859 number of successfully compiled cases and N_{total} denotes the total number of tasks.

860 The **test pass rate** (Eq. 2) evaluates, using *macro averaging*, the mean percentage of predefined test
 861 cases that pass across all compiled applications during the testing stage. This metric reflects how
 862 well the generated code implements the specified functionalities and meets behavioral requirements.
 863 For each compiled application i , $t_{\text{passed}}^{(i)}$ denotes the number of passed test cases, and $t_{\text{total}}^{(i)}$ denotes the

total number of test cases for that application. The macro average is computed by taking the mean of per-application pass rates over all N_{compiled} compiled applications.

The **crash rate** (Eq. 3) quantifies the percentage of compiled applications that crash or terminate unexpectedly during the fuzz testing stage, assessing the robustness and stability of the generated code under various stress scenarios. Here, $N_{\text{crashed_apps}}$ denotes the number of compiled applications that experienced crashes during fuzz testing, and N_{compiled} denotes the total number of compiled applications.

Additionally, the **functional success rate** (Eq. 4) measures the percentage of tasks that achieve both successful compilation and complete test suite passage, representing the overall functional correctness of the generated applications regardless of their robustness under stress testing. Here, $N_{\text{compiled_and_tests_passed}}$ denotes the number of tasks meeting both criteria.

The pipeline captures detailed logs and execution traces throughout all three stages, enabling precise computation of these metrics and comprehensive result reporting for large-scale benchmarking experiments.

$$\text{Compilation Rate} = \frac{N_{\text{compiled}}}{N_{\text{total}}} \times 100\% \quad (1)$$

$$\text{Test Pass Rate} = \frac{1}{N_{\text{compiled}}} \sum_{i=1}^{N_{\text{compiled}}} \left(\frac{t_{\text{passed}}^{(i)}}{t_{\text{total}}^{(i)}} \right) \times 100\% \quad (2)$$

$$\text{Crash Rate} = \frac{N_{\text{crashed_apps}}}{N_{\text{compiled}}} \times 100\% \quad (3)$$

$$\text{Functional Success Rate} = \frac{N_{\text{compiled_and_tests_passed}}}{N_{\text{total}}} \times 100\% \quad (4)$$

B.4 IMPLEMENTATION DETAILS OF APPFORGE

To ensure consistent and reproducible evaluation across different systems, we establish a standardized execution environment that supports the entire evaluation workflow described above. The environment consists of two main components that work together to enable seamless automated evaluation. First, we utilize the official Android Emulator with API level 31 (Android 12) running on x86_64 architecture for APK installation and testing. This emulator configuration is packaged into a Docker container that guarantees seamless deployment on Ubuntu systems without requiring any additional manual configuration. The containerized approach eliminates environment-specific issues and ensures that all evaluations are conducted under identical conditions, enabling reliable APK execution and test case validation. Second, we configure a standardized Gradle build environment within the same container to handle the automated compilation process. This includes pre-installed Android SDK components, build tools, and dependency management configurations that are commonly used in Android development. The Gradle setup is optimized for automated compilation of generated code files into APKs, with appropriate timeout settings and resource allocation to handle various code complexity levels. The build environment is configured to provide detailed compilation error messages when needed, supporting the iterative refinement workflow for models that can benefit from error feedback.

B.5 RANKING CRITERIA OF APPS IN F-DROID

The ranking of F-Droid apps follows a sequential process that begins with filtering the dataset to retain only actively maintained and popular applications, requiring at least 50 GitHub stars, 10 forks, non-archived status, an update date no earlier than 2022, and primary implementation in Java or Kotlin. For each app that passes the filter, an LLM assigns integer scores from 1 to 5 for four evaluation aspects: maintainability, which measures how easy the source code is to understand and modify; reproducibility, which reflects the ability to produce consistent results under stable conditions; generality, which indicates how broadly the app can operate across different devices and configurations; and evaluation efficiency, which assesses the speed and resource requirements of building and testing the app. The average of these four scores forms the quality rating. The difficulty

918 ranking is then determined by combining the LLM-generated complexity score with the number of
 919 activities in the app and the total code size in bytes. Based on these combined criteria, the ranking
 920 process selects the top 40 apps within each difficulty level, resulting in a final list of 200 top-ranked
 921 apps that are representative, maintainable, reproducible, and diverse in technical challenge, ensuring
 922 a comprehensive benchmark for assessing the Android development capabilities of LLMs.
 923

924 **B.6 PROMPT EXAMPLES**

925

926 1 You are an autonomous programmer and you are modifying a default
 927 Android app template with empty activity.
 928 2 Your code will be compiled with Gradle7.5.1 and run on
 929 Nexus_4_API_31.
 930 3 The default Android app template "File Structure" is shown below.
 931 You can replace or add some files in the templates to
 932 implement the app.
 933 4 "File Structure":
 934 |-- app
 935 | |-- build.gradle
 936 | --- src
 937 | |-- main
 938 | | |-- AndroidManifest.xml
 939 | ...
 940 12 Your app should implement every feature in "App Features", and we'
 941 will test on each of the features. Note that you should pay
 942 attention to the resource-id, content-desc, texts and other
 943 attributes we provide with corresponding widgets in "App
 944 Features" and exactly match the attributes when implementing
 945 the widgets.
 946 13 "App Features":
 947 description: An Android app for quickly sharing your current
 948 location.
 949 feature 1: Share your location via ...
 950 ...
 951 18 Please return a json string and only a json string of files to be
 952 revised and the revised code in following format:
 953 {
 954 "app/src/main/AndroidManifest.xml":...,
 955 ...
 956 }

957

958 **C DETAILED EXPERIMENT RESULTS**

959 **C.1 SETUP**

960 All LLMs use identical task prompts provided by APPFORGE as well as the same hyperparameter
 961 settings (with the temperature set to 0.2 using greedy decoding (Brown et al., 2020)).
 962

963 **C.2 DETAILED STATISTICS**

964 **C.3 FULL EXAMPLE OF DEFENSIVE PROGRAMMING BY GPT-5.**

965 Listing 1: Case study showing proactive defensive programming implementation by GPT-5 in
 966 the Autostarts app, including robust null-safety checks, multi-level fallback strategies for system
 967 navigation, and guarded UI state transitions beyond basic requirements.
 968

1 // --- Null-safety on user input (avoid NPE) ---

972

973

974

975

Model	Compile Success	Package Name not Found	Android Resource Linking Failed	Resource Compilation Failed	Wrong JSON Format	Uses / Overrides Deprecated API	Cannot Find Symbol	Exported Flag Missing	Requires CompileSdkVersion	Compilation Timeout or Unstable	Others
<i>Pass@1</i>											
Claude-4-Sonnet	41.0	8.0	34.0	1.0	0.0	0.5	2.0	4.0	5.0	0.0	5.5
Claude-5-Opus	81.0	0.0	4.0	2.0	0.0	2.92	5.17	0.0	1.0	1.0	3.92
Gemini-2.5-Pro	54.0	0.0	14.0	0.1	4.0	0.67	5.83	0.0	6.9	7.0	8.5
GPT-4.1	7.0	0.0	6.0	7.33	0.0	0.06	3.94	72.67	0.0	0.0	4.0
GPT-5-High	46.0	0.0	7.0	1.63	4.0	3.5	6.5	11.67	18.71	0.0	2.0
Qwen3-Coder	28.0	0.0	52.0	1.0	4.0	0.0	7.0	4.0	0.0	0.0	5.0
GLM-4.5	25.0	4.0	31.0	6.11	3.0	3.48	13.63	2.0	1.89	1.0	9.89
DeepSeek-R1	15.0	4.0	62.0	2.09	2.0	0.83	3.17	5.0	0.0	0.0	6.91
DeepSeek-V3	6.0	27.0	28.0	1.0	35.0	0.0	0.0	1.0	0.0	0.0	3.0
Kimi K2	17.0	5.0	36.0	4.67	2.0	0.93	8.07	10.33	9.0	0.0	8.0
<i>with Compilation Error Feedback</i>											
Claude-4-Sonnet	78.0	1.0	17.0	0.0	0.0	0.44	2.56	0.0	0.0	0.0	2.0
Claude-5-Opus	91.0	0.0	2.0	1.0	0.0	0.24	5.76	0.0	0.0	1.0	0.0
Gemini-2.5-Pro	69.0	0.0	8.0	0.0	0.0	0.42	8.58	0.0	2.0	5.0	8.0
GPT-4.1	75.0	0.0	13.0	1.93	0.0	0.3	6.7	4.07	0.0	0.0	0.0
GPT-5-High	83.0	0.0	6.0	2.0	0.0	0.0	4.0	5.0	0.9	0.0	0.1
Qwen3-Coder	86.0	0.0	7.0	0.0	0.0	0.58	3.5	0.0	0.0	1.0	2.92
GLM-4.5	45.0	3.0	29.0	3.0	2.0	0.32	9.68	0.0	1.0	2.0	6.0
DeepSeek-R1	45.0	9.0	25.0	1.0	0.0	1.63	12.37	2.0	2.0	1.0	4.0
DeepSeek-V3	27.0	8.0	26.0	2.0	31.0	0.24	1.0	3.0	0.0	0.0	2.76
Kimi K2	42.0	2.0	22.0	2.0	2.0	0.43	12.57	3.0	8.0	0.0	7.0

980

981

982

983

984

Table 7: Application Runtime Error Statistics

985

986

987

Model	Pass@1			with Compilation Error Feedback		
	ANR	Native Crash	Failed Start	ANR	Native Crash	Failed Start
Kimi K2	0.0	11.0	3.0	1.0	13.0	18.0
DeepSeek-V3	0.0	4.0	2.0	0.0	11.0	4.0
Qwen3-Coder	0.0	19.0	4.0	0.0	16.0	9.0
GLM-4.5	0.0	15.0	5.0	0.0	27.0	15.0
DeepSeek-R1	0.0	8.0	4.0	1.0	25.0	6.0
GPT-4.1	0.0	0.0	2.0	0.0	11.0	66.0
Claude-5-Opus	0.0	48.0	9.0	0.0	48.0	11.0
GPT-5-High	1.0	21.0	5.0	0.0	0.0	25.0
Gemini-2.5-Pro	0.0	25.0	14.0	0.0	37.0	21.0
Claude-4-Sonnet	0.0	21.0	10.0	0.0	0.0	20.0

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

```

2 private void filterList(String query) {
3     String q = (query == null) ? "" : query.trim().toLowerCase(Locale.ROOT); // defensive
4     for (AppEntry e : appEntries) {
5         boolean match = q.isEmpty() || e.title.toLowerCase(Locale.ROOT).contains(q);
6         e.row.setVisibility(match ? View.VISIBLE : View.GONE);
7     }
8 }
9
10 // --- UI state guard: close search safely and reset filters ---
11 private void closeSearchIfOpen() {
12     if (searchContainer.getVisibility() == View.VISIBLE) { // defensive visibility check
13         searchContainer.setVisibility(View.GONE);
14         searchInput.setText(""); // reset state
15         filterList(""); // restore full list
16     }
17 }
18
19 @Override
20 public void onBackPressed() {
21     if (searchContainer != null && searchContainer.getVisibility() == View.VISIBLE) { // guard
22         closeSearchIfOpen(); // consume back to close search instead of leaving activity
23         return;
24     }
25     super.onBackPressed();
26 }
27
28 // --- Best-effort navigation with graceful degradation ---
29 private void openAppInfo(String packageName) {
30     try {
31         Intent it = new Intent(Settings.ACTION_APPLICATION_DETAILS_SETTINGS);
32         it.setData(Uri.parse("package:" + packageName));
33         it.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
34         startActivity(it);
35     } catch (ActivityNotFoundException e) { // device/ROM mismatch fallback
36         try {
37             Intent fallback = new Intent(Settings.ACTION_APPLICATION_DETAILS_SETTINGS);
38             fallback.setData(Uri.parse("package:" + getPackageName())); // fallback to self

```

```

1026
1027     startActivity(fallback);
1028 } catch (Exception ex) { // last resort: user-visible error
1029     Toast.makeText(this, "Unable to open Application Info", Toast.LENGTH_SHORT).show();
1030 }
1031 }
1032
1033 // --- Defensive null-check on optional view ---
1034 private void showMenuForGoogleDuring() {
1035     new AlertDialog.Builder(this)
1036         .setTitle("Google")
1037         .setItems(new CharSequence[]{"Disable", "Application Info"}, (d, which) -> {
1038             if (which == 0) {
1039                 if (statusGoogleDuring != null) { // view presence not guaranteed across
1040                     statusGoogleDuring.setVisibility(View.VISIBLE);
1041                 }
1042             }
1043         })
1044         .show();
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

```