
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM ASSISTANT TO INDEPENDENT DEVELOPER —
ARE GPTS READY FOR SOFTWARE DEVELOPMENT?

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable capability in
function-level code generation tasks. Unlike isolated functions, real-world ap-
plications demand reasoning over the entire software system: developers must
orchestrate how different components interact, maintain consistency across states
over time, and ensure the application behaves correctly within the lifecycle and
framework constraints. Yet, no existing benchmark adequately evaluates whether
LLMs can bridge this gap and construct entire software systems from scratch.
To address this gap, we propose APPFORGE, a benchmark consisting of 101 soft-
ware development problems drawn from real-world Android apps. Given a natural
language specification detailing the app functionality, a language model is tasked
with implementing the functionality into an Android app from scratch. Devel-
oping an Android app from scratch requires understanding and coordinating app
states, lifecycle management, and asynchronous operations, calling for LLMs to
generate context-aware, robust, and maintainable code. To construct APPFORGE,
we design a multi-agent system to automatically summarize the main functionali-
ties from app documents and navigate the app to synthesize test cases validating the
functional correctness of app implementation. Following rigorous manual verifica-
tion by Android development experts, APPFORGE incorporates the test cases within
an automated evaluation framework that enables reproducible assessment without
human intervention, making it easily adoptable for future research. Our evaluation
on 12 flagship LLMs show that all evaluated models achieve low effectiveness, with
the best-performing model (GPT-5) developing only 18.8% functionally correct
applications, highlighting fundamental limitations in current models’ ability to
handle complex, multi-component software engineering challenges.

1 INTRODUCTION

Large language models (LLMs) are reshaping the horizon of software engineering. Frontier code
LLMs (OpenAI, 2023) are deeply integrated into developer’s toolchains like GitHub Copilot (GitHub,
2025), Amazon CodeWhisperer (Amazon Web Services, 2025), and Claude Code (Anthropic, 2025).
They are advancing from coding assistants to fully autonomous software developers (Yang et al.,
2024), which hold significant potential to shape the next generation of software engineering.

Although existing benchmarks have advanced the evaluation of code LLMs, they primarily focus
on generating isolated snippets or functions, which differs fundamentally from the system-level
reasoning and integration required to build a complete application. As a result, they cannot determine
whether current models are capable of end-to-end software development in real-world scenarios.
For instance, HumanEval focuses on self-contained, toy-level, function-level code generation (Chen
et al., 2021; Austin et al., 2021), while SWE-Bench targets program repair tasks within an existing
codebase, requiring only minor modifications to a few lines of code in the target repository (Jimenez
et al., 2024). None of the existing benchmarks effectively assess the end-to-end software development
capabilities of LLMs in the role of an independent software developer (Liu et al., 2023; Jain et al.,
2024; White et al., 2024; Zhu et al., 2024; Rajore et al., 2024). To address the limitations of current
benchmarks and evaluate whether LLMs can truly function as software engineers in real-world
development scenarios, we argue for the creation of a new benchmark that goes beyond narrow tasks
and instead captures the full spectrum of software development.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Building such a benchmark is necessary because (1) it provides a comprehensive and realistic evalua-
tion of LLMs’ ability to perform software development tasks end-to-end, (2) bridging the gap between
isolated code generation and real-world engineering and (3) providing insight how to leverage LLMs
for the next generation software engineering. However, there are several challenges in building such
a benchmark: ❶ Reflecting the Real-World Software Development Process: The benchmark should
be realistic and faithfully represent the complexities and workflows of actual software development.
❷ Ensuring Sufficient Challenge and Diversity: The benchmark should be sufficiently challenging to
differentiate model capabilities, covering diverse tasks such as design, implementation, debugging,
and maintenance. ❸ Measuring End-to-End Development Performance: The benchmark should
capture not only code correctness but also factors like code quality, maintainability, and integration
within larger systems.

To address these challenges, we propose Android application (app) development as our benchmark
domain, motivated by three key factors. First, Android represents one of the most significant software
ecosystems globally, with over 2.6 million apps available (Technource, 2022), making it highly
representative of real-world software development. Android development naturally involves creating
complete projects with specific functional requirements, effectively capturing authentic development
workflows. Second, developing Android apps from scratch provides inherent complexity through
backend logic implementation, state management, UI design, and external API integration, ensuring
sufficient difficulty and diversity for comprehensive evaluation. Third, the mature ecosystem of An-
droid development tools, including static analyzers, testing frameworks, and emulation environments,
enables rigorous automated assessment of various development aspects (Developers, 2025a;b;c).

Building on this intuition, we propose APPFORGE, the first benchmark for evaluating code LLMs
specifically in Android app development. As illustrated in Figure 2, LLMs are tasked with generating
complete Android apps from scratch based on natural language specifications. Once the code files are
generated, APPFORGE automatically handles compilation into APK files, deployment on Android
emulators, and comprehensive functionality validation against automated test case execution and
systematic fuzzing. To ease the use of APPFORGE, the evaluation of APPFORGE is fully automated
and encapsulated with a standalone docker for out-of-the-box usage.

To construct APPFORGE with scalability and rigor, we first collect real-world Android apps from
F-Droid 2025c, a well-curated repository of open-source Android apps that provides real-world
and actively maintained projects. Next, we leverage LLMs to automatically extract and summarize
functionality specifications from each app’s documentation and source code. Subsequently, we
leverage a GUI agent (Ran et al., 2024) to interact with the app, capturing its runtime behavior to
validate and enrich the specification description to avoid task ambiguity. Finally, we engage Android
development experts to verify the correctness of both specifications and synthesized test cases. This
combination of automated processing and expert validation ensures both scalability and reliability in
benchmark construction.

We evaluate 12 flagship LLMs (OpenAI, 2023; Guo et al., 2024; Di et al., 2024; Jiang et al., 2024;
Li et al., 2022) including GPT-5 (OpenAI, 2025) and Claude-4-Opus (Anthropic, 2025) as well as
popular coding agents including Claude Code (Anthropic, 2025) on APPFORGE, revealing three
key findings. First, all models achieve remarkably low performance with less than 20% of apps
being functionally correct, and among these correct apps, half still encounter at least one crash
(detailed in Table 1). This contrasts sharply with saturated existing benchmarks (Chen et al., 2021;
Jain et al., 2024; White et al., 2024), indicating a significant gap between current LLM capabilities
and real-world development tasks, and that APPFORGE represents the next frontier of software
engineering challenges. Second, we uncover that some LLMs evade app development tasks by
sacrificing functionality integrity for compilation success. When given opportunities to improve their
previous generations with compilation errors, GPT-4.1 (OpenAI, 2025) and Kimi-K2 (Kimi Team,
2025) delete the implementation of error-inducing functions instead of fixing them as illustrated in
Figure 8, indicating an avoidance strategy that sidesteps error handling instead of demonstrating true
debugging competence. Specifically, GPT-4.1 evades development in 91.09% of tasks, while Kimi K2
does so in 65.36% of tasks. Finally, for simple tasks like calculator implementation (Figure 6), LLMs
demonstrate promising performance, producing robust apps that surpass typical human-written code
quality as illustrated in Figure 7, suggesting significant potential when complexity is appropriately
managed for future software development.

We summarize our main contribution as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• New real-world problem : We introduce end-to-end Android app development from scratch
as a comprehensive evaluation task for LLMs’ software engineering capabilities.

• New Benchmark: We construct APPFORGE, a benchmark with 101 diverse Android devel-
opment tasks and fully automated evaluation suites.

• Evaluation Results: We evaluate 12 flagship LLMs and analyze their limited performance
and failure patterns in real-world software engineering scenarios.

2 BACKGROUND & RELATED WORK

Code large language models (LLMs) have been advancing rapidly, where frontier code LLMs
such as GPT5 (OpenAI, 2025), Claude-Opus (Anthropic, 2025), Gemini-Pro (Google, 2025), and
Qwen3-Coder (Yang et al., 2025) have reshaped the paradigm of software development. As software
ecosystems such as Cursor (Cursor, 2025) and GitHub Copilot (GitHub, 2025) continue to mature,
the application scenarios of code LLMs expand beyond code generation and completion to encompass
debugging, test generation, and even autonomous software development.

APPFORGE
(our work)

Partial Completion

Full Development From Scratch

C
od

in
g

C
om

pl
ex

ity

function-level repository-level

Implementation Scope

BigCodeBench

SWE-BenchHumanEval

MBPP

LiveCodeBench

FEA-Bench

SWA-Bench DevEval

CodeXGLUE

EvalPlus

Web-Bench

Figure 1: Our Work Compared with Ex-
isting Code Generation Benchmarks.

In contrast to the wide application scenarios of code LLMs,
benchmarks that evaluate code LLMs still largely focus
on (1) function-level code generation and completion,
such as HumanEval (Chen et al., 2021), MBPP (Austin
et al., 2021), and BigCodeBench (Zhuo et al., 2024);
and (2) patch generation and feature implementation with
repository-level context, such as SWE-Bench (Jimenez
et al., 2024), Web-bench Xu et al. (2025) and Lo-
CoBench (Qiu et al., 2025). Some efforts transform static
benchmarks into dynamic ones to combat data contami-
nation, such as SWE-Bench-Live (Zhang et al., 2025) and
LiveCodeBench (Jain et al., 2024). As shown in Figure 1,
APPFORGE goes beyond function-level code generation
and patch generation. Compared to existing benchmarks,
APPFORGE evaluates code LLM’s capability to perform
automated software development from scratch at the
repository level. It incorporates rigorous evaluation empowered by automated test cases and system-
atic fuzzing.

APPFORGE is the first benchmark for assessing LLM capabilities in Android development to our
knowledge. Android apps are typically built with Java or Kotlin following Material Design and
Android architecture guidelines, comprise multiple interconnected components (2025a). Android
apps represent one of the most significant software ecosystems globally with over 2.6 million
applications available (Technource, 2022), so we believe that Android development is an ideal
code LLM evaluation scenario that largely reflects the real-world software development process. F-
Droid (2025c) is the leading open-source Android app repository, serving millions of users worldwide.
F-Droid apps span diverse categories and their code undergo rigorous review process. APPFORGE is
constructed from a diverse set of high-quality F-Droid apps, and can be dynamically expanded using
latest projects from F-Droid. We defer a more in-depth discussion of related work in Appendix A.

3 APPFORGE

APPFORGE is a benchmark designed to evaluate LLMs’ capabilities across the full software develop-
ment lifecycle for Android applications, using real-world apps such as Amaze File Manager (F-Droid,
2025a), Arcticons (F-Droid, 2025b), and Vanilla Music (F-Droid, 2025c). Given the natural language
description of an Android application, the task is to generate the corresponding code implementation
that not only faithfully realizes the described functionality and passes the associated tests, but also
executes securely within the Android operating system.

3

https://benchmark-project-website.github.io/

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Formal Task
Specification

Validated
Test Cases

LLM Agents App Code Produce
APK

Install on
Device

Testing
Scores

FuzzingCrashing
Log

Generate
APK

Compiling Pass
?

Yes
Functional

TestingPass
?

Yes

Stability
Testing

No

No

Figure 2: Workflow of APPFORGE.

F-Droid
Top 200 Apps

Explore
Code Repo

Functionality
Description

Navigate
App

Task
Specification

Designer Agent

Extract

GUI Agent

Interaction
Traces

ProduceEach

Test Case
Scripts

Task Refinement
Agent

Expert
Validation

Formal Task
Specification

Validated
Test Cases

Collected Tasks

Figure 3: Construction of APPFORGE.

3.1 ANDROID APP DEVELOPMENT TASK FORMULATION

Each task in APPFORGE includes three main fields: model input, model output, and the evaluation
suite. An example of task instance is provided in Appendix B.1.

Model Input: The model input is a natural language description that consists of three components:
(1) a high-level overview of the app’s functionality along with detailed descriptions of the features
corresponding to each functionality, (2) natural language test cases that specify how these functionali-
ties should be implemented and validated, and (3) implementation constraints such as API version
requirements and expected output format specifications. Within the detailed feature descriptions, we
also provide the specific resource IDs required for implementation. This design streamlining the
overall evaluation process.

Expected Model Output: When prompting the LLM for app generation, the model is required to
produce output in JSON format, where each key represents a filename and each value contains the
corresponding code. This design enables automated project assembly and evaluation.

Evaluation Suite: APPFORGE includes an automated evaluation pipeline consisting of three com-
ponents: (1) an automatic compiler suite that parses the generated outputs, assembles them into an
Android project, and compiles the project into an Android Package (APK); (2) a testing module
that installs the APK onto an Android emulator and executes predefined test cases to validate func-
tional correctness; and (3) a lightweight fuzzer that evaluates the robustness and exception-handling
capabilities of the application under various edge cases and unexpected inputs. The evaluation
reports four metrics: (1) compilation success rate, (2) test pass rate, (3) crash rate, and (4) an overall
performance score (detailed in Appendix B.3) representing the model’s effectiveness on the given
Android development benchmark (More implementation details could be found in Appendix B.4).

3.2 CONSTRUCTION OF APPFORGE

We construct our benchmark from real-world Android apps collected from F-Droid. Although each
app on F-Droid comes with detailed documentation and README files, these resources are too large
and unstructured to be directly used as prompts for benchmarking LLMs. To address this limitation,
we need to regenerate the task, Specifically, we follow the pipeline below: (1) Seed App selection:
We choose apps based on diversity, complexity, and popularity. (2) UI navigation and trace recording:
We use a UI navigator tool to explore the selected apps and record the navigation traces along with
each UI element’s ID. This step provides detailed interaction data, enabling automatic evaluation.
Since our UI navigation is a dynamic process, even the same app can produce different traces. This
dynamic mechanism allows us to generate diverse tasks from the same app, reducing the risk of
data contamination. (3) Trace summarization: We combine the app documentation and navigation
traces, such as the element ID, then use an LLM to summarize each trace into natural language
descriptions. (4) Human validation: Finally, we perform human validation to ensure the generated
tasks are accurate and meaningful.

App Selection and Scraping. We begin by ranking apps based on a combination of popularity,
complexity, diversity, and update frequency; detailed criteria are in Appendix B.5. From this ranking,
we select the top 200 highest-scoring apps across different categories as seed apps for subsequent
task creation, ensuring balanced coverage of Android development domains. For each selected app,
we analyze its code repository to extract metadata, including descriptions from README files and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

release notes. We then summarize the app’s core functionalities in natural language using a JSON
format. These functionality descriptions are intentionally high-level and may be ambiguous.

Automatic App Navigation. We use an existing tool, UIAutomator (Android Developers, 2025), to
install each seed app in an Android emulator and systematically record interaction traces. For every
high-level functionality description, a UI navigator performs goal-based navigation (Ran et al., 2024)
starting from the app’s main screen. Guided by the functionality description, the agent identifies and
interacts with relevant UI elements while maintaining a detailed log of the process. At each step, it
captures the full UI tree using UIAutomator, including element properties such as text, resource-id,
class, and bounds. The agent also documents the sequence of UI actions (e.g., clicks, text inputs,
swipes), the target elements, and the reasoning behind each action, along with the resulting screen
transitions and state changes. Once the target functionality is accomplished (e.g., logging in or
sending a message), the agent records the complete interaction trace. This goal-directed approach
produces precise traces that capture the most natural paths for implementing each functionality.

Task Generation For Trace History. We then utilize a LLM to synthesizes precise task descriptions
and test suites based on the captured interaction traces. First, the task refinement agent transforms
each interaction trace into a test case. Each test case consists of a sequence of UI actions and an oracle
specifying the expected outcome of executing the action sequence. Each UI action is associated
with a UI element containing clear text or resource-id labels. For UI elements in seed apps that lack
meaningful labels, the refinement agent generates context-appropriate resource-ids to avoid ambiguity.
Each oracle is an assertion determining whether a UI element exists or does not exist. The test case is
implemented as a Python script using the UIAutomator framework, enabling automated evaluation.
Based on the synthesized test suites, the task refinement agent generates a task description detailing
the core functionalities and their implementation. For each test script, the agent produces natural
language descriptions that specify the sequence of UI interactions (e.g., “click the button with login
resource-id”, “enter text in the username field”) and the expected app states after these operations.
This approach eliminates ambiguity by providing precise, actionable specifications that ensure any
LLM or human developer interpreting the task description will implement functionally equivalent
apps that satisfy the same behavioral requirements.

Android Developer Validation. To ensure quality control, five expert Android developers with a
combined 30 years of experience reviewed all tasks for technical accuracy, feasibility, and alignment
with real-world practices. The validation process included checking task clarity and completeness,
verifying non-trivial and unambiguous requirements, ensuring coverage of essential concepts across
difficulty levels, and confirming the soundness of examples and constraints. Experts also validated
test cases by examining expected outputs and the accuracy of automated testing. Each task underwent
multiple review rounds until consensus was reached, yielding high-quality benchmarks that reflect
authentic Android development challenges.

3.3 BENCHMARK SUITE AND DATA STATISTICS

System

Navigation

Games

Development

Connectivity

Graphics

Sports & HealthScience & Education

Theming

Security

Time

Writing

Phone & SMS

Multimedia
Money

Figure 4: Distribution of Category.

We collect 101 high-quality Android development tasks,
each representing the development of a complete Android
application. The task distribution reflects real-world Android
development patterns and emphasizes comprehensive appli-
cation diversity: UI/Layout focused apps comprise 40%,
covering complex view hierarchies, custom components,
and responsive design; Backend Integration apps account
for 32%, including API consumption, data persistence, and
background services; User Interaction apps represent 94%,
focusing on gesture handling, input validation, and navi-
gation flows; and System Integration apps make up 63%,
encompassing permissions, hardware access, and inter-app
communication. Task complexity spans three difficulty lev-
els based on implementation requirements: Beginner (37%,
focusing on single-activity apps with basic Android concepts), Intermediate (48%, requiring multi-
component integration and moderate architectural complexity), and Advanced (15%, involving
sophisticated architectural patterns, performance optimization, and complex system interactions).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The diversity in app categories and complexity levels ensures that APPFORGE captures the full
spectrum of Android development scenarios in real-world practice.

3.4 KEY FEATURES OF APPFORGE

Traditional code generation benchmarks often focus on toy function-level tasks or partial repository
generation, where much of the context is pre-defined and evaluation is limited to functionality—an
approach shown to be insufficiently rigorous in prior work. In contrast, APPFORGE draws on real-
world Android applications from F-Droid, offering authentic, end-to-end development tasks that more
faithfully capture practical software engineering challenges. Here, we describe some key features:

Real-world Software Development Tasks. Since each task in APPFORGE is sourced from F-Droid
and represents a real-world Android application that may have been installed on millions of devices
worldwide, solving APPFORGE requires LLMs to demonstrate sophisticated skills and knowledge
in full-stack Android development, including UI design, API integration, state management, and
security considerations—capabilities rarely evaluated in traditional code generation benchmarks.

Diverse Task Categories. As shown in Figure 4, APPFORGE includes a diverse range of apps.
Each instance of APPFORGE belongs to a unique category, making it significantly more diverse than
existing benchmarks (e.g., SWE-Bench includes only 12 different repositories from Python (Jimenez
et al., 2024) and concurrent work LoCoBench covers only 3 mobile app categories (Qiu et al., 2025)).

Software-level Code Generation. This task challenges LLMs to generate coherent, end-to-end
Android application code while understanding the semantics of APIs across different versions of the
Android framework and third-party libraries. Unlike function-level tasks, software-level generation
requires reasoning about how components interact, handling version-specific behavior, and integrating
multiple modules correctly. By requiring models to adapt to evolving APIs and manage compatibility,
this task evaluates a deeper level of software engineering capability, beyond simple functionality,
ensuring that generated applications are both correct and maintainable.

Rigorous Functionality & Reliability Evaluation. Considering the fact that every software may
contain some bug or defect, our benchmark includes both functionality and reliability evaluations.
Our experiments demonstrate that incorporating reliability is essential, as it can uncover hidden
crashes that would be missed by functionality testing alone.

Wide Solution Space. The task of full-application code generation in APPFORGE provides a level
playing field for evaluating approaches ranging from standard models to autonomous agents capable
of reasoning and acting across an entire Android project. APPFORGE also encourages creative
solutions, allowing models to produce implementations that may diverge from reference apps while
still meeting functional, and security requirements.

4 EVALUATIONS

4.1 EVALUATION SETUP

We conduct comprehensive experiments on APPFORGE with 12 state-of-the-art LLMs, including 7
proprietary models (Claude-5-Opus, Claude-4-Sonnet(Anthropic, 2025), Gemini-2.5-Pro (Google,
2025), GPT4.1 (OpenAI, 2025), GPT-5-Low, GPT-5-Medium, and GPT-5-High (OpenAI, 2025))
and 5 open-source models (DeepSeek-R1, DeepSeek-V3 (Guo et al., 2024), GLM-4.5 (Zhuo et al.,
2024), Kimi K2 (Kimi Team, 2025), and Qwen3-Coder (Yang et al., 2025)), along with two coding
agents (mini-SWE-agent (Yang et al., 2024) and Claude Code (Anthropic, 2025)) to evaluate the
cutting-edge progress in fully automated software engineering. Details are provided in Appendix C.

4.2 MAIN RESULTS

All models struggle on APPFORGE. As shown in Table 1, all models achieve low performance on
APPFORGE, with the best-performing flagship model GPT-5 with high reasoning mode achieving
only 14.85% success rate (developing 14.85% of apps passing all test cases). When given chances to
repair compilation errors in their previous development, the improvement is still marginal, with GPT-5
achieving only 18.81% success rate. Open-source models perform considerably worse, all achieving

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance of LLMs on APPFORGE.

LLMs Pass@1 with Compilation Error Feedback
#File #LOC Compile Test Pass Crash Success #File #LOC Compile Test Pass Crash Success

Proprietary Models

Claude-4-Opus 9.11 396.94 80.20% 28.52% 60.49% 11.88% 8.97 386.63 90.10% 34.22% 60.44% 14.85%
Claude-4-Sonnet 9.61 432.17 40.59% 10.35% 58.54% 0.99% 9.78 437.69 77.23% 18.36% 26.92% 3.96%
Gemini-2.5-Pro 10.74 380.31 53.47% 19.63% 62.96% 7.92% 10.52 361.94 68.32% 21.63% 75.36% 13.86%
GPT-5-High 7.76 354.59 45.54% 21.90% 52.17% 14.85% 7.36 340.77 82.18% 29.07% 31.33% 18.81%
GPT-4.1 8.00 367.43 6.93% 2.44% 28.57% 0.99% 2.68 58.41 74.26% 1.85% 94.67% 0.99%

Open-source Models

DeepSeek-R1 7.00 214.33 14.85% 1.90% 73.33% 0.00% 7.33 233.78 44.55% 12.29% 62.22% 4.95%
DeepSeek-V3 5.17 164.67 5.94% 2.23% 83.33% 0.99% 5.33 250.19 26.73% 10.40% 48.15% 4.95%
GLM-4.5 7.64 256.16 24.75% 8.74% 72.00% 4.95% 8.51 278.91 44.55% 10.14% 75.56% 4.95%
Kimi K2 6.82 239.82 16.83% 4.95% 76.47% 1.98% 5.10 168.60 41.58% 7.76% 69.05% 1.98%
Qwen3-Coder 5.29 209.00 27.72% 4.42% 75.00% 1.98% 6.20 241.21 85.15% 21.45% 29.07% 8.91%

less than 10% functional success rate after repairing compilation errors. While the high compilation
rates of flagship models demonstrate that existing models can generate syntactically correct programs,
the consistently low test pass rates across all models reveal the fundamental challenge of generating
functionally correct Android apps. In addition, over 50% of functionally correct apps crashes during
runtime, highlighting that even when LLMs successfully implement the required functionality, the
generated code often lacks reliability necessary for real-world deployment.

0 1 2 3 4 5
Fix Iteration Rounds

0

20

40

60

80

100

R
at

e
(%

)

Qwen3-Coder Compile
Qwen3-Coder Test Pass
Qwen3-Coder Success

DeepSeek-V3 Compile
DeepSeek-V3 Test Pass
DeepSeek-V3 Success

Figure 5: Performance evolution
with compilation feedback.

Iterative refinement with compilation feedback does not signif-
icantly improve functional correctness. The compilation error
feedback substantially improves compilation success across all
models, with notable improvements for Claude-4-Sonnet (40.59%
to 77.23%) and Qwen3-Coder (27.72% to 85.15%). However,
this improvement does not translate proportionally to functional
correctness, as test pass rates show modest gains. As illustrated in
Figure 5, iterative refinement significantly improves compilation
success for both Qwen3-Coder (33.7% to 98%) and DeepSeek-
V3 (7.9% to 63.4%). However, the functional success rate,
measured by passing test cases, saturates quickly after 2-3 it-
erations, peaking around 23% for Qwen3-Coder and 14% for
DeepSeek-V3.

200 400 600 800
Lines of Code

0.4

0.5

0.6

0.7

0.8

C
om

pi
le

 (%
)

200 400 600 800
Lines of Code

0.1

0.2

0.3

0.4

Te
st

 P
as

s
(%

)

200 400 600 800
Lines of Code

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Su
cc

es
s

(%
)

Rolling mean (Width=200 LOC) Uncertainty band

Figure 6: Correlation between Lines of Code (LOC)
and evaluation metrics (Compile, Test Pass, and Suc-
cess). Rolling means with uncertainty bands show per-
formance variability across code complexity.

LLMs can develop robust, functionally
correct apps on simple development
tasks. Despite overall low success rates,
successful cases demonstrate that LLMs
can generate surprisingly sophisticated An-
droid applications. As visualized in Fig-
ure 6, there is a clear inverse relationship
between app complexity and success rates
for lower complexity tasks with enough
sample sizes below 800 LOCs. Notably,
successful cases often showcase proactive exception handling and defensive programming beyond ba-
sic functional requirements. Figure 7 illustrates an actual implementation by GPT-5 in the Autostarts
app, where it gracefully manages potential exceptions and provides fallback solutions.

Some LLMs evade development tasks rather than repair their compilation errors. Interestingly,
GPT4.1 and Kimi K2 evade development tasks during iterative refinement, where they delete faulty
implementations instead of repairing them. GPT-4.1 shows a dramatic reduction in generated number
of files (from 8.00 to 2.68) and LOCs (from 367.43 to 58.41) when provided with compilation
feedback. As shown in Figure 8, GPT-4.1 replaces the buggy implementation of the function with
an empty body. This strategy successfully achieves the highest compilation rate improvement (from
6.93% to 74.26%), but does no good for implementing the required app functionality. Similar patterns
are observed in Kimi K2, indicating that some LLMs may strategically simplify their solutions when
faced with compilation challenges rather than addressing the underlying issues.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 private void openAppInfo(String packageName) {
2 try {
3 Intent it = new Intent(Settings.ACTION_APPLICATION_DETAILS_SETTINGS);
4 it.setData(Uri.parse("package:" + packageName));
5 it.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
6 startActivity(it);
7 } catch (ActivityNotFoundException e) {
8 try {
9 Intent fallback = new Intent(Settings.ACTION_APPLICATION_DETAILS_SETTINGS);

10 fallback.setData(Uri.parse("package:" + getPackageName()));
11 startActivity(fallback);
12 } catch (Exception ex) {
13 Toast.makeText(this, "Unable to open Application Info", Toast.LENGTH_SHORT).show();
14

Figure 7: Proactive defensive programming implemented by GPT-5 on the Autostarts app.

1 // --- Original Geneartion (Compile Error: MainActivity.java:45: error: cannot find symbol
Intent it = new Intent(MainActivity.this, NewTodoListActivity.class);) ---

2 findViewById(R.id.ac_add).setOnClickListener(v -> {
3 Intent it = new Intent(MainActivity.this, NewTodoListActivity.class);
4 startActivityForResult(it, 101);
5 });
6 // --- Refinement (passing compilation without implementation) ---
7 findViewById(R.id.ac_add).setOnClickListener(v -> {
8 });

Figure 8: GPT-4.1 evades development when fixing the compilation error on Todo List app.

Ta
rg

et
 L

LM

Source LLM
C-4-O

pus
C-4-So

nnetG-2.5-
Pro GPT-5 GPT-4

.1

C-4-Sonnet

C-4-Opus

G-2.5-Pro

GPT-5

GPT-4.1

−100 −50 0 50 100

Ta
rg

et
 L

LM

Source LLM
C-4-O

pus
C-4-So

nnetG-2.5-
Pro GPT-5 GPT-4

.1

C-4-Sonnet

C-4-Opus

G-2.5-Pro

GPT-5

GPT-4.1

−100 −50 0 50 100

Figure 9: Pairwise relative performance differences be-
tween models on SWE-bench-verified (Left) and APP-
FORGE (Right). Green and red cells represent relatively
superior and inferior performance, respectively, with
color intensity indicating the magnitude of differences.

APPFORGE differentiates model capa-
bilities better than existing code gener-
ation benchmarks. While many mod-
els achieve high and similar performance
on traditional code generation benchmarks
like HumanEval and SWE-bench, APP-
FORGE help reveal performance gaps of
LLMs for real-world software engineer-
ing tasks with success rates spanning from
0.99% to 14.85%. In addition, We visu-
alize the model performance differentia-
tion in Figure 9. the performance variance
on APPFORGE is substantially larger than
SWE-bench, providing more nuanced dif-
ferentiation of model capabilities. This suggests that APPFORGE captures the real-world software
engineering challenges that are not adequately captured by previous code generation benchmarks.

4.3 PERFORMANCE OF ADVANCED CODING AGENTS AND REASONING MODELS

Table 2: Performance of coding agents on APPFORGE.

Agent LLM #File #LOC Compile Test Pass Success

SWE Claude-4-Opus 10.76 558.40 71.29% 24.61% 11.88%
Qwen3-Coder 8.42 430.94 88.12% 22.21% 6.93%

CC Qwen3-Coder 5.34 280.66 76.24% 14.64% 6.93%

Table 3: Performance of GPT-5 with differ-
ent reasoning levels on APPFORGE.

Level #File #LOC Compile Test Pass Success
Low 5.91 280.91 22.77% 8.41% 2.97%
Medium 7.61 321.96 27.72% 11.11% 3.96%
High 7.76 354.59 45.54% 21.90% 14.85%

Coding agents provide marginal improvements at substantial computational cost. As shown in
Table 2, coding agents (mini-SWE-agent as SWE, Claude Code as CC) exhibit slight improvements
over simpler baseline approaches, yet their performance gains are modest. Specifically, the best-
performing combination (mini-SWE-agent using Claude-4-Opus) achieves only an 11.88% functional
success rate. Although these agents demonstrate potential for iterative refinement and error correction,
their modest overall performance indicates that current agent-based frameworks still fall short of
effectively overcoming critical challenges inherent to real-world software engineering tasks, such as
multi-file integration and framework-specific complexity typical in Android app development.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Enhancing reasoning capabilities remain insufficient for Android development. Table 3 demon-
strates that increasing the reasoning level of GPT-5 leads to improved performance across all metrics,
with the highest reasoning setting achieving 14.85% functional success compared to 2.97% at the low
level. However, even with maximum reasoning enhancement, the absolute performance remains far
from satisfactory for practical Android development, highlighting that the fundamental challenges
of multi-file coordination, framework-specific knowledge, and complex dependency management
require more than enhanced reasoning alone.

4.4 ANALYSIS OF DEVELOPMENT CHALLENGES

31.7% 4.8%

27.1%

2.7%

5.3%
1.3%5.5%

11.0%

4.2%

6.5%

Compilation Results Distribution
(w/o Refinement)

63.5%

2.3%

15.3%
1.3%

3.5%
0.5%

6.6%

1.7%
1.3%

4.1%

Compilation Results Distribution
(Refinement with Compilation Feedback)

Error Types
Compilation Success
Package Name not Found
Android Resource Linking Failed
Resource compilation failed
Wrong Json Format in Completion
Uses or Overrides a deprecated API
Invalid symbol in Code
android:exported needs to be ...
Requires Unsupported Sdk Version
others

Figure 10: Distribution of compilation errors
across generated Android apps.

Compilation Error Analysis. Figure 10 presents
the distribution of compilation errors. The most
prevalent error stems from “Android Resource Link-
ing Failed”, accounting for 39.7% of compilation
errors. This compilation error is typically caused by
missing or misreferenced resource files in the gener-
ated apps, highlighting current models’ inadequate
capability in comprehensive software engineering
tasks that require systematic coordination across mul-
tiple project components. An interesting observation
is that GPT series models and Kimi-K2 encounter the issue that apps fail to compile due to missing
android:exported declarations (an attribute requirement introduced in Android 12 (Android Develop-
ers, 2021)), highlighting a gap between LLM training data and current Android requirements. Though
it can be resolved by refinement, this interesting issue reflects models’ strategies when handling
conflicts between training data patterns and task instructions.

Table 4: Runtime crash analysis across LLMs.

Model Native Crash Failed to Start
w/o Fix w/ Fix w/o Fix w/ Fix

GPT-4.1 0.0 11.0 2.0 66.0
Claude-Opus 48.0 48.0 9.0 11.0
Gemini-Pro 25.0 37.0 14.0 21.0
GPT-5-High 21.0 0.0 5.0 25.0

Crash Analysis. Table 4 presents the
crash analysis results from fuzzing LLM-
generated apps (full version available in the
Appendix C) . First, the “evade development”
strategies employed by GPT-4.1 ultimately
backfire at runtime. While achieving higher
compilation rates, the app fundamentally
fail to start when executed, indicating that
evasive compilation error fixes often intro-
duce fundamental flaws, such as incomplete resource initialization that prevent proper app bootstrap-
ping. Second, notably all crashes are native crashes rather than Java-level exceptions, indicating
that the generated Java code itself is generally robust with proper exception handling. This suggests
that existing LLMs excel at defensive programming practices and maintain good exception handling
patterns as illustrated in Figure 7. However, crashes occur when calling third-party libraries or
interacting with OS services due to parameter validation failures and contract mismatches. While
LLMs demonstrate solid understanding of Java code, they lack sufficient knowledge of underlying
implementation details and resource constraints. Consequently, seemingly safe Java code can trigger
native-level issues when interfacing with lower-level components, highlighting the gap between
surface-level language proficiency and deep system understanding required for software engineering.

5 CONCLUSION

In this paper, we have introduced APPFORGE, a comprehensive benchmark for evaluating LLMs
on real-world Android application development from scratch, revealing significant gaps between
current capabilities and practical software engineering requirements. Through systematic evaluation
of 12 state-of-the-art LLMs across 101 diverse development scenarios, we found that even the
best-performing models achieve only modest success rates, contrasting sharply with their high
performance on existing code generation benchmarks, suggesting that fundamental innovations rather
than incremental improvements may be necessary toward fully automated software engineering.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS AND REPRODUCIBILITY STATEMENT

This work adheres to the ICLR Code of Ethics. No human subjects or animal experimentation were
involved. No personally identifiable information was used, and no experiments posed privacy or
security risks. We are committed to transparency and integrity throughout the research process.
We believe APPFORGE can be used for various purposes, including evaluating the cutting-edge
capabilities of code LLMs for software engineering, training better software engineering models and
agents, and as a seed benchmark for building larger benchmarks for application development. We
have strictly adhered to the license of open-source apps since we use the runtime behavior of these
apps instead of using their source code for constructing APPFORGE. However, we are concerned
about potential misuse of APPFORGE for training models to reverse engineering existing Android
applications, making the plagiarism of apps a practical concern.

As a benchmark paper, the benchmark has been made publicly available on the fully anonymized
project website, providing detailed documentation, leaderboard, and dockerized environment to ensure
easy reproduction and customized use. We have detailed the selection criteria in our Appendix and
use popular open-source apps in F-Droid to allow reproducibility of task collection. The experimental
setup is described in detail.

LLM USAGE

LLMs were employed solely to assist in writing and polishing the manuscript, including refining
language, improving readability, and enhancing clarity. The LLM was used for tasks such as sentence
rephrasing, grammar checking, and improving overall flow.

The LLM was not involved in ideation, research methodology, or experimental design. All research
concepts, analyses, and results were developed and conducted by the authors. The authors take full
responsibility for the manuscript content, including any text generated or polished by the LLM, and
confirm that all LLM-assisted text adheres to ethical guidelines and does not constitute plagiarism or
scientific misconduct.

REFERENCES

Amazon Web Services. Amazon codewhisperer. https://aws.amazon.com/
codewhisperer/, 2025. Accessed: 2025-09-24.

Android Developers. Behavior changes: Apps targeting android 12 — exported com-
ponents requirement. https://developer.android.com/about/versions/12/
behavior-changes-12#exported, 2021. Accessed: 2025-09-24.

Android Developers. Ui automator. https://developer.android.com/training/
testing/other-components/ui-automator, 2025. Accessed: 2025-09-24.

Anthropic. Models overview - claude docs. https://docs.claude.com/en/docs/
about-claude/models/overview, April 2025. Accessed: 2025-09-23.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian
Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng
Qian, Murali Krishna Ramanathan, and Ramesh Nallapati. Multi-lingual evaluation of code
generation models. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.
net/pdf?id=Bo7eeXm6An8.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732, 2021. URL https://arxiv.org/abs/
2108.07732.

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Vageesh D C, Arun Iyer, Suresh Parthasarathy,
Sriram Rajamani, Balasubramanyan Ashok, and Shashank Shet. Codeplan: Repository-level

10

https://benchmark-project-website.github.io
https://benchmark-project-website.github.io
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://developer.android.com/about/versions/12/behavior-changes-12#exported
https://developer.android.com/about/versions/12/behavior-changes-12#exported
https://developer.android.com/training/testing/other-components/ui-automator
https://developer.android.com/training/testing/other-components/ui-automator
https://docs.claude.com/en/docs/about-claude/models/overview
https://docs.claude.com/en/docs/about-claude/models/overview
https://openreview.net/pdf?id=Bo7eeXm6An8
https://openreview.net/pdf?id=Bo7eeXm6An8
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

coding using llms and planning. Proceedings of the ACM on Software Engineering, 1(FSE):
675–698, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.
org/abs/2107.03374.

Simin Chen, Soroush Bateni, Sampath Grandhi, Xiaodi Li, Cong Liu, and Wei Yang. Denas:
automated rule generation by knowledge extraction from neural networks. In Proceedings of the
28th ACM joint meeting on European software engineering conference and symposium on the
foundations of software engineering, pp. 813–825, 2020.

Simin Chen, Xiaoning Feng, Xiaohong Han, Cong Liu, and Wei Yang. Ppm: Automated generation
of diverse programming problems for benchmarking code generation models. Proceedings of the
ACM on Software Engineering, 1(FSE):1194–1215, 2024a.

Simin Chen, Pranav Pusarla, and Baishakhi Ray. Dycodeeval: Dynamic benchmarking of reasoning
capabilities in code large language models under data contamination. In Proceedings of the
Forty-Second International Conference on Machine Learning, Vancouver, Canada, July 2025.
PMLR.

Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin. Chatunitest: A
framework for llm-based test generation. In Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering, pp. 572–576, 2024b.

Cursor. Cursor: The best way to code with ai. https://cursor.com/, April 2025. Accessed:
2025-09-23.

Android Developers. Application fundamentals, 2025a. URL https://developer.android.
com/guide/components/fundamentals. Accessed: 2025-08-15.

Android Developers. Fragments, 2025b. URL https://developer.android.com/guide/
fragments. Accessed: 2025-08-15.

Android Developers. Services overview, 2025c. URL https://developer.android.com/
develop/background-work/services. Accessed: 2025-08-15.

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting Cai, Yang Cao, Chaoyu Chen, Dajun Chen,
Hongwei Chen, Liang Chen, et al. Codefuse-13b: A pretrained multi-lingual code large language
model. In Proceedings of the 46th International Conference on Software Engineering: Software
Engineering in Practice, pp. 418–429, 2024.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://cursor.com/
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/fragments
https://developer.android.com/guide/fragments
https://developer.android.com/develop/background-work/services
https://developer.android.com/develop/background-work/services

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

F-Droid. Amaze file manager — f-droid. https://f-droid.org/en/packages/com.
amaze.filemanager/, 2025a. Accessed: 2025-09-24.

F-Droid. Arcticons — f-droid. https://f-droid.org/en/packages/com.donnnno.
arcticons/, 2025b. Accessed: 2025-09-24.

F-Droid. Vanilla music — f-droid. https://f-droid.org/en/packages/ch.
blinkenlights.android.vanilla/, 2025c. Accessed: 2025-09-24.

Open Technology Fund. F-droid sustainability. https://www.opentech.fund/
projects-we-support/supported-projects/f-droid-sustainability/,
2025. Accessed: 2025-08-15.

GeeksforGeeks. A complete guide to learn xml for android app develop-
ment, 2025. URL https://www.geeksforgeeks.org/android/
a-complete-guide-to-learn-xml-for-android-app-development/. Ac-
cessed: 2025-08-15.

GitHub. Github copilot. https://github.com/features/copilot, April 2025. Accessed:
2025-09-23.

Google. Gemini 2.5 pro model card. 2025. URL https://modelcards.withgoogle.com/
assets/documents/gemini-2.5-pro.pdf.

Batu Guan, Xiao Wu, Yuanyuan Yuan, and Shaohua Li. Is your benchmark (still) useful? dynamic
benchmarking for code language models. arXiv preprint arXiv:2503.06643, 2025.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/2403.
07974.

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang, Qiwei Shang, Ge Li, Zhi Jin, and Wenpin
Jiao. Self-planning code generation with large language models. ACM Transactions on Software
Engineering and Methodology, 33(7):1–30, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024.

Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey
Svyatkovskiy. Inferfix: End-to-end program repair with llms. In Proceedings of the 31st ACM
joint european software engineering conference and symposium on the foundations of software
engineering, pp. 1646–1656, 2023.

Kimi Team. Kimi k2: Open agentic intelligence. arXiv, 2025. URL https://arxiv.org/abs/
2507.20534.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. CoRR, abs/2203.07814, 2022. doi: 10.48550/ARXIV.2203.07814.
URL https://doi.org/10.48550/arXiv.2203.07814.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7.

12

https://f-droid.org/en/packages/com.amaze.filemanager/
https://f-droid.org/en/packages/com.amaze.filemanager/
https://f-droid.org/en/packages/com.donnnno.arcticons/
https://f-droid.org/en/packages/com.donnnno.arcticons/
https://f-droid.org/en/packages/ch.blinkenlights.android.vanilla/
https://f-droid.org/en/packages/ch.blinkenlights.android.vanilla/
https://www.opentech.fund/projects-we-support/supported-projects/f-droid-sustainability/
https://www.opentech.fund/projects-we-support/supported-projects/f-droid-sustainability/
https://www.geeksforgeeks.org/android/a-complete-guide-to-learn-xml-for-android-app-development/
https://www.geeksforgeeks.org/android/a-complete-guide-to-learn-xml-for-android-app-development/
https://github.com/features/copilot
https://modelcards.withgoogle.com/assets/documents/gemini-2.5-pro.pdf
https://modelcards.withgoogle.com/assets/documents/gemini-2.5-pro.pdf
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534
https://doi.org/10.48550/arXiv.2203.07814
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Junwei Liu, Yixuan Chen, Mingwei Liu, Xin Peng, and Yiling Lou. Stall+: Boosting llm-based
repository-level code completion with static analysis. arXiv preprint arXiv:2406.10018, 2024.

Alex Mathai, Chenxi Huang, Petros Maniatis, Aleksandr Nogikh, Franjo Ivančić, Junfeng Yang, and
Baishakhi Ray. Kgym: A platform and dataset to benchmark large language models on linux
kernel crash resolution. Advances in Neural Information Processing Systems, 37:78053–78078,
2024.

R. et al. Mayrhofer. The android platform security model (2023), 2019. URL https://arxiv.
org/abs/1904.05572. Accessed: 2025-08-15.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

OpenAI. Gpt-4.1 model. https://platform.openai.com/docs/models/gpt-4.1,
April 2025. Accessed: 2025-09-23.

OpenAI. Gpt-5 system card. 2025. URL https://cdn.openai.com/
gpt-5-system-card.pdf.

Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation benchmark
for cross-lingual natural language generalization. arXiv preprint arXiv:2402.16694, 2024.

F-Droid Project. F-droid anti-features documentation. https://f-droid.org/docs/
Anti-Features/, 2025a. Accessed: 2025-08-15.

F-Droid Project. F-droid inclusion how-to. https://f-droid.org/en/docs/Inclusion_
How-To/, 2025b. Accessed: 2025-08-15.

Stypox / F-Droid Project. F-droid website overview. https://stypox.gitlab.io/
fdroid-website/en/docs/Anti-Features/, 2025c. Accessed: 2025-08-15.

Xingzhi Qian, Xinran Zheng, Yiling He, Shuo Yang, and Lorenzo Cavallaro. Lamd: Context-driven
android malware detection and classification with llms. In 2025 IEEE Security and Privacy
Workshops (SPW), pp. 126–136. IEEE, 2025.

Jielin Qiu, Zuxin Liu, Zhiwei Liu, Rithesh Murthy, Jianguo Zhang, Haolin Chen, Shiyu Wang, Ming
Zhu, Liangwei Yang, Juntao Tan, et al. Locobench: A benchmark for long-context large language
models in complex software engineering. arXiv preprint arXiv:2509.09614, 2025.

Tanmay Rajore, Nishanth Chandran, Sunayana Sitaram, Divya Gupta, Rahul Sharma, Kashish Mittal,
and Manohar Swaminathan. Truce: Private benchmarking to prevent contamination and improve
comparative evaluation of llms, 2024. URL https://arxiv.org/abs/2403.00393.

Dezhi Ran, Hao Wang, Zihe Song, Mengzhou Wu, Yuan Cao, Ying Zhang, Wei Yang, and Tao Xie.
Guardian: A runtime framework for llm-based ui exploration. In ISSTA, pp. 958–970, 2024.

Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi Wang, Xiaofei Ma, Murali Krishna Ra-
manathan, and Baishakhi Ray. Code-aware prompting: A study of coverage-guided test generation
in regression setting using llm. Proceedings of the ACM on Software Engineering, 1(FSE):951–971,
2024.

Justin Sahs and Latifur Khan. A machine learning approach to android malware detection. In 2012
European intelligence and security informatics conference, pp. 141–147. IEEE, 2012.

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of using large
language models for automated unit test generation. IEEE Transactions on Software Engineering,
50(1):85–105, 2023.

Technource. Google play store statistics: Facts and numbers you must know. https://www.
technource.com/blog/google-play-store-statistics/, June 2022. Accessed:
2025-08-15.

13

https://arxiv.org/abs/1904.05572
https://arxiv.org/abs/1904.05572
https://doi.org/10.48550/arXiv.2303.08774
https://platform.openai.com/docs/models/gpt-4.1
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://f-droid.org/docs/Anti-Features/
https://f-droid.org/docs/Anti-Features/
https://f-droid.org/en/docs/Inclusion_How-To/
https://f-droid.org/en/docs/Inclusion_How-To/
https://stypox.gitlab.io/fdroid-website/en/docs/Anti-Features/
https://stypox.gitlab.io/fdroid-website/en/docs/Anti-Features/
https://arxiv.org/abs/2403.00393
https://www.technource.com/blog/google-play-store-statistics/
https://www.technource.com/blog/google-play-store-statistics/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna Ramanathan,
Dan Roth, and Bing Xiang. Recode: Robustness evaluation of code generation models. In Anna
Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 13818–13843. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.ACL-LONG.773. URL https://doi.org/10.18653/v1/
2023.acl-long.773.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
free llm benchmark. arXiv preprint arXiv:2406.19314, 2024.

Chunqiu Steven Xia and Lingming Zhang. Automated program repair via conversation: Fixing
162 out of 337 bugs for $0.42 each using chatgpt. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 819–831, 2024.

Kai Xu, YiWei Mao, XinYi Guan, and ZiLong Feng. Web-bench: A llm code benchmark based on
web standards and frameworks, 2025. URL https://arxiv.org/abs/2505.07473.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang
Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative pre-
trained models. In Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering, pp. 1–12, 2024.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
Maoquan Wang, Yufan Huang, Shengyu Fu, et al. Swe-bench goes live! arXiv preprint
arXiv:2505.23419, 2025.

Qin Zhu, Qinyuan Cheng, Runyu Peng, Xiaonan Li, Ru Peng, Tengxiao Liu, Xipeng Qiu, and Xuan-
jing Huang. Inference-time decontamination: Reusing leaked benchmarks for large language model
evaluation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024, pp. 9113–9129, Miami, Florida, USA, Novem-
ber 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.532.
URL https://aclanthology.org/2024.findings-emnlp.532/.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. arXiv preprint arXiv:2406.15877,
2024.

14

https://doi.org/10.18653/v1/2023.acl-long.773
https://doi.org/10.18653/v1/2023.acl-long.773
https://arxiv.org/abs/2505.07473
https://aclanthology.org/2024.findings-emnlp.532/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A DETAILED DISCUSSION OF RELATED WORK

ML for Software Engineering. Machine learning, including large language models (LLMs), is
increasingly used to address real-world software engineering tasks due to their advantages over
traditional program analysis techniques. Typical use cases include automatic code generation (Chen
et al., 2021; Austin et al., 2021; Liu et al., 2023; Chen et al., 2024a), malware detection (Qian et al.,
2025; Sahs & Khan, 2012; Chen et al., 2020), test generation (Chen et al., 2024b; Ryan et al., 2024;
Schäfer et al., 2023), and program repair (Jimenez et al., 2024; Jin et al., 2023; Xia & Zhang, 2024;
Yang et al., 2024).

Most relevant to our APPFORGE are works that apply LLMs to automated code generation or code
completion (Chen et al., 2025; Wang et al., 2023; Athiwaratkun et al., 2023). However, existing code
generation datasets are largely limited to the function level (Chen et al., 2021; Austin et al., 2021; Liu
et al., 2023; Chen et al., 2025; Yu et al., 2024), and repository-level work focuses mainly on code
completion rather than generation from scratch (Liu et al., 2024; Bairi et al., 2024). Compared with
existing datasets, APPFORGE introduces a more realistic and challenging setting for evaluating the
capability of LLMs to perform software development from scratch. This setting better reflects real-
world development scenarios where models must synthesize coherent, functional, and maintainable
codebases instead of compleing the missing lines in an existing codebases.

Code Generation Benchmarks. Many benchmarks have been proposed to evaluate the code
generation capabilities of LLMs (Guan et al., 2025; Chen et al., 2024a; Yu et al., 2024; Jimenez
et al., 2024; Mathai et al., 2024). HumanEval and MBPP introduced human-crafted datasets focused
on synthesizing function-level code from natural language descriptions and have become standard
benchmarks (Chen et al., 2021; Austin et al., 2021). Building on this, HumanEval-XL (Peng et al.,
2024) extended HumanEval to support multilingual settings. Moreover, EvalPlus (Liu et al., 2023)
highlighted limitations in HumanEval and MBPP, particularly their limited test case coverage, and
proposed a more rigorous evaluation benchmark. BigCodeBench (Zhuo et al., 2024) introduced a
larger-scale benchmark designed to further evaluate LLMs’ code generation capabilities. Beyond
these function-level code generation benchmarks, recent repository-level benchmarks have also
been proposed. For example, SWE-Bench (Jimenez et al., 2024) focuses on evaluating LLMs’
patch generation ability at the repository level. Although effective, most benchmarks are static
and lag behind LLM advancements, prompting the emergence of dynamic benchmarks for up-to-
date, contamination-free evaluation. LiveCodeBench (Jain et al., 2024) collects newly released
programming completion problems from online coding platforms to minimize data contamination.
PPM (Chen et al., 2024a) and DyCodeEval (Chen et al., 2025) propose an automated method to
generate new benchmark data at the evaluation stage, mitigating potential data contamination. SWE-
Bench-Live (Zhang et al., 2025) follows the LiveCodeBench schema to collect new patches from
GitHub repositories, providing a continuous and realistic evaluation environment.

Compared to existing code generation benchmarks, APPFORGE operates at the repository level and
includes rigorous evaluation. It can be dynamically constructed by collecting latest projects from
F-Droid, preserving a much broader range of challenges rooted in real-world software develop-
ment—going beyond closed-form completion or patch generation.

Android Application Ecosystem. Android applications represent one of the most significant
software ecosystems globally, with over 2.6 million applications available on Google Play Store and
millions more distributed through alternative channels (Technource, 2022). In Android ecosystems, F-
Droid (2025c) is the leading open-source repository, serving millions of users worldwide. Its rigorous
review process and anti-feature labeling ensure high-quality software that often exemplifies Android
development best practices. The repository spans diverse categories—productivity, multimedia,
utilities, games, and specialized professional tools—many maintained by experienced developers and
organizations (2025a; 2025b; 2025).

Android apps, typically built with Java or Kotlin following Material Design and Android architecture
guidelines, comprise multiple interconnected components such as Activities, Fragments, XML layouts,
and manifest configurations (2025a). Developing robust apps demands expertise across UI design,
background services, data persistence, networking, device optimization, and security (Mayrhofer,
2019; Developers, 2025b; GeeksforGeeks, 2025; Developers, 2025c). Given the prevalence and

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

complexity of the Android ecosystem, developing Android applications automatically provides
significant commercial and practical impact. APPFORGE, filling a critical gap, provides the first
benchmark for assessing LLM capabilities in Android development.

B DETAILS OF APPFORGE

B.1 TASK INSTANCES

Model Input

Instruction
You are an autonomous programmer tasked with modifying an Android
application.

App Overview
An app that functions as a basic calculator, allowing users to perform
various arithmetic operations including addition, subtraction,
multiplication, division, square root, and power.

Functionalities
feature 1: Perform basic arithmetic operations.
sub-feature 1-1: Add two numbers. When the user clicks on the button
with the text "1” "48” should be displayed in the result area,
identified by the resource-id "result".
sub-feature 1-2:
feature 2: Perform advanced arithmetic operations.
sub-feature 2-1: Calculate the square root of a number and the
exponentiation of a number.

Implementation Constraints
- Your code will be compiled with Gradle7.5.1 and run on
Nexus_4_API_31.
- Please return a json string of files to be revised and the revised code in
following format:

Expected Model Output
{

‘app/src/main/AndroidManifest.xml‘:,
‘app/src/main/java/com/example/calculator/MainActivity.java’:、

 ,

}

Evaluation Suite

APK
Compiling

Produced
APK

Functional
Testing

Fuzz
Testing

Predefined Test Cases
[

{“type”: “click”, ”target”: {“text”: “1”}},
{“type”: “click”, “target”: {”text”: “+”}},
.,
{“type”: “visible”,
“target”: {“resource-id”: “result”, “text”: “48”}}

]

.

.

.

Functional Testing Log Fuzz Testing Log
FAILED calculator testcase 1: invisible
element identified by {"resource-id":
"result", "text": "48"}
PASSED calculator testcase 2

=== FUZZING COMPLETED ===
Total Duration: 600 seconds
Total Cycles: 18
Total Crashes: 5

Figure 11: Example of Task Instance.

B.2 STATISTICS OF SEED APPS.

Table 5: Statistics of Seed Apps used for Constructing APPFORGE.

LoC # Acts # Files
Range 194–53K 1–21 2–508
Avg. 6367.2 3.7 44.0
Median 4530 3 26

B.3 EVALUATION METRIC CALCULATION

We employ four primary metrics that directly correspond to the three evaluation stages to comprehen-
sively assess the quality and functionality of generated Android code.

The compilation rate (Eq. 1) measures the percentage of generated code that successfully compiles
into valid APKs without syntax or dependency errors during the compilation stage, indicating the
basic correctness and completeness of the generated code structure. Here, Ncompiled denotes the
number of successfully compiled cases and Ntotal denotes the total number of tasks.

The test pass rate (Eq. 2) evaluates, using macro averaging, the mean percentage of predefined test
cases that pass across all compiled applications during the testing stage. This metric reflects how
well the generated code implements the specified functionalities and meets behavioral requirements.
For each compiled application i, t(i)passed denotes the number of passed test cases, and t

(i)
total denotes the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

total number of test cases for that application. The macro average is computed by taking the mean of
per-application pass rates over all Ncompiled compiled applications.

The crash rate (Eq. 3) quantifies the percentage of compiled applications that crash or terminate
unexpectedly during the fuzz testing stage, assessing the robustness and stability of the generated
code under various stress scenarios. Here, Ncrashed_apps denotes the number of compiled applications
that experienced crashes during fuzz testing, and Ncompiled denotes the total number of compiled
applications.

Additionally, the functional success rate (Eq. 4) measures the percentage of tasks that achieve
both successful compilation and complete test suite passage, representing the overall functional
correctness of the generated applications regardless of their robustness under stress testing. Here,
Ncompiled_and_tests_passed denotes the number of tasks meeting both criteria.

The pipeline captures detailed logs and execution traces throughout all three stages, enabling precise
computation of these metrics and comprehensive result reporting for large-scale benchmarking
experiments.

Compilation Rate =
Ncompiled

Ntotal
× 100% (1)

Test Pass Rate =
1

Ncompiled

Ncompiled∑
i=1

(
t
(i)
passed

t
(i)
total

)
× 100% (2)

Crash Rate =
Ncrashed_apps

Ncompiled
× 100% (3)

Functional Success Rate =
Ncompiled_and_tests_passed

Ntotal
× 100% (4)

B.4 IMPLEMENTATION DETAILS OF APPFORGE

To ensure consistent and reproducible evaluation across different systems, we establish a standardized
execution environment that supports the entire evaluation workflow described above. The environment
consists of two main components that work together to enable seamless automated evaluation.
First, we utilize the official Android Emulator with API level 31 (Android 12) running on x86_64
architecture for APK installation and testing. This emulator configuration is packaged into a Docker
container that guarantees seamless deployment on Ubuntu systems without requiring any additional
manual configuration. The containerized approach eliminates environment-specific issues and ensures
that all evaluations are conducted under identical conditions, enabling reliable APK execution and
test case validation. Second, we configure a standardized Gradle build environment within the
same container to handle the automated compilation process. This includes pre-installed Android
SDK components, build tools, and dependency management configurations that are commonly used
in Android development. The Gradle setup is optimized for automated compilation of generated
code files into APKs, with appropriate timeout settings and resource allocation to handle various
code complexity levels. The build environment is configured to provide detailed compilation error
messages when needed, supporting the iterative refinement workflow for models that can benefit from
error feedback.

B.5 RANKING CRITERIA OF APPS IN F-DROID

The ranking of F-Droid apps follows a sequential process that begins with filtering the dataset to
retain only actively maintained and popular applications, requiring at least 50 GitHub stars, 10
forks, non-archived status, an update date no earlier than 2022, and primary implementation in
Java or Kotlin. For each app that passes the filter, an LLM assigns integer scores from 1 to 5 for
four evaluation aspects: maintainability, which measures how easy the source code is to understand
and modify; reproducibility, which reflects the ability to produce consistent results under stable
conditions; generality, which indicates how broadly the app can operate across different devices and
configurations; and evaluation efficiency, which assesses the speed and resource requirements of
building and testing the app. The average of these four scores forms the quality rating. The difficulty

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

ranking is then determined by combining the LLM-generated complexity score with the number of
activities in the app and the total code size in bytes. Based on these combined criteria, the ranking
process selects the top 40 apps within each difficulty level, resulting in a final list of 200 top-ranked
apps that are representative, maintainable, reproducible, and diverse in technical challenge, ensuring
a comprehensive benchmark for assessing the Android development capabilities of LLMs.

B.6 PROMPT EXAMPLES

1 You are an autonomous programmer and you are modifying a default
Android app template with empty activity.

2 Your code will be compiled with Gradle7.5.1 and run on
Nexus_4_API_31.

3 The default Android app template "File Structure" is shown below.
You can replace or add some files in the templates to
implement the app.

4 "File Structure":
5 |-- app
6 | |-- build.gradle
7 | --- src
8 | |-- main
9 | | |-- AndroidManifest.xml

10 ...
11

12 Your app should implement every feature in "App Features", and we’
ll test on each of the features. Note that you should pay
attention to the resource-id, content-desc, texts and other
attributes we provide with corresponding widgets in "App
Features" and exactly match the attributes when implementing
the widgets.

13 "App Features":
14 description: An Android app for quickly sharing your current

location.
15 feature 1: Share your location via ...
16 ...
17

18 Please return a json string and only a json string of files to be
revised and the revised code in following format:

19 {
20 "app/src/main/AndroidManifest.xml":...,
21 ...
22 }

C DETAILED EXPERIMENT RESULTS

C.1 SETUP

All LLMs use identical task prompts provided by APPFORGE as well as the same hyperparameter
settings (with the temperature set to 0.2 using greedy decoding (Brown et al., 2020)).

C.2 DETAILED STATISTICS

C.3 FULL EXAMPLE OF DEFENSIVE PROGRAMMING BY GPT-5.

Listing 1: Case study showing proactive defensive programming implementation by GPT-5 in
the Autostarts app, including robust null-safety checks, multi-level fallback strategies for system
navigation, and guarded UI state transitions beyond basic requirements.
1 // --- Null-safety on user input (avoid NPE) ---

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Compilation results of LLMs.

Model Compile
Success

Package Name
not Found

Android Resource
Linking Failed

Resource
Compilation Failed

Wrong JSON
Format

Uses / Overrides
Deprecated API

Cannot Find
Symbol

Exported Flag
Missing

Requires
CompileSdkVersion

Compilation Timeout
or Unstable Others

Pass@1

Claude-4-Sonnet 41.0 8.0 34.0 1.0 0.0 0.5 2.0 4.0 5.0 0.0 5.5
Claude-5-Opus 81.0 0.0 4.0 2.0 0.0 2.92 5.17 0.0 1.0 1.0 3.92
Gemini-2.5-Pro 54.0 0.0 14.0 0.1 4.0 0.67 5.83 0.0 6.9 7.0 8.5
GPT-4.1 7.0 0.0 6.0 7.33 0.0 0.06 3.94 72.67 0.0 0.0 4.0
GPT-5-High 46.0 0.0 7.0 1.63 4.0 3.5 6.5 11.67 18.71 0.0 2.0
Qwen3-Coder 28.0 0.0 52.0 1.0 4.0 0.0 7.0 4.0 0.0 0.0 5.0
GLM-4.5 25.0 4.0 31.0 6.11 3.0 3.48 13.63 2.0 1.89 1.0 9.89
DeepSeek-R1 15.0 4.0 62.0 2.09 2.0 0.83 3.17 5.0 0.0 0.0 6.91
DeepSeek-V3 6.0 27.0 28.0 1.0 35.0 0.0 0.0 1.0 0.0 0.0 3.0
Kimi K2 17.0 5.0 36.0 4.67 2.0 0.93 8.07 10.33 9.0 0.0 8.0

with Compilation Error Feedback

Claude-4-Sonnet 78.0 1.0 17.0 0.0 0.0 0.44 2.56 0.0 0.0 0.0 2.0
Claude-5-Opus 91.0 0.0 2.0 1.0 0.0 0.24 5.76 0.0 0.0 1.0 0.0
Gemini-2.5-Pro 69.0 0.0 8.0 0.0 0.0 0.42 8.58 0.0 2.0 5.0 8.0
GPT-4.1 75.0 0.0 13.0 1.93 0.0 0.3 6.7 4.07 0.0 0.0 0.0
GPT-5-High 83.0 0.0 6.0 2.0 0.0 0.0 4.0 5.0 0.9 0.0 0.1
Qwen3-Coder 86.0 0.0 7.0 0.0 0.0 0.58 3.5 0.0 0.0 1.0 2.92
GLM-4.5 45.0 3.0 29.0 3.0 2.0 0.32 9.68 0.0 1.0 2.0 6.0
DeepSeek-R1 45.0 9.0 25.0 1.0 0.0 1.63 12.37 2.0 1.0 0.0 4.0
DeepSeek-V3 27.0 8.0 26.0 2.0 31.0 0.24 1.0 3.0 0.0 0.0 2.76
Kimi K2 42.0 2.0 22.0 2.0 2.0 0.43 12.57 3.0 8.0 0.0 7.0

Table 7: Application Runtime Error Statistics

Model Pass@1 with Compilation Error Feedback
ANR Native Crash Failed Start ANR Native Crash Failed Start

Kimi K2 0.0 11.0 3.0 1.0 13.0 18.0
DeepSeek-V3 0.0 4.0 2.0 0.0 11.0 4.0
Qwen3-Coder 0.0 19.0 4.0 0.0 16.0 9.0
GLM-4.5 0.0 15.0 5.0 0.0 27.0 15.0
DeepSeek-R1 0.0 8.0 4.0 1.0 25.0 6.0
GPT-4.1 0.0 0.0 2.0 0.0 11.0 66.0
Claude-5-Opus 0.0 48.0 9.0 0.0 48.0 11.0
GPT-5-High 1.0 21.0 5.0 0.0 0.0 25.0
Gemini-2.5-Pro 0.0 25.0 14.0 0.0 37.0 21.0
Claude-4-Sonnet 0.0 21.0 10.0 0.0 0.0 20.0

2 private void filterList(String query) {
3 String q = (query == null) ? "" : query.trim().toLowerCase(Locale.ROOT); // defensive
4 for (AppEntry e : appEntries) {
5 boolean match = q.isEmpty() || e.title.toLowerCase(Locale.ROOT).contains(q);
6 e.row.setVisibility(match ? View.VISIBLE : View.GONE);
7 }
8 }
9

10 // --- UI state guard: close search safely and reset filters ---
11 private void closeSearchIfOpen() {
12 if (searchContainer.getVisibility() == View.VISIBLE) { // defensive visibility check
13 searchContainer.setVisibility(View.GONE);
14 searchInput.setText(""); // reset state
15 filterList(""); // restore full list
16 }
17 }
18
19 @Override
20 public void onBackPressed() {
21 if (searchContainer != null && searchContainer.getVisibility() == View.VISIBLE) { // guard
22 closeSearchIfOpen(); // consume back to close search instead of leaving activity
23 return;
24 }
25 super.onBackPressed();
26 }
27
28 // --- Best-effort navigation with graceful degradation ---
29 private void openAppInfo(String packageName) {
30 try {
31 Intent it = new Intent(Settings.ACTION_APPLICATION_DETAILS_SETTINGS);
32 it.setData(Uri.parse("package:" + packageName));
33 it.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
34 startActivity(it);
35 } catch (ActivityNotFoundException e) { // device/ROM mismatch fallback
36 try {
37 Intent fallback = new Intent(Settings.ACTION_APPLICATION_DETAILS_SETTINGS);
38 fallback.setData(Uri.parse("package:" + getPackageName())); // fallback to self

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

39 startActivity(fallback);
40 } catch (Exception ex) { // last resort: user-visible error
41 Toast.makeText(this, "Unable to open Application Info", Toast.LENGTH_SHORT).show();
42 }
43 }
44 }
45
46 // --- Defensive null-check on optional view ---
47 private void showMenuForGoogleDuring() {
48 new AlertDialog.Builder(this)
49 .setTitle("Google")
50 .setItems(new CharSequence[]{"Disable", "Application Info"}, (d, which) -> {
51 if (which == 0) {
52 if (statusGoogleDuring != null) { // view presence not guaranteed across

layouts
53 statusGoogleDuring.setVisibility(View.VISIBLE);
54 }
55 Toast.makeText(this, "Google autostart disabled for During Startup", Toast.

LENGTH_SHORT).show();
56 } else if (which == 1) {
57 openAppInfo("com.google.android.googlequicksearchbox");
58 }
59 })
60 .show();
61 }

20

	Introduction
	Background & Related Work
	AppForge
	Android App Development Task Formulation
	Construction of AppForge
	Benchmark Suite and Data Statistics
	Key Features of AppForge

	Evaluations
	Evaluation Setup
	Main Results
	Performance of Advanced Coding Agents and Reasoning Models
	Analysis of Development Challenges

	Conclusion
	Detailed Discussion of Related Work
	Details of AppForge
	Task Instances
	Statistics of Seed Apps.
	Evaluation Metric Calculation
	Implementation details of AppForge
	Ranking Criteria of Apps in F-Droid
	Prompt Examples

	Detailed Experiment Results
	Setup
	Detailed Statistics
	Full Example of Defensive Programming by GPT-5.

