Under review as a conference paper at ICLR 2026

FROM ASSISTANT TO INDEPENDENT DEVELOPER —
ARE GPTS READY FOR SOFTWARE DEVELOPMENT?

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable capability in
function-level code generation tasks. Unlike isolated functions, real-world ap-
plications demand reasoning over the entire software system: developers must
orchestrate how different components interact, maintain consistency across states
over time, and ensure the application behaves correctly within the lifecycle and
framework constraints. Yet, no existing benchmark adequately evaluates whether
LLMs can bridge this gap and construct entire software systems from scratch.

To address this gap, we propose APPFORGE, a benchmark consisting of 101 soft-
ware development problems drawn from real-world Android apps. Given a natural
language specification detailing the app functionality, a language model is tasked
with implementing the functionality into an Android app from scratch. Devel-
oping an Android app from scratch requires understanding and coordinating app
states, lifecycle management, and asynchronous operations, calling for LLMs to
generate context-aware, robust, and maintainable code. To construct APPFORGE,
we design a multi-agent system to automatically summarize the main functionali-
ties from app documents and navigate the app to synthesize test cases validating the
functional correctness of app implementation. Following rigorous manual verifica-
tion by Android development experts, APPFORGE incorporates the test cases within
an automated evaluation framework that enables reproducible assessment without
human intervention, making it easily adoptable for future research. Our evaluation
on 12 flagship LLMs show that all evaluated models achieve low effectiveness, with
the best-performing model (GPT-5) developing only 18.8% functionally correct
applications, highlighting fundamental limitations in current models’ ability to
handle complex, multi-component software engineering challenges.

1 INTRODUCTION

Large language models (LLMs) are reshaping the horizon of software engineering. Frontier code
LLMs (OpenAll 2023)) are deeply integrated into developer’s toolchains like GitHub Copilot (GitHubl
2025), Amazon CodeWhisperer (Amazon Web Services| 2025), and Claude Code (Anthropic} 2025)).
They are advancing from coding assistants to fully autonomous software developers (Yang et al.,
2024), which hold significant potential to shape the next generation of software engineering.

Although existing benchmarks have advanced the evaluation of code LLMs, they primarily focus
on generating isolated snippets or functions, which differs fundamentally from the system-level
reasoning and integration required to build a complete application. As a result, they cannot determine
whether current models are capable of end-to-end software development in real-world scenarios.
For instance, HumanEval focuses on self-contained, toy-level, function-level code generation (Chen
et al.| 2021} [Austin et al, 2021)), while SWE-Bench targets program repair tasks within an existing
codebase, requiring only minor modifications to a few lines of code in the target repository (Jimenez
et al.,|2024). None of the existing benchmarks effectively assess the end-to-end software development
capabilities of LLMs in the role of an independent software developer (Liu et al.,|2023} Jain et al.|
2024; White et al., 20245 Zhu et al.| 2024; Rajore et al., | 2024)). To address the limitations of current
benchmarks and evaluate whether LLMs can truly function as software engineers in real-world
development scenarios, we argue for the creation of a new benchmark that goes beyond narrow tasks
and instead captures the full spectrum of software development.

Under review as a conference paper at ICLR 2026

Building such a benchmark is necessary because (1) it provides a comprehensive and realistic evalua-
tion of LLMs’ ability to perform software development tasks end-to-end, (2) bridging the gap between
isolated code generation and real-world engineering and (3) providing insight how to leverage LLMs
for the next generation software engineering. However, there are several challenges in building such
a benchmark: @ Reflecting the Real-World Software Development Process: The benchmark should
be realistic and faithfully represent the complexities and workflows of actual software development.
@ Ensuring Sufficient Challenge and Diversity: The benchmark should be sufficiently challenging to
differentiate model capabilities, covering diverse tasks such as design, implementation, debugging,
and maintenance. ® Measuring End-to-End Development Performance: The benchmark should
capture not only code correctness but also factors like code quality, maintainability, and integration
within larger systems.

To address these challenges, we propose Android application (app) development as our benchmark
domain, motivated by three key factors. First, Android represents one of the most significant software
ecosystems globally, with over 2.6 million apps available (Technource} |2022), making it highly
representative of real-world software development. Android development naturally involves creating
complete projects with specific functional requirements, effectively capturing authentic development
workflows. Second, developing Android apps from scratch provides inherent complexity through
backend logic implementation, state management, UI design, and external API integration, ensuring
sufficient difficulty and diversity for comprehensive evaluation. Third, the mature ecosystem of An-
droid development tools, including static analyzers, testing frameworks, and emulation environments,
enables rigorous automated assessment of various development aspects (Developers},2025afbc).

Building on this intuition, we propose APPFORGE, the first benchmark for evaluating code LLMs
specifically in Android app development. As illustrated in Figure[2} LLMs are tasked with generating
complete Android apps from scratch based on natural language specifications. Once the code files are
generated, APPFORGE automatically handles compilation into APK files, deployment on Android
emulators, and comprehensive functionality validation against automated test case execution and
systematic fuzzing. To ease the use of APPFORGE, the evaluation of APPFORGE is fully automated
and encapsulated with a standalone docker for out-of-the-box usage.

To construct APPFORGE with scalability and rigor, we first collect real-world Android apps from
F-Droid [2025¢| a well-curated repository of open-source Android apps that provides real-world
and actively maintained projects. Next, we leverage LLMs to automatically extract and summarize
functionality specifications from each app’s documentation and source code. Subsequently, we
leverage a GUI agent (Ran et al.| 2024) to interact with the app, capturing its runtime behavior to
validate and enrich the specification description to avoid task ambiguity. Finally, we engage Android
development experts to verify the correctness of both specifications and synthesized test cases. This
combination of automated processing and expert validation ensures both scalability and reliability in
benchmark construction.

We evaluate 12 flagship LLMs (OpenAlL [2023}|Guo et al.| 2024} |Di et al.| 2024; Jiang et al., [2024;
Li et al.,[2022) including GPT-5 (OpenAll 2025) and Claude-4-Opus (Anthropic, |[2025) as well as
popular coding agents including Claude Code (Anthropic, [2025) on APPFORGE, revealing three
key findings. First, all models achieve remarkably low performance with less than 20% of apps
being functionally correct, and among these correct apps, half still encounter at least one crash
(detailed in Table[T). This contrasts sharply with saturated existing benchmarks (Chen et al., 2021},
Jain et al., [2024; White et al.| 2024), indicating a significant gap between current LLM capabilities
and real-world development tasks, and that APPFORGE represents the next frontier of software
engineering challenges. Second, we uncover that some LLMs evade app development tasks by
sacrificing functionality integrity for compilation success. When given opportunities to improve their
previous generations with compilation errors, GPT-4.1 (OpenAl, 2025)) and Kimi-K2 (Kimi Team,
2025) delete the implementation of error-inducing functions instead of fixing them as illustrated in
Figure 8] indicating an avoidance strategy that sidesteps error handling instead of demonstrating true
debugging competence. Specifically, GPT-4.1 evades development in 91.09% of tasks, while Kimi K2
does so in 65.36% of tasks. Finally, for simple tasks like calculator implementation (Figure[6), LLMs
demonstrate promising performance, producing robust apps that surpass typical human-written code
quality as illustrated in Figure[7} suggesting significant potential when complexity is appropriately
managed for future software development.

‘We summarize our main contribution as follows:

Under review as a conference paper at ICLR 2026

* New real-world problem : We introduce end-to-end Android app development from scratch
as a comprehensive evaluation task for LLMs’ software engineering capabilities.

e New Benchmark: We construct APPFORGE, a benchmark with 101 diverse Android devel-
opment tasks and fully automated evaluation suites.

* Evaluation Results: We evaluate 12 flagship LLMs and analyze their limited performance
and failure patterns in real-world software engineering scenarios.

2 BACKGROUND & RELATED WORK

Code large language models (LLMs) have been advancing rapidly, where frontier code LLMs
such as GPT5 (OpenAl, [2025)), Claude-Opus (Anthropicl 2025), Gemini-Pro (Google, |2025), and
Qwen3-Coder (Yang et al.,[2025) have reshaped the paradigm of software development. As software
ecosystems such as Cursor (Cursor, [2025) and GitHub Copilot (GitHub), 2025) continue to mature,
the application scenarios of code LLMs expand beyond code generation and completion to encompass
debugging, test generation, and even autonomous software development.

In contrast to the wide application scenarios of code LLMs,

benchmarks that evaluate code LLMs still largely focus Implementation Scope

on (1) function-level code generation and completion, Full Development From Scratch

such as HumanEval (Chen et al., 2021), MBPP (Austin —

et all 2021), and BigCodeBench (Zhuo et all 2024); £ T oo

and (2) patch generation and feature implementation with s _
repository-level context, such as SWE-Bench (Jimenez § oo oo e
et all [2024), Web-bench Xu et al] (2025) and Lo- [Humantvat | | [swe-pencn |
CoBench (Qiu et al} 2025). Some efforts transform static g werp | [“evaipius | | [swa-Bench |
benchmarks into dynamic ones to combat data contami- © [codexctUe | |[web-sench |

nation, such as SWE-Bench-Live (Zhang et al.|[2025)) and
LiveCodeBench (Jain et al.| 2024). As shown in Figure|[I]
APPFORGE goes beyond function-level code generation Figure 1: Our Work Compared with Ex-
and patch generation. Compared to existing benchmarks, isting Code Generation Benchmarks.
APPFORGE evaluates code LLM’s capability to perform

automated software development from scratch at the

repository level. It incorporates rigorous evaluation empowered by automated test cases and system-
atic fuzzing.

Partial Completion

APPFORGE is the first benchmark for assessing LLM capabilities in Android development to our
knowledge. Android apps are typically built with Java or Kotlin following Material Design and
Android architecture guidelines, comprise multiple interconnected components (2025a)). Android
apps represent one of the most significant software ecosystems globally with over 2.6 million
applications available (Technource| [2022)), so we believe that Android development is an ideal
code LLM evaluation scenario that largely reflects the real-world software development process. F-
Droid (2025c) is the leading open-source Android app repository, serving millions of users worldwide.
F-Droid apps span diverse categories and their code undergo rigorous review process. APPFORGE is
constructed from a diverse set of high-quality F-Droid apps, and can be dynamically expanded using
latest projects from F-Droid. We defer a more in-depth discussion of related work in Appendix [A]

3 APPFORGE

APPFORGE is a benchmark designed to evaluate LLMs’ capabilities across the full software develop-
ment lifecycle for Android applications, using real-world apps such as Amaze File Manager (F-Droid|
2025a), Arcticons (F-Droid, 2025b), and Vanilla Music (F-Droid, 2025c)). Given the natural language
description of an Android application, the task is to generate the corresponding code implementation
that not only faithfully realizes the described functionality and passes the associated tests, but also
executes securely within the Android operating system.

https://benchmark-project-website.github.io/

Under review as a conference paper at ICLR 2026

= Generat Pas, Yes 8o8aa

T enerate </> go6 Each .. Extract E_q Produce
as ‘D————+ =
cag /
8880 »

iNo Produce
LLN;AAgeth App Code i APK F-Droid Cgésll({;; o FS:::;::;&I::IV Nav:gate [merr‘?ccc[:on
T 1 l Top 200 Apps
"""""" I._________
-‘-5 ™
El s | R - I I =
= —
Crashmg Fuzzmg Testing Install on Expert Ttst Case
Scores Device Validation Specnﬁcatmn Scripts
Figure 2: Workflow of APPFORGE. Figure 3: Construction of APPFORGE.

3.1 ANDROID APP DEVELOPMENT TASK FORMULATION

Each task in APPFORGE includes three main fields: model input, model output, and the evaluation
suite. An example of task instance is provided in Appendix

Model Input: The model input is a natural language description that consists of three components:
(1) a high-level overview of the app’s functionality along with detailed descriptions of the features
corresponding to each functionality, (2) natural language test cases that specify how these functionali-
ties should be implemented and validated, and (3) implementation constraints such as API version
requirements and expected output format specifications. Within the detailed feature descriptions, we
also provide the specific resource IDs required for implementation. This design streamlining the
overall evaluation process.

Expected Model Output: When prompting the LLM for app generation, the model is required to
produce output in JSON format, where each key represents a filename and each value contains the
corresponding code. This design enables automated project assembly and evaluation.

Evaluation Suite: APPFORGE includes an automated evaluation pipeline consisting of three com-
ponents: (1) an automatic compiler suite that parses the generated outputs, assembles them into an
Android project, and compiles the project into an Android Package (APK); (2) a testing module
that installs the APK onto an Android emulator and executes predefined test cases to validate func-
tional correctness; and (3) a lightweight fuzzer that evaluates the robustness and exception-handling
capabilities of the application under various edge cases and unexpected inputs. The evaluation
reports four metrics: (1) compilation success rate, (2) test pass rate, (3) crash rate, and (4) an overall
performance score (detailed in Appendix [B.3) representing the model’s effectiveness on the given
Android development benchmark (More implementation details could be found in Appendix [B.4).

3.2 CONSTRUCTION OF APPFORGE

We construct our benchmark from real-world Android apps collected from F-Droid. Although each
app on F-Droid comes with detailed documentation and README files, these resources are too large
and unstructured to be directly used as prompts for benchmarking LL.Ms. To address this limitation,
we need to regenerate the task, Specifically, we follow the pipeline below: (1) Seed App selection:
We choose apps based on diversity, complexity, and popularity. (2) UI navigation and trace recording:
We use a Ul navigator tool to explore the selected apps and record the navigation traces along with
each Ul element’s ID. This step provides detailed interaction data, enabling automatic evaluation.
Since our Ul navigation is a dynamic process, even the same app can produce different traces. This
dynamic mechanism allows us to generate diverse tasks from the same app, reducing the risk of
data contamination. (3) Trace summarization: We combine the app documentation and navigation
traces, such as the element ID, then use an LLM to summarize each trace into natural language
descriptions. (4) Human validation: Finally, we perform human validation to ensure the generated
tasks are accurate and meaningful.

App Selection and Scraping. We begin by ranking apps based on a combination of popularity,
complexity, diversity, and update frequency; detailed criteria are in Appendix From this ranking,
we select the top 200 highest-scoring apps across different categories as seed apps for subsequent
task creation, ensuring balanced coverage of Android development domains. For each selected app,
we analyze its code repository to extract metadata, including descriptions from README files and

Under review as a conference paper at ICLR 2026

release notes. We then summarize the app’s core functionalities in natural language using a JSON
format. These functionality descriptions are intentionally high-level and may be ambiguous.

Automatic App Navigation. We use an existing tool, ULAutomator (Android Developers| [2025)), to
install each seed app in an Android emulator and systematically record interaction traces. For every
high-level functionality description, a Ul navigator performs goal-based navigation (Ran et al.| [2024)
starting from the app’s main screen. Guided by the functionality description, the agent identifies and
interacts with relevant UI elements while maintaining a detailed log of the process. At each step, it
captures the full Ul tree using UTAutomator, including element properties such as text, resource-id,
class, and bounds. The agent also documents the sequence of Ul actions (e.g., clicks, text inputs,
swipes), the target elements, and the reasoning behind each action, along with the resulting screen
transitions and state changes. Once the target functionality is accomplished (e.g., logging in or
sending a message), the agent records the complete interaction trace. This goal-directed approach
produces precise traces that capture the most natural paths for implementing each functionality.

Task Generation For Trace History. We then utilize a LLM to synthesizes precise task descriptions
and test suites based on the captured interaction traces. First, the task refinement agent transforms
each interaction trace into a test case. Each test case consists of a sequence of Ul actions and an oracle
specifying the expected outcome of executing the action sequence. Each UI action is associated
with a Ul element containing clear text or resource-id labels. For Ul elements in seed apps that lack
meaningful labels, the refinement agent generates context-appropriate resource-ids to avoid ambiguity.
Each oracle is an assertion determining whether a UI element exists or does not exist. The test case is
implemented as a Python script using the UIAutomator framework, enabling automated evaluation.
Based on the synthesized test suites, the task refinement agent generates a task description detailing
the core functionalities and their implementation. For each test script, the agent produces natural
language descriptions that specify the sequence of Ul interactions (e.g., “click the button with login
resource-id”, “enter text in the username field”) and the expected app states after these operations.
This approach eliminates ambiguity by providing precise, actionable specifications that ensure any
LLM or human developer interpreting the task description will implement functionally equivalent
apps that satisfy the same behavioral requirements.

Android Developer Validation. To ensure quality control, five expert Android developers with a
combined 30 years of experience reviewed all tasks for technical accuracy, feasibility, and alignment
with real-world practices. The validation process included checking task clarity and completeness,
verifying non-trivial and unambiguous requirements, ensuring coverage of essential concepts across
difficulty levels, and confirming the soundness of examples and constraints. Experts also validated
test cases by examining expected outputs and the accuracy of automated testing. Each task underwent
multiple review rounds until consensus was reached, yielding high-quality benchmarks that reflect
authentic Android development challenges.

3.3 BENCHMARK SUITE AND DATA STATISTICS

We collect 101 high-quality Android development tasks,

each representing the development of a complete Android Money oo
application. The task distribution reflects real-world Android Htimedts
development patterns and emphasizes comprehensive appli-
cation diversity: Ul/Layout focused apps comprise 40%,
covering complex view hierarchies, custom components, """
and responsive design; Backend Integration apps account
for 32%, including API consumption, data persistence, and
background services; User Interaction apps represent 94%,
focusing on gesture handling, input validation, and navi- Theming

gation flows; and System Integration apps make up 63%,

encompassing permissions, hardware access, and inter-app

communication. Task complexity spans three difficulty lev- Figure 4: Distribution of Category.
els based on implementation requirements: Beginner (37%,

focusing on single-activity apps with basic Android concepts), Intermediate (48%, requiring multi-
component integration and moderate architectural complexity), and Advanced (15%, involving
sophisticated architectural patterns, performance optimization, and complex system interactions).

Navigation

Phone & SMS

Under review as a conference paper at ICLR 2026

The diversity in app categories and complexity levels ensures that APPFORGE captures the full
spectrum of Android development scenarios in real-world practice.

3.4 KEY FEATURES OF APPFORGE

Traditional code generation benchmarks often focus on toy function-level tasks or partial repository
generation, where much of the context is pre-defined and evaluation is limited to functionality—an
approach shown to be insufficiently rigorous in prior work. In contrast, APPFORGE draws on real-
world Android applications from F-Droid, offering authentic, end-to-end development tasks that more
faithfully capture practical software engineering challenges. Here, we describe some key features:

Real-world Software Development Tasks. Since each task in APPFORGE is sourced from F-Droid
and represents a real-world Android application that may have been installed on millions of devices
worldwide, solving APPFORGE requires LLMs to demonstrate sophisticated skills and knowledge
in full-stack Android development, including UI design, API integration, state management, and
security considerations—capabilities rarely evaluated in traditional code generation benchmarks.

Diverse Task Categories. As shown in Figure 4| APPFORGE includes a diverse range of apps.
Each instance of APPFORGE belongs to a unique category, making it significantly more diverse than
existing benchmarks (e.g., SWE-Bench includes only 12 different repositories from Python (Jimenez
et al.| 2024} and concurrent work LoCoBench covers only 3 mobile app categories (Qiu et al.,|[2025)).

Software-level Code Generation. This task challenges LLMs to generate coherent, end-to-end
Android application code while understanding the semantics of APIs across different versions of the
Android framework and third-party libraries. Unlike function-level tasks, software-level generation
requires reasoning about how components interact, handling version-specific behavior, and integrating
multiple modules correctly. By requiring models to adapt to evolving APIs and manage compatibility,
this task evaluates a deeper level of software engineering capability, beyond simple functionality,
ensuring that generated applications are both correct and maintainable.

Rigorous Functionality & Reliability Evaluation. Considering the fact that every software may
contain some bug or defect, our benchmark includes both functionality and reliability evaluations.
Our experiments demonstrate that incorporating reliability is essential, as it can uncover hidden
crashes that would be missed by functionality testing alone.

Wide Solution Space. The task of full-application code generation in APPFORGE provides a level
playing field for evaluating approaches ranging from standard models to autonomous agents capable
of reasoning and acting across an entire Android project. APPFORGE also encourages creative
solutions, allowing models to produce implementations that may diverge from reference apps while
still meeting functional, and security requirements.

4 EVALUATIONS

4.1 EVALUATION SETUP

We conduct comprehensive experiments on APPFORGE with 12 state-of-the-art LLMs, including 7
proprietary models (Claude-5-Opus, Claude-4-Sonnet(Anthropic, [2025), Gemini-2.5-Pro (Googlel
2025), GPT4.1 (OpenAl, 2025), GPT-5-Low, GPT-5-Medium, and GPT-5-High (OpenAl, [2025))
and 5 open-source models (DeepSeek-R1, DeepSeek-V3 (Guo et al.,|2024), GLM-4.5 (Zhuo et al.,
2024), Kimi K2 (Kimi Team) 2025)), and Qwen3-Coder (Yang et al., 2025))), along with two coding
agents (mini-SWE-agent (Yang et al., 2024} and Claude Code (Anthropic, [2025)) to evaluate the
cutting-edge progress in fully automated software engineering. Details are provided in Appendix [C]

4.2 MAIN RESULTS

All models struggle on APPFORGE. As shown in Table|[l} all models achieve low performance on
APPFORGE, with the best-performing flagship model GPT-5 with high reasoning mode achieving
only 14.85% success rate (developing 14.85% of apps passing all test cases). When given chances to
repair compilation errors in their previous development, the improvement is still marginal, with GPT-5
achieving only 18.81% success rate. Open-source models perform considerably worse, all achieving

Under review as a conference paper at ICLR 2026

Table 1: Performance of LLMs on APPFORGE.

LLMs | Pass@1 | with Compilation Error Feedback
| #File #LOC Compile Test Pass Crash Success | #File #LOC Compile TestPass Crash Success
Proprietary Models

Claude-4-Opus 9.11 39694 80.20% 28.52% 60.49% 11.88% | 897 386.63 90.10% 34.22% 60.44% 14.85%
Claude-4-Sonnet | 9.61 432,17 40.59% 10.35% 58.54% 0.99% 9.78 437.69 77.23% 18.36% 26.92% 3.96%
Gemini-2.5-Pro | 10.74 380.31 53.47% 19.63% 62.96% 7.92% | 10.52 361.94 68.32% 21.63% 7536% 13.86%

GPT-5-High 776 35459 4554% 21.90% 52.17% 14.85% | 7.36 340.77 82.18% 29.07% 31.33% 18.81%
GPT-4.1 8.00 36743 6.93% 2.44% 28.57% 0.99% 2.68 5841 74.26% 1.85% 94.67% 0.99%
Open-source Models

DeepSeek-R1 7.00 21433 14.85% 1.90% 73.33% 0.00% 733 23378 44.55% 12.29% 62.22% 4.95%
DeepSeek-V3 517 16467 5.94% 2.23% 83.33% 0.99% 533 250.19 26.773% 10.40% 48.15% 4.95%
GLM-4.5 7.64 256.16 24.75% 8.74% 72.00% 4.95% 8.51 27891 4455% 10.14% 75.56% 4.95%
Kimi K2 6.82 239.82 16.83% 4.95% 76.47% 1.98% 5.10 168.60 41.58% 7.76% 69.05% 1.98%

Qwen3-Coder 529 209.00 27.72% 4.42% 75.00% 1.98% 6.20 24121 85.15% 21.45% 29.07% 891%

less than 10% functional success rate after repairing compilation errors. While the high compilation
rates of flagship models demonstrate that existing models can generate syntactically correct programs,
the consistently low test pass rates across all models reveal the fundamental challenge of generating
functionally correct Android apps. In addition, over 50% of functionally correct apps crashes during
runtime, highlighting that even when LLMs successfully implement the required functionality, the
generated code often lacks reliability necessary for real-world deployment.

Iterative refinement with compilation feedback does not signif- o St comgle &~ DoSeolaConge |
icantly improve functional correctness. The compilation error
feedback substantially improves compilation success across all

models, with notable improvements for Claude-4-Sonnet (40.59%
to 77.23%) and Qwen3-Coder (27.72% to 85.15%). However,
this improvement does not translate proportionally to functional %
correctness, as test pass rates show modest gains. As illustrated in
Figure [3] iterative refinement significantly improves compilation 2 ﬁ
success for both Qwen3-Coder (33.7% to 98%) and DeepSeek- 0 T
V3 (7.9% to 63.4%). However, the functional success rate, Fix Iteration Rounds
measured by passing test cases, saturates quickly after 2-3 it-
erations, peaking around 23% for Qwen3-Coder and 14% for
DeepSeek-V3.

80

60

Rate (%)

Figure 5: Performance evolution
with compilation feedback.

LLMs can develop robust, functionally - L]

correct apps on simple development o o ’::Z

tasks. Despite overall low success rates, . r\\r\/ “ /\/ fo

successful cases demonstrate that LLMs b o

can generate surprisingly sophisticated An- W e R

droid applications. As visualized in Fig-

ure@, there is a clear inverse relationship Figure 6: Correlation between Lines of Code (LOC)
between app complexity and success rates and evaluation metrics (Compile, Test Pass, and Suc-
for lower complexity tasks with enough cess). Rolling means with uncertainty bands show per-
sample sizes below 800 LOCs. Notably, formance variability across code complexity.
successful cases often showcase proactive exception handling and defensive programming beyond ba-
sic functional requirements. Figure|[/|illustrates an actual implementation by GPT-5 in the Autostarts
app, where it gracefully manages potential exceptions and provides fallback solutions.

Some LLMs evade development tasks rather than repair their compilation errors. Interestingly,
GPT4.1 and Kimi K2 evade development tasks during iterative refinement, where they delete faulty
implementations instead of repairing them. GPT-4.1 shows a dramatic reduction in generated number
of files (from 8.00 to 2.68) and LOCs (from 367.43 to 58.41) when provided with compilation
feedback. As shown in Figure[§] GPT-4.1 replaces the buggy implementation of the function with
an empty body. This strategy successfully achieves the highest compilation rate improvement (from
6.93% to 74.26%), but does no good for implementing the required app functionality. Similar patterns
are observed in Kimi K2, indicating that some LLMs may strategically simplify their solutions when
faced with compilation challenges rather than addressing the underlying issues.

Under review as a conference paper at ICLR 2026

|| private void openAppInfo (String packageName) {

2 try {

3 Intent it = new Intent (Settings.ACTION_APPLICATION_DETAILS_SETTINGS) ;

4 it.setData (Uri.parse ("package:" + packageName)) ;

5 it.addFlags (Intent .FLAG_ACTIVITY_ NEW_TASK) ;

6 startActivity (it);

7 } catch (ActivityNotFoundException e) {

8 try {

9 Intent fallback = new Intent (Settings.ACTION_APPLICATION_DETAILS_SETTINGS) ;
10 fallback.setData (Uri.parse ("package:" + getPackageName()));

11 startActivity (fallback) ;

12 } catch (Exception ex) {

13 Toast .makeText (this, "Unable to open Application Info", Toast.LENGTH_SHORT) .show();

Figure 7: Proactive defensive programming implemented by GPT-5 on the Autostarts app.

artion K 3 ,
Intent i ew Intent (MainActivity.this, NewTodo

findViewById(R.id.ac_add) .setOnClickListener (v —> {
Intent it = new Intent (MainActivity.this, NewTodoListActivity.class);

startActivityForResult (it, 101);

1)

6| / Refinement (passing compilation without implementation)

7| findvViewById(R.id.ac_add) .setOnClickListener (v —-> {

81 1) i

cannot find symbol

Figure 8: GPT-4.1 evades development when fixing the compilation error on Todo List app.

APPFORGE differentiates model capa- 05 o s 0050 0 5 1m0
eyese . Lo [amEEma [EEEEEES
bilities better than existing code gener- cprat Y —
ation benchmarks. While many mod- core R |
. . .. = h = B
els achieve high and similar performance 3 3
.. . ® G-25-Pro ® G-2.5Pro
on traditional code generation benchmarks z H
like HumanEval and SWE-bench, APp- Ssomt _; F
C-4-Opus C-4-Opus J L
FORGE help reveal performance gaps of 0P ysom 5P TS Tt oS soml 5P TS o
LLMs for real-world software engineer- Source LLM Source LLM

ing tasks with success rates spanning from
0.99% to 14.85%. In addition, We visu- Figure 9: Pairwise relative performance differences be-

alize the model performance differentia- tween models on SWE-bench-verified (Left) and App-
tion in Figure[9] the performance variance FORGE (Right). Green and red cells represent relatively
on APPFORGE is substantially larger than superior and inferior performance, respectively, with
SWE-bench, providing more nuanced dif- color intensity indicating the magnitude of differences.
ferentiation of model capabilities. This suggests that APPFORGE captures the real-world software
engineering challenges that are not adequately captured by previous code generation benchmarks.

4.3 PERFORMANCE OF ADVANCED CODING AGENTS AND REASONING MODELS

Table 3: Performance of GPT-5 with differ-

Table 2: Performance of coding agents on APPFORGE.)
ent reasoning levels on APPFORGE.

Agent | LLM | #File #LOC Compile TestPass Success
swE | Claude4-Opus [1076 55840 7129% 2461% 1lsss el | #File #LOC Compile TestPass Success
Qwen3-Coder | 842 43094 88.12% 2221% 6.93% Low 591 28091 2277% 84l% 2.97%
Medium | 7.61 32196 27.72% 11.11% 3.96%

-) (%)
CC__ | Quend-Coder | 53428066 7624% 1a6a% 695%™ | 50 3050 TR Sl i

Coding agents provide marginal improvements at substantial computational cost. As shown in
Table 2] coding agents (mini-SWE-agent as SWE, Claude Code as CC) exhibit slight improvements
over simpler baseline approaches, yet their performance gains are modest. Specifically, the best-
performing combination (mini-SWE-agent using Claude-4-Opus) achieves only an 11.88% functional
success rate. Although these agents demonstrate potential for iterative refinement and error correction,
their modest overall performance indicates that current agent-based frameworks still fall short of
effectively overcoming critical challenges inherent to real-world software engineering tasks, such as
multi-file integration and framework-specific complexity typical in Android app development.

Under review as a conference paper at ICLR 2026

Enhancing reasoning capabilities remain insufficient for Android development. Table[3|demon-
strates that increasing the reasoning level of GPT-5 leads to improved performance across all metrics,
with the highest reasoning setting achieving 14.85% functional success compared to 2.97% at the low
level. However, even with maximum reasoning enhancement, the absolute performance remains far
from satisfactory for practical Android development, highlighting that the fundamental challenges
of multi-file coordination, framework-specific knowledge, and complex dependency management
require more than enhanced reasoning alone.

4.4 ANALYSIS OF DEVELOPMENT CHALLENGES

Compilation Error Analysis. Figure[T0|presents e ey
the distribution of compilation errors. The most .
prevalent error stems from “Android Resource Link-
ing Failed”, accounting for 39.7% of compilation
errors. This compilation error is typically caused by
missing or misreferenced resource files in the gener-
ated apps, highlighting current models’ inadequate
capability in comprehensive software engineering Figure 10: Distribution of compilation errors
tasks that require systematic coordination across mul- 4¢ross generated Android apps.

tiple project components. An interesting observation

is that GPT series models and Kimi-K2 encounter the issue that apps fail to compile due to missing
android:exported declarations (an attribute requirement introduced in Android 12 (Android Develop+
ers,|2021)), highlighting a gap between LLM training data and current Android requirements. Though
it can be resolved by refinement, this interesting issue reflects models’ strategies when handling
conflicts between training data patterns and task instructions.

Crash Analysis. Table [presents the Table 4: Runtime crash analysis across LLMs.
crash analysis results from fuzzing LLM-

generated apps (full version available in the Native Crash Failed to Start
Appendix|[C) . First, the “evade development” Model w/o Fix w/Fix | w/o Fix w/ Fix
strategies employed by GPT-4.1 ultimately

. . - . GPT-4.1 0.0 11.0 2.0 66.0
backﬁre at runtime. While achieving higher Claude-Opus 48.0 48.0 9.0 11.0
compilation rates, the app fundamentally Gemini-Pro 5.0 370 14.0 21.0
fail to start when executed, indicating that GPT-5-High 21.0 0.0 50 250

evasive compilation error fixes often intro-
duce fundamental flaws, such as incomplete resource initialization that prevent proper app bootstrap-
ping. Second, notably all crashes are native crashes rather than Java-level exceptions, indicating
that the generated Java code itself is generally robust with proper exception handling. This suggests
that existing LLMs excel at defensive programming practices and maintain good exception handling
patterns as illustrated in Figure[7] However, crashes occur when calling third-party libraries or
interacting with OS services due to parameter validation failures and contract mismatches. While
LLMs demonstrate solid understanding of Java code, they lack sufficient knowledge of underlying
implementation details and resource constraints. Consequently, seemingly safe Java code can trigger
native-level issues when interfacing with lower-level components, highlighting the gap between
surface-level language proficiency and deep system understanding required for software engineering.

5 CONCLUSION

In this paper, we have introduced APPFORGE, a comprehensive benchmark for evaluating LLMs
on real-world Android application development from scratch, revealing significant gaps between
current capabilities and practical software engineering requirements. Through systematic evaluation
of 12 state-of-the-art LLMs across 101 diverse development scenarios, we found that even the
best-performing models achieve only modest success rates, contrasting sharply with their high
performance on existing code generation benchmarks, suggesting that fundamental innovations rather
than incremental improvements may be necessary toward fully automated software engineering.

Under review as a conference paper at ICLR 2026

ETHICS AND REPRODUCIBILITY STATEMENT

This work adheres to the ICLR Code of Ethics. No human subjects or animal experimentation were
involved. No personally identifiable information was used, and no experiments posed privacy or
security risks. We are committed to transparency and integrity throughout the research process.
We believe APPFORGE can be used for various purposes, including evaluating the cutting-edge
capabilities of code LLMs for software engineering, training better software engineering models and
agents, and as a seed benchmark for building larger benchmarks for application development. We
have strictly adhered to the license of open-source apps since we use the runtime behavior of these
apps instead of using their source code for constructing APPFORGE. However, we are concerned
about potential misuse of APPFORGE for training models to reverse engineering existing Android
applications, making the plagiarism of apps a practical concern.

As a benchmark paper, the benchmark has been made publicly available on the fully anonymized
project website, providing detailed documentation, leaderboard, and dockerized environment to ensure
easy reproduction and customized use. We have detailed the selection criteria in our Appendix and
use popular open-source apps in F-Droid to allow reproducibility of task collection. The experimental
setup is described in detail.

LLM USAGE

LLMs were employed solely to assist in writing and polishing the manuscript, including refining
language, improving readability, and enhancing clarity. The LLM was used for tasks such as sentence
rephrasing, grammar checking, and improving overall flow.

The LLM was not involved in ideation, research methodology, or experimental design. All research
concepts, analyses, and results were developed and conducted by the authors. The authors take full
responsibility for the manuscript content, including any text generated or polished by the LLM, and
confirm that all LLM-assisted text adheres to ethical guidelines and does not constitute plagiarism or
scientific misconduct.

REFERENCES

Amazon Web Services. Amazon codewhisperer. https://aws.amazon.com/
codewhisperer/, 2025. Accessed: 2025-09-24.

Android Developers. Behavior changes: Apps targeting android 12 — exported com-
ponents requirement. https://developer.android.com/about/versions/12/
behavior-changes-12#exported, 2021. Accessed: 2025-09-24.

Android Developers. Ui automator. https://developer.android.com/training/
testing/other—-components/ui—-automator, 2025. Accessed: 2025-09-24.

Anthropic. Models overview - claude docs. https://docs.claude.com/en/docs/
about—-claude/models/overview, April 2025. Accessed: 2025-09-23.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian
Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng
Qian, Murali Krishna Ramanathan, and Ramesh Nallapati. Multi-lingual evaluation of code
generation models. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview,
net /pdf?id=Bo7eeXm6AnS8.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732, 2021. URL https://arxiv.org/abs/
2108.07732.

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Vageesh D C, Arun Iyer, Suresh Parthasarathy,
Sriram Rajamani, Balasubramanyan Ashok, and Shashank Shet. Codeplan: Repository-level

10

https://benchmark-project-website.github.io
https://benchmark-project-website.github.io
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://developer.android.com/about/versions/12/behavior-changes-12#exported
https://developer.android.com/about/versions/12/behavior-changes-12#exported
https://developer.android.com/training/testing/other-components/ui-automator
https://developer.android.com/training/testing/other-components/ui-automator
https://docs.claude.com/en/docs/about-claude/models/overview
https://docs.claude.com/en/docs/about-claude/models/overview
https://openreview.net/pdf?id=Bo7eeXm6An8
https://openreview.net/pdf?id=Bo7eeXm6An8
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732

Under review as a conference paper at ICLR 2026

coding using llms and planning. Proceedings of the ACM on Software Engineering, 1(FSE):
675-698, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877-1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/f11le/1457c0d6bfcb4967418bfb8acl42f64a—-Paper.pdfl

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374,2021. URL https://arxiv,
org/abs/2107.03374.

Simin Chen, Soroush Bateni, Sampath Grandhi, Xiaodi Li, Cong Liu, and Wei Yang. Denas:
automated rule generation by knowledge extraction from neural networks. In Proceedings of the
28th ACM joint meeting on European software engineering conference and symposium on the
foundations of software engineering, pp. 813-825, 2020.

Simin Chen, Xiaoning Feng, Xiaohong Han, Cong Liu, and Wei Yang. Ppm: Automated generation
of diverse programming problems for benchmarking code generation models. Proceedings of the
ACM on Software Engineering, 1(FSE):1194-1215, 2024a.

Simin Chen, Pranav Pusarla, and Baishakhi Ray. Dycodeeval: Dynamic benchmarking of reasoning
capabilities in code large language models under data contamination. In Proceedings of the
Forty-Second International Conference on Machine Learning, Vancouver, Canada, July 2025.
PMLR.

Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin. Chatunitest: A
framework for llm-based test generation. In Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering, pp. 572-576, 2024b.

Cursor. Cursor: The best way to code with ai. https://cursor.com/, April 2025. Accessed:
2025-09-23.

Android Developers. Application fundamentals, 2025a. URL https://developer.android,
com/guide/components/fundamentals. Accessed: 2025-08-15.

Android Developers. Fragments, 2025b. URL https://developer.android.com/guide/
fragmentsl Accessed: 2025-08-15.

Android Developers. Services overview, 2025¢c. URL https://developer.android.com/
develop/background-work/services. Accessed: 2025-08-15.

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting Cai, Yang Cao, Chaoyu Chen, Dajun Chen,
Hongwei Chen, Liang Chen, et al. Codefuse-13b: A pretrained multi-lingual code large language
model. In Proceedings of the 46th International Conference on Software Engineering: Software
Engineering in Practice, pp. 418-429, 2024.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://cursor.com/
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/fragments
https://developer.android.com/guide/fragments
https://developer.android.com/develop/background-work/services
https://developer.android.com/develop/background-work/services

Under review as a conference paper at ICLR 2026

F-Droid. Amaze file manager — f-droid. https://f-droid.org/en/packages/com,
amaze.filemanager/, 2025a. Accessed: 2025-09-24.

F-Droid. Arcticons — f-droid. https://f-droid.org/en/packages/com.donnnno.
arcticons/, 2025b. Accessed: 2025-09-24.

F-Droid. Vanilla music — f-droid. https://f-droid.org/en/packages/ch.
blinkenlights.android.vanilla/, 2025c. Accessed: 2025-09-24.

Open Technology Fund. F-droid sustainability. https://www.opentech. fund/
projects—-we—support/supported-projects/f-droid-sustainability/,
2025. Accessed: 2025-08-15.

GeeksforGeeks. A complete guide to learn xml for android app develop-
ment, 2025. URL https://www.geeksforgeeks.org/android/
a-complete—-guide-to-learn—-xml-for—-android-app—development /. Ac-

cessed: 2025-08-15.

GitHub. Github copilot. https://github.com/features/copilot, April 2025. Accessed:
2025-09-23.

Google. Gemini 2.5 pro model card. 2025. URL https://modelcards.withgoogle.com/
assets/documents/gemini-2.5-pro.pdf.

Batu Guan, Xiao Wu, Yuanyuan Yuan, and Shaohua Li. Is your benchmark (still) useful? dynamic
benchmarking for code language models. arXiv preprint arXiv:2503.06643, 2025.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/2403|
07974.

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang, Qiwei Shang, Ge Li, Zhi Jin, and Wenpin
Jiao. Self-planning code generation with large language models. ACM Transactions on Software
Engineering and Methodology, 33(7):1-30, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024.

Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey
Svyatkovskiy. Inferfix: End-to-end program repair with llms. In Proceedings of the 31st ACM
Jjoint european software engineering conference and symposium on the foundations of software
engineering, pp. 1646-1656, 2023.

Kimi Team. Kimi k2: Open agentic intelligence. arXiv, 2025. URL https://arxiv.org/abs/
2507.20534.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’ Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. CoRR, abs/2203.07814, 2022. doi: 10.48550/ARXIV.2203.07814.
URL https://doi.org/10.48550/arXiv.2203.07814!.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https
//openreview.net/forum?id=1gvx610Cu7.

12

https://f-droid.org/en/packages/com.amaze.filemanager/
https://f-droid.org/en/packages/com.amaze.filemanager/
https://f-droid.org/en/packages/com.donnnno.arcticons/
https://f-droid.org/en/packages/com.donnnno.arcticons/
https://f-droid.org/en/packages/ch.blinkenlights.android.vanilla/
https://f-droid.org/en/packages/ch.blinkenlights.android.vanilla/
https://www.opentech.fund/projects-we-support/supported-projects/f-droid-sustainability/
https://www.opentech.fund/projects-we-support/supported-projects/f-droid-sustainability/
https://www.geeksforgeeks.org/android/a-complete-guide-to-learn-xml-for-android-app-development/
https://www.geeksforgeeks.org/android/a-complete-guide-to-learn-xml-for-android-app-development/
https://github.com/features/copilot
https://modelcards.withgoogle.com/assets/documents/gemini-2.5-pro.pdf
https://modelcards.withgoogle.com/assets/documents/gemini-2.5-pro.pdf
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534
https://doi.org/10.48550/arXiv.2203.07814
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7

Under review as a conference paper at ICLR 2026

Junwei Liu, Yixuan Chen, Mingwei Liu, Xin Peng, and Yiling Lou. Stall+: Boosting llm-based
repository-level code completion with static analysis. arXiv preprint arXiv:2406.10018, 2024.

Alex Mathai, Chenxi Huang, Petros Maniatis, Aleksandr Nogikh, Franjo Ivancié, Junfeng Yang, and
Baishakhi Ray. Kgym: A platform and dataset to benchmark large language models on linux
kernel crash resolution. Advances in Neural Information Processing Systems, 37:78053-78078,
2024.

R. et al. Mayrhofer. The android platform security model (2023), 2019. URL https://arxiv,
org/abs/1904.05572. Accessed: 2025-08-15.

OpenAl. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774l

OpenAl. Gpt-4.1 model. https://platform.openai.com/docs/models/gpt-4.1,
April 2025. Accessed: 2025-09-23.

OpenAl Gpt-5 system card. 2025. URL https://cdn.openai.com/
gpt—-5-system—-card.pdf.

Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation benchmark
for cross-lingual natural language generalization. arXiv preprint arXiv:2402.16694, 2024.

F-Droid Project. F-droid anti-features documentation. |https://f-droid.org/docs/
Anti-Features/, 2025a. Accessed: 2025-08-15.

F-Droid Project. F-droid inclusion how-to. https://f-droid.org/en/docs/Inclusion_
How—To/, 2025b. Accessed: 2025-08-15.

Stypox / F-Droid Project. F-droid website overview. |https://stypox.gitlab.io/
fdroid-website/en/docs/Anti-Features/, 2025c. Accessed: 2025-08-15.

Xingzhi Qian, Xinran Zheng, Yiling He, Shuo Yang, and Lorenzo Cavallaro. Lamd: Context-driven
android malware detection and classification with llms. In 2025 IEEE Security and Privacy
Workshops (SPW), pp. 126-136. IEEE, 2025.

Jielin Qiu, Zuxin Liu, Zhiwei Liu, Rithesh Murthy, Jianguo Zhang, Haolin Chen, Shiyu Wang, Ming
Zhu, Liangwei Yang, Juntao Tan, et al. Locobench: A benchmark for long-context large language
models in complex software engineering. arXiv preprint arXiv:2509.09614, 2025.

Tanmay Rajore, Nishanth Chandran, Sunayana Sitaram, Divya Gupta, Rahul Sharma, Kashish Mittal,
and Manohar Swaminathan. Truce: Private benchmarking to prevent contamination and improve
comparative evaluation of llms, 2024. URL |https://arxiv.org/abs/2403.00393|

Dezhi Ran, Hao Wang, Zihe Song, Mengzhou Wu, Yuan Cao, Ying Zhang, Wei Yang, and Tao Xie.
Guardian: A runtime framework for llm-based ui exploration. In ISSTA, pp. 958-970, 2024.

Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi Wang, Xiaofei Ma, Murali Krishna Ra-
manathan, and Baishakhi Ray. Code-aware prompting: A study of coverage-guided test generation
in regression setting using llm. Proceedings of the ACM on Software Engineering, 1(FSE):951-971,
2024.

Justin Sahs and Latifur Khan. A machine learning approach to android malware detection. In 2072
European intelligence and security informatics conference, pp. 141-147. IEEE, 2012.

Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of using large
language models for automated unit test generation. IEEE Transactions on Software Engineering,
50(1):85-105, 2023.

Technource. Google play store statistics: Facts and numbers you must know. https://www,

technource.com/blog/google—-play—store—statistics/, June 2022. Accessed:
2025-08-15.

13

https://arxiv.org/abs/1904.05572
https://arxiv.org/abs/1904.05572
https://doi.org/10.48550/arXiv.2303.08774
https://platform.openai.com/docs/models/gpt-4.1
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://f-droid.org/docs/Anti-Features/
https://f-droid.org/docs/Anti-Features/
https://f-droid.org/en/docs/Inclusion_How-To/
https://f-droid.org/en/docs/Inclusion_How-To/
https://stypox.gitlab.io/fdroid-website/en/docs/Anti-Features/
https://stypox.gitlab.io/fdroid-website/en/docs/Anti-Features/
https://arxiv.org/abs/2403.00393
https://www.technource.com/blog/google-play-store-statistics/
https://www.technource.com/blog/google-play-store-statistics/

Under review as a conference paper at ICLR 2026

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna Ramanathan,
Dan Roth, and Bing Xiang. Recode: Robustness evaluation of code generation models. In Anna
Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 13818-13843. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.ACL-LONG.773. URL https://doi.org/10.18653/v1/
2023.acl-1long.773l

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
free llm benchmark. arXiv preprint arXiv:2406.19314, 2024.

Chunqiu Steven Xia and Lingming Zhang. Automated program repair via conversation: Fixing
162 out of 337 bugs for $0.42 each using chatgpt. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 819-831, 2024.

Kai Xu, YiWei Mao, XinYi Guan, and ZiL.ong Feng. Web-bench: A 1lm code benchmark based on
web standards and frameworks, 2025. URL https://arxiv.org/abs/2505.07473.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528-50652, 2024.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang
Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative pre-
trained models. In Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering, pp. 1-12, 2024.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
Maoquan Wang, Yufan Huang, Shengyu Fu, et al. Swe-bench goes live! arXiv preprint
arXiv:2505.23419, 2025.

Qin Zhu, Qinyuan Cheng, Runyu Peng, Xiaonan Li, Ru Peng, Tengxiao Liu, Xipeng Qiu, and Xuan-
jing Huang. Inference-time decontamination: Reusing leaked benchmarks for large language model
evaluation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024, pp. 9113-9129, Miami, Florida, USA, Novem-
ber 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024 findings-emnlp.532.
URLhttps://aclanthology.org/2024.findings—emnlp.532/.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. arXiv preprint arXiv:2406.15877,
2024.

14

https://doi.org/10.18653/v1/2023.acl-long.773
https://doi.org/10.18653/v1/2023.acl-long.773
https://arxiv.org/abs/2505.07473
https://aclanthology.org/2024.findings-emnlp.532/

Under review as a conference paper at ICLR 2026

APPENDIX

A DETAILED DISCUSSION OF RELATED WORK

ML for Software Engineering. Machine learning, including large language models (LLMs), is
increasingly used to address real-world software engineering tasks due to their advantages over
traditional program analysis techniques. Typical use cases include automatic code generation (Chen
et al.| 20215 |Austin et al., 2021} [Liu et al.l 2023} |Chen et al.,|2024a)), malware detection (Qian et al.,
2025} |Sahs & Khanl 20125 |Chen et al.,2020), test generation (Chen et al.,[2024bj Ryan et al., 2024;
Schifer et al., [2023)), and program repair (Jimenez et al.|[2024; Jin et al., 2023} | Xia & Zhang} [2024;
Yang et al.| 2024).

Most relevant to our APPFORGE are works that apply LLMs to automated code generation or code
completion (Chen et al.} 2025; |Wang et al., 2023 |Athiwaratkun et al., 2023)). However, existing code
generation datasets are largely limited to the function level (Chen et al.l 2021} |Austin et al., 2021} Liu
et al., 2023} |Chen et al.| 2025} |Yu et al.,|2024)), and repository-level work focuses mainly on code
completion rather than generation from scratch (Liu et al.| 2024; Bairi et al.| [2024). Compared with
existing datasets, APPFORGE introduces a more realistic and challenging setting for evaluating the
capability of LLMs to perform software development from scratch. This setting better reflects real-
world development scenarios where models must synthesize coherent, functional, and maintainable
codebases instead of compleing the missing lines in an existing codebases.

Code Generation Benchmarks. Many benchmarks have been proposed to evaluate the code
generation capabilities of LLMs (Guan et al., 2025} |Chen et al.| [2024a; |Yu et al.| 2024; |Jimenez
et al.| 2024} Mathai et al.,|2024). HumanEval and MBPP introduced human-crafted datasets focused
on synthesizing function-level code from natural language descriptions and have become standard
benchmarks (Chen et al., 2021} |Austin et al.2021)). Building on this, HumanEval-XL (Peng et al.,
2024) extended HumanEval to support multilingual settings. Moreover, EvalPlus (Liu et al.,2023)
highlighted limitations in HumanEval and MBPP, particularly their limited test case coverage, and
proposed a more rigorous evaluation benchmark. BigCodeBench (Zhuo et al.,[2024)) introduced a
larger-scale benchmark designed to further evaluate LLMs’ code generation capabilities. Beyond
these function-level code generation benchmarks, recent repository-level benchmarks have also
been proposed. For example, SWE-Bench (Jimenez et al., 2024} focuses on evaluating LLMs’
patch generation ability at the repository level. Although effective, most benchmarks are static
and lag behind LLM advancements, prompting the emergence of dynamic benchmarks for up-to-
date, contamination-free evaluation. LiveCodeBench (Jain et all 2024) collects newly released
programming completion problems from online coding platforms to minimize data contamination.
PPM (Chen et al., [2024a)) and DyCodeEval (Chen et al., 2025) propose an automated method to
generate new benchmark data at the evaluation stage, mitigating potential data contamination. SWE-
Bench-Live (Zhang et al.| 2025) follows the LiveCodeBench schema to collect new patches from
GitHub repositories, providing a continuous and realistic evaluation environment.

Compared to existing code generation benchmarks, APPFORGE operates at the repository level and
includes rigorous evaluation. It can be dynamically constructed by collecting latest projects from
F-Droid, preserving a much broader range of challenges rooted in real-world software develop-
ment—going beyond closed-form completion or patch generation.

Android Application Ecosystem. Android applications represent one of the most significant
software ecosystems globally, with over 2.6 million applications available on Google Play Store and
millions more distributed through alternative channels (Technourcel 2022). In Android ecosystems, F-
Droid (2025¢) is the leading open-source repository, serving millions of users worldwide. Its rigorous
review process and anti-feature labeling ensure high-quality software that often exemplifies Android
development best practices. The repository spans diverse categories—productivity, multimedia,
utilities, games, and specialized professional tools—many maintained by experienced developers and
organizations (2025a;2025b; |[2025)).

Android apps, typically built with Java or Kotlin following Material Design and Android architecture
guidelines, comprise multiple interconnected components such as Activities, Fragments, XML layouts,
and manifest configurations (2025a). Developing robust apps demands expertise across Ul design,
background services, data persistence, networking, device optimization, and security (Mayrhofer,
2019; |Developers), 2025b; (GeeksforGeeksl 2025; [Developers, |2025c). Given the prevalence and

15

Under review as a conference paper at ICLR 2026

complexity of the Android ecosystem, developing Android applications automatically provides
significant commercial and practical impact. APPFORGE, filling a critical gap, provides the first
benchmark for assessing LLLM capabilities in Android development.

B DETAILS OF APPFORGE

B.1 TASK INSTANCES

. .
Model Input Expected Model Output
Instruction ‘app/src/main/AndroidManifestXml: e e e e e o,
You are an autonomous programmer tasked with modifying an Android ‘app/src/main/java/com/example/calculator/MainActivity.java':.
application. package org.itxtech.daedalus.activity;
import android.app.Activity;
App Overview import android.content.Context;
An app that functions as a basic calculator, allowing users to perform cecens,
various arithmetic operations including addition, subtraction, cececs
multiplication, division, square root, and power. }

[Evaluation Suite

Functionalities

feature 1: Perform basic arithmetic operations. P -
redefined Test Cases
sub-feature 1-1: Add two numbers. When the user clicks on the button APK 0
with the text "1" e oo« "48" should be displayed in the result area, . “ype”s “dlick’, "target”: {"text”
identified by the resource-id "result". Compiling Entypz" chd<”: ’12;32:”; {"\:x\‘: .
sub-feature 1-2: eseaae .

{"type": "visible",

feature 2: Perform advanced arithmetic operations i
“target”: {“resource-id” “result”, “text": “48"}}

sub-feature 2-1: Calculate the square root of a number and the]
exponentiation of a number. ee s oo o

v
Produced Functional Fuzz
- 5 . _ .
Implementation Constraints APK Testing Testing

- Your code will be compiled with Gradle7.5.1 and run on Functional Testing Log Fuzz Testing Log
Nexus_4_API_31. FAILED calculator testcase 1: invisible === FUZZING COMPLETED ===
- Please return a json string of files to be revised and the revised code in element identified by {"resource-id": Total Duration: 600 seconds
following format: ee eee s “result”, "text”: 48"} Total Cycles: 18

PASSED calculator testcase 2 Total Crashes: 5

Figure 11: Example of Task Instance.

B.2 STATISTICS OF SEED APPS.

Table 5: Statistics of Seed Apps used for Constructing APPFORGE.

#LoC # Acts # Files

Range 194-53K 1-21 2-508
Avg. 6367.2 3.7 44.0
Median 4530 3 26

B.3 EVALUATION METRIC CALCULATION

We employ four primary metrics that directly correspond to the three evaluation stages to comprehen-
sively assess the quality and functionality of generated Android code.

The compilation rate (Eq. [I)) measures the percentage of generated code that successfully compiles
into valid APKs without syntax or dependency errors during the compilation stage, indicating the
basic correctness and completeness of the generated code structure. Here, Neompilea denotes the
number of successfully compiled cases and Vo, denotes the total number of tasks.

The test pass rate (Eq.[2) evaluates, using macro averaging, the mean percentage of predefined test
cases that pass across all compiled applications during the testing stage. This metric reflects how
well the generated code implements the specified functionalities and meets behavioral requirements.

For each compiled application 4, tézsed denotes the number of passed test cases, and tt((ft)al denotes the

16

Under review as a conference paper at ICLR 2026

total number of test cases for that application. The macro average is computed by taking the mean of
per-application pass rates over all Neompiled compiled applications.

The crash rate (Eq. [3) quantifies the percentage of compiled applications that crash or terminate
unexpectedly during the fuzz testing stage, assessing the robustness and stability of the generated
code under various stress scenarios. Here, Nerashed_apps denotes the number of compiled applications
that experienced crashes during fuzz testing, and Ncompitled denotes the total number of compiled
applications.

Additionally, the functional success rate (Eq. [4) measures the percentage of tasks that achieve
both successful compilation and complete test suite passage, representing the overall functional
correctness of the generated applications regardless of their robustness under stress testing. Here,
Neompiled_and_tests_passed denotes the number of tasks meeting both criteria.

The pipeline captures detailed logs and execution traces throughout all three stages, enabling precise
computation of these metrics and comprehensive result reporting for large-scale benchmarking
experiments.

N, mpi
Compilation Rate = —compiled ' 100% D
total
1 Ncompiled ('L)]
Test Pass Rate = JA— Z (W) x 100%)
compiled i—1 total
N,
Crash Rate = —o2hedaeps 107 3)
N, compiled
N, mpi n St S
Functional Success Rate = —compiled-and_tests passed - 100% (@]

N, total

B.4 IMPLEMENTATION DETAILS OF APPFORGE

To ensure consistent and reproducible evaluation across different systems, we establish a standardized
execution environment that supports the entire evaluation workflow described above. The environment
consists of two main components that work together to enable seamless automated evaluation.
First, we utilize the official Android Emulator with API level 31 (Android 12) running on x86_64
architecture for APK installation and testing. This emulator configuration is packaged into a Docker
container that guarantees seamless deployment on Ubuntu systems without requiring any additional
manual configuration. The containerized approach eliminates environment-specific issues and ensures
that all evaluations are conducted under identical conditions, enabling reliable APK execution and
test case validation. Second, we configure a standardized Gradle build environment within the
same container to handle the automated compilation process. This includes pre-installed Android
SDK components, build tools, and dependency management configurations that are commonly used
in Android development. The Gradle setup is optimized for automated compilation of generated
code files into APKs, with appropriate timeout settings and resource allocation to handle various
code complexity levels. The build environment is configured to provide detailed compilation error
messages when needed, supporting the iterative refinement workflow for models that can benefit from
error feedback.

B.5 RANKING CRITERIA OF APPS IN F-DROID

The ranking of F-Droid apps follows a sequential process that begins with filtering the dataset to
retain only actively maintained and popular applications, requiring at least 50 GitHub stars, 10
forks, non-archived status, an update date no earlier than 2022, and primary implementation in
Java or Kotlin. For each app that passes the filter, an LLM assigns integer scores from 1 to 5 for
four evaluation aspects: maintainability, which measures how easy the source code is to understand
and modify; reproducibility, which reflects the ability to produce consistent results under stable
conditions; generality, which indicates how broadly the app can operate across different devices and
configurations; and evaluation efficiency, which assesses the speed and resource requirements of
building and testing the app. The average of these four scores forms the quality rating. The difficulty

17

)

Under review as a conference paper at ICLR 2026

ranking is then determined by combining the LLM-generated complexity score with the number of
activities in the app and the total code size in bytes. Based on these combined criteria, the ranking
process selects the top 40 apps within each difficulty level, resulting in a final list of 200 top-ranked
apps that are representative, maintainable, reproducible, and diverse in technical challenge, ensuring
a comprehensive benchmark for assessing the Android development capabilities of LLMs.

B.6 PrROMPT EXAMPLES

You are an autonomous programmer and you are modifying a default
Android app template with empty activity.

Your code will be compiled with Gradle7.5.1 and run on
Nexus_4 API_31.

The default Android app template "File Structure" is shown below.
You can replace or add some files in the templates to
implement the app.

"File Structure":

|-— app

| |-— build.gradle

| ——— src

| |-— main

| | |-— AndroidManifest.xml

Your app should implement every feature in "App Features", and we’
11 test on each of the features. Note that you should pay
attention to the resource-id, content-desc, texts and other
attributes we provide with corresponding widgets in "App
Features" and exactly match the attributes when implementing
the widgets.

"App Features":

description: An Android app for quickly sharing your current
location.

feature 1: Share your location via

Please return a json string and only a json string of files to be
revised and the revised code in following format:

{

"app/src/main/AndroidManifest.xml": ...,

C DETAILED EXPERIMENT RESULTS

C.1 SETUP

All LLMs use identical task prompts provided by APPFORGE as well as the same hyperparameter
settings (with the temperature set to 0.2 using greedy decoding (Brown et al., 2020)).

C.2 DETAILED STATISTICS
C.3 FuLL EXAMPLE OF DEFENSIVE PROGRAMMING BY GPT-5.
Listing 1: Case study showing proactive defensive programming implementation by GPT-5 in

the Autostarts app, including robust null-safety checks, multi-level fallback strategies for system
navigation, and guarded UI state transitions beyond basic requirements.

]‘ Null-safety on user input (avoid NPE)

18

Under review as a conference paper at ICLR 2026

Table 6: Compilation results of LLMs.

Compile Package Name Android Resource Resource Wrong JSON Uses / Overrides Cannot Find _ Exported Flag Requires Compilation Timeout]
Model Success not Found Linking Failed Compilation Failed ~ Format ~ Deprecated APl Symbol Missing CompileSdkVersion or Unstable Others
Pass@]
Claude-4-Sonnet 41.0 8.0 34.0 1.0 0.0 0.5 20 4.0 5.0 0.0
Claude-5-Opus 81.0 0.0 4.0 20 0.0 292 0.0 1.0 1.0
Gemini-2.5-Pro 54.0 0.0 14.0 0.1 4.0 0.67 0.0 6.9 7.0
GPT-4.1 7.0 0.0 6.0 733 0.0 0.06 72.67 0.0 0.0
GPT-5-High 46.0 0.0 7.0 1.63 4.0 35 11.67 18.71 0.0
Qwen3-Coder 28.0 0.0 52.0 1.0 4.0 0.0 4.0 0.0 0.0
GLM-4.5 25.0 4.0 31.0 6.11 3.0 348 2.0 1.89 1.0
DeepSeek-R1 15.0 4.0 62.0 2.09 2.0 0.83 5.0 0.0 0.0
DeepSeek-V3 6.0 27.0 28.0 1.0 35.0 0.0 1.0 0.0 0.0
Kimi K2 17.0 5.0 36.0 4.67 2.0 0.93 10.33 9.0 0.0
with Compilation Error Feedback
Claude-4-Sonnet 78.0 1.0 17.0 0.0 0.0 0.44 2.56 0.0 0.0 0.0 2.0
Claude-5-Opus 91.0 0.0 2.0 1.0 0.0 0.24 5.76 0.0 0.0 1.0 0.0
Gemini-2.5-Pro 69.0 0.0 8.0 0.0 0.0 0.42 8.58 0.0 2.0 5.0 8.0
GPT-4.1 75.0 0.0 13.0 1.93 0.0 0.3 6.7 4.07 0.0 0.0 0.0
GPT-5-High 83.0 0.0 6.0 2.0 0.0 0.0 4.0 5.0 0.9 0.0 0.1
Qwen3-Coder 86.0 0.0 7.0 0.0 0.0 0.58 35 0.0 0.0 1.0 292
GLM-4.5 45.0 3.0 29.0 3.0 2.0 0.32 9.68 0.0 1.0 2.0 6.0
DeepSeek-R1 45.0 9.0 25.0 1.0 0.0 1.63 12.37 2.0 1.0 0.0 4.0
DeepSeek-V3 27.0 8.0 26.0 2.0 31.0 0.24 1.0 3.0 0.0 0.0 2.76
Kimi K2 42.0 2.0 220 20 20 043 12.57 3.0 8.0 0.0 7.0
Table 7: Application Runtime Error Statistics
Model \ Pass@1 | with Compilation Error Feedback
| ANR Native Crash Failed Start | ANR Native Crash Failed Start
Kimi K2 0.0 11.0 3.0 1.0 13.0 18.0
DeepSeek-V3 0.0 4.0 2.0 0.0 11.0 4.0
Qwen3-Coder 0.0 19.0 4.0 0.0 16.0 9.0
GLM-4.5 0.0 15.0 5.0 0.0 27.0 15.0
DeepSeek-R1 0.0 8.0 4.0 1.0 25.0 6.0
GPT-4.1 0.0 0.0 2.0 0.0 11.0 66.0
Claude-5-Opus 0.0 48.0 9.0 0.0 48.0 11.0
GPT-5-High 1.0 21.0 5.0 0.0 0.0 25.0
Gemini-2.5-Pro 0.0 25.0 14.0 0.0 37.0 21.0
Claude-4-Sonnet 0.0 21.0 10.0 0.0 0.0 20.0

2| private void filterList (String query) {

3 String g = (query == null) ? "" : query.trim().toLowerCase (Locale.ROOT); // defensive
4 for (AppEntry e : appEntries) {

5 boolean match = g.isEmpty() || e.title.toLowerCase (Locale.ROOT) .contains(q);

6 e.row.setVisibility (match ? View.VISIBLE : View.GONE) ;

7 }

8|}

9

10| // UI state guard: c e search and re filters

11| private void closeSearchIfOpen () {

12 if (searchContainer.getVisibility () == View.VISIBLE) { // defensive visibility

13 searchContainer.setVisibility (View.GONE) ;

14 searchInput.setText (""); //

15 FilEeelisE (V1) g //

16 }

17] }

18

19| @Override

20| public void onBackPressed() {

21 if (searchContainer != null && searchContainer.getVisibility() == View.VISIBLE) { // guard
22 closeSearchIfOpen () ; // me "k to ¢ cad of leaving activity
23 return;

24 }

25 super.onBackPressed() ;

26| }

27

28| // Best-effort navigation with graceful tion

29| private void openAppInfo (String packageName) {

30 try {

31 Intent it = new Intent (Settings.ACTION_APPLICATION_DETAILS_SETTINGS) ;

32 it.setData (Uri.parse ("package:" + packageName)) ;

33 it.addFlags (Intent .FLAG_ACTIVITY_ NEW_TASK) ;

34 startActivity (it);

35 } catch (ActivityNotFoundException e) { // device/ROM mismatch fal

36 try {

37 Intent fallback = new Intent (Settings.ACTION_APPLICATION_DETAILS_SETTINGS) ;

38 fallback.setData (Uri.parse ("package:" + getPackageName())); // fallback to self

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

39 startActivity (fallback);

40 } catch (Exception ex) { // last resort: user-visible error

41 Toast .makeText (this, "Unable to open Application Info", Toast.LENGTH_SHORT) .show () ;
42 }

43 }

441}

45

46| // —-—- Defensive null-check on optional view ---—

47| private void showMenuForGoogleDuring() {
48 new AlertDialog.Builder (this)

49 .setTitle ("Google")

50 .setItems (new CharSequence[]{"Disable", "Application Info"}, (d, which) -> {

51 if (which == 0) {

52 if (statusGoogleDuring != null) { // view presence not guaranteed across
layouts

53 statusGoogleDuring.setVisibility (View.VISIBLE) ;

54 }

55 Toast .makeText (this, "Google autostart disabled for During Startup", Toast.
LENGTH_SHORT) .show () ;

56 } else if (which == 1) {

57 openAppInfo ("com.google.android.googlequicksearchbox") ;

58 }

59 1)

60 .show () ;

61 }

20

	Introduction
	Background & Related Work
	AppForge
	Android App Development Task Formulation
	Construction of AppForge
	Benchmark Suite and Data Statistics
	Key Features of AppForge

	Evaluations
	Evaluation Setup
	Main Results
	Performance of Advanced Coding Agents and Reasoning Models
	Analysis of Development Challenges

	Conclusion
	Detailed Discussion of Related Work
	Details of AppForge
	Task Instances
	Statistics of Seed Apps.
	Evaluation Metric Calculation
	Implementation details of AppForge
	Ranking Criteria of Apps in F-Droid
	Prompt Examples

	Detailed Experiment Results
	Setup
	Detailed Statistics
	Full Example of Defensive Programming by GPT-5.

