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Abstract

Diffusion models have found widespread adoption in various areas. However,1

sampling from them is still slow because it involves emulating a reverse stochastic2

process with hundreds-to-thousands of neural network evaluations. Inspired by the3

recent success of neural operators in accelerating differential equations solving, we4

approach this problem by solving the underlying neural differential equation from5

an operator learning perspective. We examine probability flow ODE trajectories6

in diffusion model and observe a compact energy spectrum that can be learned7

efficiently in Fourier space. With this insight, we propose diffusion Fourier neural8

operator (DFNO) with temporal convolution in Fourier space to parameterize the9

operator that maps initial condition to the solution trajectory. DFNO can apply to10

any diffusion models and generate high-quality samples in one step. Our method11

achieves the state-of-the-art clean FID of 5.9 (legacy FID 4.72) on CIFAR-10 using12

one network evaluation.13

1 Introduction14

Diffusion models, also known as score-based generative models, have emerged as a powerful genera-15

tive modeling framework in various areas. They have achieved state-of-the-art (SOTA) performance16

in many applications including image generation [1, 2, 3, 4], molecule generation [5], audio synthesis17

[6, 7] and model robustness [8, 9]. However, sampling from diffusion models is still slower than18

other generative models such as generative adversarial networks (GAN) [10] by several orders of19

magnitude. Accelerating the sampling process of diffusion models remains challenging but important20

in applying diffusion models in many downstream tasks. Many studies have worked on the fast21

sampling of diffusion models which can be summarized into two categories.22

Training-free sampling methods focus on solving the reverse stochastic differential equation23

(SDE) or the corresponding probability flow ordinary differential equation (ODE) from a numerical24

perspective, which can be applied to any trained score model without extra training. SDE-based25

samplers often have better sample quality than ODE-based samplers but they are much slower and26

require hundreds if not thousands of function evaluations [1, 11]. ODE-based methods are fully27

deterministic and allow for larger steps in discretization. Existing studies work on reducing the28

approximation error with less steps [1, 11, 12, 13, 14, 15, 16] but still need more than 10 function29

evaluations to generate high-quality samples.30

Training-based sampling methods require extra training including knowledge distillation [17, 18]31

and learning the noise schedule [19, 20]. Training-based methods work in the few-step regime with32

less than 10 steps. The current SOTA progressive distillation [18] reduces the number of steps down to33

4-8 without losing much sample quality. However, it requires progressive training from fine resolution34

to coarse resolution. It also breaks in the limit of one function evaluation. DDGAN [21] achieves35

Under review at the NeurIPS 2022 Workshop on Score-Based Methods. Do not distribute.



similar results as progressive distillation by leveraging conditional GAN to model the denoising36

distributions or equivalently the reverse stochastic process, allowing for large denoising steps. LSGM37

[2] accelerates sampling by encoding the data distribution into a smooth latent distribution that is38

close to a Gaussian prior and obtains better image quality with 20 to 100 steps.39

Our contributions. Inspired by the recent success of neural operators [22, 23, 24] in solving40

differential equations, we propose to solve the probability flow ODE of diffusion models from an41

operator learning perspective. We examine the characteristics of the ODE trajectories sampled from42

trained diffusion models [11, 25] and observe a compact energy spectrum. With this observation, we43

propose a diffusion Fourier neural operator (DFNO) with temporal convolution in the Fourier space44

to obtain probability flow trajectories efficiently.45

• DFNO only takes one function evaluation to sample and has better generalization ability46

than distillation methods. With the trajectory information guiding the sampling, DFNO47

achieves the state-of-the-art FID of 5.9 for CIFAR-10 in the one-function-evaluation setting.48

• Temporal convolution blocks in the Fourier space can learn a trajectory as a function of49

time in the Fourier space efficiently. DFNO inherits the discretization invariant property50

from the Fourier neural operator [23] over the temporal dimension. One can train DFNO51

with high-resolution in time for stronger supervision and sample at low-resolution for fast52

inference.53

• Compared to the current SOTA progressive distillation [18], DFNO is easier to train and not54

limited to specific time step scheme. This allows us to learn from a large class of ODE-based55

samplers including training-based methods.56

2 Background57

We consider the general class of score-based generative models in a unified continuous-time frame-58

work proposed by [11], which includes different variants of diffusion models [26, 25]. We will use59

score-based models interchangeably with the diffusion models. Suppose the data distribution is pdata.60

The forward pass is a diffusion process {x(t)} starting from 0 to T can be expressed as61

dx = f(x, t)dt+ g(t)dw, (1)

where w is the standard Wiener process, and f(x, t) : Rd → Rd and g(t) : R → R are the drift62

and diffusion coefficients respectively. Diffusion models choose f, g such that x(0) ∼ pdata and63

x(T ) ∼ N (0, I). Song et al. [11] show that the following probability flow ODE produces the same64

marginal distributions pt(x):65

dx = f(x, t)dt− 1

2
g(t)2∇x log pt(x)dt. (2)

The sampling process eventually becomes solving the probability flow ODE 2 from T to 0 given66

the initial condition x(T ). Furthermore, f(x, t) often has the affine form f(x, t) = f(t)x, where67

f : R → R. We can simplified the ODE 2 into a semi-linear ODE. Integrating both sides over time68

gives the explicit form of solution for any t < s:69

x(t) = ϕ(t, s)x(s)−
∫ t

s

ϕ(t, τ)
g(τ)2

2
∇x log pτ (x)dτ, (3)

where ϕ(t, s) = exp
(∫ t

s
f(τ)dτ

)
. The ODE is often solved using numerical techniques such as70

Euler discretization [27] or multistep methods [14]. The score function ∇x log pt(x) is usually71

parameterized by ϵ̂θ(xt) ≈ −σt∇x log pt(x), where σt is the noise schedule [11, 25].72

Neural operators [23, 22] are designed to solve the differential equations fast by learning a parametric73

map between two Banach spaces. They are constructed as a stack of kernel integration layers where74

the kernel function is parameterized by learnable weights. More details are in appendix A.2.75
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(a) Power spectrum of the ODE trajectories
sampled from "DDPM++ cont. (VP)" model
trained by [11] on CIFAR10. The mean is
computed over all pixel locations and chan-
nels of randomly generated trajectories. Most
power concentrates in the ≤ 5 Hz regime.
The shaded region represents maximum and
minimum power.

(b) Architecture of DFNO. Blue blocks are commonly used
modules in diffusion models. The temporal convolution block
first approximates the Fourier transform over temporal dimen-
sion via fast Fourier transform. It then multiply it by the filter
R ∈ Ck×dout×din and do inverse Fourier transform. The
shortcut connection restores the high-frequency information
without extra cost. Temporal convolution blocks are intro-
duced after every attention block.

Figure 1: Compact spectrum and DFNO architecture design.

3 Learning the trajectory as a function of time76

3.1 Problem statement77

Given any initial condition x(T ) ∼ N (0, I), our goal is to learn a neural operator that predicts the78

probability flow trajectory {x(t)}0s with time flowing from s to 0 defined in equation 3, where the end79

point x(0) is the data. Suppose the time domain D = [0, s], s > 0. Let A be the finite-dimensional80

space of initial condition, U = U(D;Rd) denote the space of the target continuous time functions81

with output value in Rd. From the exact solution x(t) in equation 3, we know the unique solution82

operator G∗ : A → U exists and is a weighted integral operator of the score function. We build a83

neural operator Gθ parameterized by θ to approximate the solution operator G∗ by minimizing:84

min
θ

ExT∼N (0,I)L (Gθ (xT )−G∗ (xT )) , (4)

where L : U → R+ is some loss functional such as Lp-norm for some p ≥ 1.85

3.2 Compact power spectrum86

Learning the solution operator G∗ is a challenging task in general. However, we observe that the87

trajectory of probability flow ODEs has a compact energy spectrum over the time dimension and thus88

can be learned efficiently in the Fourier space. Figure 1a visualizes the energy spectrum of ODE89

trajectories sampled from the diffusion model "DDPM++ cont. (VP)" trained by [11] on CIFAR10.90

Appendix A.1 explains the details of the power spectrum.91

3.3 Temporal convolution block in Fourier space92

Based on the special characteristic of the ODE trajectory and the integral expression of the exact ODE93

solution in equation 3, we build our temporal convolution block with Fourier integral operator K to94

efficiently model the trajectory. Given an integrable function u : D → Rdin , the Fourier transform95

operator F is defined as96

(Fu)j (k) =

∫
D

uj(t) exp (−2πikt) dt, (5)

for j = 1, . . . , din, where i is the imaginary unit, k is the frequency. The Fourier integral operator97

Kϕ parameterized by ϕ is defined as98

(Kϕu) (t) = F−1 (Rϕ · (Fu)) (t) =

∫
D

(F−1Rϕ)(t)u(t)dt, (6)
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where Rϕ ∈ ℓ2(Z;Cdout×din) is the Fourier transform of a kernel function parameterized by ϕ that we99

learn from data, and the second equality holds by the convolution theorem. Given an input function100

u, the temporal convolution layer P is defined as101

(Pu)(t) = u(t) + σ ((Kϕu) (t)) , (7)

where σ is a point-wise activation function. Figure 1b demonstrates the implementation details of the102

temporal convolution block.103

3.4 Architecture of DFNO104

As demonstrated in Figure 1b, the overall architecture of DFNO is similar to the UNet structure that105

is commonly used in diffusion models. We introduce temporal convolution after every attention block.106

Suppose the time resolution is M . The input noise is repeated M times in the first block and each107

copy will be mixed with the corresponding time embedding in the ResNet block. More details are108

provided in the appendix A.3.109

4 Experiments110

We use the Frechet inception distance (FID) [28] to evaluate the quality of generated images. FID is111

computed between 50,000 generated images and CIFAR10 train set with the clean-fid library [29].112

We use the checkpoint of "DDPM++ cont. (VP)" model by [11] trained on CIFAR10 [30]. 1 million113

trajectories are sampled following the corresponding probability flow ODE of the variance preseving114

(VP) SDE to train DFNO. The We use L1-norm as the loss functional. Table 1 compares our results115

against the recent training-free and training-based methods. Our method is clearly the best in the116

one-function-evaluation setting, even better than most training-free methods with 10 steps.117

Method Model evaluations FID score

DFNO (ours) 1 5.92
Knowledge Distillation [17] 1 9.36
Knowledge Distillation (our architecture) 1 8.06

Progressive Distillation [18] 1 9.12
2 4.51
4 3.00

GGDM + PRED + TIME [20] 5 13.77
10 8.23

DDIM [27] 10 13.36
20 6.84

DPM-solver-2 [15] 12 5.28
DPM-solver-3 [15] 12 6.03

3-DEIS [14] 5 16.09
10 4.17

Table 1: Comparison of fast sampling methods on CIFAR-10 for diffusion models in the literature.

Ablation study The results of our ablation study are reported in the Table 2. We observe that 4-step118

is much better than 1-step. Quadratic time step scheme and 1/
√
σt loss weighting also improve the119

sample quality. The setting of each ablation is explained in appendix A.4.120

5 Conclusion121

In this paper, we propose diffusion Fourier neural operator (DFNO), a training-based fast sampling122

method for diffusion models. DFNO leverages the compact power spectrum characteristic of the123

probability flow ODE trajectory and models it efficiently with Fourier integral operator. Experiments124

show that our method archieves the best performance in one-function-evalution setting.125
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A Appendix201

A.1 Energy spectrum202

The discrete-time Fourier transform of the signal x(t) with period T is given by203

Xj =

N∑
i=1

x(ti) exp

(
−2π

T
jiti

)
, (8)

where ti = iT
N . j

T is the frequency. j is called the frequency mode. Let ∆ = 1
N be the time step. The204

spectrum is defined as the product of Fourier transform of x with its conjugate:205

Sj =
2∆2

T
XjX

∗
j , (9)

where X∗
j is the complex conjugate. In practice, the statistics are computed over all pixel locations206

and channels of randomly generated trajectories. T = 1 and the sampling frequency is 1000 Hz to207

avoid aliasing. We observe that most power concentrates in the regime where the frequency mode is208

less than 5.209
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A.2 Background: neural operators210

Let A and U be two Banach spaces and G : A → U be a non-linear map. Suppose we have a finite211

collection of data {ai, ui}Ni=1 where ai ∼ µ are i.i.d. samples from the distribution µ supported on A212

and ui = G(ai). Neural operators aim to learn Gϕ parameterized by ϕ to approximate G from the213

observed data by minimizing the empirical risk given by214

min
ϕ

Ea∼µ∥G(a)−Gϕ(a)∥U ≈ min
ϕ

1

N

N∑
i=1

∥ui −Gϕ(ai)∥U . (10)

The architecture of neural operators is constructed as a stack of kernel integration layers where the215

kernel function is parameterized by learnable weights.216

A.3 Architecture detail217

The overall architecture is similar to the UNet structure used in diffusion models. On top of that,218

we introduce temporal convolution after each attention layer and replace all the Conv2d layers219

with Conv3d. So the intermediate feature map will have an additional time dimension compared to220

standard UNet. Suppose the output time resolution is M . The input noise has a shape of (B,C,H,W )221

where B is the batch size, C is the number of channels, H,W are the height and width. In the first222

convolution block, the input noise will be repeated M times as the initial trajectory. We add the time223

embeddings of M steps in each ResNet block.224

A.4 Ablation detail225

For all results in the same column, we keep all the other settings the same except for the control226

variable. The left column reports the ablation on the temporal resolution with default setting of227

uniform time steps and 1/
√
σt loss weighting. The middle column compares uniform and quadratic228

time step scheme with the default setting of resolution 4 and 1/
√
σt loss weighting. The right column229

compares different loss weightings with the default setting of resolution 4 and uniform time steps.

Resolution FID score Time step scheme FID score Loss weighting FID score

1 7.74 uniform 6.21 uniform weights 7.8

4 6.21 quadratic 5.92 1/
√
σt 7.2

6 6.17

Table 2: Left: ablation on the temporal resolution; Middle: ablation on the time step scheme; Right:
ablation on the loss weighting. The numbers are clean FID score [29].

230

A.5 Model complexity and inference Time231

"DDPM++cont. (VP)" architecture has 106,632,579 parameters. The DFNO with resolution 4 has232

114,562,435 parameters. The computation cost of one model evaluation of DFNO is 2 times as that233

of the standard score model when the batchsize is 2 on 16G-V100.234
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