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ABSTRACT

Pre-trained models exhibit strong generalization to various downstream tasks.
However, given the numerous models available in the model hub, identifying the
most suitable one by individually fine-tuning is time-consuming. In this paper, we
propose SwiftTsS, a swift selection framework for time series pre-trained models.
To avoid expensive forward propagation through all candidates, SwiftTS adopts
a learning-guided approach that leverages historical dataset-model performance
pairs across diverse horizons to predict model performance on unseen datasets. It
employs a lightweight dual-encoder architecture that embeds time series and can-
didate models with rich characteristics, computing patchwise compatibility scores
between data and model embeddings for efficient selection. To further enhance
the generalization across datasets and horizons, we introduce a horizon-adaptive
expert composition module that dynamically adjusts expert weights, and the trans-
ferable cross-task learning with cross-dataset and cross-horizon task sampling
to enhance out-of-distribution (OOD) robustness. Extensive experiments on 14
downstream datasets and 8 pre-trained models demonstrate that SwiftTS achieves
state-of-the-art performance in time series pre-trained model selection. The code
and datasets are available at https://anonymous.4open.science/t/SwiftTS-395C.

1 INTRODUCTION

Time series forecasting (Wu et al.l 2023} [Nie et al., 2023}, |Chen et al.| |2024) is a fundamental task
with broad applications in finance, weather prediction, and energy management. Inspired by the
success of pre-trained models in natural language processing (Hurst et al., | 2024; |Yang et al.| 2025)
and computer vision (Dosovitskiy et al.l 2021)), numerous time series foundation models have been
developed (Das et al., 2024). Pre-trained on large and diverse datasets, these models acquire trans-
ferable knowledge that can be adapted to downstream tasks through fine-tuning, eliminating the
need for training from scratch (Kumar et al.} 2022} Jia et al., |2022; Dettmers et al.| 2023).

However, no single pre-trained model excels across all tasks (L1 et al., 2025)), making model selec-
tion for time series forecasting challenging. While fine-tuning all candidates provides ground-truth
performance, it is often computationally infeasible for large model pools. Therefore, developing
efficient methods to identify the optimal pre-trained model is crucial for real-world deployment. Ex-
isting approaches, primarily designed for image models, are feature-analytic methods that analyze
features extracted from the target dataset using pre-trained models: some assess feature-task align-
ment via statistical metrics (Nguyen et al.,2020), while others investigate intrinsic properties of the
feature space (Pandy et al., |2022; [Wang et al.,|2023). Only a few are learning-based (Zhang et al.,
2023)), learning similarity functions between data and model representations for model selection.
Despite recent advances, several challenges remain unresolved for time series pre-trained models:

Challenge 1: Oversight of model heterogeneity and time series data characteristics. Current
time series pre-trained models are typically heterogeneous in both architecture and training objec-
tives, unlike the standardized feature extractors common in vision models. This diversity hinders
unified feature extraction and limits the applicability of many existing methods. Moreover, extract-
ing features also requires costly forward passes through each model, leading to substantial com-
putational overhead as the model hub or datasets scale. Some learning-based methods attempt to
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mitigate this cost via a shared feature extractor, but often sacrifice performance. In addition, time
series data exhibit temporal dependencies and sequential patterns that are critical for accurate fore-
casting but largely ignored in current approaches. Valuable prior knowledge and intuitive insights,
such as “models generally perform better when the downstream domain aligns with the pre-training
domain,” are also rarely incorporated into current model selection criteria.

Challenge 2: Limited generalization in cross-
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horizons, as in Figure |1} thereby limiting their generalization across varying forecasting ranges.

Figure 1: SwiftTS employs an efficient learning-
guided selection framework for time series fore-
casting, enabling horizon-specific selection and
improved cross-domain generalization via multi-

To address Challenge 1, we propose an efficient learning-guided selection framework that avoids
inconsistent feature extraction and reduces forward propagation costs. We collect the performance
of various dataset-model pairs across different horizons as training data to learn how models per-
form on unseen datasets. The framework is tailored to time series characteristics and incorporates
prior knowledge to enhance selection. The data encoder segments the input series into patches
and generates patch-level embeddings that capture local temporal patterns and preserve sequen-
tial dependencies. The model encoder incorporates meta-information, topological structure, and
functionality to construct a comprehensive representation of candidate models. By employing a
lightweight dual-encoder architecture, our framework independently learns informative embeddings
for both downstream datasets and candidate models. Finally, patch-level cross-attention assesses the
fine-grained compatibility score between them, enabling accurate and efficient model selection.

To address Challenge 2, we propose a generalizable multi-task meta-learning strategy. To equip
our framework with the multi-task flexibility to accommodate varying horizons, we incorporate a
horizon-adaptive expert composition. This design dynamically assigns adaptive weights to multiple
experts based on the target forecasting horizon, enabling horizon-specific ranking predictions. To
further enhance generalization across both domains and horizons, we propose transferable cross-
task learning to improve robustness in out-of-distribution (OOD) scenarios. We introduce a meta-
learning paradigm with two task sampling strategies: (1) cross-dataset sampling, where tasks are
drawn from different datasets to encourage inter-domain generalization, and (2) cross-horizon sam-
pling, where tasks are constructed using varying forecasting horizons to improve horizon-level
adaptability. By meta-learning from tasks across diverse datasets and horizons, our framework
learns transferable knowledge that captures both task-specific characteristics and shared cross-task
patterns. This ultimately improves its performance in real-world applications.

To the best of our knowledge, this is the first model selection method for time series pre-trained
models. The contributions are summarized as follows:

e We propose a swift learning-guided framework that leverages a dual-encoder to embed
datasets and models, computing patchwise compatibility scores for model selection.

e We introduce a multi-task meta-learning strategy with a horizon-adaptive expert composi-
tion to enhance generalization across datasets and forecasting horizons.

e Extensive experiments on benchmarks comprising 14 real-world downstream datasets and
8 pre-trained models show that our method achieves state-of-the-art performance in pre-
trained model selection for time series forecasting.
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2 RELATED WORK

Time series Pre-trained Model. Existing models can be broadly categorized into three main archi-
tectures: (1) Encoder-only models: MOIRAI (Woo et al.l 2024) flattens multivariate sequences into
unified sequences for Transformer pre-training, Moment (Goswami et al.,|[2024) employs masked re-
construction to train a versatile Transformer, and UniTS (Gao et al.,|2024) introduces task tokeniza-
tion and dynamic self-attention across temporal and variable dimensions. (2) Decoder-only models:
TimesFM Das et al.| (2024) and Timer |[Liu et al.|(2024)) adopt GPT-style designs for next-token pre-
diction, achieving strong zero-shot performance. (3) Encoder-decoder models: TTM Ekambaram
et al.| (2024) leverages MLP-Mixer blocks with multi-resolution sampling to capture cross-channel
patterns. ROSE (Wang et al., [2024) enhances generalization through decomposed frequency learn-
ing and time series register components. Chronos (Ansari et al., [2024) adapts the TS (Raffel et al.}
2020) language foundation model to time series by discretizing data via binning and scaling. As the
number and variety of time series pre-trained models continue to grow, efficiently and accurately
selecting the most suitable model from a diverse model hub remains a challenge.

Pre-trained Model Selection. Pre-trained model selection aims to quickly identify the best model
for downstream tasks from a model hub. Existing methods fall into two broad categories: (1)
Feature-analytic methods analyze features extracted by pre-trained models from the target dataset.
Early approaches, such as NCE (Tran et al., 2019) and LEEP (Nguyen et al.| [2020), leverage sta-
tistical metrics but depend on pre-trained classifiers, limiting their applicability to self-supervised
models. LogME (You et al.l 2021) overcomes this by estimating the maximum label marginal-
ized likelihood. RankME (Garrido et al.||2023) posits that models with higher feature matrix ranks
exhibit superior transferability. Other methods focus on class separability during the fine-tuning
process. GBC (Pandy et al., 2022) measures the degree of overlap between pairwise target classes
based on extracted features. SFDA (Shao et al) [2022) enhances class separability by projecting
features into a Fisher space. Etran (Gholami et al., 2023)) introduces an energy-based transferability
metric, while DISCO (Zhang et al.l |2025) proposes a framework for evaluating pre-trained models
based on the distribution of spectral components. (2) Learning-based methods aim to predict model
transferability through a learning framework. Model Spider (Zhang et al.,|2023)) learns model repre-
sentations and a similarity function by aligning them with downstream task representations, enabling
model selection via the learned similarity. Despite the diversity of existing methods, they often rely
on costly feature extraction and generalize poorly across domains and forecasting horizons. To
address these issues, we propose SwiftTS, a swift model selection framework via multi-task meta-
learning. It infuses prior knowledge and adopts a learning-guided paradigm, avoiding expensive
feature analysis used in prior work while improving OOD robustness.

3 PROBLEM FORMULATION

Given a model hub Z = {¢;} | of K time series pre-trained models and a target dataset D =
{xi,y;}; with N samples, the goal is to select the model that achieves the best performance
on the time series forecasting task. Brute-force fine-tuning of all models yields the ground-truth
performances {rj}# | for the model hub, but at prohibitive computational cost. To avoid this,
model selection methods estimate transferability without fine-tuning by assigning each model ¢}, an
assessment score 7'y, where a larger 7, indicates stronger expected performance:

The f is a scoring function that measures the compatibility between the model ¢, and the target
dataset D under the forecasting horizon H. Ideally, the predicted scores {4 }2_ | should strongly
correlate with the fine-tuning results {7 } /=_,, enabling the selection of the most transferable model.

4 METHODS

We propose an efficient framework for pre-trained model selection in time series forecasting via
multi-task meta-learning (Figure [2). The learning-guided selection framework adopts a dual-
encoder architecture: a temporal-aware data encoder captures sequential patterns by segmenting
time series into patches to generate data embeddings, while a knowledge-infused model encoder
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incorporates prior knowledge about models to construct rich model embeddings. Then, we employ
patch-level cross-attention to evaluate fine-grained compatibility scores between them. To facilitate
multi-task forecasting and enhance generalization, we further adopt a generalizable multi-task
meta-learning strategy: a horizon-adaptive expert composition module adaptively assigns weights
to experts based on the target horizon, and the transferable cross-task learning with cross-dataset and
cross-horizon task sampling improves robustness under OOD scenarios. The framework is trained
on a meta-dataset of N samples, Dyera = {D%, Z, H', 7'} |, where the i-th sample includes a
downstream dataset D?, a shared model hub Z, the horizon H® and the corresponding ranking scores
7% of the model hub. The ranking scores reflect the relative performance of models in Z on dataset
D' under horizon H. This meta-dataset allows the framework to learn how models perform on
various datasets, enabling accurate performance prediction and model selection on unseen datasets.

4.1 LEARNING-GUIDED SELECTION FRAMEWORK

Temporal-Aware Data Encoder. In time series modeling, capturing temporal dependencies and
sequential patterns is essential for accurate forecasting. Relying solely on meta-information of time
series makes it difficult to represent the fine-grained temporal structure. To effectively model tem-
poral characteristics, we follow a well-established design and divide the time series X € RE*C
with L time steps across C' variates into patches of size S, yielding P = |L/S] patches. Each

patch X, € RS* is linearly projected into a d-dimensional embedding X, € R**%, forming patch

embeddings Fpucn € RPxd To preserve temporal order, the positional encodings Epes € RPx>d
following (Vaswani et al.,[2017) are added: Finp = Epach + Epos-

The resulting embeddings L, are fed into a self-attention module to capture long-range dependen-
cies, where W5 € Raxd, Wit e R4*4 and Wyt e R%*? are the learnable projection matrices:

Eyq = SA(Einp) = softmax ( W5 (EngWi)" /\/di ) Eung W3 @)

Downstream datasets are often large, making full-dataset encoding costly and limiting representation
diversity. We address this by sampling multiple subsets of B time series and aggregating their
attention outputs Ey, into Eyy, € RE*PX4 The multiple-subset sampling strategy for each dataset is
applied during the construction of the meta-dataset Dp,e,. Once the sampling is completed, the data
encoder receives a fixed set of subsets across runs. Mean pooling along the batch dimension yields a
compact data embedding E; € R”*4 that captures shared temporal patterns within the subset while
remaining robust to sample-level variability. Moreover, by sampling multiple subsets from each
original dataset, the resulting subsets collectively provide a more comprehensive representation of
the overall dataset. Since model selection is conducted based on the aggregated compatibility scores
across these diverse subsets rather than a single random subset, the process more faithfully reflects
the dataset-level compatibility and effectively balances intra-dataset variance. The resulting E; then
serves as an expressive summary of downstream tasks to compute compatibility scores with model
embeddings for model selection.

Knowledge-Infused Model Encoder. Directly embedding a model with millions of parameters
and complex structure is challenging. To characterize a pre-trained model ¢, we infuse three key
components: meta-information, topological structure, and functionality. This design aligns with hu-
man intuition in model selection (e.g., “choose a larger model for complex tasks™), which has been
largely overlooked in existing methods. The meta-information embedding v* € R1*9a encodes
prior knowledge from the pre-training to guide model selection. We consider: (1) Model architec-
ture: Categorized into encoder-only, decoder-only, and encoder-decoder, reflecting structural design
and training characteristics. (2) Model capacity: Estimated by parameter count, indicating ability
to capture complex patterns. (3) Model complexity: Measured in Giga Multiply-Accumulate op-
erations (GMAGCs). Generally, higher complexity allows the model to capture richer patterns. (4)
Model dimension: The hidden dimension size across inputs, states, and outputs. Larger dimen-
sions enable the model to learn more expressive and detailed information. (5) Pre-trained domain:
Models pre-trained on similar domains typically transfer better. More details of these five types of
meta-information for each model are provided in Appendix [A23]

The topological structure provides a detailed view of a model’s architecture and inductive biases.
Structural information, such as layer depth, data flow, and connectivity reveals how models process
inputs, extract features, and make predictions. We first represent the architecture of the model ¢, as a
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Figure 2: The framework of SwiftTS, consisting of (1) a temporal-aware data encoder, (2) a
knowledge-infused model encoder, (3) patchwise cross-attention, (4) a horizon-adaptive expert com-

position module, and (5) the transferable cross-task learning.
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directed acyclic graph (DAG), denoted by Gy, = (Vi, Ex, Ak ), where Vj, and E}, denote vertices and
edges, and Ay, represents the node attributes. By leveraging the chain rule and gradient propagation
maps, we trace how data flows through the network, thereby identifying the operations applied to
the data and the directed paths along which the data travels. In this DAG, each node corresponds to a
computational operation performed within the network (e.g., normalization, activation). The edges
correspond to the directed paths along which the data are propagated, reflecting the computational
dependencies and information flow within the model. Once the DAG is constructed, we employ
graph2vec (Narayanan et al, [2017; [Rozemberczki et al.} 2020), an unsupervised graph embedding
method inspired by doc2vec (Le & Mikolov}2014) to obtain the topological embedding vf € R* 4,

The functionality reflects how pre-trained parameters encapsulate the biases and knowledge ac-
quired during pre-training. Since directly embedding millions of parameters is infeasible, we adopt
a functional embedding inspired by model distillation, which characterizes a model through its
input-output behavior. The intuition is simple: models with different architectures or parameters
implement distinct functions and thus are expected to produce distinguishable outputs on identical
inputs. Although using real or synthetic time-series inputs can reflect how a model responds to the
real-world time series, it causes the resulting functional embedding to inadvertently inherit biases or
domain-specific priors from the chosen probing data. For example, a model would yield a more fa-
vorable embedding than others simply because the probing inputs are similar to its pre-trained data,
which is unfair to other models. In contrast, random Gaussian noise serves as a neutral stimulus,
which enables us to observe the model’s intrinsic input-output behavior without imposing external
assumptions. Therefore, we feed a fixed set of Gaussian random noise inputs € ~ N(0, I) into each
model ¢y, and record the outputs v* = ¢y (¢) as its functional embedding, where v¥ € R1*de.

Finally, we integrate the meta-information embeddings v, € R¥*%  the topological embeddings
vy € REX4 and the functional embeddings v, € RExde of the model hub by concatenation, then

project the result through a linear transformation W,,, € R?*(datditde) and a nonlinear activation
o to generate the final model embedding E,,, € RE*4:

3)

E,, = a([va,vt,vC]Wrz)

Patchwise Compatibility Score. To facilitate a fine-grained and context-aware comparison between
downstream datasets and pre-trained models, we compute a compatibility score using patchwise
cross-attention (CA). Unlike global similarity measures, patchwise cross-attention captures local-
ized correspondences by assessing each data patch’s contribution to overall compatibility. Specifi-
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cally, the model embedding F,, as the query, and the data embedding F; as the key and value:
Eea = CA(Ep, Ey) = softmax (Emwg; (Ewen” ) \/dk) B, &)

where W&o € Rxd, Wi e Rdxd, Wi e R4%d gre projection matrices. This mechanism enables
the model to focus on semantically meaningful regions in the data that are most relevant to the char-
acteristics of the model. Finally, a multi-layer perceptron (MLP) produces the ranking prediction,
where # € R¥ denotes the predicted ranking scores for K candidate pre-trained models:

7 = MLP(E,,) )
Learn-to-select Optimization. During training, we adopt a joint objective combining ranking reg-

ularization and prediction accuracy. The ranking loss enforces correct relative orderings among
pre-trained models, while the prediction loss (MSE) ensures precise performance estimation:

K K
Loow = — Y _pr(F)log qe(r) +X- > e — 713 ©6)
k=1 k=1
ranking loss prediction loss

where 7 and r denote the predicted and ground-truth ranking scores, py(#) and g (r) are their
softmax-normalized forms of the k-th model, and #, 7 are the corresponding individual scores.

4.2 GENERALIZABLE MULTI-TASK META-LEARNING

Horizon-Adaptive Expert Composition. Time series models often perform inconsistently across
forecasting horizons, leading to varying rankings. To equip our framework with the multi-task
flexibility to accommodate varying horizons, we propose a horizon-adaptive expert composition
module that dynamically integrates specialized experts for different horizons. A lightweight router
network assigns softmax-normalized weights to G experts based on the target horizon H:

w = softmax(Router(H; 6)) 7

where 6, denotes the parameters of the router, and w € R the expert weights. Each expert,
implemented as an MLP, processes the cross-attention output Eg, to generate the final prediction
through a linear combination of the expert outputs to replace Equation (5):

G
7= wy MLPy(E) ®)
g=1

This design flexibly adapts to diverse horizons without the need for retraining, enhancing both pa-
rameter sharing across tasks and improving computational efficiency.

Transferable Cross-Task Learning. Existing methods often struggle to generalize to datasets that
deviate from the pre-training distribution, posing a critical issue in time series forecasting, where
performance is also sensitive to the forecasting horizon. To achieve robust model ranking and selec-
tion, we target two OOD scenarios: (1) generalizing model rankings from seen to unseen datasets,
and (2) transferring performance prediction across different horizons.

To enable transferable cross-task learning, we incorporate meta-learning into our framework.
Given the constructed meta-dataset Dyera = {D*, Z, H', 7'} |, we sample a set of diverse tasks
T ={T1, T2, ..., Tn}, where each task is divided into a support set and a query set. During train-
ing, as shown in Figure [3] the support set is used to simulate fast adaptation to new conditions
without updating the parameters, referred to as the inner-loop update. Subsequently, the query set
evaluates the model’s performance after adaptation and involves actual parameter updates, con-
stituting the outer-loop update. To explicitly promote cross-domain and cross-horizon general-
ization, we introduce two task sampling strategies: (1) cross-dataset sampling, where tasks and
their support and query sets are drawn from different datasets to promote generalization across do-
mains. Specifically, the support set is constructed by first randomly selecting several datasets and
then obtaining corresponding multiple subsets from each selected dataset to form inputs for the
data encoder. The query set is generated in a similar manner but exclusively from a disjoint set
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of datasets. (2) cross-horizon sampling, where tasks and their support and query sets are con-
structed from varying forecasting horizons to enhance adaptability at the horizon level. For ex-
ample, the support set might include samples with horizons {336, 720}, whereas the query set
is sampled from different horizons, such as {96, 192}. In practice, downstream datasets and tar-
get forecasting horizons often exhibit greater diversity. To mimic more realistic and challeng-
ing conditions, we combine the above two strategies. For instance, in a single meta-training
task, the support set may be sampled from three datasets and two forecasting horizons, while
the query set is then randomly sampled from a disjoint collection of these datasets and horizons.
The design of these strategies ensures that the '

support and query sets are drawn from dis- 0 AL, | Meialeaming Domwin
Supp quety set Jrom €S ' e
joint datasets and horizons, preventing distri- AL, o ' Los  Domain2
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o, . . . 1
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Figure 3: Parameter update process in cross-task
learning (top-left), and sampling strategies for

- cross-horizon and cross-dataset tasks (bottom).
query set. These gradients are subsequently used

to update the initial model parameters in a direction that improves generalization across tasks. For-
mally, let 6 represent the initial parameters of the model. For a given task 7;, we compute the
task-specific parameters ¢ via a few gradient steps on the support set:

0; = 0 — aVgLspp(Ti; 0) 9

where « is the inner-loop learning rate and L, (755 0) denotes the loss function evaluated on the
support set of task 7;, as defined in Equation . The adapted parameters 6} are then evaluated
on the query set to compute the meta-objective that measures how well the model generalizes after
adaptation: Lquery (755 0;). This loss is also computed as defined in Equation @ Finally, the model
parameters 6 are updated using the meta-gradient across all tasks:

0+ 60—~V Z ﬁquery(ﬁ? 97{)a
Ti

(10)

where + is the outer-loop learning rate. By repeatedly performing the two-step optimization process,
which consists of inner-loop adaptation and outer-loop generalization, the model learns parameters
that enable rapid adaptation to new domains or forecasting horizons with minimal data and compu-
tational resources. Please refer to Algorithm|I]for the overall algorithmic process.

5 EXPERIMENTS

5.1 EXPERIMENTAL DESIGN

Datasets. We evaluate SwiftTS on 14 public time series forecasting datasets across diverse do-
mains, including electricity (ETTh1/ETTh2 (Zhou et all 2021), ETTmI/ETTm2 (Zhou et al.,
2021)), Electricity (Trindade, [2015)), energy (Solar (Lai et al., [2018)), Wind (Li et al.| 2022)), traffic
(PEMSO8 (Song et al., [2020), Traffic (Wu et al., 2021))), environment (Weather (Wu et al.| |2021)),
AQShunyi (Zhang et al., |2017)), natural (ZafNoo (Poyatos et al., |2021), CzeLan (Poyatos et al.,
2021))), and economics (Exchange (Lai et al.,[2018))). Dataset statistics are detailed in Appendix@
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Table 1: Method comparison of the weighted Kendall’s 7, across 14 datasets and their average. The
best and second-best results are in bold and underlined. Our method achieves the best overall 7.

Horizon RankME LogME Regression Etran  DISCO  AutoForecast Model spider  zero-shot SwiftTS

H=96 0.292 0.257 0.257 0287  0.213 0.243 0.309 0.091 0.464
ETThi H=192 0.182 0.014 0.104 0.147  0.059 0.233 0.386 -0.058 0.479
H=336 0.161 0.137 0.120 0.158  -0.036 0.232 0.321 -0.126 0.436
H=720 0.086 0.196 0.108 0.147  0.019 0.329 0.334 0.241 0.543
H=96 0.116 0.089 0.078 0256 0.156 0.296 0.398 0.211 0.436
ETTh2 H=192 0.101 -0.150 -0.059 0.333  -0.165 0.197 0.451 0.430 0.330
H=336 -0.011 -0.134 -0.083 0269  -0.154 0.185 0.389 0.256 0.219
H=720 0.053 -0.014 -0.069 0.106  0.188 0.246 0.345 0.474 0.351
H=96 0.005 0.126 0.295 0.691  -0.407 -0.243 0.734 0.063 0.501
ETTml H=192 0.005 0.079 0.079 0.552  -0.406 -0.243 0.567 -0.040 0.501
H=336 -0.529 -0.048 -0.048 0.099  0.191 0.075 0.590 -0.276 0.652
H=720 -0.479 -0.027 -0.027 0.173  0.166 0.169 0.266 -0.041 0.269
H=96 0.140 0.080 0.334 0913  0.613 -0.164 0.667 0.285 0.847
ETTm2 H=192 0.128 -0.020 0.164 0.568  0.520 -0.243 0.696 0.319 1.000
H=336 -0.118 -0.021 0.159 0.700 0473 -0.304 0.698 0.727 0.663
H=720 -0.068 0.050 0.163 0.485  0.165 -0.155 0.356 0.078 0.534
H=96 -0.037 0.317 0.317 0.559  -0.026 -0.060 0.311 0.162 0.361
Electricity H=192 0.043 0.306 0.306 0.685  -0.585 -0.161 0.549 0.093 0.240
H=336 -0.330 -0.419 -0.419 -0.009  0.091 -0.098 0.358 -0.279 0.520
H=720 -0.403 -0.344 -0.344 0.027  0.148 0.009 0.356 0.029 0.394
H=96 -0.138 0.059 -0.124 -0.096  0.148 0.114 0.049 -0.312 0.247
Traffic H=192 -0.444 -0.432 -0.432 -0.338  0.225 0.324 -0.005 -0.198 0.351
H=336 -0.569 -0.568 -0.568 -0.692  0.643 0.092 0.030 -0.026 0.066
H=720 -0.833 -0.745 -0.565 -0.394  0.223 0.092 0.420 0.222 0.702
H=96 -0.214 0.120 0.222 0359  -0.569 -0.050 0.452 0.308 0.222
Solar H=192 -0.017 0.473 0.430 0.246  -0.022 -0.070 0.344 0.110 0.119
H=336 -0.003 0.553 0.553 -0.359  -0.296 -0.145 0.250 -0.395 0.277
H=720 -0.062 0.527 0.527 0.055  -0.703 -0.305 0.051 -0.027 0.512
H=96 0.015 -0.381 -0.034 0499  0.273 -0.274 0.543 0.128 0.285
Weather H=192 -0.125 -0.023 -0.118 0.466  0.024 -0.130 0.257 0.341 0.129
H=336 -0.171 0.102 -0.066 0.539 0404 -0.193 0.340 0.321 0.108
H=720 -0.065 -0.057 0.241 0.745 0375 -0.155 0.251 0.702 0.316
H=96 -0.032 -0.492 -0.343 0.193  0.112 -0.598 0.059 -0.284 0.251
Exchanee H=192 -0.040 -0.597 -0.414 0.246  0.152 -0.404 0.154 -0.273 0.252
© H=336 -0.112 -0.536 -0.306 0.148  0.250 -0.552 0.230 -0.143 0.233
H=720 -0.210 -0.617 -0.444 -0.024  0.536 -0.733 0.322 0.126 -0.386
H=96 -0.117 0.058 -0.148 0.113  -0.153 0.454 0.511 -0.384 0.656
ZafNoo H=192 -0.285 -0.235 -0.274 -0.044  -0.035 0.454 0.436 -0.017 0.786
H=336 -0.285 0.040 -0.133 -0.073  -0.200 0.454 0.580 0.023 0.732
H=720 -0.224 -0.106 -0.256 0.129  -0.235 0.478 0.552 0.164 0.668
H=96 0.103 0.071 0.012 0.632 -0.343 0.574 -0.121 0.171 0.575
CreLan H=192 -0.037 -0.376 -0.258 0.337  0.362 0.499 0.217 0.171 0.527
H=336 -0.069 -0.090 -0.155 -0.109  -0.154 0.573 -0.009 0.301 0.847
H=720 -0.125 -0.214 -0.074 -0.125  -0.136 0.519 0.349 0.282 0.839
H=96 -0.371 -0.283 -0.270 -0.117  0.107 0.390 0.414 -0.349 0.939
AQShunyi H=192 -0.407 0.328 0.328 -0.045  -0.224 0.438 0.126 0.309 0.734
H=336 -0.377 -0.184 -0.255 -0.277  0.276 0.411 0.084 0.420 0.723
H=720 -0.332 -0.140 -0.209 -0.253  0.119 0.370 0.335 0.675 0.701
H=96 0.211 0.142 0.062 0.417 -0.196 0.251 0.244 -0.106 0.395
Wind H=192 0.211 0.258 0.231 0.136  0.482 0.251 0.355 -0.155 0.395
H=336 0.045 0.545 0.319 0338 -0.532 0.097 0.281 0.349 0.262
H=720 -0.040 0.474 0.443 0.126  -0.377 -0.015 0.202 0.133 0.162
H=96 0.140 0.118 0.118 -0.253  0.110 0.036 -0.103 0.445 0.401
PEMSO08 H=192 0.038 -0.003 -0.003 -0.321  -0.068 -0.044 -0.318 0.420 0.505
H=336 -0.445 -0.296 -0.296 -0.791  -0.029 -0.198 -0.025 0.440 0.016
H=720 -0.637 -0.244 -0.244 -0.178  0.070 -0.023 -0.345 0.452 0.442
H=96 0.008 0.020 0.056 0318  0.003 0.069 0.319 0.031 0.470
ave H=192 -0.046 -0.027 0.006 0.212  0.023 0.079 0.301 0.104 0.453
H=336 -0.201 -0.066 -0.084 -0.004  0.066 0.045 0.294 0.114 0.411
H=720 -0.238 -0.090 -0.054 0.073  0.040 0.059 0.271 0.251 0.432
Num.Top-1 0 3 2 8 4 0 6 5 28

To ensure reproducibility, we follow standard dataset splits: training and validation sets are used for
model selection, while the test set is reserved for evaluating ground-truth fine-tuning performance.

Pre-trained Models. To ensure robust evaluation, we select eight state-of-the-art time series pre-
trained models from diverse architectures and training paradigms: (1) Encoder-only: MOIRAI (Woo
et al., |2024), UniTS (Gao et al., 2024), and Moment (Goswami et al., 2024); (2) Decoder-only:
TimesFM (Das et al., [2024) and Timer (Liu et al.| [2024); (3) Encoder-decoder: TTM (Ekambaram
et al., 2024), ROSE (Wang et al., 2024), and Chronos (Ansari et al., 2024). We collect ground-
truth fine-tuning results from the TSFM-Bench benchmark (Li et al., 2025) for common forecasting
horizons of {96,192, 336, 720}, with the full results provided in the Appendix [A.9]

Baselines and Metrics. We compare various model selection methods under three paradigms:
(1) Feature-analytic methods: RankME (Garrido et al.l 2023), LogME (You et al.l 2021), Re-
gression (Gholami et al.| 2023), Etran (Gholami et al., [2023), DISCO (Zhang et al., 2025). (2)
Learning-based method: Model Spider (Zhang et al., 2023), AutoForecast (Abdallah et al., [2022).
(3) Brute-force method: Zero-shot performance. Further details are provided in Appendix [A.2]
For evaluation, we use weighted Kendall’s 7,, to measure the correlation between estimated scores
{fk}szl and fine-tuned results {rk}szl, following previous work (Shao et al.,|2022;|Gholami et al.,
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Table 2: Methods comparison of Pr(top-k) and  Table 3: Ablation studies for model embedding:

average 7,, across horizons on 14 datasets. T, and average across horizons are listed below.
Pr(topl) Pr(top2) Pr(top3) T, vy, vy ve| 96 192 336 720 avg
RankME 0000  0.000 0.19 -0.119 v 0.341 0.283 0.331 0.401 0.339

LogME 0.071  0.196  0.268 -0.041

Regression  0.036  0.125  0.286 -0.019 v v 8%22 842“7)(1) 82%3 8%3; 8%2(7)
Etran 0304 0393 0536 0.150 : : : : :
DISCO 0232 0375 0336 0033 v v 0361 0.383 0315 0417 0.369

Model Spider  0.304  0.482  0.571 0.296 v’ v 10427 0.430 0.328 0.391 0.394
zeroshot 0286 0.464 0.589 0.125 v v10.380 0.422 0.437 0.403 0.411
SwiftTS 0.339 0.500 0.607 0.442 v v v \0.470 0.453 0411 0.432 0.442

2023} [Liet al., 2023 |Zhang et al.,[2025). A larger 7, indicates stronger alignment between estimated
and true rankings. Details are in Appendix

Implementation. To assess generalization on unseen tasks and prevent data leakage, we adopt a
strict splitting protocol: in each training run, we randomly select 3 out of the 14 benchmark datasets
held out for testing, while the remaining 11 are split into training and validation sets using an 8:2
ratio. During training, the multiple-subset sampling strategy for each dataset is applied to construct
the meta-dataset Dpen. During evaluation, the same multiple-subset sampling strategy is used. In the
rare case where different subsets of the same dataset yield inconsistent rankings, we adopt a voting-
based ensemble to obtain the final model ranking. All experiments are conducted on an NVIDIA
GeForce RTX 3090 GPU with batch size 16 for 80 epochs, using G = 4 experts. Optimization is
performed with Adam (3; = 0.9, S2 = 0.999). In the meta-learning process, the inner-loop and
outer-loop learning rates are « = 0.001 and 7 = 0.005. The loss trade-off coefficient is A = 0.7,
with sensitivity analysis in Section[A.8]

5.2 EXPERIMENTAL RESULTS

Main Results. Table |I| compares SwiftTS with various baselines across 14 datasets and four
horizons of {96,192,336,720}. The results demonstrate that SwiftTS consistently outperforms
the baselines in average 7, across all horizons, highlighting its effectiveness in selecting high-
performing pre-trained models. Feature-analytic methods often suffer from inconsistent features
derived from pre-trained models with diverse architectures and paradigms. Model Spider alleviates
this issue by learning a similarity function between datasets and models, but it overlooks sequential
dependencies in time series and prior knowledge of the models. In contrast, SwiftTS employs a dual
architecture consisting of a temporal-aware data encoder and a knowledge-infused encoder, which
together enhance selection performance. Additionally, SwiftTS features a horizon-adaptive expert
composition module, allowing it to handle multiple horizons simultaneously within a unified frame-
work. By comparison, all baselines require recomputation or retraining for different horizons. This
efficiency makes SwiftTS well-suited for real-world applications demanding flexible multi-horizon
forecasting. Moreover, while other methods exhibit varying degrees of negative correlation in differ-
ent datasets and horizons, SwiftTS adopts transferable cross-task learning to maintain predominantly
positive correlations across 14 datasets and different horizons, showing its OOD robustness.

Top-k Performance. We report the top-k selection probability Pr(top-k) as used in (Zhang et al.,
2025}, |Gholami et al., [2023)). This metric evaluates the likelihood that the best-performing model
appears within the top-%k of the estimated ranking. Results in Table [2| demonstrate that SwiftTS
achieves the best top-k performance, validating the model selection effectiveness of our method.

5.3 FURTHER ANALYSIS

Embedding ablation. The model encoder integrates three embeddings to represent a neural net-
work: meta-information embedding (v, ), topological embedding (v;), and functional embeddings
(v.). To assess their individual contributions, we perform ablation studies by removing one or two
embedding type at a time and measuring the resulting performance. As shown in Table |3| meta-
information embedding v, and the functional embedding v, contribute the most to performance.
The best results are obtained when all three embeddings are utilized together, demonstrating the
complementary nature and necessity of each type of embedding.



Under review as a conference paper at ICLR 2026

0.6 05—
0.4
~0.8 05 o4 Energy - * .
% é £ RankME é> 02
2 =04 s LogME s
5 0.6 E B 0.3 Regression B
2 S 03 S g 00
204 32 Bo2 DISCO B
& 202 = Zero Shot =02
K 00D el s Model Spider 5
= 0.2 —— Z0.1 w/o cross-task learning = 0.1 SwiftTS = 0.4
’ B w cross-task learning °
0.0 . - — —-— — _
g““\llﬁ{ﬁoocle\‘a“ S\‘““i\ 0.0 96 192 336 720 O‘OIXIOJ 2x10° 3x10° 4x10° 0'\’103 104 ) 10°
A Horizon Running Time (s) Running Time (s)
(a) IID vs. OOD (b) Cross-task learning (c) Time cost (ETTh1) (d) Time cost (Traffic)

Figure 4: (a) Comparison of (a) average 7, for I[ID vs. OOD settings across four datasets and
horizons, and (b) ablation study of cross-task learning, and method comparison w.r.t running time
(second) and average T, across horizons on (c) ETTh1 (small-scale) and (d) Traffic (large-scale).

Cross-task learning ablation. To validate the effectiveness of the proposed transferable cross-task
learning, we conduct an ablation experiment as illustrated in Figure @b] Specifically, we evaluate
the model’s average performance on 14 downstream datasets across four horizons. A clear upward
trend is observed when comparing the results from the w/o cross-task learning setting to those with
the cross-task learning enabled. This consistent improvement across horizons demonstrates that our
cross-task learning effectively enhances the model’s predictive capability and robustness.

IID vs. OOD. In Figure al we compare the average 7., performance under IID and OOD settings
across four datasets and four forecasting horizons. Compared to OOD, the IID setting refers to
evaluation on test data drawn from the same distribution as the training data. The results show
that our method achieves further improvements under the IID setting, indicating that increasing the
diversity of training data can enhance model performance.

Efficiency and Scalability. We evaluate efficiency by analyzing runtime on small (ETTh1) and large
(Traffic) datasets (Figure Figure d). Results show that model selection methods significantly
reduce computational overhead compared to full fine-tuning. For example, on ETTh1, model selec-
tion methods typically require only 1,000 to 4,000 seconds, whereas fully fine-tuning each model
takes approximately 4.97 x 10* seconds on the same GPU. This stark contrast highlights the critical
importance of efficient model selection methods in practical applications. Moreover, the comparison
across different dataset scales reveals that the runtime cost of SwfitTS remains relatively stable and
is less sensitive to dataset size. In contrast, the time overhead of other model selection baselines
increases dramatically as the dataset grows. Moreover, the cost of fine-tuning on the Traffic dataset
reaches up to 3.46 x 10° seconds, making it prohibitively expensive for large-scale applications.
Overall, SwiftTS achieves both superior performance and minimal time overhead.

6 CONCLUSION

This paper tackles the challenge of pre-trained model selection from a model hub for time series
forecasting. We propose SwiftTS, a learning-guided framework with a lightweight dual-encoder
architecture that independently embeds time series and candidate models, computing patchwise
compatibility scores for efficient selection. To further enhance adaptability, SwiftTS incorporates
a horizon-adaptive expert composition module for multi-task forecasting and leverages transferable
cross-task learning to improve generalization across datasets and horizons. Extensive experiments
show that SwiftTS achieves SOTA with high efficiency and scalability for real-world deployment.

10
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ETHICS STATEMENT

This work is conducted entirely on publicly available benchmark datasets, as detailed in the paper,
and does not involve the release of any personal or sensitive information. No human subjects are
involved in this research, ensuring that our work complies with ethical standards in research integrity.

REPRODUCIBILITY STATEMENT

The performance of SwiftTS and the datasets used in our work are real, and all experimental results
can be reproduced, as detailed in the paper. Details of model architecture, training procedures, and
evaluation protocols are provided in the main text and appendix. To further facilitate reproducibility,
we release the code and datasets at https://anonymous.4open.science/r/SwiftTS-395C.
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A APPENDIX

A.1 DATASETS

We evaluate SwiftTS on 14 multivariate time-series datasets spanning six distinct domains, including
electricity, energy, traffic, environment, nature, and economics. (1) The ETT datasets (Zhou et al.,
2021)) contain 7 variables collected from two different power transformers between July 2016 and
July 2018. The dataset consists of four subsets: ETTh]l and ETTh2, recorded hourly, and ETTm1
and ETTm?2, recorded at 15-minute intervals. (2) Electricity (Trindadel [2015) records hourly elec-
tricity consumption from 321 customers over three years, from July 2016 to July 2019. (3) Solar (La1
et al.l [2018)) captures solar power generation from 137 photovoltaic plants in 2006, sampled every
10 minutes. (4) Wind (Li et al 2022)) consists of historical wind measurements (e.g., speed, di-
rection). (5) PEMSO08 (Song et al., 2020) contains three months of aggregated statistics on traffic
flow, speed, and occupancy rate. (6) Traffic (Wu et al.,|2021) contains hourly road occupancy rates
measured by 862 sensors across freeways in the San Francisco Bay Area from 2015 to 2016. (7)
Weather (Wu et al, 2021) includes 21 meteorological variables (e.g., temperature, humidity, and
barometric pressure), recorded every 10 minutes across Germany in 2020. (8) AQShunyi (Zhang
et al) [2017) provides hourly temperature measurements exhibiting strong seasonal patterns. (9)
ZafNoo (Poyatos et al.,|2021)) is collected from the Sapflux data project and includes sap flow mea-
surements and environmental variables. (10) CzeLan (Poyatos et al.l [2021) is from the Sapflux
data project, including sap flow measurements and environmental variables. (11) Exchange (Lai
et al, [2018) comprises daily exchange rates for eight countries over a multi-year period. Table 4
summarizes the key statistics of these 14 multivariate time series datasets.

Table 4: Statistics of datasets.

Dataset Domain Frequency Lengths Dim Split

ETThl (Zhou et al., [2021) Electricity 1 hour 14,400 7 6:2:2
ETTh2 (Zhou et al.| 2021) Electricity 1 hour 14,400 7 6:2:2
ETTm1 (Zhou et al., 2021) Electricity 15mins 57,600 7 6:2:2
ETTm2 (Zhou et al.| 2021) Electricity 15 mins 57,600 7 6:2:2
Electricity (Trindade, 2015)  Electricity 1hour 26,304 321 7:1:2

Solar (Lai et al., 2018) Energy 10 mins 52,560 137 6:2:2
Wind (Li et al.| [2022) Energy 15 mins 48,673 7 7:1:2
PEMSOS (Song et al.,2020)  Traffic 5 mins 17,856 170 6:2:2
Traffic (Wu et al.,[2021)) Traffic 1 hour 17,544 862 7:1:2

Weather (Wu et al.,[2021) Environment 10 mins 52,696 21 7:1:2
AQShunyi (Zhang et al.,[2017) Environment 1 hour 35,064 11 6:2:2
ZafNoo (Poyatos et al.}[2021) Nature 30mins 19,225 11 7:1:2
CzeLan (Poyatos et al., 2021) Nature 30 mins 19,934 11 7:1:2
Exchange (Lai et al.,[2018)) Economic 1 day 7,588 8 7:1:2

A.2 BASELINES

In our study, we compare various model selection methods for pre-trained time series models, which
can be broadly categorized into three paradigms: (1) Feature-analytic methods: These methods
rely on intrinsic properties or statistical characteristics of features extracted by the pre-trained mod-
els to estimate their transferability. RankME (Garrido et al.,|2023) evaluates the rank of feature ma-
trices extracted from the model’s representations. LogME (You et al., 202 1)) computes the logarithm
of the maximum label marginalized likelihood under a probabilistic model. Regression (Gholami
et al., 2023) employs linear regression using Singular Value Decomposition (SVD) to approximate
the mapping from model features to target labels. Etran (Gholami et al., |2023)) combines both the
energy score and the regression score into a unified metric. DISCO (Zhang et al., [2025) evaluates
pre-trained models by analyzing the spectral distribution of their feature representations, enabling
the assessment in both classification and regression tasks. (2) Learning-based method: Model
Spider (Zhang et al.| |2023) learns model representations and a similarity function through align-
ment with downstream task representations, facilitating model selection via the learned similarity.

15



Under review as a conference paper at ICLR 2026

AutoForecast (Abdallah et al.||2022) leverages the performance tensor and the meta-feature tensor
to predict model performance under different hyperparameters. (3) Brute-force method: Zero-
shot measures a model’s ability to generalize to unseen tasks without any task-specific fine-tuning,
offering valuable insights into its overall generalization capacity.

A.3 METRICS

Kendall’s 7 measures the ordinal association between two rankings by evaluating the number of
concordant and discordant pairs, which is defined as:

T= Z sgn(rt —r?)sgn (' — #7) a1
K(K-1) 1<i<j<K

where sgn(z) is the sign function. However, in practical model selection scenarios, accurately iden-
tifying the top-performing models is often more critical than precisely ranking lower-performing
ones. To reflect this priority, we employ the weighted version of Kendall’s 7, denoted as 7,,. This
variant adjusts the contribution of each pairwise comparison by assigning larger weights to higher-
ranked models. A higher value of 7, indicates stronger consistency between estimated and actual
rankings, reflecting the reliability of the evaluation metric in guiding model selection.

A.4 ALGORITHM

Algorithm 1: Pseudo-code of SwiftTS

1 Training:

2 Input: Meta-dataset Dyern = {D Z,Hr }Z ,; Total training epochs E’; Inner-loop
learning rate o; Outer-loop learning rate v

3 Randomly initialize the weights 6 of the whole model,

4 fore < 1to E' do

T <« Sample n tasks from Dppeq,;

for j < 1tondo
supportj, query; < Obtain support set and query set from 7j;
7 < ModelRanking (Z, support], H)
Evaluate Vg Lgpp(7;; 0) using E}

10 Compute 9’ — 0 — aVeLap(T;;0);

| Update 6 <— 0 —vVy ZTj Lauery (T3 05);

e ® 9 S w

12 Inference:

13 Input: An unseen downstream dateset X, model hub Z, forecasting horizon H;

14 7 < ModelRanking (4, X, H)

15 Return: The predicted ranking scores 7 for K candidate pre-trained models in the model
hub.

16 Function ModelRanking (Z, X, H):

17 Ey B, <~ Ep(X),Exn(Z);

18 E., < Compute patchwise CA using Eq. |4

19 w Compute the weights that router assigns to each expert using Eq. I 7| with H;
20 Return: # < Rank pre-trained models using Eq.

A.5 DETAILS OF META-INFORMATION OF PRE-TRAINED MODELS

The five types of meta-information of pre-trained models include: model architecture (category),
model capacity (scalar), model complexity (scalar), model dimension (scalar), and pre-trained do-
main (category). Categorical features are converted into one-hot vectors. For the pre-trained do-
main, which may involve multiple labels, a multi-label one-hot vector is employed to represent each
domain. Scalar features are normalized based on their minimum and maximum values across all
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Table 5: Embedding computation runtime (in seconds) for each model.

Embedding TimesFM UniTS Moment TTM Moirai Rose Timer Chronos

functional 0.714 0.335 0.578 0247 0.606 0.438 0.396 0.683
topological 1.092 0.471 2.328 0317 1.084 0.532 0.490 1.720

models. The resulting normalized scalar features and one-hot encoded categorical features are then
concatenated to construct the meta-information embedding. Since the meta-information embedding
may have a semantic gap with the topological and functional embedding, we apply a linear projec-
tion to map it into a shared latent space. The projected embedding is subsequently integrated with
the topological and functional embeddings, as described in Equation [3] to generate the final model
representation used in our model selection framework.

A.6 EFFICIENCY ANALYSIS OF TOPOLOGICAL AND FUNCTIONAL EMBEDDINGS.

The construction of both topological and functional embeddings is an offline, dataset-agnostic pro-
cess. It only requires feeding each candidate model a fixed input with the correct dimensionality
(e.g., a fixed set of Gaussian random noise vectors, rather than full downstream datasets). This in-
curs a total preprocessing cost of O(N - Tp,p), Where N is the number of candidate models and T,
denotes the time required to compute the embeddings for a single model. We empirically evaluate
the runtime (in seconds) required to obtain these embeddings for each model in Table[5]

In contrast, existing approaches require substantial forward-pass computation over the entire down-
stream dataset for every candidate model. This results in a total cost of O(N - Ty(D)). Here,
T¢(D) = Q(|D] - Crnoder), Where | DY is size of dataset and Cy,0qc; represents the per-sample com-
putational cost. Thus, their runtime depends not only on model complexity but also heavily on
the size of the downstream data. For example, on the same hardware, the forward-pass runtime
of TimesFM (200M) is 654.98 seconds on the relatively small AQShunyi dataset, but increases to
5,426.12 seconds on the larger Solar dataset. Overall, because T, < Ty(D) and the embedding
computation is performed offline, the linear cost growth with respect to N remains highly tractable.
The per-model embedding overhead of SwiftTS is minimal and does not introduce a resource bot-
tleneck as the candidate models increases. Moreover, since embedding computation is fully offline,
it can be precomputed if still concerns about runtime.

A.7 SCALABILITY OF THE MODEL HUB

To investigate how the number of candidate models affects the performance of SwiftTS, we augment
the original model hub by adding six additional models: Chronos-mini and Chronos-small (the hub
originally contained Chronos-base) (Ansari et al.},[2024), Moirai-small and Moirai-large (originally
Moirai-base) 2024), as well as TimeMoE-base and TimeMoE-large(Shi et al|, [2025).
This expansion results in a total of 14 candidate models in the model hub. We then compare SwiftTS
against existing baselines under these more challenging conditions. The performance, measured by
the average weighted Kendall’s 7, across horizons on 14 target datasets, is presented in Table [
The results show that increasing the size and heterogeneity of the model pool indeed makes the
model selection task more challenging, leading to a certain degree of performance degradation for all
methods. However, our framework exhibits notably lower sensitivity to this expansion and continues
to outperform existing baselines.

A.8 MORE EXPERIMENTAL RESULTS

The perforamnce of Topl-selected model. We report the actual forecasting performance of the
topl-selected model for each selection method, with the average MSE across horizons as shown
in Table [7] The "Best model” column denotes the performance of the ground-truth topl model,
representing the upper bound achievable by any selection method. The results demonstrate that
SwiftTS not only selects pre-trained models effectively but also delivers superior actual forecasting
performance across a wide range of datasets.
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Table 6: Scalability analysis of the model hub with an expanded and more diverse set of 14 candidate
models. The average weighted Kendall’s 7, across horizons on 14 datasets is listed below.

RankME LogME Regression Etran DISCO Model spider zero-shot SwiftTS

ETTh1 -0.207 0.103 0.074 0.207  0.106 0.236 0.274 0.402
ETTh2 -0.066 -0.018 -0.056 0.175  0.109 0.347 0.248 0.423
ETTml 0.050 0.131 0.111 0.217  0.065 0.149 0.290 0.415
ETTm2 -0.029 0.022 0.075 0.303  0.208 0.151 0.304 0.453
Electricity 0.174 -0.019 0.132 0.100  0.043 0.089 0.188 0.383
Traffic 0.069 0.081 0.086 0.065  0.341 0.175 0.190 0.453
Solar 0.005 0.190 0.105 0.189  0.090 0.243 0.139 0.240
Weather 0.121 0.080 0.032 0.251  0.227 0.173 0.209 0.238
Exchange 0.032 0.019 0.151 0.129  0.272 0.095 0.024 0.286
ZafNoo -0.150 -0.020 0.087 -0.016  0.092 0.440 0.186 0.649
CzeLan -0.257 -0.076 -0.110 0.150  0.047 0.333 0.219 0.515
AQShunyi  -0.077 0.004 -0.012 0.021  0.269 0.455 0.438 0.575
Wind -0.242 0.176 0.189 0.228  0.039 0.181 0.056 0.310
PEMSO08 0.112 0.037 0.009 0.092  0.097 0.267 0.302 0.373

Table 7: Performance of the top1-selected model. The average MSE across horizons is listed below.

RankME LogME Regression Etran DISCO Model spider zero-shot SwiftTS | Best model
ETThl 0.404 0.404 0.403 0421 0425 0.403 0.413 0.393 0.391
ETTh2 0.349 0.345 0.343 0343 0.352 0.347 0.342 0.340 0.331
ETTml 0.735 0.345 0.345 0.346  0.436 0.383 0.345 0.341 0.340
ETTm2 0.304 0.258 0.258 0.251  0.276 0.269 0.253 0.251 0.246
Electricity 0.250 0.212 0.212 0.169  0.195 0.196 0.250 0.163 0.155
Traffic 0.539 0.668 0.668 0.390 0.393 0.555 0.555 0.390 0.380
Solar 0.252 0.186 0.186 0.552  0.905 0.252 0.358 0.252 0.180
Weather 0.269 0.250 0.245 0.236  0.243 0.243 0.255 0.236 0.217
Exchange 0.407 0.477 0.484 0.490  0.388 0.407 0.419 0.406 0.362
ZafNoo 0.608 0.561 0.589 0522 0.533 0.542 0.513 0.511 0.502
CzeLan 0.755 0.695 0.755 0232 0.326 0.606 0.217 0.206 0.206
AQShunyi 0.756 0.736 0.736 0.738  0.698 0.756 0.692 0.681 0.681
Wind 1.194 1.118 1.163 1101 1.372 1.194 1.243 1.138 1.101
PEMSO08 0.708 0.687 0.687 0918  0.382 0.708 0.255 0.319 0.241
avg 0.538 0.496 0.505 0.479  0.495 0.490 0.436 0.402 0.381

Sensitivity Analysis. We examine the impact of A € [0.0,0.3,0.5,0.7,0.9, 1.0] and report average
results across all datasets. As shown in Figure [5a] the performance remains relatively stable due to
the complementary roles of the two loss components: L.k constrains the relative ranking among
pre-trained models, while Lp.q enforces an absolute constraint on the gap between predicted per-
formance and actual fine-tuning results. The experimental results highlight the indispensable role of
the prediction loss and suggest that the best performance is achieved when A is set to 0.7.

Choices of Expert Numbers. We study the impact of expert number G € [2,4, 6,8, 10] ( Figure.
A small G fails to adequately capture the differences across horizons, limiting its ability to perform
effective multi-task forecasting. Conversely, a large G increases computational cost and model
complexity, which may lead to overfitting and degraded performance on downstream tasks. Overall,
G = 4 provides the best trade-off between accuracy and efficiency, making it ideal for practical use.

Visualization. We visualize the patchwise cross-attention weights in Figure[6] which reveal several
key observations: (1) Figure[6aand Figure [6b| compare the data embeddings E,; obtained from dif-
ferent ETTh2 subsets. We observe that the weight distributions across different patches for the same
model (same row) are quite similar. Furthermore, TTM and ROSE, the two best-performing mod-
els on ETTh2, also exhibit similar patchwise weight distributions. This suggests that models with
comparable performance tend to share similar patchwise attention patterns within the same dataset.
(2) When comparing E,; from two similar datasets, ETTh2 (Figure [6b) and ETTh1 (Figure [6c),
we find that the patchwise weight distributions for the same model remain relatively consistent.
This indicates that similar attention patterns are exhibited not only across different subsets of the
same dataset, but also between similar datasets. (3) In contrast, when comparing two more dis-
tinct datasets, ETTh1 (Figure [6c) and PEMSO08 (Figure [6d), significant differences emerge in the
patchwise weight distributions of the same model. Moreover, among the top-performing models on
PEMSO08, such as Moirai, TimesFM, Moment, similar patchwise distributions are evident. The best
model, Moirai, places the highest attention on the 8-th patch, whereas two weaker models, TTM and
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Figure 5: (a) Sensitivity analysis of the loss coefficient A, (b) choice of the number of experts G.
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Figure 6: Visualization of patchwise cross-attention weights.

ROSE, show considerably lower weights for that patch. This indicates that models with different
performance levels tend to focus on different patches.

A.9 GROUND-TRUTH FINE-TUNING RESULTS
We obtain the ground-truth forecasting results of the pretrained models after fine-tuning from the

TSFM-Bench benchmark to ensure fairness and reproducibility. For completeness, we further report
the results in Table[8
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Table 8: The ground-truth fine-tuning results of the pre-trained models in the model hub. The results
are MSE of each prediction length.

Dataset H Chronos TimesFM Moment UniTS Moirai TTM Rose Timer

96 0.388 0.373 0.383 0.399 0394 0361 0354 0416
ETThi 192 0.440 0.418 0.415 0.441 0.430 0393 0.389 0.557
336 0.477 0.457 0.425 0.503 0.450 0411 0.406 0.502
720 0.475 0.458 0.447 0.468 0.457 0426 0413 0.525
96 0.292 0.288 0.287 0.311 0.285 0270 0.265 0.305
ETTh2 192 0.362 0.371 0.350 0.470 0352 0.338 0.328 0.394
336 0.404 0.418 0.367 0.429 0384 0367 0353 0414
720 0.412 0.441 0.404 0.424 0419 0384 0376 0.521
96 0.339 0.313 0.287 0.321 0464 0285 0.275 0.344
ETTm1 192 0.392 0.353 0.326 0.373 0.488  0.325 0324 0.447
336 0.440 1.177 0.353 0.388 0.520 0.357 0354 0457
720 0.530 1.095 0.408 0.452 0.598 0413 0411 1.444
96 0.181 0.172 0.170 0.198 0.224  0.165 0.157 0.188
ETTm? 192 0.253 0.234 0.230 0.252 0308 0225 0.213 0.281
336 0.318 0.357 0.283 0.334 0369 0275 0.266 0.328
720 0.417 0.454 0.375 0.468 0.460 0.367 0.347 0.493
96 0.133 0.142 0.148 0.133 0.170  0.132 0.125 0.136
Electricity 192 0.152 0.163 0.165 0.153 0.186 0.149 0.142 0.169
336 0.171 0.332 0.182 0.175 0205 0270 0.162 0.196
720 0.201 0.364 0.223 0.204 0247 0297 0.191 0.364
96 0.385 0.419 0.383 0.377 0358 0379 0354 0.362
Traffic 192 0.411 0.450 0.397 0.387 0372 039 0377 0.396
336 0.521 0.939 0.407 0.395 0.380 0945 0396 0.427
720 0.623 0.957 0.443 0.436 0412 0952 0434 0.970
96 0.430 0.174 0.172 0.163 0.877 0.174 0.170 0.183
Solar 192 0.396 0.198 0.187 0.176 0928 0.181 0.204 0.225
336 0.409 1.530 0.196 0.184 0956 0.189 1.616 0.244
720 0.453 1.322 0.206 0.196 1.016 0200 0.215 0.355
96 0.183 0.161 0.152 0.147 0206 0.149 0.145 0.164
Weather 192 0.227 0.207 0.196 0.191 0278  0.199 0.183 0.243
336 0.286 0.311 0.245 0.243 0335 025 0.232 0.321
720 0.368 0.370 0.316 0.317 0.413 0340 0309 0.349
96 0.093 0.086 0.085 0.444 0.096 0.113 0.086 0.104
Exchange 192 0.199 0.193 0.178 0.507 0200 0.223 0.178  0.221
336 0.370 0.354 0.333 0.489 0381 0439 0341 0.382
720 0.856 0.988 0.851 0.997 1.133  1.185 0.947  0.965
96 0.463 0.457 0.430 0.444 0.439 0426 0.431 0470
ZafNoo 192 0.524 0.576 0.486 0.507 0.501 0479 0.487 0.548
336 0.575 0.650 0.530 0.563 0.551 0523 0.538 0.588
720 0.684 0.748 0.585 0.602 0.616 0.583 0.578 0.637
96 0.505 0.198 0.171 0.196 0.611 0.162 0.164 0.224
CzeLan 192 0.565 0.244 0.201 0.226 0.623  0.192 0.198 1.198
336 0.669 1.232 0.225 0.250 0.654 0217 0.221  0.750
720 0.838 1.214 0.264 0.323 0.702 0253 0.253 0.848
96 0.728 0.662 0.660 0.739 0.621 0.640 0.632 0.814
AQShunyi 192 0.802 0.746 0.707 0.784 0.665 0.683 0.677 0.882
336 0.843 0.795 0.727 0.829 0.697 0.706 0.706 0.890
720 0.897 0.820 0.782 0.857 0.740  0.763 0.770  0.953
96 1.177 0.913 0.915 0.949 0957 0.889 0.904 1.087
Wind 192 1.391 1.098 1.101 1.151 1.164 1.056 1.086 1.341
336 1.540 1.326 1.231 1.329 1.333  1.189 1.238 1.514
720 1.685 1.437 1.303 1.545 1466 1.271 1330 1.751
96 0.804 0.167 0.261 0.519 0.144  0.177 0.199 0.194
PEMS08 192 1.264 0.267 0.335 0.654 0211 0268 0.391 0.359
336 1.317 1.285 0.365 0.599 0276 1206 1.441 0.385
720 1.521 1.111 0.381 0.660 0333  1.097 1351 2.235
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