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ABSTRACT

In computer-aided design (CAD) and engineering, understanding complex CAD
models remains a critical challenge. Existing methods struggle with integrating
geometric features due to the lack of 3D modality and the difficulty of modal
fusion. To address this, we introduce PointVLM, a novel multi-modal vision-
language model that bridges 3D point cloud processing with vision and natural
language understanding to enable precise CAD model interpretation. PointVLM
leverages a 3D encoder to grasp 3D features from the point cloud of the object in
addition to vision and language modalities. By combining Qwen2.5-VL architec-
ture, PointVLM fuses three kinds of modality features using a learnable projec-
tor module, enabling context-aware interactions between geometric and semantic
properties. We further build a pipeline which takes CAD file and instruction as
input, automatically samples point clouds and renders multi-view images, and
finally outputs responses. Experiments show that PointVLM outperforms exist-
ing methods on both generative 3D object classification and 3D object captioning
tasks. The source code and pre-trained models will be available at MASKED_URL.

1 INTRODUCTION

Computer-aided design (CAD) has fundamentally transformed engineering and manufacturing by
enabling precise digital representations of physical objects through parametric modeling and geo-
metric optimization. However, as CAD models evolve into intricate multi-object systems with hi-
erarchical assembly relationships, interpreting complex CAD models remains a persistent challenge
due to the intrinsic complexity of 3D spatial reasoning and topological coherence.

Traditional approaches to CAD interpretation rely on human expertise for geometric analysis, ma-
terial property mapping and assembly validation. While recent advances in large language models
(LLMs) like DeepSeek-V3 (Liu et al., 2024a) have revolutionized textual reasoning, their inherent
sequential processing architecture fundamentally misaligns with the non-sequential nature of 3D
representations.

Emerging vision-language models (VLMs) such as Qwen2.5-VL (Bai et al., 2025) have demon-
strated promising capabilities in cross-modal reasoning by aligning visual features with textual de-
scriptors, but the application to CAD model understanding remains nascent. Existing methods such
as Liu et al. (2024b) attempt to fuse LLMs with 2D images enable 3D comprehension but struggle
with problems such as depth ambiguity, occlusion and viewpoint dependency. This gap highlights
two fundamental challenges: 1) The absence of specialized 3D spatial reasoning mechanisms that
can handle unordered point clouds while preserving topological relationships, and 2) The lack of
alignment between geometric primitives and linguistic descriptors in multi-modal fusion architec-
ture.

To address these limitations, we propose PointVLM, a novel multi-modal architecture that syner-
gizes PointBERT (Yu et al., 2022) for 3D geometric encoding with Qwen2.5-VL’s (Bai et al., 2025)
multimodal reasoning capabilities. PointVLM leverages a PointBERT-based point encoder to learn
representations of point cloud. To align point cloud, image and text features in the same space,
we propose a pre-training framework based on ULIP (Xue et al., 2023) in the pre-training stage.
PointVLM also adapts state-of-the-art visual language models to process 3D spatial relationships
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USER: images and point cloud here, This is an object of

This is an object of cartoon octopusand point cloud here,

... ... ...

... ... ... ... ... ...

VLM Decoder

Vision Encoder
3D Encoder

image-1 tokens image-2 tokens point tokens

CAD file

Image-1 Image-2 Point cloud

Text token

Image token

Point token

Projector

Figure 1: An overview of PointVLM pipeline. After getting CAD file and user prompt inputs, multi-
view images are firstly rendered, and point cloud is sampled at the same time. Then using vision
and 3D encoder, image and point tokens are generated. Finally, three kinds of tokens are organized
and fed into VLM decoder to get final answers corresponding to the CAD file and user’s prompt.

alongside textual specification. Furthermore, we build a pipeline (Figure 1) which takes a CAD file
and a use instruction as input, automatically samples point clouds and renders multi-view images,
and finally outputs responses.

Extensive experiments are conducted to show the effectiveness and strong generalization ability
of our proposed model. For generative 3D object classification task on ModelNet40 dataset, our
3B version model surpasses existing methods with 66.49% classification accuracy score, and our
7B model achieves higher to 69.89%. For 3D object captioning task, PointVLM also showcases
superior comprehensive performance.

Our contributions can be summarized as follows:

• We introduce a novel pre-training framework based on ULIP to align features from point
clouds, images, and text into a unified space.

• We propose PoinVLM, a geometric-aware multi-modal architecture which is the first one
to our knowledge that bridges the semantic gap between 3D representations and visual-
language reasoning.

• We build a pipeline for CAD file pre-processing, point cloud sampling, multi-view image
rendering and interaction using instructions.

The remainder of this paper is organized as follows: Section 2 reviews related work, Section 3
details our methodology, Section 4 presents experiments and results, and Section 5 summarizes and
discusses future directions.

2 RELATED WORK

Multi-modal large language models. Multi-modal large language models (MLLMs) have emerged
as a transformative paradigm in artificial intelligence, integrating text, images, audio, video or other
modality data into unified architectures. These models typically build upon the foundational success
of LLMs by incorporating specialized encoders for different modalities, e.g., vision transformer
(Dosovitskiy et al., 2020) for images, audio encoder (Radford et al., 2023) for sound, followed
by fusion mechanisms such as cross-modal attention and token-level concatenation. Qwen2.5-VL
(Bai et al., 2025) introduces dynamic vision resolution handling and absolute time encoding for
video processing with an architecture which combines a vision encoder and a multilingual LLM,
achieving competitive performance on visual-language tasks. Gemini 2.5 (Comanici et al., 2025)
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has the ability to process more than two modalities, including image, video, audio and text. It
adopts sparse mixture-of-experts architecture and thinking mechanism, achieving state-of-the-art
performance on video understanding and audio generation tasks. In our work, we keep up with
the alignment and tuning methods, construct an MLLM capable of understanding 3D object point
clouds and images.

Language models for object point cloud understanding The integration of language models with
3D point cloud understanding are inspired by works like CLIP (Radford et al., 2021). PointCLIP
(Zhang et al., 2022) projects point clouds into multi-view depth maps and aligning them with CLIP’s
vision-language space. PointCLIP2 (Zhu et al., 2023) extends PointCLIP with an inter-view adapter
to aggregate global features and improves few-shot performance. ULIP (Xue et al., 2023) and ULIP2
(Xue et al., 2024) train point cloud encoders to align with CLIP embeddings using triplet data (point
clouds, images and text). OpenShape (Liu et al., 2023) combines 2D image features from ResNet
with 3D from PointNet++ (Qi et al., 2017), leveraging contrastive learning to align multi-modal
features. 3D-LLM (Hong et al., 2023) enables LLMs to interpret 3D scenes by rendering multi-view
images and using SAM for object localization but heavily relies on 2D-3D projection pipelines.
Point-Bind LLM (Guo et al., 2023) aligns point cloud features with ImageBind’s (Girdhar et al.,
2023) cros-modal embeddings and uses 2D MLLMs such as ImageBind LLM (Han et al., 2023)
for text generation. PointLLM (Xu et al., 2024) directly fuses point cloud tokens with LLMs like
LLAMA-3 (Dubey et al., 2024) for 3D object understanding and releases generative 3D object
classification and 3D object captioning benchmarks. GreenPLM (Tang et al., 2025) pays more
attention to text data and uses less points to reduce reliance on 3D data. However, fusion of visual-
language model with point cloud data is insufficiently explored. Aiming at this, our model aligns
point cloud tokens along with image and text tokens using an end-to-end structure and training
method, enabling free-form interactions while keeping accurate understanding.

3 METHODOLOGY

This section firstly introduces pre-training method for point cloud alignment with image and text.
We then detail the architecture of PointVLM. Lastly, we introduce our training strategy.

3.1 PRE-TRAINING

To better align point cloud features with image and text representations, a pre-training framework
(Figure 2) is built. Specifically, a pre-trained vision-language model (CLIP) containing image en-
coder fI(·) and text encoder fT (·) is used to extract image and text features, and a 3D encoder
fP (·) is utilized to get point cloud features. For an CAD triplet input (I, T, P )i, the three en-

An image of
an airplane.

3D
encoder

Image
encoder

Text
encoder
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Figure 2: Point cloud, image and text alignment.
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coders output corresponding features Xi = (x1, x2, ..., xn) ∈ Rn×d, Yi = (y1, y2, ..., yn) ∈ Rn×d

and Zi = (z1, z2, ..., zn) ∈ Rn×d for image, text and point cloud respectively. During train-
ing, only the 3D encoder is trainable, while another two encoders are frozen. To align point
cloud features with image and text, we simply add image and text features to get CLIP features
Ci = Xi + Yi = (x1 + y1, x2 + y2, ..., xn + yn). Similar to CLIP, we use contrastive loss to train
the model:

Losspretrain =
∑
(i,j)

(−1

2
log

e
CiZj

τ∑
k e

CiZk
τ

− 1

2
log

e
CiZj

τ∑
k e

CkZj
τ

), (1)

where (i, j) indicates a positive pair, while (i, k) and (k, j) indicate negative pairs in each training
patch. τ is a learnable temperature as it is in CLIP.

3.2 POINTVLM ARCHITECTURE

As shown in Figure 1, our PointVLM is a multi-modal large language model which takes image,
point cloud and text as inputs, and generate responses. The model consists of a pre-trained vision
encoder fV , a pre-trained 3D encoder fP which is discussed in Section 3.1, a projector fproj and a
pre-trained vision-language model (VLM) decoder fvlm.

The pre-trained vision encoder fV takes as inputs multiple images {I}, and generates corresponding
image tokens X = (x1, x2, ..., xm) ∈ Rm×c, where m is the number of image tokens and c is the
feature dimension. The point encoder fP takes as input a point cloud P ∈ Rl′×d, where l′ is the
number of points and d is the feature dimension of each point. The output of 3D encoder is a vector
of point features Z ′ = (z′1, z

′
2, ..., z

′
l) ∈ Rl×c′ , where l is the number of point features and c′ is the

feature dimension. The projector fproj is a multilayer perceptron (MLP) that maps the point features
Z ′ to point tokens Z = (z1, z2, ..., zl) ∈ Rl×c, where c is equal to the dimension of image tokens.
Additionally, the input texts are tokenized to text tokens Y = (y1, y2, ..., yn) ∈ Rn×c, where n is
the number of text tokens.

All encoded tokens, including image, text and point tokens, are combined into a unified sequence,
denoted as V = (v1, v2, ..., vk) ∈ Rk×c, where k = m + n + l. This sequence is fed into the
VLM decoder fvlm, which can process the mixed-modal tokens, leveraging contextual relationships
between image, text and point clouds with self-attention mechanism. The output of VLM decoder is
a sequence of predicted tokens V̂ = (v̂1, v̂2, ..., v̂K) ∈ RK×c, where K is the number of generated
tokens util the EOS token or maximum number of truncated tokens. The prediction of the i-th token,
v̂i, is conditioned on all previous tokens V<i = (v1, v2, ..., vi−1), expressed mathematically as

v̂i = fvlm(V<i). (2)

Finally, to get the prediction for each v̂i, a linear layer followed by a softmax operation is utilized to
map it into a probability distribution over the vocabulary. Denote this layer as fhead : Rc → RW ,
where W is the size of the vocabulary, then this process can be expressed as

probi = arg max
w∈vocab

fhead(v̂i)[w]. (3)

To train the model to predict the next token in a sequence, we utilize the widely used causal lan-
guage model loss. It computes the loss for autoregressive next-token prediction by aligning input
sequences with their shifted labels and applying cross-entropy optimization. This loss function ex-
cels in balancing computational efficiency, memory usage and scalability, which makes our training
end-to-end and effectively understand point clouds along with images and texts.

3.3 TRAINING STRATEGY

Inspired by PointLLM (Xu et al., 2024), we leverage a three-stage training strategy to balance effi-
ciency and performance.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Pre-training stage. In the first stage, the purpose is to train the 3D encoder to better extract features
from point clouds. During this stage, the 3D encoder is trainable while CLIP image and text encoder
are frozen. Point, image and text triplets are fed into this contrastive learning framework to enable
3D encoder’s feature extraction ability.

Feature alignment stage. In the second stage, we aim at training the MLP projector to map raw
point features to semantically meaningful tokens. So, during this stage, only the weights of MLP
projector are trainable. We use brief-description instructions with point cloud and text data to train
the MLP projector so that it can efficiently adjust to map point features to point tokens. Embedding
adjustment for special point tokens (< |point start| > and < |point end| >) which are used to mark
point token boundaries, is also included in this stage.

Fine-tuning stage. During stage three, the entire model is frozen to preserve pre-trained knowledge,
and low-rank adaptation, LoRA (Hu et al., 2022), is used for each transformer layer. In this stage,
complex instructions along with multi-view images and point cloud are fed into the model to enable
its ability to understand and respond to complex instructions including point cloud, image and text
data. This strategy balances efficiency and performance, making it suitable for deploying large
multi-modal models on resource-constrained hardware.

4 EXPERIMENTS AND RESULTS

To demonstrate the benefits of our work, we conduct extensive experiments on two downstream
3D tasks: generative 3D object classification and 3D object captioning. In this section we first
introduce experiment settings, including our model encoder and decoder backbones, datasets and
implementation details. Then we present results of pre-training and downstream tasks, followed by
our analyses. Lastly, ablation study and qualitative comparison are shown to demonstrate the effects.

4.1 EXPERIMENT SETTINGS

Backbone networks. PointBERT (Yu et al., 2022), which is a transformer-based architecture for
point cloud feature extraction, is utilized as our 3D encoder backbone. During pre-training stage,
CLIP image and text encoder (clip-vit-base-patch32) are used as our image and text backbone. In the
feature alignment and fine-tuning stages, we use Qwen2.5-VL vision encoder as image backbone,
Qwen2.5-VL decoder as our VLM decoder backbone.

Datasets. We conduct pre-training on ShapeNet55 (Chang et al., 2015), which contains around
52.5k samples of 3D objects with 55 category labels. To generate image, text and point cloud
triplet, we sample points to construct point cloud from each sample mesh and use a template with
its label to generate corresponding text. ModelNet40 (Wu et al., 2015) is a benchmark 3D shape
dataset which has 40 categories. We only use the test split which has 2468 samples to conduct zero-
shot classification in pre-training evaluation and generative 3D object classification in fine-tuning
evaluation. Objaverse (Deitke et al., 2023) is a large-scale 3D dataset containing more than 800k
3D models. By following PointLLM, we use 660k samples with brief descriptions as training data
during feature alignment stage, and 70k samples with complex instructions in fine-tuning stage.
Additional 200 samples are not seen in training stages, and they are kept as evaluation data for 3D
object captioning task. Furthermore, additional samples from Fusion360 (Willis et al., 2021) are
used as qualitative comparison.

Table 1: Zero-shot 3D classification comparison on ModelNet40 in pre-training stage.

Model Top-1 accuracy (%)

PointCLIP 20.2
PointNet++(ULIP) 58.4
PointBERT(ULIP) 60.4
PointVLM(ours) 71.3

5
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Table 2: Generative 3D object classification results on ModelNet40 test split (M40.) and Objaverse
200 samples (Obj.). (I): using instruction-typed prompt “What is this?”, (C): using completion-
typed prompt “This is an object of ”. PCD.: point cloud, SV.: single-view, and MV.: multi-view.
For multi-view, we randomly sample 4 views from 12 rendered images.

Model Input M40.(I) M40.(C) Obj.(I) Obj.(C)

InstructBLIP-7B SV. Img. 19.53 31.48 45.00 42.00
InstructBLIP-13B SV. Img. 25.97 31.40 37.00 31.50

LLaVA-7B SV. Img. 39.75 39.67 49.50 50.50
LLaVA-13B SV. Img. 37.12 36.06 53.00 50.50

Point-Bind LLM PCD. 51.90 39.71 6.00 4.50
PointLLM-7B PCD. 53.44 51.82 55.00 51.00

PointLLM-13B PCD. 53.00 52.55 56.50 51.50
GreenPLM PCD. 62.60 62.68 48.00 45.00

3D-LLM 3D object + MV. Img. - - 49.00 41.50
PointVLM-3B(ours) PCD. + MV. Img. 65.80 66.49 54.50 57.50
PointVLM-7B(ours) PCD. + MV. Img. 69.89 68.35 57.00 57.00

Implementation details. All our experiments were conducted on a Ubuntu server with 8 Nvidia
H20 graphic cards, each with a memory size of 96 GB. For the 3D input, we use number of points
n = 8192. During pre-training, we use 128 as training batch size and 40 as validation batch size,
10−4 as the learning rate and trained with 100 epochs. In both feature alignment and fine-tuning
stages, cosine learning rate schedule and warm-up strategy with ratio 0.03 are used, the number
of epochs is 3. In feature alignment stage, we use 4 as batch size, 2 × 10−3 as learning rate. In
fine-tuning stage, we use 2 as batch size, 2× 10−5 as learning rate. We use AdamW as optimizer in
all three stages. For evaluation metrics, in pre-training stage, top-1 accuracy is used. For generative
3D object classification and 3D object captioning tasks, large language model (Gemini 2.5 Flash) is
used to evaluate results. Details on how Gemini is used can be found in the appendix.

4.2 RESULTS AND ANALYSES

Pre-training results. We present the zero-shot 3D classification results on ModelNet40 in Table 1.
As can be seen, our method outperforms existing models with top-1 accuracy of about 71.3%, which
outperforms ULIP by around 10.9%. It indicates that by integrating image and text features into one
vector, the performance improves. While during evaluation in ULIP method, image features are not
used, which makes it hard because during training, point features are aligned to both image and text
features.

Table 3: 3D object captioning results on Objaverse 200 samples. We report LLM-score evaluated
by Gemini, S-BERT which refers to sentence BERT score, and SimCSE score.

Model LLM-Score S-BERT SimCSE

LLaVA-7B 46.71 45.61 47.10
LLaVA-13B 38.28 46.37 45.90

3D-LLM 33.42 44.48 43.68
PointLLM-7B 44.85 47.47 48.55
PointLLM-13B 48.15 47.91 49.12

PointVLM-3B(ours) 63.08 40.30 51.52
PointVLM-7B(ours) 68.59 42.18 52.26
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Generative 3D object classification results. What makes this task different from zero-shot 3D clas-
sification and more challenging is that category names are unknown during inference. On generative
3D object classification task, we compare various models as shown in Table 2. To stay consistent
with PointLLM, we use two kinds of prompts: the instruction-typed prompt “What is this?” and the
completion-typed prompt “This is an object of ”. As can be seen, both on ModelNet40 and Obja-
verse dataset, our method outperforms existing models. For models relying on single-view images,
their performance is notably constrained. Even the larger-scale LLaVA-13B only reaches 37.12 and
53.00, which shows that single-view visual cues struggle to encode the comprehensive 3D geometry
and semantic information needed for this task. Among point cloud models, although PointLLM-
7B/13B and GreenPLM perform better, their results still fall short of our approach. On contrast,
our PointVLM models leverage the synergy of point cloud and multi-view images. On Model-
Net40, they achieve remarkable scores: PointVLM-3B attains 65.80 and 66.49, while PointVLM-7B
reaches 69.89 and 68.35, all of which are the highest in their respective categories. On Objaverse,
our models also lead in most scenarios: PointVLM-3B scores 54.50 and 57.50, and PointVLM-7B
achieves 57.00. This dominance stems from one key factor: the multi-modal input compensates
for the limitations of single-view or single-modality data, enabling richer feature extraction of 3D
objects. In summary, the integration of multi-modal inputs and our innovative approach empowers
PointVLM to set new benchmarks in generative 3D object classification.

3D object captioning. On 3D object captioning task, we evaluate our model with the same 200
samples from Objaverse across three metrics of LLM-score (evaluated by GPT/Gemini), sentence
BERT score, and SimCSE. Notably, the PointVLM series proposed in this study stands out. Among
all compared models, PointVLM-3B achieves an LLM-score of 63.08, and PointVLM-7B fur-
ther improves to 68.59, significantly outperforming other baselines, and even the PointLLM series
(PointLLM-7B: 44.85; PointLLM-13B: 48.15) in terms of LLM-score. While in sentence BERT
score, although PointVLM models do not claim the top spot (PointLLM-13B reaches 47.91), they
remain competitive with scores of 40.30 (PointVLM-3B) and 42.18 (PointVLM-7B). In SimCSE
score, PointVLM-7B hits 52.26, ranking among the leading results. Overall, the PointVLM series
showcases superior comprehensive performance in 3D object captioning, especially excelling in the
LLM-score metric, which verifies the effectiveness of our proposed approach.

4.3 ABLATION STUDY AND QUALITATIVE COMPARISON

Ablation study. We conducted a study focusing on the number of image views during inference
using PointVLM-3B. The results show distinct trends, increasing the number of image views from 1
to 2 brings a remarkable performance improvement (from 46.50 to 55.00 and from 50.50 to 54.50).
Further increasing to 4 images leads to a slight drop to 54.50 for instruction-typed prompt, but
the performance keeps rising to 57.50 with 4 images. These results indicate that the advantage of
additional image views helps models understand 3D geometry better.

Qualitative comparison. Table 5 and Table 6 show qualitative results compared with PointLLM. In
Table 5, for Sample 1 from ModelNet40 test split, PointLLM erroneously describes it as a minimalist
grey bowl, while PointVLM accurately identifies it as a cartoon-styled bathtub. For Sample 2 from
Objaverse 200 samples, where the ground truth involves a black cat with yellow eyes chasing a green
ball, PointLLM fails to capture this accurately and describes a cartoon pig instead. PointVLM, how-
ever, correctly describes the cat and the ball. Furthermore, in Table 6, for Sample 3 from Objaverse
200 samples, PointLLM describes the 3D model as a toy balloon. In contrast, PointVLM depicts it

Table 4: Ablation study. We show the results under different number of image views during infer-
ence. Obj. is Objaverse 200 samples. (I) indicates using instruction-typed prompt “What is this?”
and (C) means using completion-typed prompt “This is an object of ”.

Model Input Obj.(I) Obj.(C)

PointVLM-3B PCD. + 1 Img. 46.50 50.50
PointVLM-3B PCD. + 2 Img. 55.00 54.50
PointVLM-3B PCD. + 4 Img. 54.50 57.50
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Table 5: Qualitative comparison: instruction-typed and completion-typed. Sample 1 is from Mod-
elNet40 test split, and sample 2 is from Objaverse 200 samples. Our PointVLM generates more
accurate results than PointLLM.

Sample 1, 2

Ground truth Bathtub

Figure of a black cat with yellow eyes
following a small green ball that is
suspended by a very thin white rope.
The cat stands on two legs on a round
light brown surface.

Prompt What is this? This is an object of

PointLLM-13B

The 3D model presents an unorna-
mented, minimalist grey bowl. It’s
simple yet functional design includes
a flat, smooth top surface for plac-
ing items, with a slightly wider base
for stability. The color and lack of
embellishment make it versatile, suit-
able for multiple uses in different
contexts - from a simple household
bowl to a decorative pot or even a
pedestal for plants. It is empty and
is waiting for your creative decor or
practical application.

a whimsical and charming cartoon-
style pig. The pig is characterized by
a vivid orange body and a distinctive
pink face, creating a playful contrast.
Highlighting its captivating features
are luminous yellow eyes which add
an extra layer of brightness. This 3D
model, while being visually appeal-
ing, can also be used in various digi-
tal mediums such as animation, video
games or even virtual reality.

PointVLM-3B

This is a 3D model of a bathtub, de-
signed in a cartoon style. The bath-
tub is white and has a simple, clean
design. It features two handles for
easy access to the water, which are
located on either side of the tub. This
model could be used in animations,
video games, or other digital me-
dia where realistic objects need to be
represented in a simplified manner.

a black cat playing with a green
ball. The cat is standing on a brown,
circular base that resembles a plat-
form or a cushion. The scene sug-
gests a playful and interactive mo-
ment between the cat and its toy.

as a cartoon-style submarine with a yellow body, blue eyes, and a red propeller. For Sample 4 from
Fusion360 dataset, PointLLM captions it as a door handle, while PointVLM captions it as a modern
telephone. These examples clearly demonstrate that PointVLM captures topological relationships
and outperforms PointLLM, even with less model weights.

5 CONCLUSION AND FUTURE WORKS

In this work, we present PointVLM, a novel multi-modal vision-language model that bridges 3D
point cloud processing with vision and natural language understanding to enable precise CAD model
interpretation. Experimental results validate that PointVLM outperforms existing methods. The

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Qualitative comparison: captioning. Sample 3 is from Objaverse 200 samples, and sample
4 is from Fusion360 dataset. The prompt for them is “Caption this 3D model in detail.”. Our
PointVLM outperforms PointLLM.

Sample 3, 4

PointLLM-13B

The 3D model is of a vibrant, cheer-
ful toy balloon in a striking shade
of yellow, which would instantly at-
tract young children. The balloon
is embellished with multiple tiny,
blue dots evenly scattered all over its
body, creating an eye-catching visual
effect. It is further embellished with
an unusually lengthy, tubular shape
that starts at the bottom and stretches
all the way up to the pointed apex
of the balloon, possibly serving as
an additional decorative feature or a
handle for lifting. Its playful aes-
thetic indicates it’s primarily meant
for use in children’s games or as a
cheerful display.

The model is a simplistic, minimal-
istic representation of a door handle,
primarily in a grey color. As a 3D ob-
ject, it can be distinguished from the
traditional 2D design, adding depth
and texture to the handle. The han-
dle is designed with smooth surfaces,
giving it a sleek and modern appear-
ance. The 3D model is implied to be
functional, similar to its 2D counter-
part, allowing doors to be opened and
closed. It’s likely to be used in a 3D
environment like a video game, an ar-
chitectural model, or a movie.

PointVLM-3B

This is a 3D model of a cartoon-style
submarine, characterized by its vi-
brant yellow color and playful de-
sign. The submarine features two
large blue eyes on the sides, giving it
a friendly and engaging appearance.
It also has a distinctive red propeller
at the back, adding to its whimsical
look. This model could be used in
animations, video games, or as a dec-
orative piece for children’s rooms.

The 3D model represents a modern,
sleek, and compact telephone with a
distinctive design. The phone is pri-
marily grey in color, giving it a pro-
fessional and sophisticated look. It
features a large, rectangular screen at
the front, which likely serves as the
display for calls or messages. The
phone also has a built-in speaker-
phone, indicated by the presence of
a small, circular hole on top. This
design suggests that the phone is in-
tended for use in both home and
office environments, offering conve-
nience and functionality to users.

integration of 3D spatial reasoning with vision-language models enables robust performance across
CAD understanding scenarios.

To further advance CAD model interpretation and multi-modal AI systems, following directions
could be explored in the future: 1) Inspired by recent advancements in reasoning-aware VLMs
trained with chain-of-thought dataset, we could develop a reasoning framework that decomposes
complex CAD analysis tasks into explainable cognitive steps. 2) Reinforcement learning could
be utilized in the future to improve generalization. 3) Exploring generative CAD capabilities for
automated and controllable 3D model editing could be another future direction.

9
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A APPENDIX

A.1 TEMPLATES OF PRE-TRAINING

During pre-training stage on ShapeNet55, to construct image, text and point cloud triplets, we use
object labels and randomly select one template from Table 7 to generate corresponding text. The
words split by “/” in every template are also random selected when generating samples.
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Table 7: Templates of text used in ShapeNet55 dataset to construct image, text and point cloud
triplets. {} will be replaced with corresponding labels when sampling.

A point cloud model of {}. There is a/the {} in the scene.
A photo/model of a/the/one {} in the scene. A photo/model of a/my/the/one/many {}.
A good photo/model of a/the {}. A bad photo/model of a/the {}.
A photo/model of a/the nice {}. A photo/model of a/the cool {}.
A photo/model of a/the weird {}. A photo/model of a/the small {}.
A photo/model of a/the large {}. A photo/model of a/the clean {}.
A photo/model of a/the dirty {}. A bright photo/model of a/the {}.
A dark photo/model of a/the {}. A photo/model of a/the hard to see {}.
A low resolution photo/model of a/the {}. A cropped photo/model of a/the {}.
A close-up photo/model of a/the {}. A jpeg corrupted photo/model of a/the {}.
A blurry photo/model of a/the {}. A pixelated photo/model of a/the {}.
A black and white photo/model of a/the {}. A/The plastic {}.
A/The toy {}. A/The plushie {}.
A/The cartoon {}. An/The embroidered {}.
A painting/modeling of a/the {}.

A.2 LLM EVALUATION PROMPTS AND USE OF LLMS

Inspired by PointLLM, we use Gemini 2.5 Flash as our LLM evaluator to help use evaluate our
results. Table 8 shows the prompt that we used for close-set zero-shot classification task on Mod-
elNet40. Gemini is asked to directly give an answer containing category index, category name and
brief reason according to model output. Table 9 shows the prompt for open vocabulary classifica-
tion on Objaverse 200 samples. Gemini is given two sentences to determine if they are referring
to the same general object or concept, and answer True or False followed by a brief reason. Table
10 shows the prompt for evaluating captioning task. Gemini is asked to score a model-generated
caption according to human caption, by counting mentioned aspects.

Use of LLMs. It is important to note that, in this work, LLMs, specifically, Gemini 2.5 Flash, was
only used to help evaluate experimental results. The core methodology did not involve the use of
LLM-generated content.

A.3 MORE QUALITATIVE RESULTS

We provide more qualitative results from different datasets of PointVLM 3B. All samples used
were unseen by our models during training. Table 11 shows two samples from Objaverse 200 sam-
ples. Sample 5 is a 3D model of a forklift, but PointLLM captions it as a truck while PointVLM
successfully recognize it as a forklift. Sample 6 is a carpet, and PointLLM misidentifies it as a
keyboard. Table 12 shows another two samples from Fusion360 dataset. The captions of PointVLM
are more accurate than PointLLM for sample 7 and 8 (pliers and pipe wrench). It is worth noting
that PointVLM uses 3B parameters only, while PointLLM uses 13B parameters. These samples
highlight PointVLM’s generalization ability and efficiency.
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Table 8: Prompt of Gemini in close-set zero-shot classification evaluation on ModelNet40 test split.

Prompt Given the following free-form description of a 3D object, please determine the most
probable class index from the following 40 available categories, even if the description
doesn’t clearly refer to any one of them. Make your best-educated guess based on the
information provided. If the description already contains a valid index, then the index
should be selected. If it contains more than one valid index, then randomly select one
index (specify your reason). If there is no valid index and it cannot be inferred from
the information, return ”-1#NA#Cannot infer”.

Categories:
0: airplane, 1: bathtub, 2: bed, 3: bench, 4: bookshelf, 5: bottle, 6: bowl, 7: car, 8:
chair, 9: cone, 10: cup, 11: curtain, 12: desk, 13: door, 14: dresser, 15: flower pot, 16:
glass box, 17: guitar, 18: keyboard, 19: lamp, 20: laptop, 21: mantel, 22: monitor,
23: night stand, 24: person, 25: piano, 26: plant, 27: radio, 28: range hood, 29: sink,
30: sofa, 31: stairs, 32: stool, 33: table, 34: tent, 35: toilet, 36: tv stand, 37: vase, 38:
wardrobe, 39: xbox
Examples:

Input: This is a 3D object model of a cartoon white truck.
Output: 7#car#Closest match to ”car”in categories.

Input: A green leaf in a flower pot.
Output: 26#plant#The primary subject ”leaf”directly indicates a plant.

Input: It’s difficult to determine the exact type of this object due to insufficient details.
But it seems to be like a piece of furniture.
Output: 33#table#Randomly select one kind of furniture from the list.

Input: I cannot determine the specific type of the object without additional information
or context.
Output: -1#NA#Cannot infer.

Now analyze the following:
Input: {model output}
Output:

Example 1 Input: This is a model of an airplane, designed in a cartoon style. It’s predominantly
white and has a playful, simplified design that makes it suitable for children’s en-
tertainment or educational purposes. The airplane features two wings, a tail, and a
cockpit area, all typical components of a real aircraft. Its cartoonish appearance sug-
gests it might be used in animations, video games, or as a teaching tool to explain
basic concepts about aviation.
Output: 0#airplane#The description explicitly states ”This is a model of an airplane”.

Example 2 Input: This is a 3D model of a white gaming console, which appears to be a Wii
console based on its design and features. The console has a distinctive rectangular
shape with a control pad attached to it. This type of console was popular for its
motion-sensing capabilities, allowing players to interact with games using physical
movements.
Output: 39#xbox#The description refers to a ”gaming console” and specifically men-
tions a ”Wii console” which is a type of gaming console. ”xbox” is the closest category
for a gaming console.

Example 3 Input: This is a 3D model of a book, which is open to reveal two blank pages. The
book appears to be made of paper and has a clean, white cover. It’s a simple, minimal-
ist design that could be used in various digital contexts such as animations, games, or
graphic designs.
Output: -1#NA#Cannot infer.
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Table 9: Prompt of Gemini in open vocabulary classification evaluation on Objaverse 200 samples.

Prompt Analyze two sentences and determine if they’re referring to the same general object
or concept, focusing on the type of object, not attributes such as color, size, or shape.
Respond with ”T”if they refer to the same thing and ”F”if not. Also, provide a brief
rationale (no more than 20 words) for your judgment.

Example:
Input: 1. Spiral staircase that goes from a ground floor. 2. This is a 3D model of
wooden stairs in light brown
Output: T#Both refer to a staircase.

Now, analyze the following:
Input: 1. {ground truth} 2. {model output}
Output:

Example 1 Input: 1. A cartoon black carpet in 3d. 2. This 3D model is a vibrant and colour-
ful representation of a cartoon-like keyboard. It is adorned with buttons of varied
colours that give it a lively and playful aesthetic. The model appears to be designed
for children, emphasizing on the fun aspect of learning or using a keyboard. Although
it doesn’t showcase any functionalities, it can be assumed that it’s used for typing or
gaming in a digital environment. Its child-friendly look can be instrumental in engag-
ing younger audiences in educational or entertainment scenarios.
Output: F#One describes a carpet, the other a keyboard.

Example 2 Input: 1. A white container like car with six black tractor legs and yellow sides. 2.
The 3D model represents a brown cartoon-style truck. The truck features large black
tires with yellow rims that provide a playful contrast to the overall brown body. It also
has a charming little yellow headlight in the front, which adds more personality to its
cartoonish design. The truck could be used in animations, video games, or children’s
book illustrations.
Output: T#Both describe a truck.
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Table 10: Prompt of Gemini in 3D object captioning evaluation on Objaverse 200 samples.

Prompt Evaluate a model-generated caption against a human-generated caption (ground truth)
for a 3D model. Identify the aspects mentioned in the human caption and calculate
the percentage of these aspects correctly mentioned or partially matched in the model
caption. Score from 0 to 100, where each aspect contributes equally to the score.
Consider similar concepts for a partial score.

Provide your score (0-100) and a short justification (less than 15 words) in the format
of ”score#reason”

Example:
Human: A white brown skeleton
Model: This is a 3D model of a small, cartoon-like robot. It has a spherical body and
is covered in a layer of white dust.
Output: 50#mention white; skeleton and robot have similar appearence.

Now score the following:
Human: {ground truth}
Model: {model output}
Output:

Example 1 Human: A blue cartoon.
Model: This is a 3D model of a cartoon-style pony, characterized by its vibrant blue
color and striking white wings. The pony’s design is whimsical and playful, with a
crown adorning its head, adding to its regal appearance. Its wings, which are large
and spread wide, suggest that it might be capable of flight or at least soaring through
the air. This model could be used in animations, video games, or other digital media
for children’s entertainment purposes.
Output: 100#Correctly mentions both ’blue’ and ’cartoon’.

Example 2 Human: Digital image for the tr-909 drum machine by roland brand with 30 dials and
8 scuare yellow buttons , 6 little scuare white buttons and 18 white buttons 16 buttons
with leds light and a red scuare power button.
Model: The 3D model represents a rectangular, black-colored device with a sleek
design. It features a series of buttons and switches arranged in a grid pattern on its
surface, suggesting it’s a control panel or a switchboard. The buttons and switches
appear to be functional, indicating that the device could be used for controlling various
systems or devices. The overall appearance suggests it might be used in industrial or
commercial settings where precise control over multiple functions is required.
Output: 44#Partially matches device type & components, but misses brand, colors,
counts, and features.

Example 3 Human: A flat grey object with a key hole gap in the top and having two flat regions
in the back.
Model: The 3D model is of a black, cartoon-style spaceship with a distinctive ’X’
shape. It has two large, circular windows on the front and a smaller one at the back.
The design suggests it’s from a science fiction or fantasy genre, possibly used for
entertainment purposes such as video games, animations, or children’s books.
Output: 0#No matching aspects; descriptions are completely different.
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Table 11: More qualitative comparison from Objaverse 200 samples. The prompt for them is “Cap-
tion this 3D model in detail.”.

Sample 5, 6

PointLLM-13B

The model represents a detailed 3D
view of a cargo truck, primarily
colored in a distinctive orange hue.
The truck is equipped with a vi-
brant blue trailer that has an exten-
sive, rectangular cargo area. The
truck driver’s cabin is situated at the
front of the trailer. Cargo trucks like
this are commonly used for transport-
ing goods over long distances. With
its vibrant color scheme, this model
could be useful in providing educa-
tional material to children or could be
used as an attractive piece of decor.

This 3D model is a vibrant and
colourful representation of a cartoon-
like keyboard. It is adorned with
buttons of varied colours that give it
a lively and playful aesthetic. The
model appears to be designed for
children, emphasizing on the fun as-
pect of learning or using a keyboard.
Although it doesn’t showcase any
functionalities, it can be assumed
that it’s used for typing or gaming
in a digital environment. Its child-
friendly look can be instrumental in
engaging younger audiences in edu-
cational or entertainment scenarios.

PointVLM-3B

This is a 3D model of a forklift,
characterized by its robust and sturdy
build. The forklift features a grey
cabin with two transparent windows,
providing visibility to the operator. It
has a brown base, which is typical
for forklifts designed for heavy-duty
tasks. The forklift’s design suggests
it’s used in industrial settings for lift-
ing and moving heavy objects.

The 3D model is a rectangular piece
of fabric, predominantly black in
color. It features a pattern of multi-
colored dots scattered across its sur-
face. The dots come in various colors
including red, blue, green, and yel-
low, adding a vibrant contrast to the
black background. This fabric could
be used for a variety of purposes such
as clothing, home decor, or even as a
base material for crafting projects.
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Table 12: More qualitative comparison from Fusion360 dataset. The prompt for them is “Caption
this 3D model in detail.”.

Sample 7, 8

PointLLM-13B

A vivid and lively cartoon-style 3D
model that takes on the appearance
of a pair of scissors. It features
the blades and handles, tradition-
ally colored in grey and red respec-
tively, portraying the familiar shape
and functionality of real-life scissors.
It is set against a plain gray back-
ground, making the object stand out.
Due to its cartoonish design, this
model could be used in animations or
children’s educational content, em-
phasizing its role as a cutting tool in
everyday life.

This is a three-dimensional model of
a cartoon-style, green-colored object
that resembles a tool. The model is
quite simple and abstract, giving it
a playful and whimsical look typi-
cal of cartoons. The specific type
of tool it represents is not clear due
to its vague design, but it could be
any physical object used for labori-
ous tasks in daily life, such as a ham-
mer, wrench, or screwdriver.

PointVLM-3B

The 3D model represents a pair of
pliers, characterized by its long,
slender handles and sharp, curved
jaws. The handles are designed for
comfortable gripping, while the jaws
are equipped with teeth for grip-
ping and cutting. This tool is com-
monly used in various tasks such
as assembling or disassembling ob-
jects, cutting wires, or performing
other manual work. Its design sug-
gests it’s made from durable materi-
als like metal, ensuring longevity and
strength.

The 3D model depicts a cartoon-
style pipe wrench, characterized by
its exaggerated proportions and vi-
brant colors. The wrench is primarily
green, with a red handle that features
a distinctive square-shaped grip area.
The design suggests it’s meant for
children’s play or educational pur-
poses, possibly to teach them about
tools in a fun and engaging way.
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