

000 POINTVLM: MULTI-MODAL VISION-LANGUAGE 001 MODEL FOR CAD MODEL UNDERSTANDING VIA 002 POINT CLOUD INTEGRATION 003 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 In computer-aided design (CAD) and engineering, understanding complex CAD
014 models remains a critical challenge. Existing methods struggle with integrating
015 geometric features due to the lack of 3D modality and the difficulty of modal
016 fusion. To address this, we introduce PointVLM, a novel multi-modal vision-
017 language model that bridges 3D point cloud processing with vision and natural
018 language understanding to enable precise CAD model interpretation. PointVLM
019 leverages a 3D encoder to grasp 3D features from the point cloud of the object in
020 addition to vision and language modalities. By combining Qwen2.5-VL architec-
021 ture, PointVLM fuses three kinds of modality features using a learnable projec-
022 tor module, enabling context-aware interactions between geometric and semantic
023 properties. We further build a pipeline which takes CAD file and instruction as
024 input, automatically samples point clouds and renders multi-view images, and
025 finally outputs responses. Experiments show that PointVLM outperforms exist-
026 ing methods on both generative 3D object classification and 3D object captioning
027 tasks. The source code and pre-trained models will be available at MASKED_URL.

028 1 INTRODUCTION

030 Computer-aided design (CAD) has fundamentally transformed engineering and manufacturing by
031 enabling precise digital representations of physical objects through parametric modeling and geo-
032 metric optimization. However, as CAD models evolve into intricate multi-object systems with hi-
033 erarchical assembly relationships, interpreting complex CAD models remains a persistent challenge
034 due to the intrinsic complexity of 3D spatial reasoning and topological coherence.

035 Traditional approaches to CAD interpretation rely on human expertise for geometric analysis, ma-
036 terial property mapping and assembly validation. While recent advances in large language models
037 (LLMs) like DeepSeek-V3 (Liu et al., 2024a) have revolutionized textual reasoning, their inherent
038 sequential processing architecture fundamentally misaligns with the non-sequential nature of 3D
039 representations.

040 Emerging vision-language models (VLMs) such as Qwen2.5-VL (Bai et al., 2025) have demon-
041 strated promising capabilities in cross-modal reasoning by aligning visual features with textual de-
042 scriptors, but the application to CAD model understanding remains nascent. Existing methods such
043 as Liu et al. (2024b) attempt to fuse LLMs with 2D images enable 3D comprehension but struggle
044 with problems such as depth ambiguity, occlusion and viewpoint dependency. This gap highlights
045 two fundamental challenges: 1) The absence of specialized 3D spatial reasoning mechanisms that
046 can handle unordered point clouds while preserving topological relationships, and 2) The lack of
047 alignment between geometric primitives and linguistic descriptors in multi-modal fusion architec-
048 ture.

049 To address these limitations, we propose PointVLM, a novel multi-modal architecture that syner-
050 gizes PointBERT (Yu et al., 2022) for 3D geometric encoding with Qwen2.5-VL’s (Bai et al., 2025)
051 multimodal reasoning capabilities. PointVLM leverages a PointBERT-based point encoder to learn
052 representations of point cloud. To align point cloud, image and text features in the same space,
053 we propose a pre-training framework based on ULIP (Xue et al., 2023) in the pre-training stage.
PointVLM also adapts state-of-the-art visual language models to process 3D spatial relationships

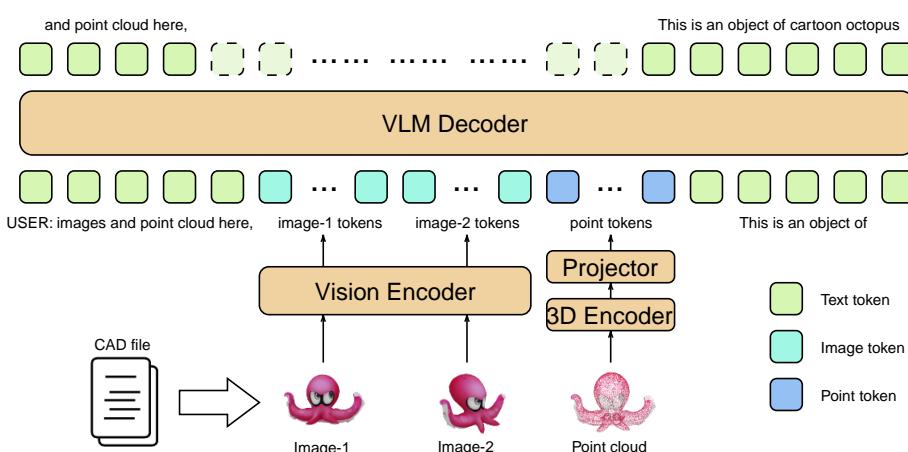


Figure 1: An overview of PointVLM pipeline. After getting CAD file and user prompt inputs, multi-view images are firstly rendered, and point cloud is sampled at the same time. Then using vision and 3D encoder, image and point tokens are generated. Finally, three kinds of tokens are organized and fed into VLM decoder to get final answers corresponding to the CAD file and user’s prompt.

alongside textual specification. Furthermore, we build a pipeline (Figure 1) which takes a CAD file and a use instruction as input, automatically samples point clouds and renders multi-view images, and finally outputs responses.

Extensive experiments are conducted to show the effectiveness and strong generalization ability of our proposed model. For generative 3D object classification task on ModelNet40 dataset, our 3B version model surpasses existing methods with 66.49% classification accuracy score, and our 7B model achieves higher to 69.89%. For 3D object captioning task, PointVLM also showcases superior comprehensive performance.

Our contributions can be summarized as follows:

- We introduce a novel pre-training framework based on ULIP to align features from point clouds, images, and text into a unified space.
- We propose **PoinVLM**, a geometric-aware multi-modal architecture which is the first one to our knowledge that bridges the semantic gap between 3D representations and visual-language reasoning.
- We build a pipeline for CAD file pre-processing, point cloud sampling, multi-view image rendering and interaction using instructions.

The remainder of this paper is organized as follows: Section 2 reviews related work, Section 3 details our methodology, Section 4 presents experiments and results, and Section 5 summarizes and discusses future directions.

2 RELATED WORK

Multi-modal large language models. Multi-modal large language models (MLLMs) have emerged as a transformative paradigm in artificial intelligence, integrating text, images, audio, video or other modality data into unified architectures. These models typically build upon the foundational success of LLMs by incorporating specialized encoders for different modalities, e.g., vision transformer (Dosovitskiy et al., 2020) for images, audio encoder (Radford et al., 2023) for sound, followed by fusion mechanisms such as cross-modal attention and token-level concatenation. Qwen2.5-VL (Bai et al., 2025) introduces dynamic vision resolution handling and absolute time encoding for video processing with an architecture which combines a vision encoder and a multilingual LLM, achieving competitive performance on visual-language tasks. Gemini 2.5 (Comanici et al., 2025)

108 has the ability to process more than two modalities, including image, video, audio and text. It
 109 adopts sparse mixture-of-experts architecture and thinking mechanism, achieving state-of-the-art
 110 performance on video understanding and audio generation tasks. In our work, we keep up with
 111 the alignment and tuning methods, construct an MLLM capable of understanding 3D object point
 112 clouds and images.

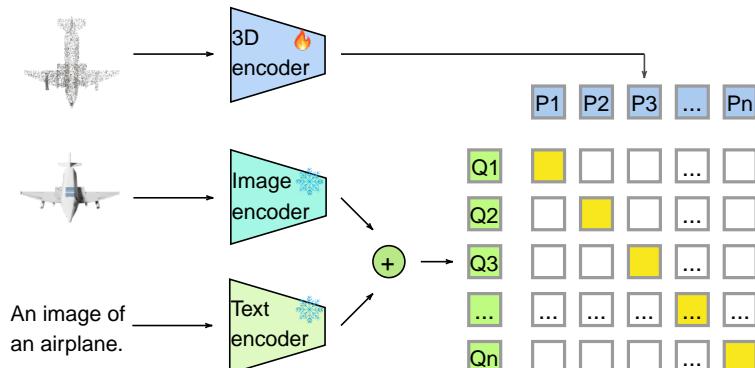
113 **Language models for object point cloud understanding** The integration of language models with
 114 3D point cloud understanding are inspired by works like CLIP (Radford et al., 2021). PointCLIP
 115 (Zhang et al., 2022) projects point clouds into multi-view depth maps and aligning them with CLIP’s
 116 vision-language space. PointCLIP2 (Zhu et al., 2023) extends PointCLIP with an inter-view adapter
 117 to aggregate global features and improves few-shot performance. ULIP (Xue et al., 2023) and ULIP2
 118 (Xue et al., 2024) train point cloud encoders to align with CLIP embeddings using triplet data (point
 119 clouds, images and text). OpenShape (Liu et al., 2023) combines 2D image features from ResNet
 120 with 3D from PointNet++ (Qi et al., 2017), leveraging contrastive learning to align multi-modal
 121 features. 3D-LLM (Hong et al., 2023) enables LLMs to interpret 3D scenes by rendering multi-view
 122 images and using SAM for object localization but heavily relies on 2D-3D projection pipelines.
 123 Point-Bind LLM (Guo et al., 2023) aligns point cloud features with ImageBind’s (Girdhar et al.,
 124 2023) cros-modal embeddings and uses 2D MLLMs such as ImageBind LLM (Han et al., 2023)
 125 for text generation. PointLLM (Xu et al., 2024) directly fuses point cloud tokens with LLMs like
 126 LLAMA-3 (Dubey et al., 2024) for 3D object understanding and releases generative 3D object
 127 classification and 3D object captioning benchmarks. GreenPLM (Tang et al., 2025) pays more
 128 attention to text data and uses less points to reduce reliance on 3D data. However, fusion of visual-
 129 language model with point cloud data is insufficiently explored. Aiming at this, our model aligns
 130 point cloud tokens along with image and text tokens using an end-to-end structure and training
 131 method, enabling free-form interactions while keeping accurate understanding.

132 3 METHODOLOGY

133 This section firstly introduces pre-training method for point cloud alignment with image and text.
 134 We then detail the architecture of PointVLM. Lastly, we introduce our training strategy.

135 3.1 PRE-TRAINING

136 To better align point cloud features with image and text representations, a pre-training framework
 137 (Figure 2) is built. Specifically, a pre-trained vision-language model (CLIP) containing image en-
 138 coder $f_I(\cdot)$ and text encoder $f_T(\cdot)$ is used to extract image and text features, and a 3D encoder
 139 $f_P(\cdot)$ is utilized to get point cloud features. For an CAD triplet input $(I, T, P)_i$, the three en-
 140



141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161

Figure 2: Point cloud, image and text alignment.

coders output corresponding features $X_i = (x_1, x_2, \dots, x_n) \in \mathbb{R}^{n \times d}$, $Y_i = (y_1, y_2, \dots, y_n) \in \mathbb{R}^{n \times d}$ and $Z_i = (z_1, z_2, \dots, z_n) \in \mathbb{R}^{n \times d}$ for image, text and point cloud respectively. During training, only the 3D encoder is trainable, while another two encoders are frozen. To align point cloud features with image and text, we simply add image and text features to get CLIP features $C_i = X_i + Y_i = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. Similar to CLIP, we use contrastive loss to train the model:

$$Loss_{pretrain} = \sum_{(i,j)} \left(-\frac{1}{2} \log \frac{e^{\frac{C_i Z_j}{\tau}}}{\sum_k e^{\frac{C_i Z_k}{\tau}}} - \frac{1}{2} \log \frac{e^{\frac{C_i Z_j}{\tau}}}{\sum_k e^{\frac{C_k Z_j}{\tau}}} \right), \quad (1)$$

where (i, j) indicates a positive pair, while (i, k) and (k, j) indicate negative pairs in each training patch. τ is a learnable temperature as it is in CLIP.

3.2 POINTVLM ARCHITECTURE

As shown in Figure 1, our PointVLM is a multi-modal large language model which takes image, point cloud and text as inputs, and generate responses. The model consists of a pre-trained vision encoder f_V , a pre-trained 3D encoder f_P which is discussed in Section 3.1, a projector f_{proj} and a pre-trained vision-language model (VLM) decoder f_{vlm} .

The pre-trained vision encoder f_V takes as inputs multiple images $\{I\}$, and generates corresponding image tokens $X = (x_1, x_2, \dots, x_m) \in \mathbb{R}^{m \times c}$, where m is the number of image tokens and c is the feature dimension. The point encoder f_P takes as input a point cloud $P \in \mathbb{R}^{l' \times d}$, where l' is the number of points and d is the feature dimension of each point. The output of 3D encoder is a vector of point features $Z' = (z'_1, z'_2, \dots, z'_l) \in \mathbb{R}^{l' \times c'}$, where l is the number of point features and c' is the feature dimension. The projector f_{proj} is a multilayer perceptron (MLP) that maps the point features Z' to point tokens $Z = (z_1, z_2, \dots, z_l) \in \mathbb{R}^{l \times c}$, where c is equal to the dimension of image tokens. Additionally, the input texts are tokenized to text tokens $Y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^{n \times c}$, where n is the number of text tokens.

All encoded tokens, including image, text and point tokens, are combined into a unified sequence, denoted as $V = (v_1, v_2, \dots, v_k) \in \mathbb{R}^{k \times c}$, where $k = m + n + l$. This sequence is fed into the VLM decoder f_{vlm} , which can process the mixed-modal tokens, leveraging contextual relationships between image, text and point clouds with self-attention mechanism. The output of VLM decoder is a sequence of predicted tokens $\hat{V} = (\hat{v}_1, \hat{v}_2, \dots, \hat{v}_K) \in \mathbb{R}^{K \times c}$, where K is the number of generated tokens until the EOS token or maximum number of truncated tokens. The prediction of the i -th token, \hat{v}_i , is conditioned on all previous tokens $V_{<i} = (v_1, v_2, \dots, v_{i-1})$, expressed mathematically as

$$\hat{v}_i = f_{vlm}(V_{<i}). \quad (2)$$

Finally, to get the prediction for each \hat{v}_i , a linear layer followed by a softmax operation is utilized to map it into a probability distribution over the vocabulary. Denote this layer as $f_{head} : \mathbb{R}^c \rightarrow \mathbb{R}^W$, where W is the size of the vocabulary, then this process can be expressed as

$$prob_i = \arg \max_{w \in \text{vocab}} f_{head}(\hat{v}_i)[w]. \quad (3)$$

To train the model to predict the next token in a sequence, we utilize the widely used causal language model loss. It computes the loss for autoregressive next-token prediction by aligning input sequences with their shifted labels and applying cross-entropy optimization. This loss function excels in balancing computational efficiency, memory usage and scalability, which makes our training end-to-end and effectively understand point clouds along with images and texts.

3.3 TRAINING STRATEGY

Inspired by PointLLM (Xu et al., 2024), we leverage a three-stage training strategy to balance efficiency and performance.

216 **Pre-training stage.** In the first stage, the purpose is to train the 3D encoder to better extract features
 217 from point clouds. During this stage, the 3D encoder is trainable while CLIP image and text encoder
 218 are frozen. Point, image and text triplets are fed into this contrastive learning framework to enable
 219 3D encoder’s feature extraction ability.

220 **Feature alignment stage.** In the second stage, we aim at training the MLP projector to map raw
 221 point features to semantically meaningful tokens. So, during this stage, only the weights of MLP
 222 projector are trainable. We use brief-description instructions with point cloud and text data to train
 223 the MLP projector so that it can efficiently adjust to map point features to point tokens. Embedding
 224 adjustment for special point tokens ($<|point_start|>$ and $<|point_end|>$) which are used to mark
 225 point token boundaries, is also included in this stage.

226 **Fine-tuning stage.** During stage three, the entire model is frozen to preserve pre-trained knowledge,
 227 and low-rank adaptation, LoRA (Hu et al., 2022), is used for each transformer layer. In this stage,
 228 complex instructions along with multi-view images and point cloud are fed into the model to enable
 229 its ability to understand and respond to complex instructions including point cloud, image and text
 230 data. This strategy balances efficiency and performance, making it suitable for deploying large
 231 multi-modal models on resource-constrained hardware.

233 4 EXPERIMENTS AND RESULTS

236 To demonstrate the benefits of our work, we conduct extensive experiments on two downstream
 237 3D tasks: generative 3D object classification and 3D object captioning. In this section we first
 238 introduce experiment settings, including our model encoder and decoder backbones, datasets and
 239 implementation details. Then we present results of pre-training and downstream tasks, followed by
 240 our analyses. Lastly, ablation study and qualitative comparison are shown to demonstrate the effects.

241 4.1 EXPERIMENT SETTINGS

243 **Backbone networks.** PointBERT (Yu et al., 2022), which is a transformer-based architecture for
 244 point cloud feature extraction, is utilized as our 3D encoder backbone. During pre-training stage,
 245 CLIP image and text encoder (clip-vit-base-patch32) are used as our image and text backbone. In the
 246 feature alignment and fine-tuning stages, we use Qwen2.5-VL vision encoder as image backbone,
 247 Qwen2.5-VL decoder as our VLM decoder backbone.

248 **Datasets.** We conduct pre-training on ShapeNet55 (Chang et al., 2015), which contains around
 249 52.5k samples of 3D objects with 55 category labels. To generate image, text and point cloud
 250 triplet, we sample points to construct point cloud from each sample mesh and use a template with
 251 its label to generate corresponding text. ModelNet40 (Wu et al., 2015) is a benchmark 3D shape
 252 dataset which has 40 categories. We only use the test split which has 2468 samples to conduct zero-
 253 shot classification in pre-training evaluation and generative 3D object classification in fine-tuning
 254 evaluation. Objaverse (Deitke et al., 2023) is a large-scale 3D dataset containing more than 800k
 255 3D models. By following PointLLM, we use 660k samples with brief descriptions as training data
 256 during feature alignment stage, and 70k samples with complex instructions in fine-tuning stage.
 257 Additional 200 samples are not seen in training stages, and they are kept as evaluation data for 3D
 258 object captioning task. Furthermore, additional samples from Fusion360 (Willis et al., 2021) are
 259 used as qualitative comparison.

262 Table 1: Zero-shot 3D classification comparison on ModelNet40 in pre-training stage.

263 Model	264 Top-1 accuracy (%)
265 PointCLIP	20.2
266 PointNet++(ULIP)	58.4
267 PointBERT(ULIP)	60.4
268 PointVLM(ours)	71.3

270
 271 Table 2: Generative 3D object classification results on ModelNet40 test split (M40.) and Objaverse
 272 200 samples (Obj.). (I): using instruction-typed prompt “What is this?”, (C): using completion-
 273 typed prompt “This is an object of ”. PCD.: point cloud, SV.: single-view, and MV.: multi-view.
 274 For multi-view, we randomly sample 4 views from 12 rendered images.

275 Model	276 Input	277 M40.(I)	278 M40.(C)	279 Obj.(I)	280 Obj.(C)
277 InstructBLIP-7B	278 SV. Img.	279 19.53	280 31.48	281 45.00	282 42.00
277 InstructBLIP-13B	278 SV. Img.	279 25.97	280 31.40	281 37.00	282 31.50
277 LLaVA-7B	278 SV. Img.	279 39.75	280 39.67	281 49.50	282 50.50
277 LLaVA-13B	278 SV. Img.	279 37.12	280 36.06	281 53.00	282 50.50
<hr/>					
281 Point-Bind LLM	282 PCD.	283 51.90	284 39.71	285 6.00	286 4.50
281 PointLLM-7B	282 PCD.	283 53.44	284 51.82	285 55.00	286 51.00
281 PointLLM-13B	282 PCD.	283 53.00	284 52.55	285 56.50	286 51.50
281 GreenPLM	282 PCD.	283 62.60	284 62.68	285 48.00	286 45.00
<hr/>					
286 3D-LLM	287 3D object + MV. Img.	288 -	289 -	290 49.00	291 41.50
286 PointVLM-3B(ours)	287 PCD. + MV. Img.	288 65.80	289 66.49	290 54.50	291 57.50
286 PointVLM-7B(ours)	287 PCD. + MV. Img.	288 69.89	289 68.35	290 57.00	291 57.00

292 **Implementation details.** All our experiments were conducted on a Ubuntu server with 8 Nvidia
 293 H20 graphic cards, each with a memory size of 96 GB. For the 3D input, we use number of points
 294 $n = 8192$. During pre-training, we use 128 as training batch size and 40 as validation batch size,
 295 10^{-4} as the learning rate and trained with 100 epochs. In both feature alignment and fine-tuning
 296 stages, cosine learning rate schedule and warm-up strategy with ratio 0.03 are used, the number
 297 of epochs is 3. In feature alignment stage, we use 4 as batch size, 2×10^{-3} as learning rate. In
 298 fine-tuning stage, we use 2 as batch size, 2×10^{-5} as learning rate. We use AdamW as optimizer in
 299 all three stages. For evaluation metrics, in pre-training stage, top-1 accuracy is used. For generative
 300 3D object classification and 3D object captioning tasks, large language model (Gemini 2.5 Flash) is
 301 used to evaluate results. Details on how Gemini is used can be found in the appendix.

302 4.2 RESULTS AND ANALYSES

303 **Pre-training results.** We present the zero-shot 3D classification results on ModelNet40 in Table 1.
 304 As can be seen, our method outperforms existing models with top-1 accuracy of about 71.3%, which
 305 outperforms ULIP by around 10.9%. It indicates that by integrating image and text features into one
 306 vector, the performance improves. While during evaluation in ULIP method, image features are not
 307 used, which makes it hard because during training, point features are aligned to both image and text
 308 features.

311
 312 Table 3: 3D object captioning results on Objaverse 200 samples. We report LLM-score evaluated
 313 by Gemini, S-BERT which refers to sentence BERT score, and SimCSE score.

314 Model	315 LLM-Score	316 S-BERT	317 SimCSE
317 LLaVA-7B	318 46.71	319 45.61	320 47.10
317 LLaVA-13B	318 38.28	319 46.37	320 45.90
317 3D-LLM	318 33.42	319 44.48	320 43.68
317 PointLLM-7B	318 44.85	319 47.47	320 48.55
317 PointLLM-13B	318 48.15	319 47.91	320 49.12
317 PointVLM-3B(ours)	318 63.08	319 40.30	320 51.52
317 PointVLM-7B(ours)	318 68.59	319 42.18	320 52.26

324 **Generative 3D object classification results.** What makes this task different from zero-shot 3D clas-
 325 sification and more challenging is that category names are unknown during inference. On generative
 326 3D object classification task, we compare various models as shown in Table 2. To stay consistent
 327 with PointLLM, we use two kinds of prompts: the instruction-typed prompt “What is this?” and the
 328 completion-typed prompt “This is an object of”. As can be seen, both on ModelNet40 and Obj-
 329 averse dataset, our method outperforms existing models. For models relying on single-view images,
 330 their performance is notably constrained. Even the larger-scale LLaVA-13B only reaches 37.12 and
 331 53.00, which shows that single-view visual cues struggle to encode the comprehensive 3D geometry
 332 and semantic information needed for this task. Among point cloud models, although PointLLM-
 333 7B/13B and GreenPLM perform better, their results still fall short of our approach. On contrast,
 334 our PointVLM models leverage the synergy of point cloud and multi-view images. On Model-
 335 Net40, they achieve remarkable scores: PointVLM-3B attains 65.80 and 66.49, while PointVLM-7B
 336 reaches 69.89 and 68.35, all of which are the highest in their respective categories. On Objaverse,
 337 our models also lead in most scenarios: PointVLM-3B scores 54.50 and 57.50, and PointVLM-7B
 338 achieves 57.00. This dominance stems from one key factor: the multi-modal input compensates
 339 for the limitations of single-view or single-modality data, enabling richer feature extraction of 3D
 340 objects. In summary, the integration of multi-modal inputs and our innovative approach empowers
 341 PointVLM to set new benchmarks in generative 3D object classification.

342 **3D object captioning.** On 3D object captioning task, we evaluate our model with the same 200
 343 samples from Objaverse across three metrics of LLM-score (evaluated by GPT/Gemini), sentence
 344 BERT score, and SimCSE. Notably, the PointVLM series proposed in this study stands out. Among
 345 all compared models, PointVLM-3B achieves an LLM-score of 63.08, and PointVLM-7B fur-
 346 ther improves to 68.59, significantly outperforming other baselines, and even the PointLLM series
 347 (PointLLM-7B: 44.85; PointLLM-13B: 48.15) in terms of LLM-score. While in sentence BERT
 348 score, although PointVLM models do not claim the top spot (PointLLM-13B reaches 47.91), they
 349 remain competitive with scores of 40.30 (PointVLM-3B) and 42.18 (PointVLM-7B). In SimCSE
 350 score, PointVLM-7B hits 52.26, ranking among the leading results. Overall, the PointVLM series
 351 showcases superior comprehensive performance in 3D object captioning, especially excelling in the
 352 LLM-score metric, which verifies the effectiveness of our proposed approach.

353 4.3 ABLATION STUDY AND QUALITATIVE COMPARISON

354 **Ablation study.** We conducted a study focusing on the number of image views during inference
 355 using PointVLM-3B. The results show distinct trends, increasing the number of image views from 1
 356 to 2 brings a remarkable performance improvement (from 46.50 to 55.00 and from 50.50 to 54.50).
 357 Further increasing to 4 images leads to a slight drop to 54.50 for instruction-typed prompt, but
 358 the performance keeps rising to 57.50 with 4 images. These results indicate that the advantage of
 359 additional image views helps models understand 3D geometry better.

360 **Qualitative comparison.** Table 5 and Table 6 show qualitative results compared with PointLLM. In
 361 Table 5, for Sample 1 from ModelNet40 test split, PointLLM erroneously describes it as a minimalist
 362 grey bowl, while PointVLM accurately identifies it as a cartoon-styled bathtub. For Sample 2 from
 363 Objaverse 200 samples, where the ground truth involves a black cat with yellow eyes chasing a green
 364 ball, PointLLM fails to capture this accurately and describes a cartoon pig instead. PointVLM, how-
 365 ever, correctly describes the cat and the ball. Furthermore, in Table 6, for Sample 3 from Objaverse
 366 200 samples, PointLLM describes the 3D model as a toy balloon. In contrast, PointVLM depicts it

367
 368
 369 **Table 4: Ablation study.** We show the results under different number of image views during infer-
 370 ence. Obj. is Objaverse 200 samples. (I) indicates using instruction-typed prompt “What is this?”
 371 and (C) means using completion-typed prompt “This is an object of”.

372 Model	373 Input	374 Obj.(I)	375 Obj.(C)
376 PointVLM-3B	377 PCD. + 1 Img.	378 46.50	379 50.50
376 PointVLM-3B	377 PCD. + 2 Img.	378 55.00	379 54.50
376 PointVLM-3B	377 PCD. + 4 Img.	378 54.50	379 57.50

378
379
380
381

Table 5: Qualitative comparison: instruction-typed and completion-typed. Sample 1 is from ModelNet40 test split, and sample 2 is from Objaverse 200 samples. Our PointVLM generates more accurate results than PointLLM.

382
383
384
385
386
387
388
389
390
391
392
393
394

Sample 1, 2

Ground truth Bathtub

Figure of a black cat with yellow eyes following a small green ball that is suspended by a very thin white rope. The cat stands on two legs on a round light brown surface.

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

PointLLM-13B

The 3D model presents an unornamented, minimalist grey **bowl**. It's simple yet functional design includes a flat, smooth top surface for placing items, with a slightly wider base for stability. The color and lack of embellishment make it versatile, suitable for multiple uses in different contexts - from a simple household bowl to a decorative pot or even a pedestal for plants. It is empty and is waiting for your creative decor or practical application.

a whimsical and charming cartoon-style **pig**. The pig is characterized by a vivid orange body and a distinctive pink face, creating a playful contrast. Highlighting its captivating features are luminous yellow eyes which add an extra layer of brightness. This 3D model, while being visually appealing, can also be used in various digital mediums such as animation, video games or even virtual reality.

410
411
412
413
414
415
416
417
418
419
420
421
422

PointVLM-3B

This is a 3D model of a **bathtub**, designed in a cartoon style. The bathtub is white and has a simple, clean design. It features two handles for easy access to the water, which are located on either side of the tub. This model could be used in animations, video games, or other digital media where realistic objects need to be represented in a simplified manner.

a **black cat** playing with a **green ball**. The cat is standing on a **brown, circular base** that resembles a platform or a cushion. The scene suggests a playful and interactive moment between the cat and its toy.

as a cartoon-style submarine with a yellow body, blue eyes, and a red propeller. For Sample 4 from Fusion360 dataset, PointLLM captions it as a door handle, while PointVLM captions it as a modern telephone. These examples clearly demonstrate that PointVLM captures topological relationships and outperforms PointLLM, even with less model weights.

5 CONCLUSION AND FUTURE WORKS

423
424
425
426
427
428
429

In this work, we present PointVLM, a novel multi-modal vision-language model that bridges 3D point cloud processing with vision and natural language understanding to enable precise CAD model interpretation. Experimental results validate that PointVLM outperforms existing methods. The

432
433
434
435

Table 6: Qualitative comparison: captioning. Sample 3 is from Objaverse 200 samples, and sample 4 is from Fusion360 dataset. The prompt for them is “Caption this 3D model in detail.”. Our PointVLM outperforms PointLLM.

436
437
438
439
440
441
442
443

Sample 3, 4

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

PointLLM-13B

The 3D model is of a vibrant, cheerful toy **balloon** in a striking shade of yellow, which would instantly attract young children. The balloon is embellished with multiple tiny, blue dots evenly scattered all over its body, creating an eye-catching visual effect. It is further embellished with an unusually lengthy, tubular shape that starts at the bottom and stretches all the way up to the pointed apex of the balloon, possibly serving as an additional decorative feature or a handle for lifting. Its playful aesthetic indicates it's primarily meant for use in children's games or as a cheerful display.

The model is a simplistic, minimalist representation of a door **handle**, primarily in a grey color. As a 3D object, it can be distinguished from the traditional 2D design, adding depth and texture to the handle. The handle is designed with smooth surfaces, giving it a sleek and modern appearance. The 3D model is implied to be functional, similar to its 2D counterpart, allowing doors to be opened and closed. It's likely to be used in a 3D environment like a video game, an architectural model, or a movie.

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

PointVLM-3B

This is a 3D model of a cartoon-style **submarine**, characterized by its vibrant yellow color and playful design. The submarine features two large blue eyes on the sides, giving it a friendly and engaging appearance. It also has a distinctive red propeller at the back, adding to its whimsical look. This model could be used in animations, video games, or as a decorative piece for children's rooms.

The 3D model represents a modern, sleek, and compact **telephone** with a distinctive design. The phone is primarily grey in color, giving it a professional and sophisticated look. It features a large, rectangular screen at the front, which likely serves as the display for calls or messages. The phone also has a built-in speakerphone, indicated by the presence of a small, circular hole on top. This design suggests that the phone is intended for use in both home and office environments, offering convenience and functionality to users.

475
476
477
478

integration of 3D spatial reasoning with vision-language models enables robust performance across CAD understanding scenarios.

481
482
483
484
485

To further advance CAD model interpretation and multi-modal AI systems, following directions could be explored in the future: 1) Inspired by recent advancements in reasoning-aware VLMs trained with chain-of-thought dataset, we could develop a reasoning framework that decomposes complex CAD analysis tasks into explainable cognitive steps. 2) Reinforcement learning could be utilized in the future to improve generalization. 3) Exploring generative CAD capabilities for automated and controllable 3D model editing could be another future direction.

486 ACKNOWLEDGMENTS

487

488 Masked due to double-blind review.

489

490 REFERENCES

491

492 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
493 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
494 2025.495 Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
496 Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
497 model repository. *arXiv preprint arXiv:1512.03012*, 2015.498 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
499 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
500 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
501 bilities. *arXiv preprint arXiv:2507.06261*, 2025.502 Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
503 Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
504 tated 3d objects. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
505 *recognition*, pp. 13142–13153, 2023.506 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
507 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
508 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
509 *arXiv:2010.11929*, 2020.510 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
511 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
512 *arXiv e-prints*, pp. arXiv–2407, 2024.513 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
514 Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In *Proceedings of*
515 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15180–15190, 2023.516 Ziyu Guo, Renrui Zhang, Xiangyang Zhu, Yiwen Tang, Xianzheng Ma, Jiaming Han, Kexin Chen,
517 Peng Gao, Xianzhi Li, Hongsheng Li, et al. Point-bind & point-llm: Aligning point cloud
518 with multi-modality for 3d understanding, generation, and instruction following. *arXiv preprint*
519 *arXiv:2309.00615*, 2023.520 Jiaming Han, Renrui Zhang, Wenqi Shao, Peng Gao, Peng Xu, Han Xiao, Kaipeng Zhang, Chris Liu,
521 Song Wen, Ziyu Guo, et al. Imagebind-llm: Multi-modality instruction tuning. *arXiv preprint*
522 *arXiv:2309.03905*, 2023.523 Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
524 Gan. 3d-llm: Injecting the 3d world into large language models. *Advances in Neural Information*
525 *Processing Systems*, 36:20482–20494, 2023.526 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
527 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.528 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
529 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
530 *arXiv:2412.19437*, 2024a.531 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
532 tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
533 pp. 26296–26306, 2024b.534 Minghua Liu, Ruoxi Shi, Kaiming Kuang, Yinhao Zhu, Xuanlin Li, Shizhong Han, Hong Cai,
535 Fatih Porikli, and Hao Su. Openshape: Scaling up 3d shape representation towards open-world
536 understanding. *Advances in neural information processing systems*, 36:44860–44879, 2023.

- 540 Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
 541 ture learning on point sets in a metric space. *Advances in neural information processing systems*,
 542 30, 2017.
- 543
- 544 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 545 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 546 models from natural language supervision. In *International conference on machine learning*, pp.
 547 8748–8763. PMLR, 2021.
- 548 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 549 Robust speech recognition via large-scale weak supervision. In *International conference on ma-
 550 chine learning*, pp. 28492–28518. PMLR, 2023.
- 551
- 552 Yuan Tang, Xu Han, Xianzhi Li, Qiao Yu, Jinfeng Xu, Yixue Hao, Long Hu, and Min Chen. More
 553 text, less point: Towards 3d data-efficient point-language understanding. In *Proceedings of the
 554 AAAI Conference on Artificial Intelligence*, volume 39, pp. 7284–7292, 2025.
- 555 Karl DD Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G Lambourne, Armando Solar-
 556 Lezama, and Wojciech Matusik. Fusion 360 gallery: A dataset and environment for programmatic
 557 cad construction from human design sequences. *ACM Transactions on Graphics (TOG)*, 40(4):
 558 1–24, 2021.
- 559
- 560 Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaou Tang, and Jianxiong
 561 Xiao. 3d shapenets: A deep representation for volumetric shapes. In *Proceedings of the IEEE
 562 conference on computer vision and pattern recognition*, pp. 1912–1920, 2015.
- 563
- 564 Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm:
 565 Empowering large language models to understand point clouds. In *European Conference on
 566 Computer Vision*, pp. 131–147. Springer, 2024.
- 567
- 568 Le Xue, Mingfei Gao, Chen Xing, Roberto Martín-Martín, Jiajun Wu, Caiming Xiong, Ran Xu,
 569 Juan Carlos Niebles, and Silvio Savarese. Ulip: Learning a unified representation of language,
 570 images, and point clouds for 3d understanding. In *Proceedings of the IEEE/CVF conference on
 computer vision and pattern recognition*, pp. 1179–1189, 2023.
- 571
- 572 Le Xue, Ning Yu, Shu Zhang, Artemis Panagopoulou, Junnan Li, Roberto Martín-Martín, Jiajun
 573 Wu, Caiming Xiong, Ran Xu, Juan Carlos Niebles, et al. Ulip-2: Towards scalable multimodal
 574 pre-training for 3d understanding. In *Proceedings of the IEEE/CVF Conference on Computer
 575 Vision and Pattern Recognition*, pp. 27091–27101, 2024.
- 576
- 577 Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert:
 578 Pre-training 3d point cloud transformers with masked point modeling. In *Proceedings of the
 579 IEEE/CVF conference on computer vision and pattern recognition*, pp. 19313–19322, 2022.
- 580
- 581 Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao, Bin Cui, Yu Qiao, Peng Gao, and
 582 Hongsheng Li. Pointclip: Point cloud understanding by clip. In *Proceedings of the IEEE/CVF
 conference on computer vision and pattern recognition*, pp. 8552–8562, 2022.
- 583
- 584 Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyu Guo, Ziyao Zeng, Zipeng Qin, Shanghang Zhang,
 585 and Peng Gao. Pointclip v2: Prompting clip and gpt for powerful 3d open-world learning. In
 586 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 2639–2650, 2023.
- 587
- 588 **A APPENDIX**
- 589
- 590 **A.1 TEMPLATES OF PRE-TRAINING**
- 591
- 592 During pre-training stage on ShapeNet55, to construct image, text and point cloud triplets, we use
 593 object labels and randomly select one template from Table 7 to generate corresponding text. The
 words split by “/” in every template are also random selected when generating samples.

594

595 Table 7: Templates of text used in ShapeNet55 dataset to construct image, text and point cloud
596 triplets. {} will be replaced with corresponding labels when sampling.

597

598 A point cloud model of {}.	There is a/the {} in the scene.
599 A photo/model of a/the/one {} in the scene.	A photo/model of a/my/the/one/many {}.
600 A good photo/model of a/the {}.	A bad photo/model of a/the {}.
601 A photo/model of a/the nice {}.	A photo/model of a/the cool {}.
602 A photo/model of a/the weird {}.	A photo/model of a/the small {}.
603 A photo/model of a/the large {}.	A photo/model of a/the clean {}.
604 A photo/model of a/the dirty {}.	A bright photo/model of a/the {}.
605 A dark photo/model of a/the {}.	A photo/model of a/the hard to see {}.
606 A low resolution photo/model of a/the {}.	A cropped photo/model of a/the {}.
607 A close-up photo/model of a/the {}.	A jpeg corrupted photo/model of a/the {}.
608 A blurry photo/model of a/the {}.	A pixelated photo/model of a/the {}.
609 A black and white photo/model of a/the {}.	A/The plastic {}.
610 A/The toy {}.	A/The plushie {}.
611 A/The cartoon {}.	An/The embroidered {}.
612	
613	
614	

615

A.2 LLM EVALUATION PROMPTS AND USE OF LLMs

616

Inspired by PointLLM, we use Gemini 2.5 Flash as our LLM evaluator to help use evaluate our results. Table 8 shows the prompt that we used for close-set zero-shot classification task on ModelNet40. Gemini is asked to directly give an answer containing category index, category name and brief reason according to model output. Table 9 shows the prompt for open vocabulary classification on Objaverse 200 samples. Gemini is given two sentences to determine if they are referring to the same general object or concept, and answer True or False followed by a brief reason. Table 10 shows the prompt for evaluating captioning task. Gemini is asked to score a model-generated caption according to human caption, by counting mentioned aspects.

624

Use of LLMs. It is important to note that, in this work, LLMs, specifically, Gemini 2.5 Flash, was only used to help evaluate experimental results. The core methodology did not involve the use of LLM-generated content.

627

628

A.3 MORE QUALITATIVE RESULTS

630

We provide more qualitative results from different datasets of PointVLM 3B. All samples used were unseen by our models during training. Table 11 shows two samples from Objaverse 200 samples. Sample 5 is a 3D model of a forklift, but PointLLM captions it as a truck while PointVLM successfully recognize it as a forklift. Sample 6 is a carpet, and PointLLM misidentifies it as a keyboard. Table 12 shows another two samples from Fusion360 dataset. The captions of PointVLM are more accurate than PointLLM for sample 7 and 8 (pliers and pipe wrench). It is worth noting that PointVLM uses 3B parameters only, while PointLLM uses 13B parameters. These samples highlight PointVLM’s generalization ability and efficiency.

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649 Table 8: Prompt of Gemini in close-set zero-shot classification evaluation on ModelNet40 test split.
650
651

652 Prompt Given the following free-form description of a 3D object, please determine the most
 653 probable class index from the following 40 available categories, even if the description
 654 doesn't clearly refer to any one of them. Make your best-educated guess based on the
 655 information provided. If the description already contains a valid index, then the index
 656 should be selected. If it contains more than one valid index, then randomly select one
 657 index (specify your reason). If there is no valid index and it cannot be inferred from
 658 the information, return "-1#NA#Cannot infer".
 659

660 Categories:
 661 0: airplane, 1: bathtub, 2: bed, 3: bench, 4: bookshelf, 5: bottle, 6: bowl, 7: car, 8:
 662 chair, 9: cone, 10: cup, 11: curtain, 12: desk, 13: door, 14: dresser, 15: flower_pot, 16:
 663 glass_box, 17: guitar, 18: keyboard, 19: lamp, 20: laptop, 21: mantel, 22: monitor,
 664 23: night_stand, 24: person, 25: piano, 26: plant, 27: radio, 28: range_hood, 29: sink,
 665 30: sofa, 31: stairs, 32: stool, 33: table, 34: tent, 35: toilet, 36: tv_stand, 37: vase, 38:
 666 wardrobe, 39: xbox
 667 Examples:
 668

669 Input: This is a 3D object model of a cartoon white truck.
 670 Output: 7#car#Closest match to "car" in categories.

671 Input: A green leaf in a flower pot.
 672 Output: 26#plant#The primary subject "leaf" directly indicates a plant.

673 Input: It's difficult to determine the exact type of this object due to insufficient details.
 674 But it seems to be like a piece of furniture.
 675 Output: 33#table#Randomly select one kind of furniture from the list.

676 Input: I cannot determine the specific type of the object without additional information
 677 or context.
 678 Output: -1#NA#Cannot infer.

679 Now analyze the following:
 680 Input: {model_output}
 681 Output:
 682

683 Example 1 Input: This is a model of an airplane, designed in a cartoon style. It's predominantly
 684 white and has a playful, simplified design that makes it suitable for children's en-
 685 tertainment or educational purposes. The airplane features two wings, a tail, and a
 686 cockpit area, all typical components of a real aircraft. Its cartoonish appearance sug-
 687 gests it might be used in animations, video games, or as a teaching tool to explain
 688 basic concepts about aviation.
 689 Output: 0#airplane#The description explicitly states "This is a model of an airplane".
 690

691 Example 2 Input: This is a 3D model of a white gaming console, which appears to be a Wii
 692 console based on its design and features. The console has a distinctive rectangular
 693 shape with a control pad attached to it. This type of console was popular for its
 694 motion-sensing capabilities, allowing players to interact with games using physical
 695 movements.
 696 Output: 39#xbox#The description refers to a "gaming console" and specifically men-
 697 tions a "Wii console" which is a type of gaming console. "xbox" is the closest category
 698 for a gaming console.

699 Example 3 Input: This is a 3D model of a book, which is open to reveal two blank pages. The
 700 book appears to be made of paper and has a clean, white cover. It's a simple, minimal-
 701 ist design that could be used in various digital contexts such as animations, games, or
 702 graphic designs.
 703 Output: -1#NA#Cannot infer.

702
703
704
705
706
707
708
709
710
711
712
713
714

Table 9: Prompt of Gemini in open vocabulary classification evaluation on Objaverse 200 samples.

715
716
717
718
719
720
721
722
723
724
725
726
727
728

Prompt Analyze two sentences and determine if they're referring to the same general object or concept, focusing on the type of object, not attributes such as color, size, or shape. Respond with "T" if they refer to the same thing and "F" if not. Also, provide a brief rationale (no more than 20 words) for your judgment.

Example:

Input: 1. Spiral staircase that goes from a ground floor. 2. This is a 3D model of wooden stairs in light brown
Output: T#Both refer to a staircase.

Now, analyze the following:

Input: 1. {ground_truth} 2. {model_output}
Output:

Example 1 Input: 1. A cartoon black carpet in 3d. 2. This 3D model is a vibrant and colourful representation of a cartoon-like keyboard. It is adorned with buttons of varied colours that give it a lively and playful aesthetic. The model appears to be designed for children, emphasizing on the fun aspect of learning or using a keyboard. Although it doesn't showcase any functionalities, it can be assumed that it's used for typing or gaming in a digital environment. Its child-friendly look can be instrumental in engaging younger audiences in educational or entertainment scenarios.
Output: F#One describes a carpet, the other a keyboard.

Example 2 Input: 1. A white container like car with six black tractor legs and yellow sides. 2. The 3D model represents a brown cartoon-style truck. The truck features large black tires with yellow rims that provide a playful contrast to the overall brown body. It also has a charming little yellow headlight in the front, which adds more personality to its cartoonish design. The truck could be used in animations, video games, or children's book illustrations.
Output: T#Both describe a truck.

745
746
747
748
749
750
751
752
753
754
755

756
757
758
759
760
761

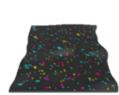
Table 10: Prompt of Gemini in 3D object captioning evaluation on Objaverse 200 samples.

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Prompt	<p>Evaluate a model-generated caption against a human-generated caption (ground truth) for a 3D model. Identify the aspects mentioned in the human caption and calculate the percentage of these aspects correctly mentioned or partially matched in the model caption. Score from 0 to 100, where each aspect contributes equally to the score. Consider similar concepts for a partial score.</p> <p>Provide your score (0-100) and a short justification (less than 15 words) in the format of "score#reason"</p> <p>Example: Human: A white brown skeleton Model: This is a 3D model of a small, cartoon-like robot. It has a spherical body and is covered in a layer of white dust. Output: 50#mention white; skeleton and robot have similar appearance.</p> <p>Now score the following: Human: {ground_truth} Model: {model_output} Output:</p>
Example 1	<p>Human: A blue cartoon. Model: This is a 3D model of a cartoon-style pony, characterized by its vibrant blue color and striking white wings. The pony's design is whimsical and playful, with a crown adorning its head, adding to its regal appearance. Its wings, which are large and spread wide, suggest that it might be capable of flight or at least soaring through the air. This model could be used in animations, video games, or other digital media for children's entertainment purposes. Output: 100#Correctly mentions both 'blue' and 'cartoon'.</p>
Example 2	<p>Human: Digital image for the tr-909 drum machine by roland brand with 30 dials and 8 square yellow buttons , 6 little square white buttons and 18 white buttons 16 buttons with leds light and a red square power button. Model: The 3D model represents a rectangular, black-colored device with a sleek design. It features a series of buttons and switches arranged in a grid pattern on its surface, suggesting it's a control panel or a switchboard. The buttons and switches appear to be functional, indicating that the device could be used for controlling various systems or devices. The overall appearance suggests it might be used in industrial or commercial settings where precise control over multiple functions is required. Output: 44#Partially matches device type & components, but misses brand, colors, counts, and features.</p>
Example 3	<p>Human: A flat grey object with a key hole gap in the top and having two flat regions in the back. Model: The 3D model is of a black, cartoon-style spaceship with a distinctive 'X' shape. It has two large, circular windows on the front and a smaller one at the back. The design suggests it's from a science fiction or fantasy genre, possibly used for entertainment purposes such as video games, animations, or children's books. Output: 0#No matching aspects; descriptions are completely different.</p>

810
811
812
813
814
815
816
817
818819 Table 11: More qualitative comparison from Objaverse 200 samples. The prompt for them is “Cap-
820 tion this 3D model in detail.”.821
822
823
824
825
826
827
828
829

Sample 5, 6



PointLLM-13B

The model represents a detailed 3D view of a cargo **truck**, primarily colored in a distinctive orange hue. The truck is equipped with a vibrant blue trailer that has an extensive, rectangular cargo area. The truck driver's cabin is situated at the front of the trailer. Cargo trucks like this are commonly used for transporting goods over long distances. With its vibrant color scheme, this model could be useful in providing educational material to children or could be used as an attractive piece of decor.

This 3D model is a vibrant and colourful representation of a cartoon-like **keyboard**. It is adorned with buttons of varied colours that give it a lively and playful aesthetic. The model appears to be designed for children, emphasizing on the fun aspect of learning or using a keyboard. Although it doesn't showcase any functionalities, it can be assumed that it's used for typing or gaming in a digital environment. Its child-friendly look can be instrumental in engaging younger audiences in educational or entertainment scenarios.

PointVLM-3B

This is a 3D model of a **forklift**, characterized by its robust and sturdy build. The forklift features a grey cabin with two transparent windows, providing visibility to the operator. It has a brown base, which is typical for forklifts designed for heavy-duty tasks. The forklift's design suggests it's used in industrial settings for lifting and moving heavy objects.

The 3D model is a rectangular piece of **fabric**, predominantly black in color. It features a pattern of multi-colored dots scattered across its surface. The dots come in various colors including red, blue, green, and yellow, adding a vibrant contrast to the black background. This fabric could be used for a variety of purposes such as clothing, home decor, or even as a base material for crafting projects.

855
856
857
858
859
860
861
862
863

864
865
866
867
868
869
870
871872 Table 12: More qualitative comparison from Fusion360 dataset. The prompt for them is “Caption
873 this 3D model in detail.”874
875
876
877

878 Sample 7, 8

879
880
881
882

883 PointLLM-13B

884
885
886
887
888
889
890
891
892
893
894
895

A vivid and lively cartoon-style 3D model that takes on the appearance of a pair of **scissors**. It features the blades and handles, traditionally colored in grey and red respectively, portraying the familiar shape and functionality of real-life scissors. It is set against a plain gray background, making the object stand out. Due to its cartoonish design, this model could be used in animations or children’s educational content, emphasizing its role as a cutting tool in everyday life.

896

897
898
899

900 PointVLM-3B

901
902
903
904
905
906
907
908
909

910
911
912
913
914
915
916
917

The 3D model represents a pair of **pliers**, characterized by its long, slender handles and sharp, curved jaws. The handles are designed for comfortable gripping, while the jaws are equipped with teeth for gripping and cutting. This tool is commonly used in various tasks such as assembling or disassembling objects, cutting wires, or performing other manual work. Its design suggests it’s made from durable materials like metal, ensuring longevity and strength.

This is a three-dimensional model of a cartoon-style, green-colored object that resembles a tool. The model is quite simple and abstract, giving it a playful and whimsical look typical of cartoons. The specific type of tool it represents is **not clear** due to its vague design, but it could be any physical object used for laborious tasks in daily life, such as a hammer, wrench, or screwdriver.

The 3D model depicts a cartoon-style **pipe wrench**, characterized by its exaggerated proportions and vibrant colors. The wrench is primarily green, with a red handle that features a distinctive square-shaped grip area. The design suggests it’s meant for children’s play or educational purposes, possibly to teach them about tools in a fun and engaging way.