
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPHMIND: LLMS AS DYNAMIC KNOWLEDGE
BUILDERS FOR SEQUENTIAL DECISION-MAKING

Anonymous authors
Paper under double-blind review

ABSTRACT

While the reasoning capabilities of large language models (LLMs) have advanced
considerably due to their extensive internal knowledge, efficiently internalizing
and leveraging new information in dynamic environments remains as a signifi-
cant challenge. This limitation is particularly pronounced in partially observable
environments, which require agents to manage long-term memory and perform ef-
fective exploration under incomplete information. To address this, we propose an
LLM agent architecture that integrates a knowledge graph as a graph-based mem-
ory module to facilitate high-level action planning. The agent incrementally con-
structs the knowledge graph through environmental interactions and retrieves rele-
vant information to generate efficient plans. We evaluate our approach in complex
navigation tasks specifically designed to present long-horizon and partially ob-
servable challenges. Experimental results demonstrate that incorporating a knowl-
edge graph as an external memory significantly enhances the success rate and ef-
ficiency of the LLM’s planning capabilities.

1 INTRODUCTION

Desired Trajectory Failure Case: Naive LLM Observation

Initial

Final

Pickup

Figure 1: Examples of a desired trajectory (left) and a failed trajectory (middle) in the partially
observable mission “put a gray ball next to the green key.” The agent moves from the start position
() to the final position (). The naive LLM planner fails to complete the mission due to insufficient
exploration.

Large language models (LLMs) have demonstrated remarkable performance in natural language
understanding and generation, establishing themselves as foundational tools across a wide range
of domains. Recently, research has increasingly focused on leveraging LLMs for interaction with
dynamic environments, exploiting their strong prior knowledge and reasoning capabilities. Stud-
ies such as Carta et al. (2023); Paglieri et al. (2024) have reported promising results in sequential
decision-making tasks, highlighting the potential of LLMs as agents in complex, interactive set-
tings. These approaches typically rely on a short context window over recent trajectories, limiting
the agent’s ability to retain and exploit long-term context during decision-making.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Unseen;Unseen;Unseen;Unseen;Unseen; Unseen; Unseen; 
Unseen;Unseen;Unseen;Wall; Wall; Wall; Wall; 
Unseen;Unseen;Unseen;Wall; Blue_Key;Empty; Empty; 
Unseen;Unseen;Unseen;Wall; Empty; Empty; Agent; 
Unseen;Unseen;Unseen;Wall; Empty; Empty; Empty; 
Unseen;Unseen;Unseen;Wall; Empty; Green_Box; Empty; 
Unseen;Unseen;Unseen;Wall; Wall; Yellow_Closed_Door;Wall;

Image Observation Text Observation

Figure 2: Two observation formats: a pixel-based image and a textual description.

However, many real-world tasks are inherently long-horizon and complex, and the additional chal-
lenge of partial observability requires agents to maintain and reason over extended context in order
to make effective decisions. Figure 1 illustrates an example of an environment that presents substan-
tial difficulties for a naive LLM planner, particularly under partial observability. In standard natural
language processing tasks such as question answering or text generation, Retrieval-Augmented Gen-
eration approaches (Lewis et al., 2020; Yu et al., 2022; Han et al., 2024) address this issue by retriev-
ing relevant chunks from large-scale external documentation. Yet, these methods are constrained by
the static nature of the external knowledge sources: the documentation is fixed and cannot account
for dynamically expanding information generated through ongoing interaction with an environment.
This limitation motivates the development of new mechanisms for adaptive memory construction
and retrieval tailored to sequential decision-making under partial observability.

Another line of work explores expanding external memory to support long-horizon tasks. For in-
stance, studies by Anthropic (2025) and Comanici et al. (2025) utilize the challenging benchmark of
Pokémon Red to evaluate long-term memory in LLMs. Instead of persistently including all informa-
tion in the prompt, both approaches equip the agent with tools for on-demand knowledge retrieval,
enabling a form of extended reasoning that streamlines the decision-making process. Specifically,
the approach by Anthropic (2025) with Claude Opus 4 maintains external memory files to store key
information. Similarly, the approach by Comanici et al. (2025) with Gemini-2.5-Pro condenses ac-
tion sequences in batches to reduce input tokens. This summarization focuses on event sequences
rather than constructing a spatial mental map. While maintaining continuity, both approaches result
in an inefficient memory structure and substantial storage requirements, limiting scalability.

To address these limitations, we propose GraphMind 1, a scalable and effective self-expanding ex-
ternal memory framework with two key components. First, inspired by prior work on knowledge
graphs Pujara et al. (2013), we organize information from past interactions into a graph-based repre-
sentation. This provides a compact yet expressive memory mechanism, particularly advantageous in
partially observable navigation tasks, as it explicitly captures spatial relationships between objects
and locations. Second, to support efficient decision-making, we augment the planning capabilities
of LLMs with a domain-specific language to enable structured reasoning and planning. This combi-
nation improves exploration efficiency, which is critical under partial observability, while grounding
the knowledge graph in trajectories collected through the actor’s behavior. Our experiments demon-
strate that the proposed structured approach enables an LLM agent to complete tasks in challenging
long-horizon, partially observable environments.

2 DOMAIN AND PROBLEM STATEMENT

Complex, long-horizon tasks are common in real-world settings and require both effective memory
mechanisms and advanced planning capabilities (Hu et al., 2025; He et al., 2025). Among alterna-
tives such as Blocks World (McDermott, 2000), we adopt and extend BabyAI (Chevalier-Boisvert
et al., 2019), a partially observable 2D gridworld that combines diverse challenges: object manipula-
tion, navigation, exploration–exploitation trade-offs, and mission execution specified in the simpli-
fied text-based Baby Language. In contrast to other environments such as ALFWorld (Shridhar et al.,
2020) and MiniHack (Samvelyan et al., 2021), BabyAI provides an Oracle Solver (referred to as
BOT in (Chevalier-Boisvert et al., 2019)), which generates step-by-step solutions using hand-coded

1Our code is available at: https://anonymous.4open.science/r/GraphMind-1080.

2

https://anonymous.4open.science/r/GraphMind-1080

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Determine the

Current Node

Update Entity

Information

Verify Node
Transition

Extract
Information

Verify
Completion

Knowledge Graph Construction Planning and Execution

Execute
Plan with

DSLs

Not Transitioned
Revise Plan

Retry/Completed
Transitioned

Figure 3: Overview of the proposed framework. The left panel illustrates the construction of the
knowledge graph, where the agent verifies node transitions, extracts information from observations,
determines the current node, and updates entity information. The right panel depicts the planning
and execution loop, in which the LLM generates DSL-based plans, the actor executes instructions,
completion is verified, and plans are revised if necessary. Arrows indicate the flow of information
and iterative feedback between modules.

rules and an internal stack machine. This feature enables systemic evaluation of how our method
expands memory and influences planning in long-horizon, partially observable environments.

Each environment layout consists of n rooms connected by colored doors and populated with color-
coded objects. The agent explores these rooms to locate target objects, while its field of view is
restricted by walls and doors, as shown in Figure 2. Unlocked doors permit free traversal, whereas
locked doors require keys of the corresponding color, thereby increasing the demand for exploration.
To further emphasize partial observability, we modified the environment such that open doors also
block the line of sight, preventing perception beyond the doorway. The detailed discussion on the
multimodal observations is provided in the appendix C.

In our experimental setup, we focus on two challenging missions, OpenDoor and PutNextTo,
that have proven difficult in prior work (Carta et al., 2023). In OpenDoor, the agent must retrieve a
key and unlock a corresponding door located elsewhere in the layout. To guarantee that tasks require
exploration, we randomly generate diverse layouts and missions, filtering them to ensure that key
entities are placed in non-adjacent rooms. In PutNextTo, the agent must find two distinct objects
placed in separate rooms and bring them together, making success contingent on navigating multiple
rooms rather than exploiting local information. Additional details are provided in Appendix B.

3 PROPOSED APPROACH

We propose GraphMind, a framework that enables agents to operate effectively in partially observ-
able environments. GraphMind dynamically constructs a self-expanding graph-based memory from
collected observations and employs adaptive planning to retrieve and exploit the knowledge required
for task completion. Graph structures provide a compact and expressive way to encode large-scale,
heterogeneous, and relational information, in contrast to linear structures. These structures are par-
ticularly well-suited for capturing spatial relationships, which are critical in navigation tasks (Hogan
et al., 2021; Han et al., 2024).

The proposed framework operates in two iterative stages: (1) Knowledge Graph Construction,
where observations are integrated into an incrementally expanding graph representation, and (2)
Planning and Execution, where a domain-specific language (DSL) supports structured reasoning
and action selection to gather task-relevant information under partial observability. This iterative pro-
cess enables systematic expansion of the agent’s knowledge base and progressively improves task
performance. An overview of our approach is illustrated in Figure 3, highlighting the interaction be-
tween graph construction and planning. Detailed descriptions of each module and the corresponding
prompts are provided in the Appendix A. An overview of our approach is illustrated in Figure 3,
highlighting the interaction between graph construction and planning. Detailed descriptions of each
module and the corresponding prompts are provided in the Appendix A.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

③ Determine the Current Node

① Verify Node Transition

④ Update Entity Information

② Extract Information Knowledge Graph

Red Ball

Blue Open Door

Purple Closed Door

Observation

Transition: True

Extracted Info

Room 2

Red Ball

Blue Open Door

Purple Closed Door

Room 2 Updated Room 2

Transition: True

Input Output OutputInput

Input Output OutputInput

is_connected_with
contains
is_located_to
are_apart

Room 0 Room 2Room 1

3 3

6

N E E

4 1

3

W N N

3

W SW

Relationships

Figure 4: Example of updating the knowledge graph in BabyAI. When the agent () observes a red
ball () and a purple door () after traversing a blue door (), the corresponding modules verify
the door traversal, extract object information, and expand the graph by adding a new room node, its
connecting edge, and the associated relationships, building upon the existing graph (shaded area).

3.1 KNOWLEDGE GRAPH-BASED MEMORY

We propose a graph-based memory representation that expands dynamically with the help of LLMs.
Nodes correspond to entities or locations, and edges encode relationships through relational predi-
cates. This design allows the agent to capture both spatial and semantic information, which are essen-
tial for reasoning and planning in partially observable environments. We focus on four relation types:
is connected with (spatial connectivity), contains (object presence within a space), is located to (di-
rectional attributes), and are apart (relative distances that help distinguish otherwise identical enti-
ties). In our adapted setup, rooms are modeled as nodes, doors as edges denoting connectivity, and
each room node is annotated with contained objects via contains and is located to. Objects within
the same room are linked by are apart, while adjacent rooms are joined by is connected with. Fig-
ure 4 shows an example of constructing such a graph from agent observations.

Figure 3 (left) illustrates knowledge graph construction, implemented via four dedicated modules:
• Verify Node Transition: analyze the agent’s action sequence to detect transitions and up-

date is connected with relations.
• Extract Information: parse the current observation to identify objects, expand con-

tains relations, and annotate entities with directional and distance attributes to establish
is located to and are apart.

• Determine Current Node: localize the agent by integrating observed entities, verified tran-
sitions, and connections to the previously known location.

• Update Entity Information: merge extracted attributes into the current node to maintain
a coherent, up-to-date representation of the environment.

The graph expands incrementally as the agent explores, with LLM-based modules guiding construc-
tion. To improve robustness, we apply an ensemble method to refine is connected with inference.
This process yields an adaptive memory structure that evolves continuously during interaction, sup-
porting long-horizon reasoning.

External Tools for Knowledge Utilization We augment the LLM with external tools to retrieve
relevant information from a knowledge graph, enabling effective utilization of structured environ-
mental knowledge. Inspired by prior works that leverage tool use for efficient prompting (Anthropic,
2025; Comanici et al., 2025), the proposed method similarly avoids including the full summarized
memory in every prompt. Instead, the LLM determines whether to request the information based
on its current observation, enabling the agent to retrieve from external memory. Given a room iden-
tifier, the tools return detailed information about the specified room, including its adjacent rooms
and the entities contained therein. Additionally, the shortest path from a given room to the nearest
target entity is computed using the breadth-first search algorithm. The integration of the knowledge
graph with external memory tools is motivated by its efficiency in managing information in partially
observable environments. In such settings, the memory requirements are dynamic, expanding as the
agent explores, which poses significant challenges for scalable and effective memory management.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: DSLs and their descriptions for BabyAI environment.

DSLs Description
find door() Find a door in the current room.
pass door(x) Pass through door x.

go to entity(x) Move to face entity x.
pick up entity(x) Pick up entity x.
drop entity(x) Drop the currently held entity x on an empty cell.

drop next to entity(x,y) Drop the currently held entity x next to entity y.

3.2 PLANNING USING DOMAIN-SPECIFIC LANGUAGE

A fundamental challenge in LLM-based agents lies in bridging the gap between high-level planning
and low-level action execution. LLMs excel at generating symbolic, abstract, and commonsense-
driven plans but often lack the precision and reliability required for fine-grained control in dynamic
environments (Ma et al., 2024; Wen et al., 2024). In contrast, low-level action policies—whether
heuristic controllers or reinforcement learning agents—are effective at executing primitive behaviors
but lack the ability to reason about long-term dependencies or abstract objectives. Our framework
addresses this disconnect through the use of domain-specific languages (DSLs), defined as computer
languages tailored to particular application domains, which provide a structured interface between
the symbolic reasoning of the LLM and the concrete action space of the environment.

DSLs have been widely adopted to enhance the reasoning and problem-solving capabilities of LLMs
in structured tasks (Barke et al., 2024; Chollet et al., 2024). In our framework, the DSL provides a
compact yet expressive action space, enabling the agent to efficiently navigate, manipulate objects,
and execute high-level strategies required for task completion. The DSL comprises six instructions,
enumerated in Table 1. By encoding navigation and interaction primitives as DSL instructions, the
LLM operates at the level of high-level goals while delegating execution details to a low-level ac-
tor. This separation of concerns reduces the cognitive load on the LLM and enhances robustness
in action execution. Consequently, our approach effectively aligns symbolic reasoning with embod-
ied interaction, bridging a longstanding gap between high-level planning and low-level control in
partially observable environments.

We formalize the decision process as an iterative “plan–execute–verify–revise” loop, as illustrated
in Figure 3 (right):

• Plan with DSLs: At each step, the LLM generates a sequence of DSL instructions condi-
tioned on the current observation and retrieved knowledge graph information accessed via
external tool calls.

• Execute: The actor executes the next instruction from this sequence.
• Verify Completion: After execution, the system assesses whether the intended subgoal has

been achieved.
• Revise Plan: If verification fails, the framework either adapts the plan by prompting the

LLM to generate a revised set of DSL instructions or allows the actor to retry the current
instruction.

This cyclical structure ensures that planning remains adaptive, resilient to execution errors, and
robust under partial observability.

4 EXPERIMENTS

Our experiments were conducted in complex multi-room environments, in contrast to the simple,
single-room setups used in prior work (Carta et al., 2023; Paglieri et al., 2024). The environments
follow grid layouts of 2 × 2 and 3 × 3 with complexity further increased by including at least one
locked door in each layout. As described in Section 2, we filter layouts to ensure that accessing
the target objects requires obtaining a key to unlock a door. In particular, for 3 × 3 layouts, we
enforce that completing the mission necessitates exploring at least four rooms. We evaluated two
models from the Google DeepMind Gemini 2.5 series (Comanici et al., 2025): Gemini-2.5-Flash
and Gemini-2.5-Pro. To account for the non-stationarity of partially observable environments and
the variability of LLM responses, we conducted three trials for each layout. To ensure environ-
mental diversity, we generated five random layouts under two entity-density conditions: one entity

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Success rate of completed missions (PutNextTo and OpenDoor). For graph edit distance
(GED), lower values indicate a more accurately constructed knowledge graph. We adopted expert
bot heuristic bot as a downstream actor. We denote our framework variants as follows: with the
knowledge graph (KG), with the stacked memory (SM), and without the memory (w/o Memory).
We report mean success rate and their 1 standard errors (SE).

Mission # rooms Metrics Gemini-2.5-Flash Gemini-2.5-Pro
KG w/o Memory SM KG w/o Memory SM

Put Next To
2×2 Success (%) 96.7 ± 3.3 90.0 ± 5.6 87.7 ± 6.3 83.3 ± 6.6 73.3 ± 8.2 90.0 ± 5.6

GED 4.97 ± 1.19 — — 3.43 ± 1.06 — —

3×3 Success (%) 66.7 ± 8.8 36.7 ± 8.9 36.7 ± 8.9 70.0 ± 8.5 56.7 ± 9.2 43.3 ± 9.2
GED 8.43 ± 1.62 — — 6.33 ± 1.45 — —

Open Door
2×2 Success (%) 100.0 ± 0.0 86.7 ± 6.3 100.0 ± 0.0 100.0 ± 0.0 93.3 ± 4.6 100.0 ± 0.0

GED 1.13 ± 0.36 — — 1.60 ± 0.34 — —

3×3 Success (%) 70.0 ± 8.5 66.7 ± 8.8 70.0 ± 8.5 83.3 ± 6.8 73.3 ± 8.2 76.7 ± 7.9
GED 9.70 ± 1.87 — — 3.60 ± 0.82 — —

Table 3: Success rate of PutNextTo mission. We compare the heuristic actor and LLM-as-agents
to test extendability of our method. While LLM-as-Agent struggles due to inevitable hallucinations,
our method was able to solve some tasks.

rooms Metrics Gemini-2.5-Flash Gemini-2.5-Pro
Heuristic Actor LLM-as-agent Heuristic Actor LLM-as-agent

2×2 Success (%) 96.7 ± 3.3 20.0 ± 7.4 83.3 ± 6.6 13.3 ± 6.3
GED 4.50 ± 1.65 5.33 ± 1.10 3.17 ± 1.56 8.90 ± 1.13

3×3 Success (%) 66.7 ± 8.8 20.0 ± 7.4 70.0 ± 8.5 10.0 ± 5.6
GED 7.80 ± 1.63 6.80 ± 1.06 6.00 ± 1.83 9.2 ± 0.95

per room and three entities per room. In total, our experiments cover 20 unique layouts. To assess
different memory configurations for the LLM planner, we designed experiments under two opera-
tional modes: a dynamic memory setting and a static memory setting. The dynamic setting, which
simulates real-world deployment, requires the planner to explicitly call external tools to retrieve in-
formation from memory. In contrast, the static setting provides continuous access to the full graph
information. Results for the static setup are reported in Appendix E.

To evaluate the efficacy of our knowledge graph as a memory module, we adopted two additional
baselines. The first, without Memory (w/o Memory), removes the knowledge graph construction
stage entirely. In this setting, the agent still leverages the same DSL for planning and exploration but
operates without external memory, serving as a baseline to measure the direct contribution of our
framework (KG). The second, Stacked Memory (SM), replaces the graph-based memory with a
linear, stack-structured alternative to assess the role of memory topology. In this baseline, memory is
built sequentially: at each step, the output of the Extract Information module is appended to a linear
data store. To accommodate this structure, we implemented three retrieval tools that provide the
LLM with action sequences and trajectories to summarize (i) the most recent decision, (ii) historical
information about a queried entity, and (iii) historical information about the most recently observed
closed or locked door.

4.1 EFFECTIVENESS OF EXTERNAL MEMORY UNDER PARTIALLY OBSERVABILITY

We analyze the effectiveness of LLMs in leveraging external modules for memory storage and re-
trieval in a partially observable environment using a planning DSL. The actor interacting with the
environment is instantiated in two variants: (1) an expert heuristic actor, which isolates the contri-
butions of memory and planning from the variability in action execution, and (2) an LLM-as agent,
which introduces additional considerations due to the inherent uncertainty of LLM outputs. We eval-
uate our framework on two BabyAI missions, PutNextTo and OpenDoor, with results presented
in Table 2. To assess the impact of the knowledge graph (KG), we compare against an ablated ver-
sion of our model without the knowledge graph (w/o Memory). The full framework consistently
outperforms this baseline, highlighting the critical role of structured external memory in enabling
effective agent behavior.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Mission: put a grey ball next to the green key

Knowledge Graph

MaxMin

Stacked Memory

(a) State visitations under Gemini-2.5 Flash planner.

Knowledge Graph Stacked Memory

go_to_entity(green door)

pass_door(green door)

go_to_entity(grey door)

pass_door(grey door)

go_to_entity(green key)

drop_next_to_entity(grey ball, green key)

go_to_entity(grey ball)

pick_up_entity(grey ball)

go_to_entity(green key)

drop_next_to_entity(grey_ball, green key)

go_to_entity(green door)

pass_door(green door)

(b) Plans generated by Gemini-2.5 Flash planner.

Figure 5: Comparison of a knowledge graph (KG) versus stacked memory (SM) for a Gemini-
2.5-Flash planner. The KG’s structured representation enables efficient exploration (a) and results in
correct plan (b). In contrast, the SM leads to confused exploration and planning failure, as the agent
cannot distinguish between to identical doors (planning errors: red in text, yellow in image).

0 5 10 15 20+
Graph Edit Distance

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

Gemini-2.5-Flash
Success
Fail

0 5 10 15 20+
Graph Edit Distance

0

10

20

30

40

50

60
Fr

eq
ue

nc
y

Gemini-2.5-Pro
Success
Fail

Figure 6: Distribution of Graph Edit Distance (GED) based on Mission Success. The distribution
of Knowledge Graph GED scores for task successes (blue triangles) and failures (red stars), using
Gemini-2.5-Flash (left) and Gemini-2.5-Pro (right). Overall, successful episodes tend to be concen-
trated at lower GED values, indicating higher graph accuracy, while failures are more distributed
across higher GED values. GED scores exceeding 20 are aggregated into the 20+.

To evaluate the extendability of our framework to non-expert implementations of DSLs, we adopt
an LLM-as-agent approach (Paglieri et al., 2024). The results for the PutNextTo mission are sum-
marized in Section 4.1. In comparison to the rule-based heuristic actor, LLM-based implementation
exhibits a noticeable drop in performance. This outcome is expected, as large language models are
prone to hallucination Kalai et al. (2025) and struggles to construct a coherent inner model from
egocentric observations Yang et al. (2025). We hypothesize that designing more fine-grained DSLs
could help mitigate this limitation, and we view the automatic discovery of such functions as an
important direction for future research.

The success rate of the Gemini-2.5-Flash using only DSL was 63.3%, whereas the rate in-
creased to 81.7% with the addition of the knowledge graph. This demonstrates that the knowl-
edge graph pipeline enables more effective problem-solving. The detailed execution result can
be found in Appendix D.

4.2 EFFECTIVENESS OF GRAPH-BASED MEMORY STRUCTURE

In this section, we evaluate the effectiveness of a graph-based memory structure by comparing it
against a stacked memory alternative to examine whether the structure of external memory influ-
ences performance. The agent equipped with stacked memory fails to navigate the environment ef-
ficiently. As illustrated in Figure 5a, which visualizes cell visitation frequency, the agent frequently

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

node 3

node 0

node 1

node 2

Verify Node Transition: False

Verify Node Transition: True

Knowledge GraphInputs

Rationale: 
(...) This significant change, despite
no explicit 'forward' or 'toggle' action,
indicates that

 between these two
observations. (...)

the agent implicitly
passed through a door and changed
rooms

Rationale: 
(...) As no 'Go Forward' action is
shown to occur directly through any
door at any point in the provided
trajectory,

 within these steps. (...)

the agent did not perform
the action of 'passing through a
door'

Actions

Turn Left, Turn Left, Go Forward, Go Forward, Turn Left

Figure 7: Examples of planner correctly (Blue Box) and incorrectly (Red Box) verifies whether the
agent has transitioned into another node. LLM planner confuses observation changes due to rotation
to node changes, leading to spurious node expansion (node 3).

revisits already explored cells and repeately rediscovers objects. This high rate of revisitation indi-
cates that the stacked memory is not effecively utilized, thereby hindering efficient navigation. In
contrast, the knowledge graph-based agent exhibits more structured and efficient exploration pat-
terns, despite the inevitable redundancies caused by partial observability. Moreover, leveraging the
knowledge graph-based memory facilitates efficient pathfinding between mission-critical objects,
such as “a grey ball” and “a green key”.

The inefficiency is further underscored by the suboptimal plans generated by the planner. Figure 5b
shows examples of LLM-generated plans along with the corresponding execution trajectories for
our method and the baseline. The stacked-memory agent confused the green door in the lower-right,
connecting cells 9 and 6, with the green door connecting cells 5 and 2. This confusion suggests that
stacked memory is an ineffective strategy for managing a dynamically growing memory. In contrast,
the agent equipped with the knowledge graph successfully planned a trajectory to reach the target
object (a gray ball).

Simply using external memory does not guarantee improved performance; in fact, a naive
approach can be detrimental. Our result show that a graph-based memory improved an agent’s
efficiency, while a poorly structured memory harmed the performance.

4.3 EVALUATING LLM-CONSTRUCTED KNOWLEDGE GRAPHS

A key challenge in Knowledge Graph Construction for sequential decision-making is the consistent
identification and tracking of objects over time. Identity errors introduce redundant nodes, reducing
both computational and memory efficiency, particularly in dynamic, partially observable environ-
ments where an agent actions (e.g., relocating objects induce variability.

To evaluate whether LLM-constructed knowledge graphs provide meaningful support for planning,
we adopt graph edit distance (GED) Sanfeliu & Fu (2012) as a proxy for structural similarity to
the ground-truth graph. Intuitively, a graph that more closely matches the true environment should
enable more accurate reasoning and planning. GED offers a principled way to quantify this similarity
through the minimum number of node or edge edit operations required for alignment.

As in Table 2, average GED increases with environment size, rising from 2× 2 to 3× 3 grids due to
compounded inference errors. More importantly, Figure 6 demonstrates a strong inverse relationship
between GED and task success. In the PutNextTo mission, successful trials averaged GED values
of 3.62 (2× 2) and 3.25 (3× 3), while failed trials averaged 30.0 and 16.9, respectively. When GED
was 0, success rates reached 98%, whereas no successful trials occurred with GED > 20.

These findings support the intuition that structural fidelity is critical: the closer the constructed graph
is to the ground truth, the more useful it becomes for guiding sequential decision-making. Finally,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7 illustrates typical failure modes. Large observation changes often caused the LLM to mis-
classify a revisited room as new, leading to spurious graph expansion and degraded accuracy.

The results demonstrate that the accuracy of the knowledge graph impacts mission success. The
success rate ranged from 98.10% with accurate knowledge graphs to 0% when accumulated
errors caused the GED to exceed 20. This suggests that LLMs possess an intrinsic ability to
utilize knowledge, and the graph accuracy impact to task performance.

5 RELATED WORK

LLMs as Agents in Sequential Decision-Making Large language models (LLMs) have demon-
strated strong performance across several challenging tasks, including question answering (Ra-
jpurkar et al., 2016), mathematics (Hendrycks et al., 2021), and, more recently, complex iterative
interactions within real-world environments. For instance, Ma et al. (2024) achieved notable results
in the real-time strategic decision-making environment StarCraft II by introducing the Chain of Sum-
marization (CoS) method to enhance LLMs’ decision-making efficiency. Furthermore, Paglieri et al.
(2024) benchmarked LLM-as-agent approaches across several game-based environments, including
BabyAI (Carta et al., 2023), TextWorld (Côté et al., 2018), Baba Is AI (Cloos et al., 2024), MiniHack
(Samvelyan et al., 2021), and NetHack Learning Environment (NLE) (Küttler et al., 2020). How-
ever, LLM-as-agent approaches exhibit limitations in long-context scenarios, particularly in tasks
that require effective utilization of historical information.

Addressing Hallucination via Knowledge Retrieval Although the ability of LLMs to handle
long contexts has improved, they still suffer from hallucinations—a critical issue in long-context
problems, such as sequential interactions with an environment. To mitigate this, prior work has pro-
posed Retrieval-Augmented Generation (RAG) and its variants (Lewis et al., 2020; Yu et al., 2022;
Zheng et al., 2023). Han et al. (2024) introduced GraphRAG, which enhances RAG by incorpo-
rating graph-based structures. Unlike conventional RAG, GraphRAG operates on graph-structured
data characterized by diverse formats and heterogeneous sources. However, these approaches re-
main constrained by their reliance on retrieving information from static documentation and by their
passive dependence on such information. Their primary role is to improve factual grounding by
retrieving facts during inference, but they remain passive with respect to environments where the
knowledge base itself is incomplete or evolving.

Retrieving Information from External Memory Retrieval-Augmented Generation (RAG)
(Lewis et al., 2020) augments LLMs with the ability to retrieve semantically relevant document
chunks from an external knowledge base, thereby mitigating hallucinations which is a critical limi-
tation of LLMs when faced with queries that extend beyond their training data or demand up-to-date
information. GraphRAG (Han et al., 2024) extends the RAG framework by incorporating graph-
structured knowledge representations, enabling more effective retrieval through the exploitation of
relational and structural information. In this respect, the concept of constructing a knowledge graph
for retrieval aligns closely with our approach.

6 CONCLUSION

This paper investigates the application of large language models (LLMs) to navigation tasks in par-
tially observable environments, focusing on how to equip LLMs with mechanisms for memory,
reasoning, and planning under uncertainty. We propose a framework that combines domain-specific
languages (DSLs) for high-level planning with a dynamically constructed knowledge graph to serve
as an external memory. Our approach enables the agent to iteratively plan, act, and update its knowl-
edge, effectively bridging the gap between abstract reasoning and low-level action execution. Exper-
imental results in complex MiniGrid environments demonstrate that leveraging a knowledge graph
significantly improves planning efficiency, task success rates, and robustness under partial observ-
ability. These findings highlight the potential of combining LLM reasoning with structured, adap-
tive memory representations, suggesting a promising direction for future research in long-horizon,
memory-intensive tasks in real-world settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Introducing claude 4, 2025. https://www.anthropic.com/news/claude-4.

Shraddha Barke, Emmanuel Anaya Gonzalez, Saketh Ram Kasibatla, Taylor Berg-Kirkpatrick, and
Nadia Polikarpova. Hysynth: Context-free llm approximation for guiding program synthesis.
Advances in Neural Information Processing Systems, 37:15612–15645, 2024.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning, pp. 3676–3713. PMLR, 2023.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations, volume 105.
New Orleans, LA, 2019.

Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. Arc prize 2024: Technical
report. arXiv preprint arXiv:2412.04604, 2024.

Nathan Cloos, Meagan Jens, Michelangelo Naim, Yen-Ling Kuo, Ignacio Cases, Andrei Barbu,
and Christopher J Cueva. Baba is ai: Break the rules to beat the benchmark. arXiv preprint
arXiv:2407.13729, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
environment for text-based games. In Workshop on Computer Games, pp. 41–75. Springer, 2018.

Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Mahantesh Halap-
panavar, Ryan A Rossi, Subhabrata Mukherjee, Xianfeng Tang, et al. Retrieval-augmented gen-
eration with graphs (graphrag). arXiv preprint arXiv:2501.00309, 2024.

Zifan He, Yingqi Cao, Zongyue Qin, Neha Prakriya, Yizhou Sun, and Jason Cong. HMT: Hierarchi-
cal memory transformer for efficient long context language processing. In Luis Chiruzzo, Alan
Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Americas
Chapter of the Association for Computational Linguistics: Human Language Technologies (Vol-
ume 1: Long Papers), pp. 8068–8089, Albuquerque, New Mexico, April 2025. Association for
Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.410.
URL https://aclanthology.org/2025.naacl-long.410/.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard De Melo, Claudio Gutier-
rez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, et al. Knowl-
edge graphs. ACM Computing Surveys (Csur), 54(4):1–37, 2021.

Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao, and Ping Luo. HiAgent: Hier-
archical working memory management for solving long-horizon agent tasks with large language
model. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 32779–32798, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1575. URL
https://aclanthology.org/2025.acl-long.1575/.

Adam Tauman Kalai, Ofir Nachum, Santosh S. Vempala, and Edwin Zhang. Why language models
hallucinate, 2025. URL https://arxiv.org/abs/2509.04664.

10

https://www.anthropic.com/news/claude-4
https://aclanthology.org/2025.naacl-long.410/
https://aclanthology.org/2025.acl-long.1575/
https://arxiv.org/abs/2509.04664

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The nethack learning environment. Advances in Neural
Information Processing Systems, 33:7671–7684, 2020.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Weiyu Ma, Qirui Mi, Yongcheng Zeng, Xue Yan, Runji Lin, Yuqiao Wu, Jun Wang, and Haifeng
Zhang. Large language models play starcraft ii: Benchmarks and a chain of summarization ap-
proach. Advances in Neural Information Processing Systems, 37:133386–133442, 2024.

Drew M. McDermott. The 1998 ai planning systems competition. AI Magazine, 21(2):35, Jun. 2000.
doi: 10.1609/aimag.v21i2.1506. URL https://ojs.aaai.org/aimagazine/index.
php/aimagazine/article/view/1506.

Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir
Khan, Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, et al. Balrog: Bench-
marking agentic llm and vlm reasoning on games. arXiv preprint arXiv:2411.13543, 2024.

Jay Pujara, Hui Miao, Lise Getoor, and William Cohen. Knowledge graph identification. In Inter-
national semantic web conference, pp. 542–557. Springer, 2013.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro,
Fabio Petroni, Heinrich Küttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet:
A sandbox for open-ended reinforcement learning research. arXiv preprint arXiv:2109.13202,
2021.

Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed relational graphs for
pattern recognition. IEEE transactions on systems, man, and cybernetics, (3):353–362, 2012.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Junjie Wen, Minjie Zhu, Yichen Zhu, Zhibin Tang, Jinming Li, Zhongyi Zhou, Chengmeng Li,
Xiaoyu Liu, Yaxin Peng, Chaomin Shen, et al. Diffusion-vla: Generalizable and interpretable
robot foundation model via self-generated reasoning. arXiv preprint arXiv:2412.03293, 2024.

Jihan Yang, Shusheng Yang, Anjali W. Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
space: How multimodal large language models see, remember, and recall spaces. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10632–
10643, June 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Advances
in neural information processing systems, 36:11809–11822, 2023.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang
Zhu, Michael Zeng, and Meng Jiang. Generate rather than retrieve: Large language models are
strong context generators. arXiv preprint arXiv:2209.10063, 2022.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H Chi, Quoc V Le,
and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models.
arXiv preprint arXiv:2310.06117, 2023.

11

https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1506
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1506

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A MODULE DETAIL WITH PROMPT

A.1 KNOWLEDGE GRAPH-BASED MEMORY

Verify Node Transition Module In the Verify Node Transition, we prompt a Large Language
Model (LLM) with the state-action trajectory and a guiding instruction for reasoning. The LLM an-
alyzes this information to determine the validity of the transition. Recognizing the critical impact of
this judgment on the knowledge graph’s accuracy, we exclusively employ an ensemble method for
this module. The node transition is determined by a majority vote over five trials. To verify a node
transition, we query an LLM to check the transition’s occurrence and predict the necessary connec-
tion information for the subsequent node. To enhance the reliability of the response, we incorporate
a self-evaluation mechanism inspired by the Independent Evaluation method Yao et al. (2023).

Verify Node Transition Prompt

[TEXT INPUT]

{Room_Description}
{room_description}
{/Room_Description}

{Action_Description}
{action_description}
{/Action_Description}

<Trajectories>
<Step_num>
{Trajectory}
{Direction}
</Step_num>

<Action_num>
{action}
</Action_num>

...

</Trajectories>

<Connected_Door_Instruction>
{connected_door_instruction}
</Connected_Door_Instruction>

<Door_Direction_Instruction>
{door_direction_instruction}
</Door_Direction_Instruction>

<Check_Pass_Door_Instruction>
{verify_node_transition_instruction}
</Check_Pass_Door_Instruction>

[IMAGE INPUT]

{images}

--

[OUTPUT]

‘‘‘LLM Reasoning‘‘‘
{

connected_door_rationale: {rationale}
connected_door: {connected_door}
door_direction_rationale: {rationale}
door_direction: {door_direction}
check_pass_door_rationale: {rationale}
check_pass_door: {check_pass_door}
answer_confidence_score: {answer_confidence_score}

}

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Extract Information In the Extract Information, the LLM is prompted to summarize the current
observation. It is provided with the observation and guided by instructions for reasoning, analyzing
the observation to generate a summary containing only the most critical information. This prompting
strategy serves the two purposes of enabling effective differentiation between graph nodes and en-
suring efficient memory utilization by storing only essential information. Subsequently, the LLM’s
responses contain both underscores and spaces, all underscores are converted to spaces for consistent
formatting.

Extract Information Prompt

[TEXT INPUT]

<Observation>
{observation}
</Observation>

<Entity_Listing_Instructions>
{entity_listing_instructions}
</Entity_Listing_Instructions>

<Current_Room_Entities_Instructions>
{current_room_entities_instructions}
</Current_Room_Entities_Instructions>

<Current_Room_Entities_Relationships_Instructions>
{current_room_entities_relationships_instructions}
</Current_Room_Entities_Relationships_Instructions>

<Direction_Of_Entities_Instructions>
{direction_of_entities_instructions}
</Direction_Of_Entities_Instructions>

[IMAGE INPUT]

{image}

--

[OUTPUT]

‘‘‘LLM Reasoning‘‘‘
{

current_room_entities_rationale: {rationale}
current_room_entities: {current_room_entities}
entities_relationships_rationale: {rationale}
entities_relationships: {entities_relationships}
direction_of_entities_rationale: {rationale}
direction_of_entities: {direction_of_entities}

}

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Determine the Current Node In the Determine the Current Node, the LLM determines the cur-
rent node. It is provided with information about the previously occupied node, the nodes connected
to that previous node, and the current observation. The LLM determines whether the current node
is a previously visited node or unvisited node, and it responds with the corresponding graph node
number. The selection of a graph-based localization method over a coordinate-based approach was
driven by the potential for compounding errors when requiring an LLM to manage memory. This
memory is intended to mitigate significant error accumulation. The effectiveness of this approach is
supported by the GED experiment results. Furthermore, the knowledge graph facilitates the efficient
storage of entity information.

Determine the Current Node Prompt

[TEXT INPUT]

<Observation>
{observation}
</Observation>

<Observed_Entities>
{observed_entities}
</Observed_Entities>

<Room_Information>
- Previous_Room_Number: {previous_room_number}
<Connected_with_Previous_Rooms>
- The previous room is connected with {connection_information}.
- Room contains the entities: {entities_information}
</Connected_with_Previous_Rooms>
</Room_Information>

<Rooms_List>
- {nodes}
</Rooms_List>

<Description>
{description}
</Description>

<Current_Graph_Node_Instructions>
{current_graph_node_instructions}
</Current_Graph_Node_Instructions>

--

[OUTPUT]

‘‘‘LLM Reasoning‘‘‘
{

current_graph_node_id_rationale: {rationale}
current_graph_node_id: {current_graph_node_id}

}

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Update Entity Information In the Update Entity Information, the LLM provides both the graph
information and the current observation to synthesize previously observed entity information with
the current observation. the environment contains visually identical entities, external information
is required to differentiate entities. To enable the LLM to distinguish between these entities, we
provided the relational and directional information. The LLM responds with the aggregated obser-
vation, including updated relations and directions. Subsequently, we applied a post-processing to
convert all underscores in the entity information to spaces.

Update Entity Information Prompt

[TEXT INPUT]

<Current_Room_Entities>
<Entity_List>
{node_entitiy_list}
</Entity_List>
<Entities_Relationships>
{node_entities_relationships_information}
</Entities_Relationships>
<Direction_Of_Entities>
{node_direction_of_entities_information}
</Direction_Of_Entities>
</Current_Room_Entities>

<Currently_Partial_Observed_Entity_Information>
<Entity_List>
{entitiy_list}
</Entity_List>
<Entities_Relationships>
{entities_relationships_information}
</Entities_Relationships>
<Direction_Of_Entities>
{direction_of_entities_information}
</Direction_Of_Entities>
</Currently_Partial_Observed_Entity_Information>

<Door_Change>
{door_change_information}
</Door_Change>

<Inventory_Change>
{inventory_change_information}
</Inventory_Change>

<Instruction>
{instruction}
</Instruction>

--

[OUTPUT]

‘‘‘LLM Reasoning‘‘‘
{

graph_nodes_entities_rationale: {rationale}
graph_nodes_entities: {entities}
graph_nodes_entities_relationships_rationale: {rationale}
graph_nodes_entities_relationships: {entities_relationships}
graph_nodes_direction_of_entities_rationale: {rationale}
graph_nodes_direction_of_entities: {direction_of_entities}

}

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2 PLANNING USING DOMAIN-SPECIFIC LANGUAGE

Plan with DSLs In the Plan with DSLs, the LLM receives as input the current inventory, the
previous plan and its execution status, the current observation, the agent’s facing direction, and the
set of available DSL instructions with their descriptions. Conditioned on this information, the LLM
generates a sequence of DSL instructions, accompanied by a rationale, that aligns with its high-
level plan for solving the mission. The generation process leverages the knowledge graph through
predefined tool calls invoked by the LLM’s decisions. In addition, the LLM specifies a target entity
for the plan, together with a rationale, indicating the object on which the current plan should focus.

Plan with DSLs Prompt

[TEXT INPUT]

<Rule_Description>
{rule_description}
</Rule_Description>

<Graph_Information>
{graph_information}
</Graph_Information>

<Subplan_Target_Entity_Instructions>
{subplan_target_entity_instructions}
</Subplan_Target_Entity_Instructions>

<Subplans_Instructions>
{subplans_instructions}
</Subplans_Instructions>

<Inventory>
{inventory}
</Inventory>

<Last_Plan>
{last_plan}
</Last_Plan>

<Last_Plan_Completion>
{last_plan_completion}
</Last_Plan_Completion>

<Facing_Direction>
{facing_direction}
</Facing_Direction>

<DSL_List>
{dsl_list}
</DSL_List>

[IMAGE INPUT]

{image}

--

[OUTPUT]

‘‘‘LLM Reasoning‘‘‘
{

subplan_target_entity_rationale: {rationale}
subplan_target_entity: {subplan_target_entity}
subplans_rationale: {rationale}
subplans: {subplans}

}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Verify Completion In the Verify Completion, the LLM determines whether the previous plan has
been completed and provides a rationale for its judgment. This decision is based on the agent’s cur-
rent information, including its inventory, door traversal status, facing direction, current observation,
the previous plan, and the number of times that plan has been repeated. In addition, the LLM evalu-
ates whether the plan should be adjusted—and explains why—if it has remained incomplete for an
extended period.

Verify Completion Prompt

[TEXT INPUT]

<Graph_Information>
{graph_information}
</Graph_Information>

<Inventory> {inventory} </Inventory>

<Pass_Door>
{pass_door_information}
</Pass_Door>

<Observation>
{observation}
</Observation>

<Facing_Direction> {facing_direction} </Facing_Direction>

<Check_DSL_Commands>
{check_DSL_commands}
</Check_DSL_Commands>

<Previous_Plans> {previous_plans} </Previous_Plans>

<Last_Plan> {last_plan} </Last_Plan>

<Num_Repeats_Last_Plan>
{num_repeats_last_plan}
</Num_Repeats_Last_Plan>

<Is_Complete_Instruction>
{is_complete_instruction}
</Is_Complete_Instruction>

<Need_To_Adjust_Instruction>
{need_to_adjust}
</Need_To_Adjust_Instruction>

[IMAGE INPUT]

{image}

--

[OUTPUT]

‘‘‘LLM Reasoning‘‘‘
{

is_complete_rationale: {rationale}
is_complete: {is_complete}
need_to_adjust_rationale: {rationale}
need_to_adjust: {need_to_adjust}

}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Execute In the Execute, the LLM-as-agent, acting as the actor, analyzes the mission, the current
observation, and its facing direction, and generates up to 10 low-level actions in a single turn, accom-
panied by a rationale. The instruction prompt supplies the LLM-as-agent with the available action
set, the transition dynamics of the environment, and a concise guideline on how to handle blockers
when encountered.

Execute Prompt

[TEXT INPUT]

<Rule_Description>
{rule_description}
</Rule_Description>

<Action_Description>
{action_description}
</Action_Description>

<Mission_Description>
{mission_description}
</Mission_Description>

<Graph_Information>
{graph_information}
</Graph_Information>

<Mission>
{subplan}
</Mission>

<Observation>
{problem}
</Observation>

<Direction>
You are facing north.
</Direction>

<Inventory>
{inventory}
</Inventory>

<Instructions>
{instructions}
</Instructions>

[IMAGE INPUT]

{image}

--

[OUTPUT]

‘‘‘LLM Reasoning‘‘‘
{

actions_rationale: {rationale}
actions: {actions}

}

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.3 TOOL CALL

Get Neighbor Entity Information Designed for short-term planning, it operates by receiving a
node number as a parameter to return a string with all information about the specified node and
its neighbors. Since the LLM cannot natively determine if all nodes have been visited, the tool
also provides a visitation count for each node within the current decision step to inform the agent’s
exploration strategy.

Search Closest Entity It receives a node and a target entity as parameters, performs a Breadth-
First Search (BFS), and provides information on the nearest node containing that entity. If the entity
is not present in memory, it returns a information that the entity has not been discovered. Conversely,
if the nearest entity is found, it provides the sequence of node transitions required to reach it. This
information helps the agent determine whether it needs to perform further exploration or formulate
a long-term plan.

Find Unexplored Closed Door It is designed to find the shortest path to the nearest closed or
locked door from a given node. It receives the node as a parameter and performs a Breadth-First
Search (BFS). If no such door is found in the memory, it returns a notification that the closed or
locked door is undiscovered. Otherwise, it returns the sequence of node transitions that constitutes
the path to the nearest closed or locked door. This information enables the agent to formulate long
term exploration plans.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B ENVIRONMENT DETAILS

We extend BabyAI (Chevalier-Boisvert et al., 2019), a partially observable 2D gridworld simula-
tion. Built on the MiniGrid platform, BabyAI supports efficient simulation and offers a range of
instruction-following tasks using a simplified synthetic language called Baby Language. Each lay-
out consists of n rooms connected by colored doors, with objects placed throughout. Objects are
defined by color and type. While unlocked doors can be opened freely, locked doors require keys of
the matching color. At each time step, the agent receives a partial observation representing its 7× 7
field of view. Walls and doors obstruct the observation, even when doors are open.

The environment provides observations in two modalities: pixel-based images and textual descrip-
tions. While BabyAI offers default image-rendered assets, we modify the object assets in the pixel-
based observations to enhance visual distinctiveness and improve object recognition by LLMs.
The textual representation encodes each cell using predefined object descriptors (e.g., Wall, Yel-
low Closed Door, Blue Box), separated by semicolons, enabling precise symbolic reasoning over
the observed grid. This structured format enables symbolic reasoning over spatial configurations
while preserving compatibility with language-based models. The action space supports six actions:
Go Forward, Turn Left, Turn Right, Pickup, Drop, and Toggle. The Toggle
action allows the agent to interact with doors, such as opening, closing, or unlocking them.

C ABLATION STUDY ON OBSERVATION MODALITIES

Table 4 shows the experimental results comparing performance when the agent receives environmen-
tal information as text-only versus when image observations are also provided. When using only the
text observation, the agent succeeded in 38 out of 60 trials. In contrast, when image observations
were added, the agent succeeded in 49 out of 60 trials. This suggests the LLM achieves a better
understanding of the environment, as it can leverage the additional information from the images.

Table 4: Performance comparison between text-only and text with image on PutNextTo missions.
We evaluate the performance of the knowledge graph approach using two different observation.

Observation Format # rooms Accuracy (%)

Image & Text 2×2 96.7 ± 3.3
3×3 66.7 ± 8.6

Text 2×2 83.3 ± 6.6
3×3 43.3 ± 9.0

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D EXAMPLE CASE

We visualize the subplans produced by the LLM planner augmented with a LLM-generated knowl-
edge graph, alongo with the full execution trajectory of a downstream actor, in Figure 8 and Figure 9.

Mission 

Put the yellow ball next to the red key

Full Trajectory Subplans Trajectory

Subplans

"drop_entity(grey ball)",

"go_to_entity(grey door)",

"pass_door(grey door)",

"go_to_entity(yellow key)",

"pick_up_entity(yellow key)",

"go_to_entity(grey opened door)",

"pass_door(grey opened door)",

"go_to_entity(yellow locked door)",

"pass_door(yellow locked door)",

"go_to_entity(yellow ball)",

"pick_up_entity(yellow ball)",

"go_to_entity(yellow opened door)",

"pass_door(yellow opened door)",

"go_to_entity(red key)",

"drop_next_to_entity(yellow ball, red key)"

Figure 8: The LLM planner augmented with a knowledge graph successfully generates a long, co-
herent sequence of subplans to accomplish the mission: “Put the yellow ball next to the red key.” The
agent moves from the start position () to the final position (). The LLM generated entire sequence
of subplans at once, demonstrating its capabilities for long-horizon reasoning in partially observable
environments.

Figure 9: The LLM planner, using a knowledge graph, creates a long and logical series of subplans
to complete the mission: ”Put the purple ball next to a green key.” The agent moves from the start
position () to the final position ().

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We further highlight the failure modes of LLM planner augmented with stacked memory, where
every attempts fails to complete the mission, as shown in Figure 10 and Figure 11.

Max

Min

Oracle
H

ea
t M

ap
Tr

aj
ec

to
ry

Knowledge Graph Stacked Memory

Figure 10: The visitation heat map and the trajectory of oracle agent, knowledge graph-augmented
agent, and stacked memory-augmented agent.

Max

Min

Oracle

H
ea

t M
ap

Tr
aj

ec
to

ry

Knowledge Graph Stacked Memory

Figure 11: The visitation heat map and the trajectory of oracle agent, knowledge graph-augmented
agent, and stacked memory-augmented agent.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E COMPARISON OF MEMORY ACCESS METHODS

To evaluate the LLM’s ability to handle the dynamics of information gathering and utilizing in
sequential decision-making, we compare two settings: dynamic memory where the model performs
tool-calling experiments, and static memory, where the entire knowledge graph is provided in the
context window.

The results are summarized in Table 5. Although static memory provides the LLM with more in-
formation at each step, its performance was lower. This finding is consistent with the comparison
between knowledge graph and stacked memory, suggesting that inefficient memory structures can
hinder the performance.

Table 5: Success rate of PutNextTo mission. We compare dynamic memory, where the agent
controls the tool calls, and static memory, where all information are always given.

rooms Metrics Gemini-2.5-Flash
Dynamic Memory Static Memory

2×2 Success (%) 96.7 ± 3.3 93.3 ± 4.8
GED 4.50 ± 1.65 2.79 ± 1.09

3×3 Success (%) 66.7 ± 8.6 58.6 ± 9.03
GED 7.80 ± 1.63 9.38 ± 2.17

23

	Introduction
	Domain and Problem Statement
	Proposed Approach
	Knowledge Graph-based Memory
	Planning using Domain-specific Language

	Experiments
	Effectiveness of External Memory under Partially Observability
	Effectiveness of Graph-based Memory Structure
	Evaluating LLM-Constructed Knowledge Graphs

	Related Work
	Conclusion
	Module Detail with Prompt
	Knowledge Graph-Based Memory
	Planning Using Domain-Specific Language
	Tool Call

	Environment Details
	Ablation Study on Observation Modalities
	Example Case
	Comparison of Memory Access Methods

