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ABSTRACT

While the reasoning capabilities of large language models (LLMs) have advanced
considerably due to their extensive internal knowledge, efficiently internalizing
and leveraging new information in dynamic environments remains as a signifi-
cant challenge. This limitation is particularly pronounced in partially observable
environments, which require agents to manage long-term memory and perform ef-
fective exploration under incomplete information. To address this, we propose an
LLM agent architecture that integrates a knowledge graph as a graph-based mem-
ory module to facilitate high-level action planning. The agent incrementally con-
structs the knowledge graph through environmental interactions and retrieves rele-
vant information to generate efficient plans. We evaluate our approach in complex
navigation tasks specifically designed to present long-horizon and partially ob-
servable challenges. Experimental results demonstrate that incorporating a knowl-
edge graph as an external memory significantly enhances the success rate and ef-
ficiency of the LLM’s planning capabilities.

1 INTRODUCTION

Desired Trajectory Failure Case: Naive LLM Observation

Initial

Final

Pickup

Figure 1: Examples of a desired trajectory (left) and a failed trajectory (middle) in the partially
observable mission “put a gray ball next to the green key.” The agent moves from the start position
( ) to the final position ( ). The naive LLM planner fails to complete the mission due to insufficient
exploration.

Large language models (LLMs) have demonstrated remarkable performance in natural language
understanding and generation, establishing themselves as foundational tools across a wide range
of domains. Recently, research has increasingly focused on leveraging LLMs for interaction with
dynamic environments, exploiting their strong prior knowledge and reasoning capabilities. Stud-
ies such as Carta et al. (2023); Paglieri et al. (2024) have reported promising results in sequential
decision-making tasks, highlighting the potential of LLMs as agents in complex, interactive set-
tings. These approaches typically rely on a short context window over recent trajectories, limiting
the agent’s ability to retain and exploit long-term context during decision-making.
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Unseen;Unseen;Unseen;Wall;  Wall;    Wall;              Wall; 
Unseen;Unseen;Unseen;Wall;  Blue_Key;Empty;             Empty; 
Unseen;Unseen;Unseen;Wall;  Empty;   Empty;             Agent; 
Unseen;Unseen;Unseen;Wall;  Empty;   Empty;             Empty; 
Unseen;Unseen;Unseen;Wall;  Empty;   Green_Box;         Empty; 
Unseen;Unseen;Unseen;Wall;  Wall;    Yellow_Closed_Door;Wall;

Image Observation Text Observation

Figure 2: Two observation formats: a pixel-based image and a textual description.

However, many real-world tasks are inherently long-horizon and complex, and the additional chal-
lenge of partial observability requires agents to maintain and reason over extended context in order
to make effective decisions. Figure 1 illustrates an example of an environment that presents substan-
tial difficulties for a naive LLM planner, particularly under partial observability. In standard natural
language processing tasks such as question answering or text generation, Retrieval-Augmented Gen-
eration approaches (Lewis et al., 2020; Yu et al., 2022; Han et al., 2024) address this issue by retriev-
ing relevant chunks from large-scale external documentation. Yet, these methods are constrained by
the static nature of the external knowledge sources: the documentation is fixed and cannot account
for dynamically expanding information generated through ongoing interaction with an environment.
This limitation motivates the development of new mechanisms for adaptive memory construction
and retrieval tailored to sequential decision-making under partial observability.

Another line of work explores expanding external memory to support long-horizon tasks. For in-
stance, studies by Anthropic (2025) and Comanici et al. (2025) utilize the challenging benchmark of
Pokémon Red to evaluate long-term memory in LLMs. Instead of persistently including all informa-
tion in the prompt, both approaches equip the agent with tools for on-demand knowledge retrieval,
enabling a form of extended reasoning that streamlines the decision-making process. Specifically,
the approach by Anthropic (2025) with Claude Opus 4 maintains external memory files to store key
information. Similarly, the approach by Comanici et al. (2025) with Gemini-2.5-Pro condenses ac-
tion sequences in batches to reduce input tokens. This summarization focuses on event sequences
rather than constructing a spatial mental map. While maintaining continuity, both approaches result
in an inefficient memory structure and substantial storage requirements, limiting scalability.

To address these limitations, we propose GraphMind 1, a scalable and effective self-expanding ex-
ternal memory framework with two key components. First, inspired by prior work on knowledge
graphs Pujara et al. (2013), we organize information from past interactions into a graph-based repre-
sentation. This provides a compact yet expressive memory mechanism, particularly advantageous in
partially observable navigation tasks, as it explicitly captures spatial relationships between objects
and locations. Second, to support efficient decision-making, we augment the planning capabilities
of LLMs with a domain-specific language to enable structured reasoning and planning. This combi-
nation improves exploration efficiency, which is critical under partial observability, while grounding
the knowledge graph in trajectories collected through the actor’s behavior. Our experiments demon-
strate that the proposed structured approach enables an LLM agent to complete tasks in challenging
long-horizon, partially observable environments.

2 DOMAIN AND PROBLEM STATEMENT

Complex, long-horizon tasks are common in real-world settings and require both effective memory
mechanisms and advanced planning capabilities (Hu et al., 2025; He et al., 2025). Among alterna-
tives such as Blocks World (McDermott, 2000), we adopt and extend BabyAI (Chevalier-Boisvert
et al., 2019), a partially observable 2D gridworld that combines diverse challenges: object manipula-
tion, navigation, exploration–exploitation trade-offs, and mission execution specified in the simpli-
fied text-based Baby Language. In contrast to other environments such as ALFWorld (Shridhar et al.,
2020) and MiniHack (Samvelyan et al., 2021), BabyAI provides an Oracle Solver (referred to as
BOT in (Chevalier-Boisvert et al., 2019)), which generates step-by-step solutions using hand-coded

1Our code is available at: https://anonymous.4open.science/r/GraphMind-1080.
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Determine the 
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Retry/Completed
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Figure 3: Overview of the proposed framework. The left panel illustrates the construction of the
knowledge graph, where the agent verifies node transitions, extracts information from observations,
determines the current node, and updates entity information. The right panel depicts the planning
and execution loop, in which the LLM generates DSL-based plans, the actor executes instructions,
completion is verified, and plans are revised if necessary. Arrows indicate the flow of information
and iterative feedback between modules.

rules and an internal stack machine. This feature enables systemic evaluation of how our method
expands memory and influences planning in long-horizon, partially observable environments.

Each environment layout consists of n rooms connected by colored doors and populated with color-
coded objects. The agent explores these rooms to locate target objects, while its field of view is
restricted by walls and doors, as shown in Figure 2. Unlocked doors permit free traversal, whereas
locked doors require keys of the corresponding color, thereby increasing the demand for exploration.
To further emphasize partial observability, we modified the environment such that open doors also
block the line of sight, preventing perception beyond the doorway. The detailed discussion on the
multimodal observations is provided in the appendix C.

In our experimental setup, we focus on two challenging missions, OpenDoor and PutNextTo,
that have proven difficult in prior work (Carta et al., 2023). In OpenDoor, the agent must retrieve a
key and unlock a corresponding door located elsewhere in the layout. To guarantee that tasks require
exploration, we randomly generate diverse layouts and missions, filtering them to ensure that key
entities are placed in non-adjacent rooms. In PutNextTo, the agent must find two distinct objects
placed in separate rooms and bring them together, making success contingent on navigating multiple
rooms rather than exploiting local information. Additional details are provided in Appendix B.

3 PROPOSED APPROACH

We propose GraphMind, a framework that enables agents to operate effectively in partially observ-
able environments. GraphMind dynamically constructs a self-expanding graph-based memory from
collected observations and employs adaptive planning to retrieve and exploit the knowledge required
for task completion. Graph structures provide a compact and expressive way to encode large-scale,
heterogeneous, and relational information, in contrast to linear structures. These structures are par-
ticularly well-suited for capturing spatial relationships, which are critical in navigation tasks (Hogan
et al., 2021; Han et al., 2024).

The proposed framework operates in two iterative stages: (1) Knowledge Graph Construction,
where observations are integrated into an incrementally expanding graph representation, and (2)
Planning and Execution, where a domain-specific language (DSL) supports structured reasoning
and action selection to gather task-relevant information under partial observability. This iterative pro-
cess enables systematic expansion of the agent’s knowledge base and progressively improves task
performance. An overview of our approach is illustrated in Figure 3, highlighting the interaction be-
tween graph construction and planning. Detailed descriptions of each module and the corresponding
prompts are provided in the Appendix A. An overview of our approach is illustrated in Figure 3,
highlighting the interaction between graph construction and planning. Detailed descriptions of each
module and the corresponding prompts are provided in the Appendix A.
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Figure 4: Example of updating the knowledge graph in BabyAI. When the agent ( ) observes a red
ball ( ) and a purple door ( ) after traversing a blue door ( ), the corresponding modules verify
the door traversal, extract object information, and expand the graph by adding a new room node, its
connecting edge, and the associated relationships, building upon the existing graph (shaded area).

3.1 KNOWLEDGE GRAPH-BASED MEMORY

We propose a graph-based memory representation that expands dynamically with the help of LLMs.
Nodes correspond to entities or locations, and edges encode relationships through relational predi-
cates. This design allows the agent to capture both spatial and semantic information, which are essen-
tial for reasoning and planning in partially observable environments. We focus on four relation types:
is connected with (spatial connectivity), contains (object presence within a space), is located to (di-
rectional attributes), and are apart (relative distances that help distinguish otherwise identical enti-
ties). In our adapted setup, rooms are modeled as nodes, doors as edges denoting connectivity, and
each room node is annotated with contained objects via contains and is located to. Objects within
the same room are linked by are apart, while adjacent rooms are joined by is connected with. Fig-
ure 4 shows an example of constructing such a graph from agent observations.

Figure 3 (left) illustrates knowledge graph construction, implemented via four dedicated modules:
• Verify Node Transition: analyze the agent’s action sequence to detect transitions and up-

date is connected with relations.
• Extract Information: parse the current observation to identify objects, expand con-

tains relations, and annotate entities with directional and distance attributes to establish
is located to and are apart.

• Determine Current Node: localize the agent by integrating observed entities, verified tran-
sitions, and connections to the previously known location.

• Update Entity Information: merge extracted attributes into the current node to maintain
a coherent, up-to-date representation of the environment.

The graph expands incrementally as the agent explores, with LLM-based modules guiding construc-
tion. To improve robustness, we apply an ensemble method to refine is connected with inference.
This process yields an adaptive memory structure that evolves continuously during interaction, sup-
porting long-horizon reasoning.

External Tools for Knowledge Utilization We augment the LLM with external tools to retrieve
relevant information from a knowledge graph, enabling effective utilization of structured environ-
mental knowledge. Inspired by prior works that leverage tool use for efficient prompting (Anthropic,
2025; Comanici et al., 2025), the proposed method similarly avoids including the full summarized
memory in every prompt. Instead, the LLM determines whether to request the information based
on its current observation, enabling the agent to retrieve from external memory. Given a room iden-
tifier, the tools return detailed information about the specified room, including its adjacent rooms
and the entities contained therein. Additionally, the shortest path from a given room to the nearest
target entity is computed using the breadth-first search algorithm. The integration of the knowledge
graph with external memory tools is motivated by its efficiency in managing information in partially
observable environments. In such settings, the memory requirements are dynamic, expanding as the
agent explores, which poses significant challenges for scalable and effective memory management.
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Table 1: DSLs and their descriptions for BabyAI environment.

DSLs Description
find door() Find a door in the current room.
pass door(x) Pass through door x.

go to entity(x) Move to face entity x.
pick up entity(x) Pick up entity x.
drop entity(x) Drop the currently held entity x on an empty cell.

drop next to entity(x,y) Drop the currently held entity x next to entity y.

3.2 PLANNING USING DOMAIN-SPECIFIC LANGUAGE

A fundamental challenge in LLM-based agents lies in bridging the gap between high-level planning
and low-level action execution. LLMs excel at generating symbolic, abstract, and commonsense-
driven plans but often lack the precision and reliability required for fine-grained control in dynamic
environments (Ma et al., 2024; Wen et al., 2024). In contrast, low-level action policies—whether
heuristic controllers or reinforcement learning agents—are effective at executing primitive behaviors
but lack the ability to reason about long-term dependencies or abstract objectives. Our framework
addresses this disconnect through the use of domain-specific languages (DSLs), defined as computer
languages tailored to particular application domains, which provide a structured interface between
the symbolic reasoning of the LLM and the concrete action space of the environment.

DSLs have been widely adopted to enhance the reasoning and problem-solving capabilities of LLMs
in structured tasks (Barke et al., 2024; Chollet et al., 2024). In our framework, the DSL provides a
compact yet expressive action space, enabling the agent to efficiently navigate, manipulate objects,
and execute high-level strategies required for task completion. The DSL comprises six instructions,
enumerated in Table 1. By encoding navigation and interaction primitives as DSL instructions, the
LLM operates at the level of high-level goals while delegating execution details to a low-level ac-
tor. This separation of concerns reduces the cognitive load on the LLM and enhances robustness
in action execution. Consequently, our approach effectively aligns symbolic reasoning with embod-
ied interaction, bridging a longstanding gap between high-level planning and low-level control in
partially observable environments.

We formalize the decision process as an iterative “plan–execute–verify–revise” loop, as illustrated
in Figure 3 (right):

• Plan with DSLs: At each step, the LLM generates a sequence of DSL instructions condi-
tioned on the current observation and retrieved knowledge graph information accessed via
external tool calls.

• Execute: The actor executes the next instruction from this sequence.
• Verify Completion: After execution, the system assesses whether the intended subgoal has

been achieved.
• Revise Plan: If verification fails, the framework either adapts the plan by prompting the

LLM to generate a revised set of DSL instructions or allows the actor to retry the current
instruction.

This cyclical structure ensures that planning remains adaptive, resilient to execution errors, and
robust under partial observability.

4 EXPERIMENTS

Our experiments were conducted in complex multi-room environments, in contrast to the simple,
single-room setups used in prior work (Carta et al., 2023; Paglieri et al., 2024). The environments
follow grid layouts of 2 × 2 and 3 × 3 with complexity further increased by including at least one
locked door in each layout. As described in Section 2, we filter layouts to ensure that accessing
the target objects requires obtaining a key to unlock a door. In particular, for 3 × 3 layouts, we
enforce that completing the mission necessitates exploring at least four rooms. We evaluated two
models from the Google DeepMind Gemini 2.5 series (Comanici et al., 2025): Gemini-2.5-Flash
and Gemini-2.5-Pro. To account for the non-stationarity of partially observable environments and
the variability of LLM responses, we conducted three trials for each layout. To ensure environ-
mental diversity, we generated five random layouts under two entity-density conditions: one entity
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Table 2: Success rate of completed missions (PutNextTo and OpenDoor). For graph edit distance
(GED), lower values indicate a more accurately constructed knowledge graph. We adopted expert
bot heuristic bot as a downstream actor. We denote our framework variants as follows: with the
knowledge graph (KG), with the stacked memory (SM), and without the memory (w/o Memory).
We report mean success rate and their 1 standard errors (SE).

Mission # rooms Metrics Gemini-2.5-Flash Gemini-2.5-Pro
KG w/o Memory SM KG w/o Memory SM

Put Next To
2×2 Success (%) 96.7 ± 3.3 90.0 ± 5.6 87.7 ± 6.3 83.3 ± 6.6 73.3 ± 8.2 90.0 ± 5.6

GED 4.97 ± 1.19 — — 3.43 ± 1.06 — —

3×3 Success (%) 66.7 ± 8.8 36.7 ± 8.9 36.7 ± 8.9 70.0 ± 8.5 56.7 ± 9.2 43.3 ± 9.2
GED 8.43 ± 1.62 — — 6.33 ± 1.45 — —

Open Door
2×2 Success (%) 100.0 ± 0.0 86.7 ± 6.3 100.0 ± 0.0 100.0 ± 0.0 93.3 ± 4.6 100.0 ± 0.0

GED 1.13 ± 0.36 — — 1.60 ± 0.34 — —

3×3 Success (%) 70.0 ± 8.5 66.7 ± 8.8 70.0 ± 8.5 83.3 ± 6.8 73.3 ± 8.2 76.7 ± 7.9
GED 9.70 ± 1.87 — — 3.60 ± 0.82 — —

Table 3: Success rate of PutNextTo mission. We compare the heuristic actor and LLM-as-agents
to test extendability of our method. While LLM-as-Agent struggles due to inevitable hallucinations,
our method was able to solve some tasks.

# rooms Metrics Gemini-2.5-Flash Gemini-2.5-Pro
Heuristic Actor LLM-as-agent Heuristic Actor LLM-as-agent

2×2 Success (%) 96.7 ± 3.3 20.0 ± 7.4 83.3 ± 6.6 13.3 ± 6.3
GED 4.50 ± 1.65 5.33 ± 1.10 3.17 ± 1.56 8.90 ± 1.13

3×3 Success (%) 66.7 ± 8.8 20.0 ± 7.4 70.0 ± 8.5 10.0 ± 5.6
GED 7.80 ± 1.63 6.80 ± 1.06 6.00 ± 1.83 9.2 ± 0.95

per room and three entities per room. In total, our experiments cover 20 unique layouts. To assess
different memory configurations for the LLM planner, we designed experiments under two opera-
tional modes: a dynamic memory setting and a static memory setting. The dynamic setting, which
simulates real-world deployment, requires the planner to explicitly call external tools to retrieve in-
formation from memory. In contrast, the static setting provides continuous access to the full graph
information. Results for the static setup are reported in Appendix E.

To evaluate the efficacy of our knowledge graph as a memory module, we adopted two additional
baselines. The first, without Memory (w/o Memory), removes the knowledge graph construction
stage entirely. In this setting, the agent still leverages the same DSL for planning and exploration but
operates without external memory, serving as a baseline to measure the direct contribution of our
framework (KG). The second, Stacked Memory (SM), replaces the graph-based memory with a
linear, stack-structured alternative to assess the role of memory topology. In this baseline, memory is
built sequentially: at each step, the output of the Extract Information module is appended to a linear
data store. To accommodate this structure, we implemented three retrieval tools that provide the
LLM with action sequences and trajectories to summarize (i) the most recent decision, (ii) historical
information about a queried entity, and (iii) historical information about the most recently observed
closed or locked door.

4.1 EFFECTIVENESS OF EXTERNAL MEMORY UNDER PARTIALLY OBSERVABILITY

We analyze the effectiveness of LLMs in leveraging external modules for memory storage and re-
trieval in a partially observable environment using a planning DSL. The actor interacting with the
environment is instantiated in two variants: (1) an expert heuristic actor, which isolates the contri-
butions of memory and planning from the variability in action execution, and (2) an LLM-as agent,
which introduces additional considerations due to the inherent uncertainty of LLM outputs. We eval-
uate our framework on two BabyAI missions, PutNextTo and OpenDoor, with results presented
in Table 2. To assess the impact of the knowledge graph (KG), we compare against an ablated ver-
sion of our model without the knowledge graph (w/o Memory). The full framework consistently
outperforms this baseline, highlighting the critical role of structured external memory in enabling
effective agent behavior.
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Mission: put a grey ball next to the green key

Knowledge Graph

MaxMin

Stacked Memory

(a) State visitations under Gemini-2.5 Flash planner.

Knowledge Graph Stacked Memory

go_to_entity(green door)

pass_door(green door)

go_to_entity(grey door)

pass_door(grey door)

go_to_entity(green key)

drop_next_to_entity(grey ball, green key)

go_to_entity(grey ball)

pick_up_entity(grey ball)


go_to_entity(green key)

drop_next_to_entity(grey_ball, green key)

go_to_entity(green door)

pass_door(green door)


(b) Plans generated by Gemini-2.5 Flash planner.

Figure 5: Comparison of a knowledge graph (KG) versus stacked memory (SM) for a Gemini-
2.5-Flash planner. The KG’s structured representation enables efficient exploration (a) and results in
correct plan (b). In contrast, the SM leads to confused exploration and planning failure, as the agent
cannot distinguish between to identical doors (planning errors: red in text, yellow in image).
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Figure 6: Distribution of Graph Edit Distance (GED) based on Mission Success. The distribution
of Knowledge Graph GED scores for task successes (blue triangles) and failures (red stars), using
Gemini-2.5-Flash (left) and Gemini-2.5-Pro (right). Overall, successful episodes tend to be concen-
trated at lower GED values, indicating higher graph accuracy, while failures are more distributed
across higher GED values. GED scores exceeding 20 are aggregated into the 20+.

To evaluate the extendability of our framework to non-expert implementations of DSLs, we adopt
an LLM-as-agent approach (Paglieri et al., 2024). The results for the PutNextTo mission are sum-
marized in Section 4.1. In comparison to the rule-based heuristic actor, LLM-based implementation
exhibits a noticeable drop in performance. This outcome is expected, as large language models are
prone to hallucination Kalai et al. (2025) and struggles to construct a coherent inner model from
egocentric observations Yang et al. (2025). We hypothesize that designing more fine-grained DSLs
could help mitigate this limitation, and we view the automatic discovery of such functions as an
important direction for future research.

The success rate of the Gemini-2.5-Flash using only DSL was 63.3%, whereas the rate in-
creased to 81.7% with the addition of the knowledge graph. This demonstrates that the knowl-
edge graph pipeline enables more effective problem-solving. The detailed execution result can
be found in Appendix D.

4.2 EFFECTIVENESS OF GRAPH-BASED MEMORY STRUCTURE

In this section, we evaluate the effectiveness of a graph-based memory structure by comparing it
against a stacked memory alternative to examine whether the structure of external memory influ-
ences performance. The agent equipped with stacked memory fails to navigate the environment ef-
ficiently. As illustrated in Figure 5a, which visualizes cell visitation frequency, the agent frequently

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

node 3

node 0

node 1

node 2

Verify Node Transition: False

Verify Node Transition: True

Knowledge GraphInputs

Rationale: 
(...) This significant change, despite 
no explicit 'forward' or 'toggle' action, 
indicates that 

 between these two 
observations. (...)

the agent implicitly 
passed through a door and changed 
rooms

Rationale: 
(...) As no 'Go Forward' action is 
shown to occur directly through any 
door at any point in the provided 
trajectory, 

 within these steps. (...)

the agent did not perform 
the action of 'passing through a 
door'

Actions

Turn Left, Turn Left, Go Forward, Go Forward, Turn Left

Figure 7: Examples of planner correctly (Blue Box) and incorrectly (Red Box) verifies whether the
agent has transitioned into another node. LLM planner confuses observation changes due to rotation
to node changes, leading to spurious node expansion (node 3).

revisits already explored cells and repeately rediscovers objects. This high rate of revisitation indi-
cates that the stacked memory is not effecively utilized, thereby hindering efficient navigation. In
contrast, the knowledge graph-based agent exhibits more structured and efficient exploration pat-
terns, despite the inevitable redundancies caused by partial observability. Moreover, leveraging the
knowledge graph-based memory facilitates efficient pathfinding between mission-critical objects,
such as “a grey ball” and “a green key”.

The inefficiency is further underscored by the suboptimal plans generated by the planner. Figure 5b
shows examples of LLM-generated plans along with the corresponding execution trajectories for
our method and the baseline. The stacked-memory agent confused the green door in the lower-right,
connecting cells 9 and 6, with the green door connecting cells 5 and 2. This confusion suggests that
stacked memory is an ineffective strategy for managing a dynamically growing memory. In contrast,
the agent equipped with the knowledge graph successfully planned a trajectory to reach the target
object (a gray ball).

Simply using external memory does not guarantee improved performance; in fact, a naive
approach can be detrimental. Our result show that a graph-based memory improved an agent’s
efficiency, while a poorly structured memory harmed the performance.

4.3 EVALUATING LLM-CONSTRUCTED KNOWLEDGE GRAPHS

A key challenge in Knowledge Graph Construction for sequential decision-making is the consistent
identification and tracking of objects over time. Identity errors introduce redundant nodes, reducing
both computational and memory efficiency, particularly in dynamic, partially observable environ-
ments where an agent actions (e.g., relocating objects induce variability.

To evaluate whether LLM-constructed knowledge graphs provide meaningful support for planning,
we adopt graph edit distance (GED) Sanfeliu & Fu (2012) as a proxy for structural similarity to
the ground-truth graph. Intuitively, a graph that more closely matches the true environment should
enable more accurate reasoning and planning. GED offers a principled way to quantify this similarity
through the minimum number of node or edge edit operations required for alignment.

As in Table 2, average GED increases with environment size, rising from 2× 2 to 3× 3 grids due to
compounded inference errors. More importantly, Figure 6 demonstrates a strong inverse relationship
between GED and task success. In the PutNextTo mission, successful trials averaged GED values
of 3.62 (2× 2) and 3.25 (3× 3), while failed trials averaged 30.0 and 16.9, respectively. When GED
was 0, success rates reached 98%, whereas no successful trials occurred with GED > 20.

These findings support the intuition that structural fidelity is critical: the closer the constructed graph
is to the ground truth, the more useful it becomes for guiding sequential decision-making. Finally,
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Figure 7 illustrates typical failure modes. Large observation changes often caused the LLM to mis-
classify a revisited room as new, leading to spurious graph expansion and degraded accuracy.

The results demonstrate that the accuracy of the knowledge graph impacts mission success. The
success rate ranged from 98.10% with accurate knowledge graphs to 0% when accumulated
errors caused the GED to exceed 20. This suggests that LLMs possess an intrinsic ability to
utilize knowledge, and the graph accuracy impact to task performance.

5 RELATED WORK

LLMs as Agents in Sequential Decision-Making Large language models (LLMs) have demon-
strated strong performance across several challenging tasks, including question answering (Ra-
jpurkar et al., 2016), mathematics (Hendrycks et al., 2021), and, more recently, complex iterative
interactions within real-world environments. For instance, Ma et al. (2024) achieved notable results
in the real-time strategic decision-making environment StarCraft II by introducing the Chain of Sum-
marization (CoS) method to enhance LLMs’ decision-making efficiency. Furthermore, Paglieri et al.
(2024) benchmarked LLM-as-agent approaches across several game-based environments, including
BabyAI (Carta et al., 2023), TextWorld (Côté et al., 2018), Baba Is AI (Cloos et al., 2024), MiniHack
(Samvelyan et al., 2021), and NetHack Learning Environment (NLE) (Küttler et al., 2020). How-
ever, LLM-as-agent approaches exhibit limitations in long-context scenarios, particularly in tasks
that require effective utilization of historical information.

Addressing Hallucination via Knowledge Retrieval Although the ability of LLMs to handle
long contexts has improved, they still suffer from hallucinations—a critical issue in long-context
problems, such as sequential interactions with an environment. To mitigate this, prior work has pro-
posed Retrieval-Augmented Generation (RAG) and its variants (Lewis et al., 2020; Yu et al., 2022;
Zheng et al., 2023). Han et al. (2024) introduced GraphRAG, which enhances RAG by incorpo-
rating graph-based structures. Unlike conventional RAG, GraphRAG operates on graph-structured
data characterized by diverse formats and heterogeneous sources. However, these approaches re-
main constrained by their reliance on retrieving information from static documentation and by their
passive dependence on such information. Their primary role is to improve factual grounding by
retrieving facts during inference, but they remain passive with respect to environments where the
knowledge base itself is incomplete or evolving.

Retrieving Information from External Memory Retrieval-Augmented Generation (RAG)
(Lewis et al., 2020) augments LLMs with the ability to retrieve semantically relevant document
chunks from an external knowledge base, thereby mitigating hallucinations which is a critical limi-
tation of LLMs when faced with queries that extend beyond their training data or demand up-to-date
information. GraphRAG (Han et al., 2024) extends the RAG framework by incorporating graph-
structured knowledge representations, enabling more effective retrieval through the exploitation of
relational and structural information. In this respect, the concept of constructing a knowledge graph
for retrieval aligns closely with our approach.

6 CONCLUSION

This paper investigates the application of large language models (LLMs) to navigation tasks in par-
tially observable environments, focusing on how to equip LLMs with mechanisms for memory,
reasoning, and planning under uncertainty. We propose a framework that combines domain-specific
languages (DSLs) for high-level planning with a dynamically constructed knowledge graph to serve
as an external memory. Our approach enables the agent to iteratively plan, act, and update its knowl-
edge, effectively bridging the gap between abstract reasoning and low-level action execution. Exper-
imental results in complex MiniGrid environments demonstrate that leveraging a knowledge graph
significantly improves planning efficiency, task success rates, and robustness under partial observ-
ability. These findings highlight the potential of combining LLM reasoning with structured, adap-
tive memory representations, suggesting a promising direction for future research in long-horizon,
memory-intensive tasks in real-world settings.
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A MODULE DETAIL WITH PROMPT

A.1 KNOWLEDGE GRAPH-BASED MEMORY

Verify Node Transition Module In the Verify Node Transition, we prompt a Large Language
Model (LLM) with the state-action trajectory and a guiding instruction for reasoning. The LLM an-
alyzes this information to determine the validity of the transition. Recognizing the critical impact of
this judgment on the knowledge graph’s accuracy, we exclusively employ an ensemble method for
this module. The node transition is determined by a majority vote over five trials. To verify a node
transition, we query an LLM to check the transition’s occurrence and predict the necessary connec-
tion information for the subsequent node. To enhance the reliability of the response, we incorporate
a self-evaluation mechanism inspired by the Independent Evaluation method Yao et al. (2023).

Verify Node Transition Prompt

[TEXT INPUT]

{Room_Description}
{room_description}
{/Room_Description}

{Action_Description}
{action_description}
{/Action_Description}

<Trajectories>
<Step_num>
{Trajectory}
{Direction}
</Step_num>

<Action_num>
{action}
</Action_num>

...

</Trajectories>

<Connected_Door_Instruction>
{connected_door_instruction}
</Connected_Door_Instruction>

<Door_Direction_Instruction>
{door_direction_instruction}
</Door_Direction_Instruction>

<Check_Pass_Door_Instruction>
{verify_node_transition_instruction}
</Check_Pass_Door_Instruction>

[IMAGE INPUT]

{images}

----------------------------------------

[OUTPUT]

‘‘‘LLM Reasoning‘‘‘
{

connected_door_rationale: {rationale}
connected_door: {connected_door}
door_direction_rationale: {rationale}
door_direction: {door_direction}
check_pass_door_rationale: {rationale}
check_pass_door: {check_pass_door}
answer_confidence_score: {answer_confidence_score}

}
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Extract Information In the Extract Information, the LLM is prompted to summarize the current
observation. It is provided with the observation and guided by instructions for reasoning, analyzing
the observation to generate a summary containing only the most critical information. This prompting
strategy serves the two purposes of enabling effective differentiation between graph nodes and en-
suring efficient memory utilization by storing only essential information. Subsequently, the LLM’s
responses contain both underscores and spaces, all underscores are converted to spaces for consistent
formatting.

Extract Information Prompt

[TEXT INPUT]

<Observation>
{observation}
</Observation>

<Entity_Listing_Instructions>
{entity_listing_instructions}
</Entity_Listing_Instructions>

<Current_Room_Entities_Instructions>
{current_room_entities_instructions}
</Current_Room_Entities_Instructions>

<Current_Room_Entities_Relationships_Instructions>
{current_room_entities_relationships_instructions}
</Current_Room_Entities_Relationships_Instructions>

<Direction_Of_Entities_Instructions>
{direction_of_entities_instructions}
</Direction_Of_Entities_Instructions>

[IMAGE INPUT]

{image}

----------------------------------------

[OUTPUT]

‘‘‘LLM Reasoning‘‘‘
{

current_room_entities_rationale: {rationale}
current_room_entities: {current_room_entities}
entities_relationships_rationale: {rationale}
entities_relationships: {entities_relationships}
direction_of_entities_rationale: {rationale}
direction_of_entities: {direction_of_entities}

}
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Determine the Current Node In the Determine the Current Node, the LLM determines the cur-
rent node. It is provided with information about the previously occupied node, the nodes connected
to that previous node, and the current observation. The LLM determines whether the current node
is a previously visited node or unvisited node, and it responds with the corresponding graph node
number. The selection of a graph-based localization method over a coordinate-based approach was
driven by the potential for compounding errors when requiring an LLM to manage memory. This
memory is intended to mitigate significant error accumulation. The effectiveness of this approach is
supported by the GED experiment results. Furthermore, the knowledge graph facilitates the efficient
storage of entity information.

Determine the Current Node Prompt

[TEXT INPUT]

<Observation>
{observation}
</Observation>

<Observed_Entities>
{observed_entities}
</Observed_Entities>

<Room_Information>
- Previous_Room_Number: {previous_room_number}
<Connected_with_Previous_Rooms>
- The previous room is connected with {connection_information}.
- Room contains the entities: {entities_information}
</Connected_with_Previous_Rooms>
</Room_Information>

<Rooms_List>
- {nodes}
</Rooms_List>

<Description>
{description}
</Description>

<Current_Graph_Node_Instructions>
{current_graph_node_instructions}
</Current_Graph_Node_Instructions>

----------------------------------------

[OUTPUT]

‘‘‘LLM Reasoning‘‘‘
{

current_graph_node_id_rationale: {rationale}
current_graph_node_id: {current_graph_node_id}

}
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Update Entity Information In the Update Entity Information, the LLM provides both the graph
information and the current observation to synthesize previously observed entity information with
the current observation. the environment contains visually identical entities, external information
is required to differentiate entities. To enable the LLM to distinguish between these entities, we
provided the relational and directional information. The LLM responds with the aggregated obser-
vation, including updated relations and directions. Subsequently, we applied a post-processing to
convert all underscores in the entity information to spaces.

Update Entity Information Prompt

[TEXT INPUT]

<Current_Room_Entities>
<Entity_List>
{node_entitiy_list}
</Entity_List>
<Entities_Relationships>
{node_entities_relationships_information}
</Entities_Relationships>
<Direction_Of_Entities>
{node_direction_of_entities_information}
</Direction_Of_Entities>
</Current_Room_Entities>

<Currently_Partial_Observed_Entity_Information>
<Entity_List>
{entitiy_list}
</Entity_List>
<Entities_Relationships>
{entities_relationships_information}
</Entities_Relationships>
<Direction_Of_Entities>
{direction_of_entities_information}
</Direction_Of_Entities>
</Currently_Partial_Observed_Entity_Information>

<Door_Change>
{door_change_information}
</Door_Change>

<Inventory_Change>
{inventory_change_information}
</Inventory_Change>

<Instruction>
{instruction}
</Instruction>

----------------------------------------

[OUTPUT]

‘‘‘LLM Reasoning‘‘‘
{

graph_nodes_entities_rationale: {rationale}
graph_nodes_entities: {entities}
graph_nodes_entities_relationships_rationale: {rationale}
graph_nodes_entities_relationships: {entities_relationships}
graph_nodes_direction_of_entities_rationale: {rationale}
graph_nodes_direction_of_entities: {direction_of_entities}

}
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A.2 PLANNING USING DOMAIN-SPECIFIC LANGUAGE

Plan with DSLs In the Plan with DSLs, the LLM receives as input the current inventory, the
previous plan and its execution status, the current observation, the agent’s facing direction, and the
set of available DSL instructions with their descriptions. Conditioned on this information, the LLM
generates a sequence of DSL instructions, accompanied by a rationale, that aligns with its high-
level plan for solving the mission. The generation process leverages the knowledge graph through
predefined tool calls invoked by the LLM’s decisions. In addition, the LLM specifies a target entity
for the plan, together with a rationale, indicating the object on which the current plan should focus.

Plan with DSLs Prompt

[TEXT INPUT]

<Rule_Description>
{rule_description}
</Rule_Description>

<Graph_Information>
{graph_information}
</Graph_Information>

<Subplan_Target_Entity_Instructions>
{subplan_target_entity_instructions}
</Subplan_Target_Entity_Instructions>

<Subplans_Instructions>
{subplans_instructions}
</Subplans_Instructions>

<Inventory>
{inventory}
</Inventory>

<Last_Plan>
{last_plan}
</Last_Plan>

<Last_Plan_Completion>
{last_plan_completion}
</Last_Plan_Completion>

<Facing_Direction>
{facing_direction}
</Facing_Direction>

<DSL_List>
{dsl_list}
</DSL_List>

[IMAGE INPUT]

{image}

----------------------------------------

[OUTPUT]

‘‘‘LLM Reasoning‘‘‘
{

subplan_target_entity_rationale: {rationale}
subplan_target_entity: {subplan_target_entity}
subplans_rationale: {rationale}
subplans: {subplans}

}
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Verify Completion In the Verify Completion, the LLM determines whether the previous plan has
been completed and provides a rationale for its judgment. This decision is based on the agent’s cur-
rent information, including its inventory, door traversal status, facing direction, current observation,
the previous plan, and the number of times that plan has been repeated. In addition, the LLM evalu-
ates whether the plan should be adjusted—and explains why—if it has remained incomplete for an
extended period.

Verify Completion Prompt

[TEXT INPUT]

<Graph_Information>
{graph_information}
</Graph_Information>

<Inventory> {inventory} </Inventory>

<Pass_Door>
{pass_door_information}
</Pass_Door>

<Observation>
{observation}
</Observation>

<Facing_Direction> {facing_direction} </Facing_Direction>

<Check_DSL_Commands>
{check_DSL_commands}
</Check_DSL_Commands>

<Previous_Plans> {previous_plans} </Previous_Plans>

<Last_Plan> {last_plan} </Last_Plan>

<Num_Repeats_Last_Plan>
{num_repeats_last_plan}
</Num_Repeats_Last_Plan>

<Is_Complete_Instruction>
{is_complete_instruction}
</Is_Complete_Instruction>

<Need_To_Adjust_Instruction>
{need_to_adjust}
</Need_To_Adjust_Instruction>

[IMAGE INPUT]

{image}

----------------------------------------

[OUTPUT]

‘‘‘LLM Reasoning‘‘‘
{

is_complete_rationale: {rationale}
is_complete: {is_complete}
need_to_adjust_rationale: {rationale}
need_to_adjust: {need_to_adjust}

}

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Execute In the Execute, the LLM-as-agent, acting as the actor, analyzes the mission, the current
observation, and its facing direction, and generates up to 10 low-level actions in a single turn, accom-
panied by a rationale. The instruction prompt supplies the LLM-as-agent with the available action
set, the transition dynamics of the environment, and a concise guideline on how to handle blockers
when encountered.

Execute Prompt

[TEXT INPUT]

<Rule_Description>
{rule_description}
</Rule_Description>

<Action_Description>
{action_description}
</Action_Description>

<Mission_Description>
{mission_description}
</Mission_Description>

<Graph_Information>
{graph_information}
</Graph_Information>

<Mission>
{subplan}
</Mission>

<Observation>
{problem}
</Observation>

<Direction>
You are facing north.
</Direction>

<Inventory>
{inventory}
</Inventory>

<Instructions>
{instructions}
</Instructions>

[IMAGE INPUT]

{image}

----------------------------------------

[OUTPUT]

‘‘‘LLM Reasoning‘‘‘
{

actions_rationale: {rationale}
actions: {actions}

}
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A.3 TOOL CALL

Get Neighbor Entity Information Designed for short-term planning, it operates by receiving a
node number as a parameter to return a string with all information about the specified node and
its neighbors. Since the LLM cannot natively determine if all nodes have been visited, the tool
also provides a visitation count for each node within the current decision step to inform the agent’s
exploration strategy.

Search Closest Entity It receives a node and a target entity as parameters, performs a Breadth-
First Search (BFS), and provides information on the nearest node containing that entity. If the entity
is not present in memory, it returns a information that the entity has not been discovered. Conversely,
if the nearest entity is found, it provides the sequence of node transitions required to reach it. This
information helps the agent determine whether it needs to perform further exploration or formulate
a long-term plan.

Find Unexplored Closed Door It is designed to find the shortest path to the nearest closed or
locked door from a given node. It receives the node as a parameter and performs a Breadth-First
Search (BFS). If no such door is found in the memory, it returns a notification that the closed or
locked door is undiscovered. Otherwise, it returns the sequence of node transitions that constitutes
the path to the nearest closed or locked door. This information enables the agent to formulate long
term exploration plans.
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B ENVIRONMENT DETAILS

We extend BabyAI (Chevalier-Boisvert et al., 2019), a partially observable 2D gridworld simula-
tion. Built on the MiniGrid platform, BabyAI supports efficient simulation and offers a range of
instruction-following tasks using a simplified synthetic language called Baby Language. Each lay-
out consists of n rooms connected by colored doors, with objects placed throughout. Objects are
defined by color and type. While unlocked doors can be opened freely, locked doors require keys of
the matching color. At each time step, the agent receives a partial observation representing its 7× 7
field of view. Walls and doors obstruct the observation, even when doors are open.

The environment provides observations in two modalities: pixel-based images and textual descrip-
tions. While BabyAI offers default image-rendered assets, we modify the object assets in the pixel-
based observations to enhance visual distinctiveness and improve object recognition by LLMs.
The textual representation encodes each cell using predefined object descriptors (e.g., Wall, Yel-
low Closed Door, Blue Box), separated by semicolons, enabling precise symbolic reasoning over
the observed grid. This structured format enables symbolic reasoning over spatial configurations
while preserving compatibility with language-based models. The action space supports six actions:
Go Forward, Turn Left, Turn Right, Pickup, Drop, and Toggle. The Toggle
action allows the agent to interact with doors, such as opening, closing, or unlocking them.

C ABLATION STUDY ON OBSERVATION MODALITIES

Table 4 shows the experimental results comparing performance when the agent receives environmen-
tal information as text-only versus when image observations are also provided. When using only the
text observation, the agent succeeded in 38 out of 60 trials. In contrast, when image observations
were added, the agent succeeded in 49 out of 60 trials. This suggests the LLM achieves a better
understanding of the environment, as it can leverage the additional information from the images.

Table 4: Performance comparison between text-only and text with image on PutNextTo missions.
We evaluate the performance of the knowledge graph approach using two different observation.

Observation Format # rooms Accuracy (%)

Image & Text 2×2 96.7 ± 3.3
3×3 66.7 ± 8.6

Text 2×2 83.3 ± 6.6
3×3 43.3 ± 9.0
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D EXAMPLE CASE

We visualize the subplans produced by the LLM planner augmented with a LLM-generated knowl-
edge graph, alongo with the full execution trajectory of a downstream actor, in Figure 8 and Figure 9.

Mission 

Put the yellow ball next to the red key

Full Trajectory Subplans Trajectory

Subplans

"drop_entity(grey ball)",


"go_to_entity(grey door)",


"pass_door(grey door)",


"go_to_entity(yellow key)",


"pick_up_entity(yellow key)",


"go_to_entity(grey opened door)",


"pass_door(grey opened door)",


"go_to_entity(yellow locked door)",


"pass_door(yellow locked door)",


"go_to_entity(yellow ball)",


"pick_up_entity(yellow ball)",


"go_to_entity(yellow opened door)",


"pass_door(yellow opened door)",


"go_to_entity(red key)",


"drop_next_to_entity(yellow ball, red key)"

Figure 8: The LLM planner augmented with a knowledge graph successfully generates a long, co-
herent sequence of subplans to accomplish the mission: “Put the yellow ball next to the red key.” The
agent moves from the start position ( ) to the final position ( ). The LLM generated entire sequence
of subplans at once, demonstrating its capabilities for long-horizon reasoning in partially observable
environments.

Figure 9: The LLM planner, using a knowledge graph, creates a long and logical series of subplans
to complete the mission: ”Put the purple ball next to a green key.” The agent moves from the start
position ( ) to the final position ( ).
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We further highlight the failure modes of LLM planner augmented with stacked memory, where
every attempts fails to complete the mission, as shown in Figure 10 and Figure 11.
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Figure 10: The visitation heat map and the trajectory of oracle agent, knowledge graph-augmented
agent, and stacked memory-augmented agent.
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Figure 11: The visitation heat map and the trajectory of oracle agent, knowledge graph-augmented
agent, and stacked memory-augmented agent.
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E COMPARISON OF MEMORY ACCESS METHODS

To evaluate the LLM’s ability to handle the dynamics of information gathering and utilizing in
sequential decision-making, we compare two settings: dynamic memory where the model performs
tool-calling experiments, and static memory, where the entire knowledge graph is provided in the
context window.

The results are summarized in Table 5. Although static memory provides the LLM with more in-
formation at each step, its performance was lower. This finding is consistent with the comparison
between knowledge graph and stacked memory, suggesting that inefficient memory structures can
hinder the performance.

Table 5: Success rate of PutNextTo mission. We compare dynamic memory, where the agent
controls the tool calls, and static memory, where all information are always given.

# rooms Metrics Gemini-2.5-Flash
Dynamic Memory Static Memory

2×2 Success (%) 96.7 ± 3.3 93.3 ± 4.8
GED 4.50 ± 1.65 2.79 ± 1.09

3×3 Success (%) 66.7 ± 8.6 58.6 ± 9.03
GED 7.80 ± 1.63 9.38 ± 2.17
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