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Abstract
Small Language Models (SLMs, or on-device
LMs) (Lu et al., 2024) have significantly fewer
parameters than Large Language Models (LLMs).
They are typically deployed on low-end devices,
like mobile phones (Liu et al., 2024) and single-
board computers. Unlike LLMs, which rely on
increasing model size for better generalisation,
SLMs designed for edge applications are expected
to have adaptivity to the deployment environ-
ments and energy efficiency given the device
battery life constraints, which are not addressed
in datacenter-deployed LLMs. This paper ad-
dresses these two requirements by proposing a
training-free token embedding compression ap-
proach using Tensor-Train Decomposition (TTD).
Each pre-trained token embedding vector is con-
verted into a lower-dimensional Matrix Product
State (MPS). We comprehensively evaluate the
extracted low-rank structures across compression
ratio, language task performance, latency, and en-
ergy consumption on a typical low-end device,
i.e. Raspberry Pi. Taking the sub-billion param-
eter versions of GPT-2/Cerebres-GPT and OPT
models as examples, our approach achieves a com-
parable language task performance to the original
model with around 2.0× embedding layer com-
pression, while the energy consumption of a sin-
gle query drops by half.

1. Introduction
Modelling complex language patterns and solving complex
language tasks are two of the primary reasons that Large
Language Models (LLMs) have attracted considerable at-
tention in recent years. While the LLMs track thrives on
increasing model sizes and tackling more difficult tasks, an-
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other track is considering putting such capable models on
lower-end devices. These models are called Small Language
Models (SLMs) (Lu et al., 2024) or on-device language mod-
els (Liu et al., 2024; Mehta et al., 2024; hfs, 2024).

SLMs may have less than one billion parameters (Mehta
et al., 2024; Liu et al., 2024; Laskaridis et al., 2024). Though
such a size is already a few tenths or even hundreds of what
common LLMs usually are, it can still be burdensome for
some low-end devices. As listed in (Liu et al., 2024, Fig. 2),
some prevalent mobile devices (e.g. iPhone 14 and iPhone
15) only have 6GB DRAM. For some SLMs like Gemma2-
2B, running the uncompressed version causes a system crash
on Raspberry Pi-5 with 8GB DRAM.

Compared with LLMs, SLMs on low-end devices have dif-
ferent layer compositions of the model and different on-
board operations due to the absence of server-level GPUs.
As shown in Figure. 1a, around half of the investigated
open-source models have more than 20% of the parameters
attributed to token embedding layers, which is consistent
with the previous findings, i.e. (Liu et al., 2024, Section
2.2.3). Additionally, since no server-level GPU is on board
to support massive parallel operations for matrix multiplica-
tion, block-wise approaches that rely on parallelism (Dao
et al., 2022; Qiu et al., 2024) are not suitable for low-end
deployment scenarios.

To this end, this paper proposes TensorSLM, a tensor-based
approach to compress SLMs for low-end devices (i.e. Rasp-
berry Pi without GPU). Together with matrix-based low-
rank approaches (Chen et al., 2018a; Hrinchuk et al., 2020;
Lioutas et al., 2020; Acharya et al., 2019; Chen et al., 2021;
Hsu et al., 2022; Dao et al., 2022; Qiu et al., 2024), this
kind of approach forms a broader field named low-rank
factorization. The comparison of these works regarding
methodologies (e.g. matrix/tensor, with/without training)
and applications (e.g. high-end/low-end devices, large/small
models) are clarified in Table. 4.

Compared with two-dimensional matrices or their finer-
grained block-wise forms (Chen et al., 2018a; Dao et al.,
2022), higher-order tensors provide more diverse representa-
tion alternatives through their inter-order information, which
is more suitable for small-size models to model complex
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(a) The parameter ratio of Norms (including layer norms), feed-forward layers (FF), attention layers (Attn), and embedding layers
(Emb), and the average zero-shot reasoning score (Zellers et al., 2019; Clark et al., 2018; 2019; Bisk et al., 2020) of several
open-source model series. In a model series, smaller models have a higher token embedding layer ratio and lower feed-forward
layer ratio, while the attention layer ratio is maintained.
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Figure 1. Typical SLM layer composition and the SLM application requirement of adaptability.

patterns. This superiority is more pronounced when no
fine-tuning data is available to adjust model parameters for
specific deployment environments.

The contributions of this paper are summarised as follows:

1. We systematically analyse LLMs on high-end GPU
servers and SLMs on low-end edge devices to address the
two unique requirements of SLM compression: adapt-
ability to specific deployment environments and energy
efficiency for better user experience.

2. To our knowledge, we are the first to compress SLMs
for low-end device use cases using low-rank factoriza-
tion. We adjust Tensor-Train Decomposition for non-
parallel operations in the forward passes, where block-
wise approaches (Dao et al., 2022; Qiu et al., 2024) are
incompetent.

3. We gave the measured latency and estimated energy con-
sumption of SLMs on the typical low-end device, Rasp-
berry Pi 5, finding that our approach reduces half of the
inference energy with negligible latency increase.

4. We evaluated both simple and complex language tasks.
We found that our tensor-based approach is better at
unprompted and unconstrained question answering than
the matrix-based SVD approach, and herein sheds light
on selecting appropriate algebraic structures for language

model compression according to the specific tasks.

2. Unique Requirements of SLM Applications
This section clarifies the main application differences be-
tween LLMs and SLMs, which will then guide the design
of SLMs compression on low-end devices.

2.1. Adaptability

Unlike the current LLM applications, which are mostly run-
ning on high-end GPU servers (e.g. in the data centres
with numerous NVIDIA A100), SLMs are mainly for edge
(or mobile) applications that require adapting to the envi-
ronment with limited resources on lower-end devices. A
common approach to adapting to the dynamic environment
is updating the vocabulary according to the changes in input
text distribution (Chen et al., 2018a). The reasons for this
distribution change vary from case to case. For example,
new user registration, or the frequently used tokens update
with the users’ changing daily lives.

To cope with the ever-changing input tokens and vocabulary,
a straightforward strategy is to build a could-edge system,
as shown in Figure. 1b, which is similar to the workflows
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in the field of edge computing, e.g. (Laskaridis et al., 2024,
Fig.1). There are two kinds of devices in this workflow: 1)
the central server, which is possibly a server in public or pri-
vate cloud services, or a higher-end personal computer, and
2) the low-end edge device. In this paper, we only talk about
a typical edge device - Raspberry Pi. Over a fairly long
period (e.g. months or years), the central server only com-
municates with the edge device once to provide a brand-new
pre-trained language model. Afterwards, the edge device
should update the vocabulary on board according to the
changes in the environment.

A detailed explanation of Figure. 1b is as follows:
Step 1. The central server compresses the whole token em-
bedding matrices on the token embedding level, according
to Algorithm 1.
Step 2. The compressed vocabulary and other parts of the
language model (e.g. the decoder) are downloaded and then
deployed on a low-end device.
Step 3. During the application runs, the vocabulary updates
for two cases:

1. a new token is required according to the actual applica-
tion requirements, it will be registered by the service
on the edge device. Jump to Step 4.

2. an old token is required to be removed (e.g. it has
not been used for a long time), the edge device sim-
ply deletes the corresponding token embedding vector.
Meanwhile, the application deregisters this token.

Step 4. The low-end device compresses the added token
embedding vector as described in Algorithm 1.
Step 5. The current vocabulary of the language model. The
compression process of a single token embedding follows a
pipeline of 1 tensorization and 2 decomposition.

2.2. Energy Efficiency

From the workload of the high-end GPU servers (e.g. those
equipped with NVIDIA A100) and low-end edge devices
(e.g. Raspberry Pi 5) described in Section 2.1, we know that
the edge device only takes charge of light-weight essential
tasks, since it has strict limitations in computation, memory
and communication. Furthermore, since battery life directly
impacts the user experience, energy consumption is also a
significant concern.

The actual energy consumption of a device depends on var-
ious factors, like the semiconductor temperature, system
workload, operating environment, etc. Thus, it is hard to
precisely calculate the exact energy consumption of an algo-
rithm on a certain hardware. However, we can still estimate
the range of energy consumption in the system as Table. 1,
where we can have the following remarks:
Remark 2.1. Memory operations are more “expensive” than
computation in terms of energy.

Table 1. Approximate energy consumption of different operations
(1nJ=1000pJ). For servers, communication with the wired network
(e.g. ethernet or optical fibre) is preferred; for edge devices, it is
preferred to use wireless networks (e.g. Wi-Fi or cellular network).

Energy Consumption Raspberry Pi 5
(Cortex-A76 CPU)

GPU server
(A100 GPU)

Computation
(pJ/float32)

Add 1.0-2.5 5-12
Mult 1.2-3 6-15

Memory (pJ/float32) 70-260 100-450

Communication
(nJ/float32)

Wired 50-350
Wireless 400-6000

Remark 2.2. Non-essential communication should be
avoided for energy concerns.

The workflow in Figure. 1b has already satisfied Remark 2.2.
For Remark 2.1, if real-time is not the most important con-
cern in the edge application, we “exchange” memory with
computation for longer battery life. Further discussion and
evaluation around these are in Section 4.1 and Appx. F.

3. Preliminaries
This section gives the essential concepts related to tensor,
tensor operations and Tensor-Train Decomposition.

Order-N Tensor. An order-N real-valued tensor, A, is a
high-dimensional matrix (or multi-way array), denoted by
A ∈ RI1×···×IN , where N is the order of the tensor (i.e.,
number of its modes), and Ik (1 ≤ k ≤ N ) is the size (i.e.,
the dimension) of its k-th mode. In this sense, matrices
(denoted as A ∈ RI1×I2) can be seen as order-2 tensors
(N = 2), vectors (denoted as a ∈ RI ) can be seen as order-
1 tensors (N = 1), and scalars (denoted as a ∈ R) are
order-0 tensors (N = 0).

Tensor-Train Decomposition (TTD). The most common
Tensor-Train Decomposition (Oseledets, 2011) formats a
tensor into a Matrix Product State (MPS) form, which ap-
plies the Tensor-Train Singular Value Decomposition (TT-
SVD) algorithm to an order-N tensor, X ∈ RI1×I2×···×IN .
This results in N smaller 2-nd or 3-rd order tensors, G(k) ∈
Rrk−1×Ik×rk for k = 1, . . . , N , such that

X ≈ G(1) ×1
2 G(2) ×1

3 G(3) ×1
3 · · · ×1

3 G(N). (1)

Tensor G(1), . . . ,G(N) are referred to as the tensor cores,
while the set {r0, r1, . . . , rN} represents the TT-rank of the
TT decomposition (r0 = rN = 1).

4. Methodology
This section clarifies the technical cornerstones of our ap-
proach. A practical pipeline of our approach is depicted
in Figure. 1b. The whole vocabulary is processed on higher-
end servers, while inference and vocabulary updates happen
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Algorithm 1 TT SVD(Oseledets, 2011) for a Single Token Em-
bedding Compression

Input : 1. d-dimensional token embedding vector x ∈ Rd,
approximation accuracy ϵ;
2. Tensor dimension {I1, I2, . . . , IN} and TT ranks
{r0, r1, . . . , rN}.

Output : TT cores G(1), . . . ,G(N).
Initialize :Tensor X ← reshape(x, [I1, I2, . . . , IN ]),

temporary matrix
Z← reshape(X , [r0I1,

∏N
j=2 Ij ]),

truncation parameter δ = ϵ√
N−1
∥X∥F .

1 for k = 1 to N − 1 do
2 U,S,V,E← truncSVD(Z, δ, rk)

// s.t. U ∈ Rrk−1Ik×rk, ∥E∥F ≤ δ

3 G(k) ← reshape (U, [rk−1, Ik, rk])
// get kth TT core

4 Z← reshape
(
SVT , [rkIk+1,

∏N
j=k+2 Ij ])

)
// SVT ∈ R

∏N
i=k+2 Ii

5 G(N) ← Z

6 return G(1),G(2), . . . ,G(N)

on lower-end edge devices.

4.1. Individual Embedding Vector Compression

For the compression of the embedding matrix, rather than
decomposing the whole embedding weight matrix, we pro-
pose to decompose each embedding vector. The lower half
of Figure. 1b is a simplified illustration of such a process,
with a detailed description in Algorithm 1.

Tensorization. Each token embedding x ∈ Rd is re-
shaped (or folded and tensorized into an order-N ten-
sor. Denote reshape(·) as the reshape function, X =
reshape(x, {I1, I2, . . . , IN}) and X ∈ RI1×···×IN such
that d =

∏N
k=1 Ik. In the example in Figure. 1b, the token

embedding vector x is a 27-dimensional vector, d = 27.
In this way, vector x is reshaped into an order-3 (N = 3)
tensor X , with tensor size for each mode I1 = I2 = I3 = 3.

Tensor Decomposition. Tensor X is then decomposed
and stored in a Matrix Product State (MPS) form as X ≈
G(1) ×1

3 · · · ×1
3 G(N), with hyperparameters as TT ranks

r0, r1, . . . , rN . For the case in Figure. 1b, the MPS cores
are G(1), G(2), G(3), with TT ranks r0 = r1 = r2 = r3 = 1.
In other words, instead of storing the entire token embed-
ding vector x ∈ Rd, we store the corresponding MPS
cores, G(k) ∈ Rrk−1×Ik×rk , for k = 1, . . . , N . The pa-
rameter count of the MPS cores {G(k)} is

∑N
k=1 |G(k)| =∑N

k=1 rk−1Ikrk, where | · | represents the parameter count.

A more detailed explanation of individual token embed-
ding compression is given in Algorithm 1, where ∥ · ∥F
denotes the Frobenius norm. Although the embedding vec-
tor is reshaped into a tensor, the decomposition for each

mode of this tensor is still based on the matrix-level SVD
(line 2). Then the complexity of TT SVD can be derived
from SVD and its variants, such as truncated SVD (Os-
eledets, 2011). Given the vocabulary size V , the original
parameters of the embedding layers are compressed from
V d to V

∑N
k=1 rk−1Ikrk, and the compression ratio can be

obtained via ηTTD = d∑N
k=1 rk−1Ikrk

− 1. The computation
and memory complexities for all the above processes are
summarized in Table. 2.

Energy Consumption Analysis. Recall in Section 2.2 we
have Remark 2.1 to guide the choice between memory and
computation for the same functionalities from the perspec-
tive of energy cost. Based on Remark 2.1 and Table. 2, we
can initially give the estimated energy costs when the SLM
processes an input token (only before the decoder), which
is similar with (Yang et al., 2017). Assuming in the same
operating environment and other conditions (e.g. tempera-
ture), the memory energy cost of each float32 is ν, and
the computation energy cost of each float32 is τ , all the
model weights are represented in float32.

When inputting a text of length l, denote original model
energy cost regarding memory as Eν , model energy cost
regarding computation is Eτ ,

Eν = ν(dV + ld), Eτ = 0, (2)

and after compression, the energy costs are

E
′

ν = ν(V NIr2 + lNIr2 + ld), E
′

τ = τNIr2. (3)

Denote the SVD rank k, the energy cost after compressing
with matrix-based SVD is

E
′′

ν = ν [k(V + 2d+ l + 1) + ld] , (4)

E
′′

τ = τ(2ldk − ld+ kd). (5)

Therefore, we have the ratio of inference energy ω, between
the compressed language models and the uncompressed

models. Denote ωTT =
E
′
ν+E

′
τ

Eν+Eτ
as the ratio with TensorSLM,

and ωSVD =
E
′′
ν +E

′′
τ

Eν+Eτ
as the ratio with SVD. We will give the

estimated values of ωTT and ωSVD in Section 5 according to
the hyperparameters of the investigated open-source SLMs.

4.2. Language Model Inference Process with the
Compressed Embeddings

The original inference process with embedding vectors is
as follows: when the encoded texts (separated as tokens)
are forwarded to the embedding layer, the embedding layer
outputs the embedding vectors according to the input tokens;
the embedding layer here acts like a look-up table. The em-
bedding vectors are then forwarded to the hidden layers of
the transformer, whose size is the same as the dimension of
the embedding vectors. Thus, if there is no internal change
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Figure 2. Experimental results. (a): Perplexity-compression trade-off across different model sizes. This trade-off is measured by the
ratio between perplexity and compression ratio of embedding layers; lower ratio values indicate better trade-offs. (b): Perplexity of the
compressed models with different tensor decomposition approaches. (c)-(f): Task performance on sentiment classification with increasing
compression ratio. Higher values indicate better classification performance. (g): Zero-shot reasoning scores of OPT series models on four
different tasks. Our approach demonstrates competitive performance. (h): Energy cost ratio of compressed to uncompressed models,
where 100% represents original energy consumption. Our approach overall outperforms the SVD-based approach.

in the hidden layers, the dimension of the embedding vec-
tors should compile with the dimension of the hidden layers.
The compressed embeddings should be reconstructed to the
original dimension to enable the forwarding process. This
inference happens at the application phase shown in the
upper right of Figure. 1b.

Thus just before forwarding embedding vectors to
the hidden layers, the memory usage increases from
l
∑N

k=1 rk−1Ikrk to ld. However, given that the vocabu-
lary size V is normally much larger than the input token
number l, that means V ≫ l. Thus our approach can still
significantly reduce the memory usage if the embedding
layer takes a significant part of the whole model parameters.
The reconstruction process follows the tensor contraction
in Eq. (7), turning the TT cores {G(k)} into a N -order ten-
sor X according to Eq. (1), and then vectorizing X into a

full-size embedding vector according to Appx. B.1.

5. Experimental Evaluation
Our comprehensive experimental evaluation covers com-
pression ratio, language task performance changes, runtime
(flops and latency), and energy consumption.

5.1. Changes of Language Task Performance

Perplexity-compression Trade-off. In most cases, the
shrinkage of model size leads to a drop in the language task
performance (though there are exceptions like the accuracy
improvement of CerebrasGPT-590M in Figure. 2c). There
should be approaches to measure such a trade-off, with the
benefits of a more affordable model size, and how much lan-
guage task performance has been sacrificed. Here we gave
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Table 2. Computation and memory complexity during the com-
pression (Section 4.1) and inference(Section 4.2) of TensorSLM.
Mtrans is the transformer module, V denotes the vocabulary size,
d is the original token embedding dimension, and l is the token
number of the input text. For simplicity, the dimensions for each
mode of the tensor and TT rank are represented as I and r.

Memory

Original Embedding Layers O(V d)
Compressed Embedding Layers O(V NIr2)

Compressed Encoded Texts O(lNIr2)
Intermediate input to Mtrans O(ld)

Computation

TT-SVD for single token embedding O(NIr3)

Reconstruction of single token embedding O(NIr2)

a simple approach for the task evaluated with perplexity,
∆ lg PPL(S,M)

ηemb
, with the measurements on GPT-2 and Cere-

brasGPT shown in Figure. 2a. We found that larger model
sizes achieve better trade-offs, with CerebrasGPT showing
a smoother trend compared to GPT-2.

Language Modelling. Due to the combination of tensor
size and TT ranks exponentially exploding, we could not
test all the possible combinations. However, we can still
observe that independent of the tensor orders and the models
used for the compression, significant language modelling
performance loss tends to appear when the compression
ratio exceeds 2.0×. We further compared our proposed
approach with the Tucker decomposition in Figure. 2b with
the same tensorization strategy in Section 4.1, and found
our adopted Tensor-Train Decomposition outperforms the
Tucker Decomposition in perplexity.

Sentiment Classification. The results of the sentiment
classification task are shown in Figure. 2c to 2f, also indi-
cate that the robustness of larger-scale models (Cerebras-
590M and Cerebras-1.3B) is better than that of the smaller
models (Cerebras-111M and Cerebras-256M), similar to the
trend in language modelling tasks mentioned above. The
compressed larger-scale models tend to outperform the orig-
inal model in precision and F1-score, indicating that our
compression improves the ability of the larger models to
recognise the positive texts. In contrast, the smaller models
tend to have worse performance when the compression ratio
increases.

Zero-shot Reasoning. Since SLMs are incapable of the
tasks that are too complex, we only evaluate the relatively
simple reasoning tasks (e.g. those that do not involve multi-
hop questioning, mathematics or multilingual), and the re-
sults are shown in in Figure. 2g. The bold numbers are the
cases that outperform the uncompressed models, or the best
in all the compressed cases.

Our approach has a higher chance of achieving better aver-
age reasoning task scores than the SVD-based approach,
which implies that our tensors are better at extracting
implicit representations in small size models than matri-
ces. Moreover, in our evaluation, our approach generally
has higher scores than the SVD-based approach in ARC-
challenge and BoolQ. Both of these datasets are more un-
prompted and unconstrained compared to the other evalu-
ated datasets. This fact implies that our approach may be
better at these difficult, unconstrained reasoning tasks.

5.2. Latency

While TensorSLM significantly reduces the model param-
eters and even improves the language tasks performance,
in practice it also introduced extra latencies - compression
latency (Section 4.1) and inference latency(Section 4.2).

In our experimental evaluation, a typically induced latency
for an input text was no more than 0.3 seconds, which is
acceptable for edge applications. Due to space constraints,
the comprehensive results and detailed analysis of the on-
device latency evaluation are provided in Appx. G.

5.3. Energy Consumption

The estimated inference energy costs are shown in Fig-
ure. 2h. The Y-axis indicates the ratio between the inference
energy costs of the compressed model and that of the uncom-
pressed model; the lower, the better energy saving. For each
language model, we select the compression case that has a
similar language task performance according to Section 5.1.

We can observe that our approach is mostly better than the
SVD-based approach. Furthermore, TensorSLMsupports
adaptivity in edge applications, while the SVD-based ap-
proach does not.

6. Conclusion and Future Work
This paper addresses two unique requirements of Small
Language Models (SLMs) deployed on low-end devices:
adaptivity and energy efficiency. We propose a training-free
approach to compress token embeddings using Tensor-Train
Decomposition, enabling dynamic vocabulary adjustment
and memory-computation trade-offs for extended battery
life. We evaluated our approach on GPT-2, CerebrasGPT,
and OPT models across language modeling, classification,
and zero-shot reasoning tasks. Systematic measurements on
Raspberry Pi 5 show that our method reduces inference en-
ergy costs by half, with negligible performance degradation
and minimal latency increase.

Future work includes extending tensorization to hidden lay-
ers for native compilation and developing accelerated tensor
operations to optimize CPU arithmetic requirements.
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A. Notation

Table 3. Notation in this paper.

Symbol Meaning

a Scalar.
x Vector.
A Matrix.

X , A, B Tensor.
N Tensor order.

X [i1, . . . , iN ] The (i1, i2, . . . , iN )th entry of the tensor.
I, Ik Tensor dimension, tensor dimension for the kth mode.
M Model module set.

|M|, |G|, |S| Parameter count of the model module set M, tensor G or cardinality of set S.
V Vocabulary of the language model.
d Token embedding dimension.
l Input text length.

r, rk TT rank, TT rank of the kth mode of the tensor.
G(k) TT(MPS) core of the kth mode of the tensor.
×p

k Tensor contraction for the pth (formal tensor) and kth (latter tensor) mode.
η Compression ratio of the entire model.

ηemb Compression ratio of the embedding layer.
φ Parameter reduction ratio of the whole model.

φemb Parameter reduction ratio of the embedding layer.
ν Memory energy consumption per float32 data.
τ Computation energy consumption per float32 data.
Eν Estimated energy cost regarding memory.
Eτ Estimated energy cost regarding computation.
ωTT Estimated energy cost ratio between the compressed model with TensorSLMand uncompressed model.
ωSVD Estimated energy cost ratio between the compressed model with SVD and the uncompressed model.

B. Preliminaries
B.1. Tensors and Tensor Operations

This section gives brief mathematical preliminaries of tensor algebra, and basic knowledge in LLMs to facilitate the
understanding of our proposed methodology in Section 4.

Order-N Tensor. An order-N real-valued tensor is a multi-dimensional array, denoted by a calligraphic font, e.g.,
A ∈ RI1×···×IN , where N is the order of the tensor (i.e., number of modes), and In (1 ≤ n ≤ N ) is the size (i.e., the
dimension) of its n-th mode. Matrices (denoted by bold capital letters, e.g., A ∈ RI1×I2) can be seen as order-2 tensors
(N = 2), vectors (denoted by bold lower-case letters, e.g., a ∈ RI ) can be seen as order-1 tensors (N = 1), and scalars
(denoted by lower-case letters, e.g., a ∈ R) are order-0 tensors (N = 0).

Tensor Entries. The (i1, . . . , iN )-th entry of an order-N tensor is denoted by ai1,··· ,iN ∈ R, where in = 1, . . . , In for
n = 1, . . . , N . A tensor fiber is a vector of tensor entries obtained by fixing all but one index of the original tensor (e.g.,
a:,i2,i3,...,iN ∈ RI1 ). Similarly, a tensor slice is a matrix of tensor entries obtained by fixing all but two indices of the original
tensor (e.g., A:,:,i3,i4,...,iN ∈ RI1×I2 ).

Tensorization. A vector a = (a1, a2, . . . , aI1I2···IN ) ∈ RI1I2···IN , can be tensorized (or “folded”, “reshaped”) into an
order-N tensor A ∈ RI1×I2×···×IN , so that

A[i1, i2, . . . , iN ] = a1+
∑N

k=1(ik−1)
∏k−1

p=1 Ip
, 1 ≤ ik ≤ Ik, (6)

where A[i1, i2, . . . , iN ] denotes the (i1, i2, . . . , iN )-th entry of tensor A.
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Vectorization. Given an order-N tensor, A ∈ RI1×···×IN , its vectorization reshapes the high-dimensional matrix into a
vector, vec (A) = a ∈ RI1···IN .

Tensor Contraction. The contraction of A ∈ RI1×···×IN and B ∈ RJ1×···×JM , over the kth and pth modes respectively,
where Ik = Jp is denoted as A×p

k B and results in a tensor C ∈ RI1×···×Ik−1×Ik+1×···×IN×J1×···×Jp−1×Jp+1×···×JM , with
entries

C[i1, . . . , ik−1, ik+1, . . . , iN , j1, . . . , jp−1, jp+1, . . . , jM ]

=

Ik∑
q=1

(
A[i1, . . . , ik−1, q, ik+1, . . . , iN ]

· B[j1, . . . , jp−1, q, jp+1, . . . , jM ]
) (7)

Matricization (Mode-n unfolding). Mode-n matricization of a tensor, mat (A, n) = A{n} ∈ RIn×(I1···In−1In+1···IN ), is a
procedure of mapping the elements from a multidimensional array to a two-dimensional array (matrix). Conventionally,
such procedure is associated with stacking mode-n fibers (modal vectors) as column vectors of the resulting matrix. For
instance, the mode-1 unfolding of A ∈ RI1×I2×···×IN is represented as mat (A, 1) = A{1} ∈ RI1×(I2···IN ), where the
subscript, {1}, denotes the mode of matricization, and is given by

A(1)

[
i1, i2i3 . . . iN

]
= A[i1, i2, . . . , iN ] (8)

Note that the overlined subscripts refer to linear indexing (or Little-Endian), given by:

i1i2 . . . iN = 1 +

N∑
n=1

[
(in − 1)

n−1∏
n′=1

In′

]
= 1 + i1 + (i2 − 1)I1 + · · ·+ (in − 1)I1 . . . IN−1

(9)

B.2. Related Work in Detail

Low-rank factorization can break the high-dimensional weight matrices into smaller matrices or tensors, so that the overall
size of the model can be shrunk. According to the dimensions of the structure that the original weight matrices are broken
into, these approaches can be divided into matrix-based and tensor-based.

Matrix-based Approaches. A straightforward way to shrink the model size is to decompose weight matrices via singular
value decomposition (SVD) (Acharya et al., 2019), which can be further improved by the weighted approach considering
the model performance afterwards (Hsu et al., 2022), knowledge distillation (Lioutas et al., 2020; Mao et al., 2020) and
pruning (Mao et al., 2020). There are also some block-wise decomposition approaches used in language model compression,
like Kronecker Products (Tahaei et al., 2022; Edalati et al., 2022) and data-driven block-wise partitioning (Chen et al., 2018a;
2021).

(Dao et al., 2022; Qiu et al., 2024) used the block-diagonal matrices to reduce the FLOPs in the linear layers computation,
with the bonus of shrinking the model size. However, our paper focuses on reducing the parameters of embedding layers,
and there is no monotonous relationship between the FLOPs (computation cost) and parameters (memory usage) (Lin et al.,
2020). Also, their investigated matrix multiplication only occurs in feed-forward layers, thus their approaches do not fit the
embedding layer compression. Moreover, block-diagonal matrices are optimised for GPUs for better parallelization. Our
aim of minimizing the number of parameters, makes it optimized for lower-end edge devices rather than GPUs. Indeed,
on Raspberry Pi 5, the additional forwarding latency due to compressed embeddings (0.330 - 0.364ms /token in Table. 5)
is even faster than that on GPU (measured as 0.463ms /token in our setting), since there is no parallelization during this
forwarding process.

Tensor-based Approaches. Despite some efforts to use tensor decomposition to compress the language model size, all
come with an extra training process. The works in (Abronin et al., 2024) use Kronecker decomposition with row-column
permutation during the GPT model fine-tuning process, while (Hrinchuk et al., 2020) and (Chekalina et al., 2023a) propose
a tensor-train structured embedding layer and GPT model respectively, yet both train the new-structured model from scratch.
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C. Why not existing solutions?

Table 4. Comparison with our approach and the relevant research.

Relevant
Study

Device Training ? Algebra Structure Layer Focused Size
high-end low-end matrix tensor Emb Linear large small

(Chen et al., 2018a)
√ √ √ √ √

(Hrinchuk et al., 2020)
√ √ √ √

(Wang et al., 2023)
√ √ √ √ √

(Bałazy et al., 2021)
√ √ √ √ √

(Liu et al., 2015) -
√ √

-
(Chen et al., 2018b)

√ √ √ √ √

(Yuan et al., 2023)
√ √ √ √

(Hsu et al., 2022)
√ √ √ √ √

(Chekalina et al., 2023b)
√ √ √ √ √

(Lin et al., 2024)
√ √ √ √

(Dao et al., 2022)
√ √ √ √

(Qiu et al., 2024)
√ √ √ √ √

(Liu et al., 2024)
√ √

-
√

TensorSLM(Ours)
√ √ √ √

The field of language model compression with low-rank factorization has been booming in recent years. The recent relevant
works are summarized in Table. 4. We can observe that for the current existing works, some are specialized for embedding
layers (Chen et al., 2018a; Hrinchuk et al., 2020; Wang et al., 2023; Bałazy et al., 2021; Acharya et al., 2019; Liu et al.,
2015) while others are not (Chekalina et al., 2023a; Chen et al., 2021; Hsu et al., 2022; Dao et al., 2022; Qiu et al., 2024).
However, all of these require an extra training process, such as fine-tuning, meta-learning (Chen et al., 2018a; 2021; Hsu
et al., 2022; Bałazy et al., 2021; Liu et al., 2015; Dao et al., 2022; Wang et al., 2023; Qiu et al., 2024) and training from
scratch (Hrinchuk et al., 2020; Chekalina et al., 2023a).

There are two limitations to this extra training: 1) extra training involves additional computation and training data, which
may be unavailable for low-end devices; 2) training the language model from scratch discards the valuable knowledge stored
in the weights of the original models. However, we only focus on training-free low-end device applications. For a more
detailed discussion of these relevant works, please refer to Appx. B.2.

D. Perplexity and Logarithmic Perplexity.
Perplexity is used as a performance evaluation metric of the language modelling task, which has the following form

PPL(S,M) =

 |S|∏
i=1

pM(xi|x1, x2, . . . , xi−1)

−1

(10)

where S is an ordered set (token sequence), consisting of a set of tokens {xt}, t = 1, 2, . . . , |S|, and M is the model block
that contains all the modules of the language model we evaluate.

Notice that the compression ratio Eq. (21) has a linear form, while perplexity Eq. (10) has an exponential form, so it is
hard to combine them as a description of a model compression result, since when compression ratio η linearly increases,
the perplexity PPL explodes exponentially. To this end, we use the following logarithmic form to describe the language
modelling performance

lnPPL(S,M) = −
|S|∑
i=1

ln pM(xi|x1, x2, . . . , xi−1) (11)

Now, the language modelling performance change before and after compression is given by

∆ lnPPL(S,M) = lnPPL(S,Mcmpr)− lnPPL(S,M0) (12)

=

|S|∑
i=1

ln
pM0

(xi|x1, x2, . . . , xi−1)

pMcmpr(xi|x1, x2, . . . , xi−1)
, (13)
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observe that Eq. (12) exhibits linearity, like Eq. (21).

E. Proof of the Highest Compression Ratio in Table. 2
Proposition E.1. For an order-N tensor whose dimension for each order are I , its TT-format yields the highest compression ratio when
I = 2 and TT rank r = 1.

Proof. Assume the tensor size [I1, . . . , IN ] for the tensor X to achieve the highest compression rate, we next give the proof of this
hyperparameter selection.

The compression ratio in Section 4.1 can be represented as

η =
V × d∑V

j=1

∑N
n=1(rn−1 × In × rn)j

(14)

=
V × d

I1r1 + r1I2r2 + · · ·+ rN−2IN−1rN−1 + rN−1IN
(15)

=
V × d∑⌊N+1

2
⌋

k=1 r2k−1 (r2k−2I2k−1 + I2kr2k+1)
(16)

For the simplest case, assume I1 = · · · = IN = I and r1 = · · · = rN = r. Given d =
∏N

n=1 In = IN , we have N = logI D, and

η =
V × d

rI [2 + (N − 2)r]
=

V × d

rI [2 + (logI d− 2)]
. (17)

In Equation Eq. (17), the numerator is a constant, and in the denominator, R is a hyperparameter for the Tensor-Train Decomposition.
Thus the objective function for the highest compression rate η is

min
I,N

rI [2 + (N − 2)] s.t. N = logI d (18)

I,N, r ∈ Z+ (19)
2 ≤ I ≤ N ≤ ⌊log2 d⌋ (20)

Regarding Eq. (18), if eliminate N then we have a function h = rI [2 + (logI d− 2)]. Regarding d in Eq. (20), the largest token
embedding size of recent GPT-3 (Brown, 2020) is 12,888. Thus, for the GPT series models no later than GPT-3, Eq. (18) should be
2 ≤ I ≤ N ≤ 13. In this range, h is a monotonically increasing function, where the minimum h occurs at I = 2.

Therefore, for the simplest case, we have the best hyperparameter selection of I1 = I2 = · · · = IN = 2, and N = ⌊log2 d⌋.

F. Experimental Setup
F.1. Models, Tasks and Dataset.

The sub-billion models we used are DistilGPT2 (Sanh, 2019), GPT2, GPT2-M/L (Radford et al., 2019), CerebrasGPT-
111M/256M/590M (Dey et al., 2023), OPT-125M. We also tested the models of slightly over a billion parameters for language task
performance with GPT2-XL (1.5 billion parameters), CerebrasGPT-1.3B and OPT-1.3B for the boundary tests.

Regarding the language tasks, we have two different level language tasks:

• Simple Tasks: language modelling and sentiment classification. For language modelling, the considered datasets are WikiText2,
WikiText103 (Merity et al., 2017) and 1BW (Chelba et al., 2013). For sentiment classification, the considered dataset is IMDB (Maas
et al., 2011).

• Complex Tasks: zero-shot common sense reasoning tasks. The common sense reasoning datasets include ARC-challenge (Clark
et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019) and WinoGrade (Sakaguchi et al., 2021).

F.2. Hardware.

Our main experiments were completed on a GPU workstation with an RTX A6000 48GB GPU and AMD Ryzen Threadripper PRO
5955WX CPU. The GPU resource was mainly used to fine-tune language modelling models for sequence classification, which is the
requirement of the sentiment classification task. The inference latency of the low-end devices was measured on a Raspberry Pi 5, with a
64-bit Arm Cortex-A76 CPU and 8GB DRAM. The power meter we used is YOJOCK J7-c USB C Tester USB Power Meter, with a
single refresh time of more than 500ms.
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F.3. Evaluation Metrics

Compression Ratio. DenoteM as a model block set containing a list of model modules like embedding layers and attention layers. With
M0 as the original model block set,Mcmpr as the compressed version ofM0, and |M| as the parameter count ofM. The compression
ratio η is defined as

η =
|M0| − |Mcmpr|
|Mcmpr|

. (21)

Specifically, the embedding compression rate is ηemb =
|T0|−|Tcmpr|

|T0|
, where T only contains token embedding layer and position

embedding layer.

Perplexity and Logarithmic Perplexity. We use perplexity (PPL) as our metrics of language modelling. Furthermore, we use the
logarithmic form of perplexity (lnPPL ) and its change (∆lnPPL) to align with the linearity of the compression ratio Eq. (21), as defined
in Eq. (10).

Accuracy, Precision, Recall and F1-Score. We use these four common evaluation metrics for classification to analyze the classification
performance of the compressed model comprehensively. To investigate the performance change before and after compression, we use the
difference between the metric values after and before the compression.

Zero-shot Reasoning Scores. For the metrics of reasoning tasks, we use the scores from (Clark et al., 2018; 2019; Zellers et al., 2019;
Bisk et al., 2020; Sap et al., 2019; Sakaguchi et al., 2021).

Energy Consumption. Since the actual energy consumption depends on multiple uncontrollable factors, as we discussed in Section 2.2,
it is difficult to isolate compression energy cost from the actual measurements. Thus, we use similar approaches in (Luo & Sun, 2024) to
estimate the energy consumption.

We use the notations in Table. 2 and Eq. (2) to (4), and approximate the ratio between computation energy cost and memory energy cost
per fload32 data as ν

τ
= 5. Then, we got the configurations of the current open-source SLMs for the values of d, V in Eq. (2) to (4).

Though we cannot get the actual energy costs, we can compare the inference energy costs of compressed and uncompressed models with
this approach.

G. On-device Latency Explained with Experimental Results
For the compression latency, we investigated the compression latency on the token level, as shown in Table. 5. Here, “original” means
the uncompressed model, while PPLα means the compressed model with a negligible task performance drop. In our case, “negligible
task performance drop” means in the language modelling task, the perplexity is no more than 100.0. The notation φmax refers to the
compressed model with maximum compression ratio. We observed that for individual token embeddings, there was no significant latency
difference between high-end servers and Raspberry Pi, typically no more than 2 milliseconds for each token. Thus, it is acceptable for the
Raspberry Pi to compress the individual token embeddings.

Table 5. The latency (ms/token) of tensorization & decomposition token embedding vectors and reconstruction on the high-end and
lower-end devices. PPLα means the compressed model with a negligible task performance drop, and the symbol φmax represents the case
with a maximum compression ratio. demb is the embedding dimension of the token embedding vector, and the tested models are GPT-2
and GPT-2-M. On the CPU level, for single token embedding vector decomposition and reconstruction, both server and edge devices have
no significant computation overhead.

Device (CPU)
(ms/token) demb

tensorization
& decomposition reconstruction

PPLα φmax PPLα φmax

Server 768 0.627 1.429 0.117 0.238
1024 0.452 1.512 0.114 0.261

Raspberry Pi 5 768 0.760 1.948 0.330 0.468
1024 0.612 2.148 0.364 0.614

For the inference latency of a single text, we chose a typical text length of 50 tokens, as shown in Table. 6. we used “original”, PPLα,
φmax same as those in Table. 5, to represent the uncompressed model, the compressed model with a negligible task performance drop
and the model with a maximum compression ratio. A typical induced latency for an input text was no more than 0.3 seconds, which is
acceptable for edge applications.

It should be noted that the embedding reconstruction latency depends on both tensor shapes and flops, and the on-device memory
management varies when models of different sizes are loaded. Consequently, in Table. 6, flops alone does not provide a complete predictor
of on-device inference latency.

The cases of φmax are typically slower than the cases of PPLα. We have demonstrated in Appx. E that the φmax (the maximum
compression ratio) corresponds to cases where embedding vectors are compressed into TT-formatted tensors of the highest orders. During
the forward passes, the TT-format of these tensors is decompressed order by order. For example, for an N -order TT-formatted tensor, the
decompression process involves (N − 1) serial matrix multiplications.
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Table 6. Parameters, number of floating-point operations (flops) of the compressed and uncompressed sub-billion models, and latency on
Raspberry Pi CPU. For flops, the token number of the input texts is 100, while for latency on Raspberry Pi, the token number is 50.

GPT Models GPT2 CerebrasGPT
DistilGPT2 GPT-2 GPT-2-M GPT-2-L 111M 256M 590M

# Params
(M)

original 81.9 124.44 354.82 774.03 111.05 255.98 590.31
PPLα 67.06 106.36 326.45 734.28 101.78 226.69 543.45
φmax 43.45 85.99 303.88 710.83 71.87 200.59 511.07

flops
(106/text )

original 20250 40490 142250 330980 14470 40400 103060
PPLα +1.65 +1.88 +3.11 +2.30 +0.38 +1.63 +2.30
φmax +0.13 +0.13 +0.20 +0.25 +0.13 +0.12 +0.26

Latency on
Raspberry
Pi (s/text)

original 0.19±0.02 0.50±0.19 1.23±0.12 3.01±0.47 0.47±0.21 0.71±0.02 1.81±0.25

PPLα 0.36±0.19 0.50±0.16 1.26±0.22 3.01±0.29 0.48±0.23 1.01±0.29 1.89±0.28

φmax 0.19±0.03 0.71±0.38 1.55±0.36 3.52±0.44 0.72±0.42 0.95±0.27 1.91±0.24

−47% +42% +23%

−92% −93% −94% −89%

+16% +50% −6% +1%

−66% −93% −84%

This implies that the higher the tensor order, the more matrix multiplication rounds are executed, potentially resulting in slower
decompression. A (not representative) exception is the compression for CerebrasGPT-256M, which has the 5-order tensor shape
4 × 2 × 17 × 4 × 2 for PPLα, and 7-order tensor shape 2 × 2 × 2 × 2 × 17 × 2 × 2 for φmax. The decompression process for each
embedding vector involves 4 and 6 matrix multiplications respectively, which differ by only two matrix multiplications — a relatively
small gap compared to other cases (e.g. 3-order for PPLα and 10-order for φmax). Thus, for CerebrasGPT-256M, the on-device inference
latencies of PPLα and φmax are similar, as shown in Table. 6.

Though this compression approach does not provide latency reduction benefits, it does offer advantages in the reduction of memory usage
and energy consumption.

DistilGPT2 exhibits different flops-latency trends from the others. In Table. 6 the compression for DistilGPT2 has significantly
less latency for φmax than PPLα, which contradicts the analysis in the preceding paragraph. A possible reason is the different memory
scheduling processes of embedding layers and non-embedding layers. DistilGPT has the same embedding layer weight matrix size
(50257× 768) as GPT-2, yet has significantly fewer non-embedding layer parameters (and hence ∼ 50% fewer non-embedding memory
pages during inference). This difference may lead to distinct memory management dynamics.
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