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Abstract

Bounding privacy leakage over compositions, i.e., privacy accounting, is a key chal-
lenge in differential privacy (DP). However, the privacy parameter (ε or δ) is often
easy to estimate but hard to bound. In this paper, we propose a new differential pri-
vacy paradigm called estimate-verify-release (EVR), which tackles the challenges
of providing a strict upper bound for the privacy parameter in DP compositions
by converting an estimate of privacy parameter into a formal guarantee. The EVR
paradigm first verifies whether the mechanism meets the estimated privacy guaran-
tee, and then releases the query output based on the verification result. The core
component of the EVR is privacy verification. We develop a randomized privacy
verifier using Monte Carlo (MC) technique. Furthermore, we propose an MC-based
DP accountant that outperforms existing DP accounting techniques in terms of
accuracy and efficiency. MC-based DP verifier and accountant is applicable to
an important and commonly used class of DP algorithms, including the famous
DP-SGD. An empirical evaluation shows the proposed EVR paradigm improves
the utility-privacy tradeoff for privacy-preserving machine learning.

1 Introduction

The concern of privacy is a major obstacle to deploying machine learning (ML) applications. In
response, ML algorithms with differential privacy (DP) guarantees have been proposed and developed.
For privacy-preserving ML algorithms, DP mechanisms are often repeatedly applied to private training
data. For instance, when training deep learning models using DP-SGD [1], it is often necessary to
execute sub-sampled Gaussian mechanisms on the private training data thousands of times.

A major challenge in machine learning with differential privacy is privacy accounting, i.e., mea-
suring the privacy loss of the composition of DP mechanisms. A privacy accountant takes a list of
mechanisms, and returns the privacy parameter (ε and δ) for the composition of those mechanisms.
Specifically, a privacy accountant is given a target ε and finds the smallest achievable δ such that the
composed mechanismM is (ε, δ)-DP (we can also fix δ and find ε). We use δM(ε) to denote the
smallest achievable δ given ε, which is often referred to as optimal privacy curve in the literature.

Training deep learning models with DP-SGD is essentially the adaptive composition for thousands
of sub-sampled Gaussian Mechanisms. Moment Accountant (MA) is a pioneer solution for privacy
loss calculation in differentially private deep learning [1]. However, MA does not provide the
optimal δM(ε) in general [44]. This motivates the development of more advanced privacy accounting
techniques that outperforms MA. Two major lines of such works are based on Fast Fourier Transform
(FFT) (e.g., [19] and Central Limit Theorem (CLT) [7, 41]. Both techniques can provide an estimate
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Figure 2: An overview of our EVR paradigm. EVR converts an estimated (ε, δ) provided by a privacy
accountant into a formal guarantee. Compared with the original mechanism, the EVR has an extra
failure mode that does not output anything when the estimated (ε, δ) is rejected. We show that the
MC-based verifier we proposed can achieve negligible failure probability (O(δ)) in Section 4.4.

as well as an upper bound for δM(ε) though bounding the worst-case estimation error. In practice,
only the upper bounds for δM(ε) can be used, as differential privacy is a strict guarantee.

Figure 1: Results of estimat-
ing/bounding δM(ε) for the com-
position of 1200 Gaussian mecha-
nisms with σ = 70. ‘-upp’ means
upper bound and ‘-est’ means es-
timate. Curves of ‘Exact’, ‘FFT-
est’, and ‘CLT-est’ are overlapped.
The groundtruth curve (‘Exact’) for
pure Gaussian mechanism can be
computed analytically [19].

Motivation: estimates can be more accurate than upper
bounds. The motivation for this paper stems from the limi-
tations of current privacy accounting techniques in providing
tight upper bounds for δM(ε). Despite outperforming MA, both
FFT- and CLT-based methods can provide ineffective bounds
in certain regimes [19, 41]. We demonstrate such limitations
in Figure 1 using the composition of Gaussian mechanisms.
For FFT-based technique [19], we can see that although it out-
performs MA for most of the regimes, the upper bounds (blue
dashed curve) are worse than that of MA when δ < 10−10 due
to computational limitations (as discussed in [19]’s Appendix
A; also see Remark 6 for a discussion of why the regime of
δ < 10−10 is important). The CLT-based techniques (e.g., [41])
also produce sub-optimal upper bounds (red dashed curve) for
the entire range of δ. This is primarily due to the small number
of mechanisms used (k = 1200), which does not meet the re-
quirements for CLT bounds to converge (similar phenomenon
observed in [41]). On the other hand, we can see that the es-
timates of δM(ε) from both FFT and CLT-based techniques,
which estimate the parameters rather than providing an upper
bound, are in fact very close to the ground truth (the three
curves overlapped in Figure 1). However, as we mentioned
earlier, these accurate estimations cannot be used in practice,
as we cannot prove that they do not underestimate δM(ε). The
dilemma raises an important question: can we develop new techniques that allow us to use privacy
parameter estimates instead of strict upper bounds in privacy accounting?1

This paper gives a positive answer to it. Our contributions are summarized as follows:

Estimate-Verify-Release (EVR): a DP paradigm that converts privacy parameter estimate into a
formal guarantee. We develop a new DP paradigm called Estimate-Verify-Release, which augments
a mechanism with a formal privacy guarantee based on its privacy parameter estimates. The basic
idea of EVR is to first verify whether the mechanism satisfies the estimated DP guarantee, and release
the mechanism’s output if the verification is passed. The core component of the EVR paradigm is
privacy verification. A DP verifier can be randomized and imperfect, suffering from both false
positives (accept an underestimation) and false negatives (reject an overestimation). We show that
EVR’s privacy guarantee can be achieved when privacy verification has a low false negative rate.

A Monte Carlo-based DP Verifier. For an important and widely used class of DP algorithms
including Subsampled Gaussian mechanism (the building block for DP-SGD), we develop a Monte

1We note that this not only brings benefits for the regime where δ < 10−10, but also for the more common
regime where δ ≈ 10−5. See Figure 3 for an example.
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Carlo (MC) based DP verifier for the EVR paradigm. We present various techniques that ensure the
DP verifier has both a low false positive rate (for privacy guarantee) and a low false negative rate (for
utility guarantee, i.e., making the EVR and the original mechanism as similar as possible).

A Monte Carlo-based DP Accountant. We further propose a new MC-based approach for DP
accounting, which we call the MC accountant. It utilizes similar MC techniques as in privacy
verification. We show that the MC accountant achieves several advantages over existing privacy
accounting methods. In particular, we demonstrate that MC accountant is efficient for online privacy
accounting, a realistic scenario for privacy practitioners where one wants to update the estimate on
privacy guarantee whenever executing a new mechanism.

Figure 2 gives an overview of the proposed EVR paradigm as well as this paper’s contributions.

2 Privacy Accounting: a Mean Estimation/Bounding Problem

In this section, we review relevant concepts and introduce privacy accounting as a mean estima-
tion/bounding problem.

Symbols and notations. We use D,D′ ∈ NX to denote two datasets with an unspecified size over
space X . We call two datasets D and D′ adjacent (denoted as D ∼ D′) if we can construct one by
adding/removing one data point from the other. We use P,Q to denote random variables. We also
overload the notation and denote P (·), Q(·) the density function of P,Q.

Differential privacy and its equivalent characterizations. Having established the notations, we
can now proceed to formally define differential privacy.
Definition 1 (Differential Privacy [13]). For ε, δ ≥ 0, a randomized algorithmM : NX → Y is
(ε, δ)-differentially private if for every pair of adjacent datasets D ∼ D′ and for every subset of
possible outputs E ⊆ Y , we have PrM[M(D) ∈ E] ≤ eε PrM[M(D′) ∈ E] + δ.

One can alternatively define differential privacy in terms of the maximum possible divergence between
the output distribution of any pair ofM(D) andM(D′).
Lemma 2 ([5]). A mechanism M is (ε, δ)-DP iff supD∼D′ Eeε(M(D)∥M(D′)) ≤ δ, where
Eγ(P∥Q) := Eo∼Q[(

P (o)
Q(o) − γ)+] & (a)+ := max(a, 0).

Eγ is usually referred as Hockey-Stick (HS) Divergence in the literature. For every mechanismM
and every ε ≥ 0, there exists a smallest δ such thatM is (ε, δ)-DP. Following the literature [44, 2],
we formalize such a δ as a function of ε.
Definition 3 (Optimal Privacy Curve). The optimal privacy curve of a mechanismM is the function
δM : R+ → [0, 1] s.t. δM(ε) := supD∼D′ Eeε(M(D)∥M(D′)).

Dominating Distribution Pair and Privacy Loss Random Variable (PRV). It is computationally
infeasible to find δM(ε) by computing Eeε(M(D)∥M(D′)) for all pairs of adjacent dataset D and
D′. A mainstream strategy in the literature is to find a pair of distributions (P,Q) that dominates
all (M(D),M(D′)) in terms of the Hockey-Stick divergence. This results in the introduction of
dominating distribution pair and privacy loss random variable (PRV).
Definition 4 ([44]). A pair of distributions (P,Q) is a pair of dominating distributions for M
under adjacent relation ∼ if for all γ ≥ 0, supD∼D′ Eγ(M(D)∥M(D′)) ≤ Eγ(P∥Q). If equality
is achieved for all γ ≥ 0, then we say (P,Q) is a pair of tightly dominating distributions for

M. Furthermore, we call Y := log
(

P (o)
Q(o)

)
, o ∼ P the privacy loss random variable (PRV) ofM

associated with dominating distribution pair (P,Q).

Zhu et al. [44] shows that all mechanisms have a pair of tightly dominating distributions. Hence,
we can alternatively characterize the optimal privacy curve as δM(ε) = Eeε(P∥Q) for the tightly
dominating pair (P,Q), and we have δM(ε) ≤ Eeε(P∥Q) if (P,Q) is a dominating pair that is not
necessarily tight. The importance of the concept of PRV comes from the fact that we can write
Eeε(P∥Q) as an expectation over it: Eeε(P∥Q) = EY

[(
1− eε−Y

)
+

]
. Thus, one can bound δM(ε)

by first identifyingM’s dominating pair distributions as well as the associated PRV Y , and then
computing this expectation. Such a formulation allows us to bound δM(ε) without enumerating over
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all adjacent D and D′. For notation convenience, we denote δY (ε) := EY

[(
1− eε−Y

)
+

]
. Clearly,

δM ≤ δY . If (P,Q) is a tightly dominating pair forM, then δM = δY .

Privacy Accounting as a Mean Estimation/Bounding Problem. Privacy accounting aims to
estimate and bound the optimal privacy curve δM(ε) for adaptively composed mechanismM =
M1 ◦ · · · ◦ Mk(D). The adaptive composition of two mechanisms M1 and M2 is defined as
M1 ◦M2(D) := (M1(D),M2(D,M1(D))), in whichM2 can access both the dataset and the
output ofM1. Most of the practical privacy accounting techniques are based on the concept of PRV,
centered on the following result.

Lemma 5 ([44]). Let (Pj , Qj) be a pair of tightly dominating distributions for mechanism Mj

for j ∈ {1, . . . , k}. Then (P1 × · · · × Pk, Q1 × · · · ×Qk) is a pair of dominating distributions for
M =M1 ◦ · · ·◦Mk, where× denotes the product distribution. Furthermore, the associated privacy
loss random variable is Y =

∑k
i=1 Yi where Yi is the PRV associated with (Pi, Qi).

Lemma 5 suggests that privacy accounting for DP composition can be cast into a mean estima-
tion/bounding problem where one aims to approximate or bound the expectation in (2) when
Y =

∑k
i=1 Yi. Note that while Lemma 5 does not guarantee a pair of tightly dominating dis-

tributions for the adaptive composition, it cannot be improved in general, as noted in [10]. Hence, all
the current privacy accounting techniques work on δY instead of δM, as Lemma 5 is tight even for
non-adaptive composition. Following the prior works, in this paper, we only consider the practical
scenarios where Lemma 5 is tight for the simplicity of presentation. That is, we assume δY = δM
unless otherwise specified.

Most of the existing privacy accounting techniques can be described as different techniques for
such a mean estimation problem. Example-1: FFT-based methods. This line of works (e.g., [19])
discretizes the domain of each Yi and use Fast Fourier Transform (FFT) to speed up the approximation
of δY (ε). The upper bound is derived through the worst-case error bound for the approximation.
Example-2: CLT-based methods. [7, 41] use CLT to approximate the distribution of Y =

∑k
i=1 Yi

as Gaussian distribution. They then use CLT’s finite-sample approximation guarantee to derive the
upper bound for δY (ε).

Remark 6 (The Importance of Privacy Accounting in Regime δ < 10−10). The regime where
δ < 10−10 is of significant importance for two reasons. (1) δ serves as an upper bound on the chance
of severe privacy breaches, such as complete dataset exposure, necessitating a “cryptographically
small” value, namely, δ < n−ω(1) [14, 40]. (2) Even with the oft-used yet questionable guideline
of δ ≈ n−1 or n−1.1, datasets of modern scale, such as JFT-3B [43] or LAION-5B [37], already
comprise billions of records, thus rendering small δ values crucial. While we acknowledge that
it requires a lot of effort to achieve a good privacy-utility tradeoff even for the current choice of
δ ≈ n−1, it is important to keep such a goal in mind.

3 Estimate-Verify-Release

As mentioned earlier, upper bounds for δY (ε) are the only valid options for privacy accounting
techniques. However, as we have demonstrated in Figure 1, both FFT- and CLT-based methods can
provide overly conservative upper bounds in certain regimes. On the other hand, their estimates for
δY (ε) can be very close to the ground truth even though there is no provable guarantee. Therefore,
it is highly desirable to develop new techniques that enable the use of privacy parameter estimates
instead of overly conservative upper bounds in privacy accounting.

We tackle the problem by introducing a new paradigm for constructing DP mechanisms, which we
call Estimate-Verify-Release (EVR). The key component of the EVR is an object called DP verifier
(Section 3.1). The full EVR paradigm is then presented in Section 3.2, where the DP verifier is
utilized as a building block to guarantee privacy.

3.1 Differential Privacy Verifier

We first formalize the concept of differential privacy verifier, the central element of the EVR paradigm.
In informal terms, a DP verifier is an algorithm that attempts to verify whether a mechanism satisfies
a specific level of differential privacy.
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Definition 7 (Differential Privacy Verifier). We say a differentially private verifier DPV(·) is an
algorithm that takes the description of a mechanismM and proposed privacy parameter (ε, δest)
as input, and returns True ← DPV(M, ε, δest) if the algorithm believes M is (ε, δest)-DP (i.e.,
δest ≥ δY (ε) where Y is the PRV ofM), and returns False otherwise.

A differential privacy verifier can be imperfect, suffering from both false positives (FP) and false
negatives (FN). Typically, FP rate is the likelihood for DPV to accept (ε, δest) when δest < δY (ε).
However, δest is still a good estimate for δY (ε) by being a small (e.g., <10%) underestimate. To
account for this, we introduce a smoothing factor, τ ∈ (0, 1], such that δest is deemed “should be
rejected” only when δest ≤ τδY (ε). A similar argument can be put forth for FN cases where we also
introduce a smoothing factor ρ ∈ (0, 1]. This leads to relaxed notions for FP/FN rate:

Definition 8. We say a DPV’s τ -relaxed false positive rate at (ε, δest) is

FPDPV(ε, δ
est; τ) := sup

M:δest<τδY (ε)

Pr
DPV

[
DPV(M, ε, δest) = True

]
We say a DPV’s ρ-relaxed false negative rate at (ε, δest) is

FNDPV(ε, δ
est; ρ) := sup

M:δest>ρδY (ε)

Pr
DPV

[
DPV(M, ε, δest) = False

]
Privacy Verification with DP Accountant. For a composed mechanismM =M1 ◦ . . . ◦Mk, a DP
verifier can be easily implemented using any existing privacy accounting techniques. That is, one can
execute DP accountant to obtain an estimate or upper bound (ε, δ̂) of the actual privacy parameter. If
δest < δ̂, then the proposed privacy level is rejected as it is more private than what the DP accountant
tells; otherwise, the test is passed. The input description of a mechanismM, in this case, can differ
depending on the DP accounting method. For Moment Accountant [1], the input description is the
upper bound of the moment-generating function (MGF) of the privacy loss random variable for each
individual mechanism. For FFT and CLT-based methods, the input description is the cumulative
distribution functions (CDF) of the dominating distribution pair of each individualMi.

3.2 EVR: Ensuring Estimated Privacy with DP Verifier

Algorithm 1 Estimate-Verify-Release (EVR) Framework

1: Input: M: mechanism. D: dataset. (ε, δest): an esti-
mated privacy parameter forM.

2: if DPV(M, ε, δest) outputs True then ExecuteM(D).
3: else Print ⊥.

We now present the full paradigm of
EVR. As suggested by the name, it
contains three steps: (1) Estimate: A
privacy parameter (ε, δest) forM is
estimated, e.g., based on a privacy au-
diting or accounting technique. (2)
Verify: A DP verifier DPV is used for
validating whether mechanismM sat-
isfies (ε, δest)-DP guarantee. (3) Release: If DP verification test is passed, we can executeM as
usual; otherwise, the program is terminated immediately. For practical utility, this rejection proba-
bility needs to be small when (ε, δest) is an accurate estimation. The procedure is summarized in
Algorithm 1.

Given estimated privacy parameter (ε, δest), we have the privacy guarantee for the EVR paradigm:
Theorem 9. Algorithm 1 is (ε, δest/τ)-DP for any τ > 0 if FPDPV(ε, δ

est; τ) ≤ δest/τ .

We defer the proof to Appendix B. The implication of this result is that, for any estimate of the
privacy parameter, one can safely use it as a DPV with a bounded false positive rate would enforce
differential privacy. However, this is not enough: an overly conservative DPV that satisfies 0 FP rate
but rejects everything would not be useful. When δest is accurate, we hope the DPV can also achieve
a small false negative rate so that the output distributions of EVR andM are indistinguishable. We
discuss the instantiation of DPV in Section 4.

4 Monte Carlo Verifier of Differential Privacy

As we can see from Section 3.2, a DP verifier (DPV) that achieves a small FP rate is the central
element for the EVR framework. In the meanwhile, it is also important that DPV has a low FN rate in
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order to maintain the good utility of the EVR when the privacy parameter estimate is accurate. In this
section, we introduce an instantiation of DPV based on the Monte Carlo technique that achieves both
a low FP and FN rate, assuming the PRV is known for each individual mechanism.

Remark 10 (Mechanisms where PRV can be derived). PRV can be derived for many commonly
used DP mechanisms such as the Laplace, Gaussian, and Subsampled Gaussian Mechanism [24, 19].
In particular, our DP verifier applies for DP-SGD, one of the most important application scenarios of
privacy accounting. Moreover, the availability of PRV is also the assumption for most of the recently
developed privacy accounting techniques (including FFT- and CLT-based methods). The extension
beyond these commonly used mechanisms is an important future work in the field.

Remark 11 (Previous studies on the hardness of privacy verification). Several studies [16, 8]
have shown that DP verification is an NP-hard problem. However, these works consider the setting
where the input description of the DP mechanism is its corresponding randomized Boolean circuits.
Some other works [18] show that DP verification is impossible, but this assertion is proved for the
black-box setting where the verifier can only query the mechanism. Our work gets around this barrier
by providing the description of the PRV of the mechanism as input to the verifier.

4.1 DPV through an MC Estimator for δY (ε)

Recall that most of the recently proposed DP accountants are essentially different techniques for
estimating the expectation

δY =
∑k

i=1 Yi
(ε) = EY

[(
1− eε−Y

)
+

]
where each Yi is the privacy loss random variable Yi = log

(
Pi(t)
Qi(t)

)
for t ∼ Pi, and (Pi, Qi) is a

pair of dominating distribution for individual mechanismMi. In the following text, we denote the
product distribution P := P1 × . . . × Pk and Q := Q1 × . . . × Qk. Recall from Lemma 5 that
(P ,Q) is a pair of dominating distributions for the composed mechanismM. For notation simplicity,
we denote a vector t := (t(1), . . . , t(k)).

Algorithm 2 DPV(M, ε, δest) with Simple MC
Estimator and Offset Parameter ∆.

1: Obtain i.i.d. samples {ti}mi=1 from P .
2: Compute δ̂ = 1

m

∑m
i=1 (1− eε−yi)+ with

PRV samples yi = log
(

P (ti)
Q(ti)

)
, i = 1 . . .m.

3: if δ̂ < δest

τ −∆ then return True.
4: else return False.

Monte Carlo (MC) technique is arguably one
of the most natural and widely used techniques
for approximating expectations. Since δY (ε)
is an expectation in terms of the PRV Y , one
can apply MC-based technique to estimate it.
Given an MC estimator for δY (ε), we construct
a DPV(M, ε, δest) as shown in Algorithm 2 (in-
stantiated by the Simple MC estimator intro-
duced in Section 4.2). Specifically, we first
obtain an estimate δ̂ from an MC estimator
for δY (ε). The estimate δest passes the test if
δ̂ < δest

τ −∆, and fails otherwise. The parameter ∆ ≥ 0 here is an offset that allows us to conveniently
controls the τ -relaxed false positive rate. We will discuss how to set ∆ in Section 4.4.

In the following contents, we first present two constructions of MC estimators for δY (ε) in Section
4.2. We then discuss the condition for which our MC-based DPV achieves a certain target FP rate in
Section 4.3. Finally, we discuss the utility guarantee for the MC-based DPV in Section 4.4.

4.2 Constructing MC Estimator for δY (ε)

In this section, we first present a simple MC estimator that applies to any mechanisms where we
can derive and sample from the dominating distribution pairs. Given the importance of Poisson
Subsampled Gaussian mechanism for privacy-preserving machine learning, we further design a more
advanced and specialized MC estimator for it based on the importance sampling technique.

Simple Monte Carlo Estimator. One can easily sample from Y by sampling t ∼ P and output
log
(

P (t)
Q(t)

)
. Hence, a straightforward algorithm for estimating (2) is the Simple Monte Carlo (SMC)

algorithm, which directly samples from the privacy random variable Y . We formally define it here.
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Definition 12 (Simple Monte Carlo (SMC) Estimator). We denote δ̂mMC(ε) as the random variable of
SMC estimator for δY (ε) with m samples, i.e., δ̂mMC(ε) :=

1
m

∑m
i=1 (1− eε−yi)+ for y1, . . . , ym i.i.d.

sampled from Y .

Importance Sampling Estimator for Poisson Subsampled Gaussian (Overview). As δY (ε) is
usually a tiny value (10−5 or even cryptographically small), it is likely that by naive sampling from Y ,
almost all of the samples in {(1− eε−yi)+}mi=1 are just 0s! That is, the i.i.d. samples {yi}mi=1 from Y
can rarely exceed ε. To further improve the sample efficiency, one can potentially use more advanced
MC techniques such as Importance Sampling or MCMC. However, these advanced tools usually
require additional distributional information about Y and thus need to be developed case-by-case.

Poisson Subsampled Gaussian mechanism is the main workhorse behind the DP-SGD algorithm [1].
Given its important role in privacy-preserving ML, we derive an advanced MC estimator for it based
on the Importance Sampling technique. Importance Sampling (IS) is a classic method for rare event
simulation [39]. It samples from an alternative distribution instead of the distribution of the quantity of
interest, and a weighting factor is then used for correcting the difference between the two distributions.
The specific design of alternative distribution is complicated and notation-heavy, and we defer the
technical details to Appendix C. At a high level, we construct the alternative sampling distribution
based on the exponential tilting technique and derive the optimal tilting parameter such that the
corresponding IS estimator approximately achieves the smallest variance. Similar to Definition 12,
we use δ̂mIS to denote the random variable of importance sampling estimator with m samples.

4.3 Bounding FP Rate

We now discuss the FP guarantee for the DPV instantiated by δ̂mMC and δ̂mIS we developed in the last
section. Since both estimators are unbiased, by Law of Large Number, both δ̂mMC and δ̂mIS converge
to δY (ε) almost surely as m→∞, which leads a DPV with perfect accuracy. Of course, m cannot
go to∞ in practice. In the following, we derive the required amount of samples m for ensuring
that τ -relaxed false positive rate is smaller than δest/τ for δ̂mMC and δ̂mIS. We use δ̂MC (or δ̂IS) as an
abbreviation for δ̂1MC (or δ̂1IS), the random variable for a single draw of sampling. We state the theorem
for δ̂mMC, and the same result for δ̂mIS can be obtained by simply replacing δ̂MC with δ̂IS. We use FPMC
to denote the FP rate for DPV implemented by SMC estimator.

Theorem 13. Suppose E
[(

δ̂MC

)2]
≤ ν. DPV instantiated by δ̂mMC has bounded τ -relaxed false

positive rate FPMC(ε, δ
est; τ) ≤ δest/τ with m ≥ 2ν

∆2 log(τ/δ
est).

The proof is based on Bennett’s inequality and is deferred to Appendix D. This result suggests that, to
improve the computational efficiency of MC-based DPV (i.e., tighten the number of required samples),
it is important to tightly bound E[(δ̂MC)2] (or E[(δ̂IS,θ)2]), the second moment of δ̂MC (or δ̂IS).

Bounding the Second-Moment of MC Estimators (Overview). For clarity, we defer the notation-
heavy results and derivation of the upper bounds for E[(δ̂MC)2] and E[(δ̂IS)2] to Appendix E. Our
high-level idea for bounding E[(δ̂MC)2] is through the RDP guarantee for the composed mechanism
M. This is a natural idea since converting RDP to upper bounds for δY (ε) – the first moment of δ̂MC –
is a well-studied problem [30, 9, 3]. Bounding E[(δ̂IS)2] is highly technically involved.

4.4 Guaranteeing Utility

Overall picture so far. Given the proposed privacy parameter (ε, δest), a tolerable degree of
underestimation τ , and an offset parameter ∆, one can now compute the number of samples m
required for the MC-based DPV such that τ -relaxed FP rate to be ≤ δest/τ based on the results from
Section 4.3 and Appendix E. We have not yet discussed the selection of the hyperparameter ∆. An
appropriate ∆ is important for the utility of MC-based DPV. That is, when δest is not too smaller than
δY (ε), the probability of being rejected by DPV should stay negligible. If we set ∆ →∞, the DPV
simply rejects everything, which achieves 0 FP rate (and with m = 0) but is not useful at all!

Formally, the utility of a DPV is quantified by the ρ-relaxed false negative (FN) rate (Definition 8).
While one may be able to bound the FN rate through concentration inequalities, a more convenient
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way is to pick an appropriate ∆ such that FNDPV is approximately smaller than FPDPV. After all, FPDPV
already has to be a small value ≤ δest/τ for privacy guarantee. The result is stated informally in the
following (holds for both δ̂MC and δ̂IS), and the involved derivation is deferred to Appendix F.

Theorem 14 (Informal). When ∆ = 0.4 (1/τ − 1/ρ) δest, then FNMC(ε, δ
est; ρ) ⪅ FPMC(ε, δ

est; τ).

Therefore, by setting ∆ = 0.4 (1/τ − 1/ρ) δest, one can ensure that FNMC(ε, δ
est; ρ) is also (approxi-

mately) upper bounded by Θ(δest/τ). Moreover, in Appendix, we empirically show that the FP rate
is actually a very conservative bound for the FN rate. Both τ and ρ are selected based on the tradeoff
between privacy, utility, and efficiency.

The pseudocode of privacy verification for DP-SGD is summarized in Appendix G.

5 Monte Carlo Accountant of Differential Privacy

The Monte Carlo estimators δ̂MC and δ̂IS described in Section 4.2 are used for implementing DP
verifiers. One may already realize that the same estimators can also be utilized to directly implement
a DP accountant which estimates δY (ε). It is important to note that with the EVR paradigm, DP
accountants are no longer required to derive a strict upper bound for δY (ε). We refer to the technique
of estimating δY (ε) using the MC estimators as Monte Carlo accountant.

Algorithm 3 MC Accountant for εY (δ).

1: Obtain PRV samples {yi}mi=1 with either
Simple MC or Importance Sampling.

2: Binary search ε such that
1
m

∑m
i=1 (1− eε−yi)+ = δ.

3: Return ε.

Finding ε for a given δ. It is straightforward to im-
plement MC accountant when we fix ε and compute
for δY (ε). In practice, privacy practitioners often
want to do the inverse: finding ε for a given δ, which
we denote as εY (δ). Similar to the existing privacy
accounting methods, we use binary search to find
εY (δ) (see Algorithm 3). Specifically, after generat-
ing PRV samples {yi}mi=1, we simply need to find the
ε such that 1

m

∑m
i=1 (1− eε−yi)+ = δ. We do not

need to generate new PRV samples for different ε we evaluate during the binary search; hence the
additional binary search is computationally efficient.

Number of Samples for MC Accountant. Compared with the number of samples required for
achieving the FP guarantee in Section 4.3, one may be able to use much fewer samples to obtain a
decent estimate for δY (ε), as the sample complexity bound derived based on concentration inequality
may be conservative. Many heuristics for guiding the number of samples in MC simulation have
been developed (e.g., Wald confidence interval) and can be applied to the setting of MC accountants.

Compared with FFT-based and CLT-based methods, MC accountant exhibits the following strength:

(1) Accurate δY (ε) estimation in all regimes. As we mentioned earlier, the state-of-the-art FFT-
based method [19] fails to provide meaningful bounds due to computational limitations when the
true value of δY (ε) is small. In contrast, the simplicity of the MC accountant allows us to accurately
estimate δY (ε) in all regimes.

(2) Short clock runtime & Easy GPU acceleration. MC-based techniques are well-suited for
parallel computing and GPU acceleration due to their nature of repeated sampling. One can easily
utilize PyTorch’s CUDA functionality (e.g., torch.randn(size=(k,m)).cuda()*sigma+mu) to
significantly boost the computational efficiency for sampling from common distributions such as
Gaussian. In Appendix H, we show that when using one NVIDIA A100 GPU, the runtime time of
sampling Gaussian mixture (1− q)N (0, σ2) + qN (1, σ2) can be improved by 103 times compared
with CPU-only scenario.

(3) Efficient online privacy accounting. When training ML models with DP-SGD or its variants, a
privacy practitioner usually wants to compute a running privacy leakage for every training iteration,
and pick the checkpoint with the best utility-privacy tradeoff. This involves estimating δY (i)(ε)

for every i = 1, . . . , k, where Y (i) :=
∑i

j=1 Yj . We refer to such a scenario as online privacy
accounting2. MC accountant is especially efficient for online privacy accounting. When estimating

2Note that this is different from the scenario of privacy odometer [36], as here the privacy parameter of the
next individual mechanism is not adaptively chosen.
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δY (i)(ε), one can re-use the samples previously drawn from Y1, . . . , Yi−1 that were used for estimating
privacy loss at earlier iterations.

These advantages are justified empirically in Section 6 and Appendix H.

6 Numerical Experiments

In this section, we conduct numerical experiments to illustrate (1) EVR paradigm with MC verifiers
enables a tighter privacy analysis, and (2) MC accountant achieves state-of-the-art performance in
privacy parameter estimation.

6.1 EVR vs Upper Bound

To illustrate the advantage of the EVR paradigm compared with directly using a strict upper bound
for privacy parameters, we take the current state-of-the-art DP accountant, the FFT-based method
from [19] as the example.

Figure 3: Privacy analysis and runtime of the EVR
paradigm. The settings are the same as Figure 1.
For (a), when τ > 0.9, the curves are indistin-
guishable from ‘Exact’. For fair comparison, we
set ρ = (1+τ)/2 and set ∆ according to Theorem
14, which ensures EVR’s failure probability of the
order of δ. For (b), the runtime is estimated on an
NVIDIA A100-SXM4-80GB GPU.

EVR provides a tighter privacy guarantee.
Recall that in Figure 1, FFT-based method pro-
vides vacuous bound when the ground-truth
δY (ε) < 10−10. Under the same hyperpa-
rameter setting, Figure 3 (a) shows the privacy
bound of the EVR paradigm where the δest are
FFT’s estimates. We use the Importance Sam-
pling estimator δ̂IS for DP verification. We ex-
periment with different values of τ . A higher
value of τ leads to tighter privacy guarantee but
longer runtime. For fair comparison, the EVR’s
output distribution needs to be almost indistin-
guishable from the original mechanism. We set
ρ = (1+τ)/2 and set ∆ according to the heuris-
tic from Theorem 14. This guarantees that, as
long as the estimate of δest from FFT is not a big
underestimation (i.e., as long as δest ≥ ρδY (ε)),
the failure probability of the EVR paradigm is
negligible (O(δY (ε))). The ‘FFT-EVR’ curve in Figure 3 (a) is essentially the ‘FFT-est’ curve in
Figure 1 scaled up by 1/τ . As we can see, EVR provides a significantly better privacy analysis in the
regime where the ‘FFT-upp’ is unmeaningful (δ < 10−10).

EVR incurs little extra runtime. In Figure 3 (b), we plot the runtime of the Importance Sampling
verifier in Figure 3 (b) for different τ ≥ 0.9. Note that for τ > 0.9, the privacy curves are
indistinguishable from ‘Exact’ in Figure 3 (a). The runtime of EVR is determined by the number of
samples required to achieve the target τ -relaxed FP rate from Theorem 13. Smaller τ leads to faster
DP verification. As we can see, even when τ = 0.99, the runtime of DP verification in the EVR is
< 2 minutes. This is attributable to the sample-efficient IS estimator and GPU acceleration.

EVR provides better privacy-utility tradeoff for Privacy-preserving ML with minimal time
consumption. To further underscore the superiority of the EVR paradigm in practical applications, we
illustrate the privacy-utility tradeoff curve when finetuning on CIFAR100 dataset with DP-SGD. As
shown in Figure 4, the EVR paradigm provides a lower test error across all privacy budget ε compared
with the traditional upper bound method. For instance, it achieves around 7% (relative) error reduction
when ε = 0.6. The runtime time required for privacy verification is less than < 10−10 seconds for all
ε, which is negligible compared to the training time. We provide additional experimental results in
Appendix H.

6.2 MC Accountant

We evaluate the MC Accountant proposed in Section 5. We focus on privacy accounting for the
composition of Poisson Subsampled Gaussian mechanisms, the algorithm behind the famous DP-SGD
algorithm [1]. The mechanism is specified by the noise magnitude σ and subsampling rate q.
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Figure 4: Utility-privacy
tradeoff curve for fine-tuning
ImageNet-pretrained BEiT [4]
on CIFAR100 when δ = 10−5.
We follow the training proce-
dure from [34].

Settings. We consider two practical scenarios of privacy account-
ing: (1) Offline accounting which aims at estimating δY (k)(ε), and
(2) Online accounting which aims at estimating δY (i)(ε) for all
i = 1, . . . , k. For space constraint, we only show the results of
online accounting here, and defer the results for offline accounting to
Appendix H. Metric: Relative Error. To easily and fairly evaluate
the performance of privacy parameter estimation, we compute the
almost exact (yet computationally expensive) privacy parameters as
the ground-truth value. The ground-truth value allows us to compute
the relative error of an estimate of privacy leakage. That is, if the
corresponding ground-truth of an estimate δ̂ is δ, then the relative
error rerr = |δ̂−δ|/δ. Implementation. For MC accountant, we use
the IS estimator described in Section 4.2. For baselines, in addition
to the FFT-based and CLT-based method we mentioned earlier, we
also examine AFA [44] and GDP accountant [7]. For a fair compar-
ison, we adjust the number of samples for MC accountant so that
the runtime of MC accountant and FFT is comparable. Note that
we compared with the privacy parameter estimates instead of upper
bounds from the baselines. Detailed settings for both MC accountant and the baselines are provided
in Appendix H.

Figure 5: Experiment for Composing Subsampled Gaus-
sian Mechanisms in the Online Setting. (a) Compares the
relative error in approximating k 7→ εY (δ). The error bar
for MC accountant is the variance taken over 5 independent
runs. Note that the y-axis is in the log scale. (b) Compares
the cumulative runtime for online privacy accounting. We
did not show AFA [44] as it does not terminate in 24 hours.

Results for Online Accounting: MC
accountant is both more accurate and
efficient. Figure 5 (a) shows the on-
line accounting results for (σ, δ, q) =
(1.0, 10−9, 10−3). As we can see, MC
accountant outperforms all of the base-
lines in estimating εY (δ). The sharp
decrease in FFT at approximately 250
steps is due to the transition of FFT’s
estimates from underestimating before
this point to overestimating after. Fig-
ure 5 (b) shows that MC accountant is
around 5 times faster than FFT, the base-
line with the best performance in (a).
This showcases the MC accountant’s ef-
ficiency and accuracy in online setting.

7 Conclusion & Limitations

This paper tackles the challenge of deriving provable privacy leakage upper bounds in privacy
accounting. We present the estimate-verify-release (EVR) paradigm which enables the safe use
of privacy parameter estimate. Limitations. Currently, our MC-based DP verifier and accountant
require known and efficiently samplable dominating pairs and PRV for the individual mechanism.
Fortunately, this applies to commonly used mechanisms such as Gaussian mechanism and DP-SGD.
Generalizing MC-based DP verifier and accountant to other mechanisms is an interesting future work.
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A Extended Related Work

In this section, we review the related works in privacy accounting, privacy verification, privacy
auditing, and we also discuss the connection between our EVR paradigm and the famous Propose-
Test-Release (PTR) paradigm.

Privacy Accounting. Early privacy accounting techniques such as Advanced Composition The-
orem [15] only make use of the privacy parameters of the individual mechanisms, which bounds
δM(ε) in terms of the privacy parameter (εi, δi) for eachMi, i = 1, . . . , k. The optimal bound for
δM(ε) under this condition has been derived [22, 31]. However, the computation of the optimal
bound is #P-hard in general. Bounding δM(ε) only in terms of (εi, δi) is often sub-optimal for many
commonly used mechanisms [31]. This disadvantage has spurred many recent advances in privacy ac-
counting by making use of more statistical information from the specific mechanisms to be composed
[1, 30, 24, 7, 23, 25, 19, 44, 17, 11, 41, 2]. All of these works can be described as approximating the
expectation in (2) when Y =

∑k
i=1 Yi. For instance, the line of [24, 7, 23, 25, 19, 17, 11] discretize

the domain of each Yi and use Fast Fourier Transform (FFT) in order to speed up the approximation
of δY (ε). [44] tracks the characteristic function of the privacy loss random variables for the com-
posed mechanism and still requires discretization when the mechanisms do not have closed-form
characteristic functions. The line of [7, 41] uses Central Limit Theorem (CLT) to approximate the
distribution of Y =

∑k
i=1 Yi as Gaussian distribution and uses the finite-sample bound to derive the

strict upper bound for δY (ε). We also note that [29] also uses Monte Carlo approaches to calculate
optimal membership inference bounds. They use a similar Simple MC estimator as the one in Section
4.2. Although their Monte Carlo approach is similar, their error analysis only works for large values
of δ (δ ≈ 0.5) as they use sub-optimal concentration bounds.

Privacy Verification. As we mentioned in Remark 11, some previous works have also studied the
problem of privacy verification. Most of the works consider either “white-box setting” where the
input description of the DP mechanism is its corresponding randomized Boolean circuits [16, 8].
Some other works consider an even more stringent “black-box setting” where the verifier can only
query the mechanism [18, 26, 6, 20, 28]. In contrast, our MC verifier is designed specifically for
those mechanisms where the PRV can be derived, which includes many commonly used mechanisms
such as the Subsampled Gaussian mechanism.

Privacy verification via auditing. Several heuristics have tried to perform DP verification, forming
a line of work called auditing differential privacy [21, 33, 27, 32, 38]. Specifically, these techniques
can verify a claimed privacy parameter by computing a lower bound for the actual privacy parameter,
and comparing that with the claimed privacy parameter. The input description of mechanismM
for DPV, in this case, is a black-box oracleM(·), where the DPV makes multiple queries toM(·)
and estimates the actual privacy leakage. Privacy auditing techniques can achieve 100% accuracy
when δest > δY (ε) (or 0 ρ-FN rate for any ρ ≤ 1), as the computed lower bound is guaranteed to be
smaller than δest. However, when δest lies between δY (ε) and the computed lower bound, the DP
verification will be wrong. Moreover, such techniques do not have a guarantee for the lower bound’s
tightness.
Remark 15 (Connection between our EVR paradigm and the Propose-Test-Release (PTR) paradigm
[12]). PTR is a classic differential privacy paradigm introduced over a decade ago by [12], and is
being generalized in [35, 42]. At a high level, PTR checks if releasing the query answer is safe with a
certain amount of randomness (in a private way). If the test is passed, the query answer is released;
otherwise, the program is terminated. PTR shares a similar underlying philosophy with our EVR
paradigm. However, they are fundamentally different in terms of implementation. The verification
step in EVR is completely independent of the dataset. In contrast, the test step in PTR measures the
privacy risks for the mechanismM on a specific dataset D, which means that the test itself may
cause additional privacy leakage. One way to think about the difference is that EVR asks “whether
M is private”, while PTR asks “whetherM(D) is private”.
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B Proofs for Privacy

Theorem 9. Algorithm 1 is (ε, δest/τ)-DP for any τ > 0 if FPDPV(ε, δ
est; τ) ≤ δest/τ .

Proof. For any mechanismM, we denote A as the event that δest ≥ τδY (ε), and indicator variable
B = 1[DPV(M, ε, δest; τ) = True]. Note that event A impliesM is (δest/τ)-DP.

Thus, we know that

Pr[B = 1|Ā] ≤ FPDPV(ε, δ
est; τ) (1)

For notation simplicity, we also denote pFP := Pr[B = 1|Ā], and pTP := Pr[B = 1|A].

For any possible event S,

Pr
Maug

[Maug(D) ∈ S]

= Pr
M

[M(D) ∈ S|B = 1]Pr[B = 1] + I[⊥ ∈ S] Pr[B = 0]

= Pr
M

[M(D) ∈ S|B = 1, A] Pr[B = 1|A]I[A] + Pr
M

[M(D) ∈ S|B = 1, Ā] Pr[B = 1|Ā]I[Ā]

+ I[⊥ ∈ S] Pr[B = 0]

≤
(
eε Pr

M
[M(D′) ∈ S|B = 1, A] +

δest

τ

)
Pr[B = 1|A]I[A]

+ Pr
M

[M(D) ∈ S|B = 1, Ā] Pr[B = 1|Ā]I[Ā]

+ I[⊥ ∈ S] Pr[B = 0]

≤
(
eε Pr

M
[M(D′) ∈ S|B = 1, A] +

δest

τ

)
pTPI[A] + pFPI[Ā] + I[⊥ ∈ S] Pr[B = 0]

≤ eε
(
Pr
M

[M(D′) ∈ S|B = 1, A]pTPI[A] + Pr
M

[M(D′) ∈ S|B = 1, Ā]pFPI[Ā] + I[⊥ ∈ S] Pr[B = 0]
)

+
δest

τ
pTPI[A] + pFPI[Ā]

≤ eε Pr
Maug

[Maug(D′) ∈ S] + max

(
δestpTP

τ
, pFP

)
where in the first inequality, we use the definition of differential privacy. Therefore, Maug is(
ε,max

(
δestpTP

τ , pFP

))
-DP. By assumption of pFP ≤ FPDPV(ε, δ

est; τ) ≤ δest/τ , we reach the
conclusion.
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C Importance Sampling via Exponential Tilting

Notation Review. Recall that most of the recently proposed DP accountants are essentially different
techniques for estimating the expectation

δY=
∑k

i=1 Yi
(ε) = EY

[(
1− eε−Y

)
+

]
where each Yi is the privacy loss random variable Yi = log

(
Pi(t)
Qi(t)

)
for t ∼ Pi, and (Pi, Qi) is a pair

of dominating distribution for individual mechanismMi. In the following text, we denote the product
distribution P := P1 × . . .× Pk and Q := Q1 × . . .×Qk. Recall from Lemma 5 that (P ,Q) is a
pair of dominating distributions for the composed mechanismM. For notation simplicity, we denote
a vector t := (t(1), . . . , t(k)). We slightly abuse the notation and write y(t;P,Q) := log

(
P (t)
Q(t)

)
.

Note that y(t;P ,Q) =
∑k

i=1 y(t
(i);Pi, Qi). When the context is clear, we omit the dominating

pairs and simply write y(t).

Dominating Distribution Pairs for Poisson Subsampled Gaussian Mechanisms. The dominating
distribution pair for Poisson Subsampled Gaussian Mechanisms is a well-known result.
Lemma 16. For Poisson Subsampled Gaussian mechanism with sensitivity C, noise variance C2σ2,
and subsampling rate q, one dominating pair (P,Q) is Q := N (0, σ2) and P := (1− q)N (0, σ2) +
qN (1, σ2).

Proof. See Appendix B of [19].

That is, Q is just a 1-dimensional standard Gaussian distribution, and P is a convex combination
between standard Gaussian and a Gaussian centered at 1.
Remark 17 (Dominating pair supported on higher dimensional space). The cost of our approach
would not increase (in terms of the number of samples) even if the dominating pair is supported in a
high dimensional space. For Monte Carlo estimate, we can see from Hoeffding’s inequality that the
expected error rate of estimation is independent of the dimension of the support set of dominating
distribution pairs. This means the number of samples we need to ensure a certain confidence interval
is independent of the dimension. However, we should also note that although the number of samples
does not change, the sampling process itself might be more costly for higher dimensional spaces.

C.1 Importance Sampling for the Composition of Poisson Subsampled Gaussian Mechanisms

Importance Sampling (IS) is a classic method for rare event simulation. It samples from an alternative
distribution instead of the distribution of the quantity of interest, and a weighting factor is then
used for correcting the difference between the two distributions. Specifically, we can re-write the
expression for δY (ε) as follows:

δY (ε) = EY

[
(1− eε−Y )+

]
= Et∼P

[(
1− eε−y(t;P ,Q)

)
+

]
= Et∼P ′

[(
1− eε−y(t;P ,Q)

)
+

P (t)

P ′(t)

]
(2)

where P ′ is the alternative distribution up to the user’s choice. From Equation (2), one can construct
an unbiased importance sampling estimator for δY (ε) by sampling from P ′. In this section, we
develop a P ′ for estimating δY (ε) when composing identically distributed Poisson subsampled
Gaussian mechanisms, which is arguably the most important DP mechanism nowadays due to its
application in differentially private stochastic gradient descent.

Exponential tilting is a common way to construct alternative sampling distribution for IS. The
exponential tilting of a distribution P is defined as

Pθ(t) :=
eθt

MP (θ)
P (t)
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where MP (θ) := Et∼P [e
θt] is the moment generating function for P . Such a transformation

is especially convenient for distributions from the exponential family. For example, for normal
distribution N (µ, σ2), the tilted distribution is N (µ+ θσ2, σ2), which is easy to sample from.

Without the loss of generality, we consider Poisson Subsampled Gaussian mechanism with sensitivity
1, noise variance σ2, and subsampling rate q. Recall from Lemma 16 that the dominating pair in
this case is Q := N (0, σ2) and P := (1 − q)N (0, σ2) + qN (1, σ2). For notation simplicity, we
denote P0 := N (1, σ2), and thus P = (1 − q)Q + qP0. Since each individual mechanism is the
same, P = P × . . . × P and Q = Q × . . . × Q. The exponential tilting of P with parameter θ
is Pθ := (1− q)N (θσ2, σ2) + qN (1 + θσ2, σ2). We propose the following importance sampling
estimator for δY (ε) based on exponential tilting.

Definition 18 (Importance Sampling Estimator for Subsampled Gaussian Composition). Let the
alternative distribution

P ′ := Pθ = (P, . . . , Pθ︸︷︷︸
ith dim

, . . . , P ), i ∼ Unif([k])

with θ = 1/2 + σ2 log
(

exp(ε)−(1−q)
q

)
. Given a random draw t ∼ Pθ, an unbiased sample for

δY (ε) is
(
1− eε−y(t;P ,Q)

)
+

(
1
k

∑k
i=1

Pθ(ti)
P (ti)

)−1

. We denote δ̂mIS,θ(ε) as the random variable of the
corresponding importance sampling estimator with m samples.

We defer the formal justification of the choice of θ to Appendix C.2. We first give the intuition for
why we choose such an alternative distribution Pθ.

Intuition for the alternative distribution Pθ. It is well-known that the variance of the importance
sampling estimator is minimized when the alternative distribution

P ′(t) ∝
(
1− eε−y(t)

)
+
P (t)

The distribution of each privacy loss random variable y(t;P,Q), t ∼ P is light-tailed, which means
that for the rare event where y(t) =

∑k
i=1 y(t

(i)) > ε, it is most likely that there is only one outlier
t∗ among all {t(i)}ki=1 such that y(t∗) is large (which means that y(t) is also large), and all the rest
of y(t(i))s are small. Hence, a reasonable alternative distribution can just tilt the distribution of
a randomly picked t(i), and leave the rest of k − 1 distributions to stay the same. Moreover, θ is
selected to approximately minimize the variance of δ̂IS,θ (detailed in Appendix C.2). An intuitive
way to see it is that y(θ) = ε, which significantly improves the probability where y(t) ≥ ε while also
accounting for the fact that P (t) decays exponentially fast as t increases.

We also empirically verify the advantage of the IS estimator over the SMC estimator. The orange
curve in Figure 6 (a) shows the empirical estimate of E[(δ̂IS,θ)2] which quantifies the variance of
δ̂IS,θ. Note that θ = 0 corresponds to the case of δ̂MC. As we can see, E[(δ̂IS,θ)2] drops quickly as θ
increases, and eventually converges. We can also see that the θ selected by our heuristic in Definition
18 (marked as red ‘*’) approximately corresponds to the lowest point of E[(δ̂IS,θ)2]. This validates
our theoretical justification for the selection of θ.
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Figure 6: We examine the properties of MC-based DP verifiers for Poisson Subampled mechanism.
We set q = 10−3, σ = 0.6, ε = 1.5, k = 100. δY (ε) ≈ 7.7 × 10−6 in this case. (a) Plot for
the upper bound and empirical estimate of E[δ̂2MC] and E[δ̂2IS,θ]. The upper bounds are computed
by Corollary 22 (for E[δ̂2MC]) and Theorem 23 (for E[δ̂2IS,θ]). Note that θ = 0 corresponds to δ̂MC.
The red star indicates the second moment for the value of θ selected by our heuristic in Definition
18. The blue star indicates the θ that minimizes the analytical bound. (b) Empirical estimate of
the rejection probability Pr[δ̂mIS,θ > δest/τ − ∆] scaled with the number of samples m. We set
δest = 0.8δY (ε), τ = 10−5/δest, and we set ∆ following the heuristic proposed in Section 4.4.

C.2 Justification of the Heuristic of Choosing Exponential Tilting Parameter θ

The variance of the IS estimator proposed in Definition 18 is given by

Et∼Pθ

[(
1− eε−y(t;P ,Q)

)2
+

(
P (t)

Pθ(t)

)2
]

= Et∼P

[(
1− eε−y(t;P ,Q)

)2
+

(
P (t)

Pθ(t)

)]

= Et∼P

(1− eε−y(t;P ,Q)
)2
+

(
1

k

k∑
i=1

Pθ(ti)

P (ti)

)−1


= kMP (θ)Et∼P

[(
1− eε−y(t;P ,Q)

)2
+

(
1∑k

i=1 e
θti

)]

Let S(θ) := kMP (θ)Et∼P

[(
1− eε−y(t;P ,Q)

)2
+

(
1∑k

i=1 eθti

)]
. We aim to find θ that minimizes

S(θ).

Note that

MP (θ) = (1− q)e
1
2σ

2θ2

+ qeθ+
1
2σ

2θ2

(3)

To simplify the notation, let b(t) :=
(
1− eε−y(t)

)2
+

∏k
i=1 P0(ti).

∂

∂θ
S(θ) =

[
(1− q)e

1
2σ

2θ2

(σ2θ) + qeθ+
1
2σ

2θ2

(1 + σ2θ)
] ∫

. . .

∫
b(t)

(
k∑

i=1

eθti

)−1

dt (4)

−
[
(1− q)e

1
2σ

2θ2

+ qeθ+
1
2σ

2θ2
] ∫

. . .

∫
b(t)

∑k
i=1 e

θtiti(∑k
i=1 e

θti

)2 dt (5)

By setting ∂
∂θS(θ) = 0 and simplify the expression, we have
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(1− q + qeθ)(σ2θ) + qeθ

1− q + qeθ
=

∫
. . .
∫
b(t)

∑k
i=1 eθti ti

(
∑k

i=1 eθti)
2 dt∫

. . .
∫
b(t)

(∑k
i=1 e

θti

)−1

dt
(6)

As we mentioned earlier, b(t) > 0 only when y(t) =
∑k

i=1 y(t
(i)) > ε, and for such an event it is

most likely that there is only one outlier t∗ among all {t(i)}ki=1 such that y(t∗) ≈ ε, and all the rest
of y(t(i)) ≈ 0. Therefore, a simple but surprisingly effective approximation for the RHS of (6) is∫

. . .
∫
b(t)

∑k
i=1 eθti ti

(
∑k

i=1 eθti)
2 dt∫

. . .
∫
b(t)

(∑k
i=1 e

θti

)−1

dt
≈ b(t)e−θtt

b(t)e−θt
= t (7)

for t s.t. y(t) = ε. This leads to an approximate solution

θ∗ =
1

2σ2
+ log ((exp(ε)− (1− q))/q) (8)
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D Sample Complexity for Achieving Target False Positive Rate

To derive the sample complexity for achieving a DP verifier with a target false positive rate, we use
Bennett’s inequality.
Lemma 19 (Bennett’s inequality). Let X1, . . . , Xn be independent real-valued random variables
with finite variance such that Xi ≤ b for some b > 0 almost surely for all 1 ≤ i ≤ n. Let
ν ≥

∑n
i=1 E[X2

i ]. For any t > 0, we have

Pr

[
n∑

i=1

Xi − E[Xi] ≥ t

]
≤ exp

(
− ν

b2
h

(
bt

ν

))
(9)

where h(x) = (1 + x) log(1 + x)− x for x > 0.

Theorem 13. Suppose E
[(

δ̂MC

)2]
≤ ν. DPV instantiated by δ̂mMC has bounded τ -relaxed false

positive rate FPMC(ε, δ
est; τ) ≤ δest/τ with m ≥ 2ν

∆2 log(τ/δ
est).

Proof. For anyM s.t. δest < τδY (ε), we have

Pr
[
δ̂mMC(ε;Y ) < δest/τ −∆

]
≤ Pr

[
δ̂mMC(ε;Y ) < δY (ε)−∆

]
= Pr

[
1

m

m∑
i=1

(δ̂
(i)
MC − δY (ε)) < −∆

]

= Pr

[
m∑
i=1

(δY (ε)− δ̂
(i)
MC ) > m∆

]
(10)

Since δ̂MC ∈ [−1, 0], the condition in Bennett’s inequality is satisfied with b→ 0+. Hence, (10) can
be upper bounded by

(10) ≤ lim
b→0+

exp

(
−mν

b2
h

(
b∆

ν

))
= exp

(
−m∆2

2ν

)

By setting exp
(
−m∆2

2ν

)
≤ δest/τ , we have

m ≥ 2ν

∆2
log(τ/δest)
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E Proofs for Moment Bound

E.1 Overview

As suggested by Theorem 13, a good upper bound for E
[(

δ̂MC

)2]
(or E

[(
δ̂IS

)2]
) is important for

the computational efficiency of MC-based DPV.

We upper bound the higher moment of δ̂MC through the RDP guarantee for the composed mechanism
M. This is a natural idea since converting RDP to upper bounds for δY (ε) – the first moment of δ̂MC –
is a well-studied problem [30, 9, 3]. Recall that the RDP guarantee forM is equivalent to a bound
for MY (λ) := E[eλY ] forM’s privacy loss random variable Y for any λ ≥ 0.
Lemma 20 (RDP-MGF bound conversion [30]). If a mechanism M is (α, εR(α))-RDP, then
MY (λ) ≤ exp(λεR(λ+ 1)).

We convert an upper bound for MY (·) into the following guarantee for the higher moment of
δ̂MC = (1− eε−Y )+.
Theorem 21. For any u ≥ 1, we have

E[(δ̂MC)u] = E
[
(1− eε−Y )u+

]
≤ min

λ≥0
MY (λ)e−ελ uuλλ

(u+ λ)u+λ

The proof is deferred to Appendix E.2. The basic idea is to find the smallest constant c such that
E[(δ̂MC)u] ≤ cMY (λ). By setting u = 1, our result recovers the RDP-DP conversion from [9]. By
setting u = 2, we obtain the desired bound for E[(δ̂MC)2].
Corollary 22. E[(δ̂MC)2] ≤ minλ≥0 MY (λ)e

−ελ 4λλ

(λ+2)λ+2 .

Corollary 22 applies to any mechanisms where the RDP guarantee is available, which covers a wide
range of commonly used mechanisms such as (Subsampled) Gaussian or Laplace mechanism. We
also note that one may be able to further tighten the above bound similar to the optimal RDP-DP
conversion in [3]. We leave this as an interesting future work.

Next, we derive the upper bound for E[(δ̂IS,θ)2] for Poisson Subsampled Gaussian mechanism.
Theorem 23. For any positive integer λ, and for any a, b ≥ 1 s.t. 1/a + 1/b = 1, we have

E[(δ̂IS,θ)2] ≤ kMP (θ)
(
E[δ̂2aMC ]

)1/a
·
(
bθe−λε

∫
[r(λ, x)]

k
e−bθxdx

)1/b
where r(λ, x) is an upper

bound for Prt∼P [maxi ti ≤ x, y(t) ≥ ε] detailed in Appendix E.3.

The proof is based on applying Hölder’s inequality to the expression of E[(δ̂IS,θ)2], and then bound

the part where θ is involved: Et∼P

[(
1
k

∑k
i=1

Pθ(ti)
P (ti)

)−1
]

. We can bound E[δ̂2aMC ] through Theorem

21.

Figure 6 (a) shows the analytical bound from Corollary 22 and Theorem 23 compared with empirically
estimated E[(δ̂MC)2] and E[(δ̂IS,θ)2]. As we can see, the analytical bound for E[(δ̂IS,θ)2] for relatively
large θ is much smaller than the bound for E[(δ̂MC)2] (i.e., θ = 0 in the plot). Moreover, we find that
the θ which minimizes the analytical bound (the blue ‘*’) is close to the θ selected by our heuristic
(the red ‘*’). For computational efficiency, one may prefer to use θ that minimizes the analytical
bound. However, the heuristically selected θ is still useful when one simply wants to estimate δY (ε)
and does not require the formal, analytical guarantee for the false positive rate. We see such a scenario
when we introduce the MC accountant in Section 5. We also note that such a discrepancy (and the
gap between the analytical bound and empirical estimate) is due to the use of Hölder’s inequality in
bounding E[(δ̂IS,θ)2]. Further tightening the bound for E[(δ̂IS,θ)2] is important for future work.

E.2 Moment Bound for Simple Monte Carlo Estimator

Theorem 21. For any u ≥ 1, we have

E[(δ̂MC)u] = E
[
(1− eε−Y )u+

]
≤ min

λ≥0
MY (λ)e−ελ uuλλ

(u+ λ)u+λ
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Proof.

E[(1− eε−Y )u+] =

∫
(1− eε−x)u+P (x)dx

= MY (λ)

∫
(1− eε−x)u+e

−λxP (x)eλx

E[eλY ]
dx

= MY (λ)Ex∼Pθ
[(1− eε−x)u+e

−λx]

= MY (λ)e
−λεEx∼Pθ

[(1− eε−x)u+e
(ε−x)λ]

where Pλ(x) :=
P (x)eλx

E[eλY ]
is the exponential tilting of P . Define f(x, λ) := (1− e−x)u+e

−xλ. When
x ≤ 0, f(x, λ) = 0. When x > 0, the derivative of f with respect to x is

∂f(x, λ)

∂x
= e−xλ(1− e−x)u−1[e−x(u+ λ)− λ]

It is easy to see that the maximum of f(x, λ) is achieved at x∗ = log
(
u+λ
λ

)
, and we have

max
x

f(x, λ) =

(
u

u+ λ

)u(
λ

u+ λ

)λ

=
uuλλ

(u+ λ)u+λ

Overall, we have

E[(1− eε−Y )u+] ≤MY (λ)e
−ελ uuλλ

(u+ λ)u+λ

E.3 Moment Bound for Importance Sampling Estimator

In this section, we first prove two possible upper bounds for E[(δ̂IS,θ)2] in Theorem 24 and Theorem
26. We then combine these two bounds in Theorem 23 via Holder’s inequality.
Theorem 24. For any θ ≥ 1/σ2, we have

E[(δ̂IS,θ)2] ≤ MP (θ)

[
1

k

(
ε

q
+ k

)]−θσ2

e−θ/2E[(δ̂MC)2]

Proof.

Et∼Pθ

[(
1− eε−y(t;P ,Q)

)2
+

(
P (t)

Pθ(t)

)2
]

= Et∼P

[(
1− eε−y(t;P ,Q)

)2
+

(
P (t)

Pθ(t)

)]

= Et∼P

(1− eε−y(t;P ,Q)
)2
+

(
1

k

k∑
i=1

Pθ(ti)

P (ti)

)−1


= MP (θ)Et∼P

[(
1− eε−y(t;P ,Q)

)2
+

(
k∑k

i=1 e
θti

)]
(11)

Note that

Et∼P

[(
1− eε−y(t;P ,Q)

)2
+

(
k∑k

i=1 e
θti

)]

= Et∼P

[(
1− eε−y(t;P ,Q)

)2
+

(
k∑k

i=1 e
θti

)
I[y(t;P ,Q) ≥ ε]

]
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Lemma 25. When y(t;P ,Q) =
∑k

i=1 log
(
1− q + qe(2ti−1)/(2σ2)

)
≥ ε and θσ2 ≥ 1, we have

k∑
i=1

eθti ≥ k

[
1

k

( ε
k
+ k
)
e1/(2σ

2)

]θσ2

Proof. Since log(1 + x) ≤ x, we have

ε ≤
k∑

i=1

log
(
1− q + qe(2ti−1)/(2σ2)

)
≤

k∑
i=1

q
(
e(2ti−1)/(2σ2) − 1

)
Hence,

k∑
i=1

eti/σ
2

≥
(
ε

q
+ k

)
e1/(2σ

2)

Hence,

k∑
i=1

etiθ =

k∑
i=1

(
eti/σ

2
)θσ2

= k

[
1

k

k∑
i=1

(
eti/σ

2
)θσ2

]

≥ k

[
1

k

k∑
i=1

(
eti/σ

2
)]θσ2

≥ k

[
1

k

(
ε

q
+ k

)
e1/(2σ

2)

]θσ2

= k

[
1

k

(
ε

q
+ k

)]θσ2

eθ/2

where the first inequality is due to Jensen’s inequality.

By Lemma 25, we have

(11) ≤MP (θ)
1[

1
k

(
ε
q + k

)]θσ2

eθ/2
Et∼P

[(
1− eε−y(t;P ,Q)

)2
+

]

= MP (θ)

[
1

k

(
ε

q
+ k

)]−θσ2

e−θ/2E[(δ̂MC)2]

which concludes the proof.

Theorem 26. For any positive integer λ, we have

E[(δ̂IS,θ)2] ≤ kMP (θ)θe
−λε

∫
[r(λ, x)]k e−θxdx (12)

where r(λ, x) is an upper bound for the MGF of privacy loss random variable of truncated Gaussian
mixture P |≤x.

Proof. Similar to Theorem 24, the goal is to bound

kMP (θ)Et∼P

[(
1− eε−y(t;P ,Q)

)2
+

(
1∑k

i=1 e
θti

)]
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Note that

Et∼P

[(
1− eε−y(t;P ,Q)

)2
+

(
1∑k

i=1 e
θti

)]

= Et∼P

[(
1− eε−y(t;P ,Q)

)2
+

(
1∑k

i=1 e
θti

)
I[y(t;P ,Q) ≥ ε]

]

≤ Et∼P

[
1∑k

i=1 e
θti

I[y(t;P ,Q) ≥ ε]

]

≤ Et∼P

[
1

eθtmax
I[y(t;P ,Q) ≥ ε]

]
(13)

where tmax := maxi ti.

Further note that

(13) = Et∼P

[
e−θtmaxI[y(t) ≥ ε]

]
= Et∼P

[
e−θtmax |y(t) ≥ ε

]
Pr
t∼P

[y(t) ≥ ε]

=

(∫
e−θxd Pr

t∼P
[tmax ≤ x]

)
Pr
t∼P

[y(t) ≥ ε]

= −
(∫

Pr
t∼P

[tmax ≤ x|y(t) ≥ ε] de−θx

)
Pr
t∼P

[y(t) ≥ ε] (14)

= θ

∫
Pr
t∼P

[tmax ≤ x, y(t) ≥ ε] e−θxdx (15)

where (14) is obtained through integration by parts.

Now, as we can see from (15), the question reduces to bound Prt∼P [tmax ≤ x, y(t) ≥ ε] for any
x ∈ R. It might be easier to write

Pr
t∼P

[tmax ≤ x, y(t) ≥ ε] = Pr
t∼P

[y(t) ≥ ε|tmax ≤ x] Pr
t∼P

[tmax ≤ x]

and we know that

Pr
t∼P

[tmax ≤ x] =
(
Pr
t∼P

[t ≤ x]
)k

(16)

=
(
(1− q)Φ(x; 0, σ2) + qΦ(x; 1, σ2)

)k
(17)

as all tis are i.i.d. random samples from P , where Φ(·;µ, σ2) is the CDF of Gaussian distribution
with mean µ and variance σ2.

It remains to bound the conditional probability Prt∼P [y(t) ≥ ε|tmax ≤ x], it may be easier to see it
in this way:

Pr
t∼P

[y(t) ≥ ε|tmax ≤ x]

= Pr
t∼P

[y(t) ≥ ε|t1 ≤ x, . . . , tk ≤ x]

= Pr
t∼P

[
k∑

i=1

y(ti) ≥ ε|y(t1) ≤ y(x), . . . , y(tk) ≤ y(x)

]

≤
Et∼P

[
eλ

∑k
i=1 y(ti) ≥ eλε|y(t1) ≤ y(x), . . . , y(tk) ≤ y(x)

]
eλε

where the last step is due to Chernoff bound which holds for any λ > 0. Now we only need to
bound the moment generating function for y(t) = log(1− q + qe

2t−1

2σ2 ), t ∼ P |≤x, where P |≤x is
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the truncated distribution of P . We note that this is equivalent to bounding the Rényi divergence for
truncated Gaussian mixture distribution.

Recall that P = (1− q)N (0, σ2) + qN (1, σ2). For any λ that is a positive integer, we have

Et∼P

[
eλy(t)I[t ≤ x]

]
=

1√
2πσ

[
(1− q)

∫ x

−∞

(
1− q + qe

2t−1

2σ2

)λ
e
− t2

2σ2 dt+ q

∫ x

−∞

(
1− q + qe

2t−1

2σ2

)λ
e
− (t−1)2

2σ2 dt

]

=
1

2

(
qe

− 1
2σ2

)λ λ∑
i=0

(
λ

i

)
q̃i
[
(1− q)e

(λ−i)i

2σ2

(
erf

(
x− (λ− i)√

2σ

)
+ 1

)
+ qe

(λ−i+1)i−1

2σ2

(
erf

(
x− (λ− i+ 1)√

2σ

)
+ 1

)]
(18)

where q̃ := (1−q) exp(1/(2σ2))
q . Note that the above expression can be efficiently computed. Denote

the above results as r(λ, x) := (18). Hence

Et∼P

[
eλy(t)|t ≤ x

]
=

r(λ, x)

Prt∼P [t ≤ x]
(19)

Now we have

Pr
t∼P

[y(t) ≥ ε|tmax ≤ x] ≤
Et∼P

[
eλ

∑k
i=1 y(ti) ≥ eλε|tmax ≤ x

]
eλε

=
[r(λ, x)]

k

eλε (Prt∼P [t ≤ x])
k

Plugging this bound into (15), we have

(13) = θ

∫
Pr
t∼P

[tmax ≤ x, y(t) ≥ ε] e−θxdx

≤ θe−λε

∫
[r(λ, x)]

k
e−θxdx

which leads to the final conclusion.

Remark 27. In practice, we can further improve the bound by moving the minimum operation inside
the integral:

E[(δ̂IS,θ)2] ≤ kMP (θ)θe
−λε

∫ [
min
λ

r(λ, x)
]k

e−θxdx (20)

Of course, this bound will be less efficient to compute.
Theorem 23 (Generalizing Theorem 24 and Theorem 26 via Holder’s inequality). For any positive

integer λ, and for any a, b ≥ 1 s.t. 1/a + 1/b = 1, we have E[(δ̂IS,θ)2] ≤ kMP (θ)
(
E[δ̂2aMC ]

)1/a
·(

bθe−λε
∫
[r(λ, x)]

k
e−bθxdx

)1/b
where r(λ, x) is an upper bound for the MGF of privacy loss

random variable of truncated Gaussian mixture P |≤x defined in (18).

Proof. Note that Theorem 24 and Theorem 26 can both be viewed as two special cases of Hölder’s
inequality: for any a, b ≥ 1 s.t. 1

a + 1
b = 1, we have

Et∼P

[(
1− eε−y(t;P ,Q)

)2
+

(
1∑k

i=1 e
θti

)]

= Et∼P

[(
1− eε−y(t;P ,Q)

)2
+

(
1∑k

i=1 e
θti

)
I[y(t;P ,Q) ≥ ε]

]

≤ Et∼P

[(
1− eε−y(t;P ,Q)

)2a
+

]1/a
Et∼P

( 1∑k
i=1 e

θti

)b

I[y(t;P ,Q) ≥ ε]

1/b
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Theorem 24 corresponds to the case where a = 1, and Theorem 26 corresponds to the case where
b = 1. We can actually tune the parameters a and b to see if we can obtain any better bounds, as we
have

Et∼P

[(
1− eε−y(t;P ,Q)

)2a
+

]
≤ E[δ̂2aMC ] (21)

and

Et∼P

( 1∑k
i=1 e

θti

)b

I[y(t;P ,Q) ≥ ε]

 ≤ bθe−λε

∫
[r(λ, x)]

k
e−bθxdx (22)

Simply combining the above inequalities leads to the final conclusion.
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F Proofs for Utility

F.1 Overview

While one may be able to bound the false negative rate through similar techniques that we bound
the false positive rate, i.e., applying the concentration inequalities, the guarantee may be loose. As a
formal, strict guarantee for FNDPV is not required, we provide a convenient heuristic of picking an
appropriate ∆ such that FNDPV is approximately smaller than FPDPV.

For any mechanismM such that δest > ρδY (ε), we have

Pr
DPV

[
DPV(M, ε, δest) = False

]
= Pr

[
δ̂mMC > δest/τ −∆

]
= Pr

[
δ̂mMC − δY (ε) > δest/τ − δY (ε)−∆

]
≤ Pr

[
δ̂mMC − δY (ε) >

(
(1/τ − 1/ρ) δest −∆

)]
and in the meantime, if δest < τδY (ε), we have

Pr
[
δ̂mMC < δest/τ −∆

]
≤ Pr

[
δ̂mMC − δY (ε) < −∆

]
Our main idea is to find ∆ such that

Pr
[
δ̂mMC − δY (ε) >

(
(1/τ − 1/ρ) δest −∆

)]
⪅ Pr

[
δ̂mMC − δY (ε) < −∆

]
In this way, we know that FNMC(ε, δ

est; ρ) is upper bounded by Θ(δest/τ) for the same amount of
samples we discussed in Section 4.3.

Observe that δ̂MC (or δ̂IS,θ with a not too large θ) is typically a highly asymmetric distribution with a
significant probability of being zero, and the probability density decreases monotonically for higher
values. Under such conditions, we prove the following results:
Theorem 28 (Informal). When m ≥ 2ν

∆2 log(τ/δ
est), we have

Pr[δ̂mMC − δY (ε) < −∆] ⪆ Pr[δ̂mMC − δY (ε) >
3

2
∆]

The proof is deferred to Appendix F.2. Therefore, by setting ∆ = 0.4 (1/τ − 1/ρ) δest, one can
ensure that FNMC(ε, δ

est; ρ) is also (approximately) upper bounded by Θ(δest/τ). We empirically
verify the effectiveness of such a heuristic by estimating the actual false negative rate. As we can see
from Figure 6 (b), the dashed curve is much higher than the two solid curves, which means that the
false negative rate is a very conservative bound.
Remark 29 (For the halting case). In this section, we develop techniques for ensuring the false
negative rate (i.e., the rejection probability) is around O(δ) when the proposed privacy parameter
δest is close to the true δ. In the experiment, we use the state-of-the-art FFT accountant to produce
δest, which is very accurate as we can see from Figure 1. Hence, the rejection probability in the
experiment is around O(δ), which means the probability of rejection is close to the probability of
catastrophic failure for privacy.

If one is still concerned that the rejection probability is too large, we can further reduce the probability
as follows: we run two instances of EVR paradigm simultaneously; if both of the instances are passed,
we randomly pick one and release the output. If either one of them is passed, we release the passed
instance. It only fails when both of the instances fail. By running two instances of the EVR paradigm
in parallel, the false positive rate (i.e., the final δ) will be only doubled, but the probability of rejection
will be squared.

We can also introduce a variant of our EVR paradigm that better deals with the failure case: whenever
we face the “rejection”, we run a different mechanismM′ that is guaranteed to be (ε, δest)-DP
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(e.g., by adjusting the subsampling rate and/or noise multiplier in DP-SGD). Moreover, we use FFT
accountant to obtain a strict privacy guarantee upper bound (ε, δupp) for the original mechanism
M, where δest < δupp. We use pFN and pFP to denote the false negative and false positive rate of the
privacy verifier used in EVR paradigm. If the original mechanismM is indeed (ε, δest)-DP, then for
any subset S, for this augmented EVR paradigmMaug we have

Pr[Maug(D) ∈ S] = pFN Pr[M(D) ∈ S] + (1− pFN) Pr[M′(D) ∈ S]

≤ pFN(e
ε Pr[M(D′) ∈ S] + δest) + (1− pFN)(e

ε Pr[M′(D′) ∈ S] + δest)

≤ eε Pr[Maug(D′) ∈ S] + δest

If the original mechanismM is not (ε, δest)-DP, then we have

Pr[Maug(D) ∈ S] = pFP Pr[M(D) ∈ S] + (1− pFP) Pr[M′(D) ∈ S]

≤ pFP(e
ε Pr[M(D′) ∈ S] + δupp) + (1− pFP)(e

ε Pr[M′(D′) ∈ S] + δest)

≤ eε Pr[Maug(D′) ∈ S] + δest + pFP(δ
upp − δest)

Hence, this augmented EVR algorithm will be (ε, δest + pFP(δ
upp − δest)), and if pFP is around δest,

then this extra factor pFP(δupp − δest) will be very small. We can also adjust the privacy guarantee
forM′ such that the privacy guarantees for the two cases are the same, which can further optimize
the final privacy cost.
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F.2 Technical Details

In this section, we provide theoretical justification for the heuristic of setting ∆ =
0.4 (1/τ − 1/ρ) δest.

For notation convenience, throughout this section, we talk about δ̂MC, but the same argument also
applies to δ̂IS,θ with a not too large θ, unless otherwise specified. We use δ̂MC(x) to denote the density
of δ̂MC at x. Note that δ̂MC(0) =∞.

We make the following assumption about the distribution of δ̂MC.

Assumption 30. Pr[δ̂MC = 0] ≥ 1/2.

While intuitive, this assumption is hard to analyze for the case of Subsampled Gaussian mecha-
nism. Therefore, we instead provide a condition for which the assumption holds for Pure Gaussian
mechanism.
Lemma 31. Fix ε, σ. When k/(2σ2) ≤ ε, Assumption 30 holds.

Proof. The PRV for the composition of k Gaussian mechanism is N
(

k
2σ2 ,

k
σ2

)
.

Pr[(1− eε−Y )+ = 0] = Pr[Y ≤ ε]

which is clearly ≥ 1/2 when k/(2σ2) ≤ ε.

We also empirically verify this assumption for Subsampled Gaussian mechanism as in Figure 7. As
we can see, the θ selected by our heuristic (the red star) has Pr[δ̂IS,θ = 0] ≈ 1/2 which matches
our principle of selecting θ. The θ minimizes the analytical bound (which we are going to use in
practice) achieves Pr[δ̂IS,θ = 0] ≈ 0.88≫ 0.5.

Figure 7: We empirically estimate Pr[δ̂IS,θ = 0] for the case of Poisson Subampled Gaussian
mechanism. We set q = 10−3, σ = 0.6, ε = 1.5, k = 100. δY (ε) ≈ 7.7× 10−6 in this case. The red
star indicates the second moment for the value of θ selected by our heuristic in Definition 18. The
blue star indicates the θ that minimizes the analytical bound.

Our goal is to show that Pr[δ̂mMC− δY (ε) < −∆∗] ⪆ Pr[δ̂mMC− δY (ε) > ∆∗] for large m. For notation
simplicity, we denote δ := E[δ̂MC] = δY (ε) in the remaining of the section. We also denote

p0 := Pr[δ̂MC = 0]

p(0,1) := Pr[0 < δ̂MC < δ]

p(1,2) := Pr[δ ≤ δ̂MC ≤ 2δ]

p(2,∞) := Pr[δ̂MC ≥ 2δ]

Note that p0 + p(0,1) + p(1,2) + p(2,∞) = 1. We also write δ̂MC|(a,b) and δ̂MC|[a,b) to indicate the
truncated distribution of δ̂MC on (a, b) and [a, b), respectively.
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We first construct an alternative random variable δ̃MC with the following distribution:

δ̃MC =


2δ − x for x ∼ δ̂MC|≥2δ w.p. p(2,∞)

x for x ∼ δ̂MC|(0,δ) w.p. p(0,1)
2δ − x for x ∼ δ̂MC|(0,δ) w.p. p(0,1)
x for x ∼ δ̂MC|≥2δ w.p. p(2,∞)

δ w.p. 1− 2(p(0,1) + p(2,∞))

(23)

This is a valid probability due to Assumption 30, as p(0,1)+ p(2,∞) ≤ 1− p0 ≤ 1/2. The distribution
of δ̃MC is illustrated in Figure 8. Note that δ̃MC is a symmetric distribution with E[δ̃MC] = δ.

Figure 8: Illustration for the density function of δ̃MC (black curve indicates the density curve for δ̂MC,
and red curve indicates the density curve for δ̂IS,θ).

Similar to the notation of δ̂mMC, we write δ̃mMC :=
1
m

∑m
i=1 δ̃

(i)
MC . We show an asymmetry result for δ̃mMC

in terms of δ.
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Lemma 32. For any ∆∗ ∈ R, we have

Pr[δ̃mMC − δ < −∆∗] ≥ Pr[δ̃mMC − δ > ∆∗] (24)

Proof. Note that the above argument holds trivially when m = 0, 1. For m ≥ 2, we use the induction
argument. Suppose we have

Pr[δ̃m−1
MC − δ < −∆∗] ≥ Pr[δ̃m−1

MC − δ > ∆∗] (25)

for any ∆∗ ∈ R. That is,

Pr

[
m−1∑
i=1

δ̃
(i)
MC − (m− 1)δ < −(m− 1)∆∗

]
≥ Pr

[
m−1∑
i=1

δ̃
(i)
MC − (m− 1)δ > (m− 1)∆∗

]
(26)

for any ∆∗ ∈ R.

Pr[δ̃mMC − δ < −∆∗] = Pr

[
m∑
i=1

δ̃
(i)
MC −mδ < −m∆∗

]

= Pr

[
m−1∑
i=1

δ̃
(i)
MC − (m− 1)δ + δ̃

(m)
MC − δ < −m∆∗

]

=

∫
Pr

[
m−1∑
i=1

δ̃
(i)
MC − (m− 1)δ < −m∆∗ − x

]
Pr[δ̃

(m)
MC − δ = x]dx

≥
∫

Pr

[
m−1∑
i=1

δ̃
(i)
MC − (m− 1)δ > m∆∗ + x

]
Pr[δ̃

(m)
MC − δ = x]dx

= Pr

[
m−1∑
i=1

δ̃
(i)
MC − (m− 1)δ − (δ̃

(m)
MC − δ) > m∆∗

]

=

∫
Pr
[
x− (δ̃

(m)
MC − δ) > m∆∗

]
Pr

[
m−1∑
i=1

δ̃
(i)
MC − (m− 1)δ = x

]
dx

=

∫
Pr
[
δ̃
(m)
MC − δ < −m∆∗ + x

]
Pr

[
m−1∑
i=1

δ̃
(i)
MC − (m− 1)δ = x

]
dx

≥
∫

Pr
[
δ̃
(m)
MC − δ > m∆∗ − x

]
Pr

[
m−1∑
i=1

δ̃
(i)
MC − (m− 1)δ = x

]
dx

=

[
m∑
i=1

δ̃
(i)
MC −mδ > m∆∗

]
=
[
δ̃mMC − δ > ∆∗

]
where the two inequalities are due to the induction assumption.

Now we come back and analyze δ̂mMC by using Lemma 32.
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Pr
[
δ̂mMC − δ ≤ −∆∗

]
= Pr

[
δ̂mMC − δ̃mMC + δ̃mMC − δ ≤ −∆∗

]
≥ Pr

[
δ̂mMC − δ̃mMC ≤ c

]
Pr
[
δ̂mMC − δ̃mMC + δ̃mMC − δ ≤ −∆∗|δ̂mMC − δ̃mMC ≤ c

]
≥ Pr

[
δ̂mMC − δ̃mMC ≤ c

]
Pr
[
δ̃mMC − δ ≤ −∆∗ − c

]
≥ Pr

[
δ̂mMC − δ̃mMC ≤ c

]
Pr
[
δ̃mMC − δ ≥ ∆∗ + c

]
Similarly,

Pr
[
δ̃mMC − δ ≥ ∆∗ + c

]
= Pr

[
δ̃mMC − δ̂mMC + δ̂mMC − δ ≥ ∆∗ + c

]
≥ Pr

[
δ̃mMC − δ̂mMC ≥ −c

]
Pr
[
δ̃mMC − δ̂mMC + δ̂mMC − δ ≥ ∆∗ + c|δ̃mMC − δ̂mMC ≥ −c

]
≥ Pr

[
δ̃mMC − δ̂mMC ≥ −c

]
Pr
[
δ̂mMC − δ ≥ ∆∗ + 2c

]
Overall, we have

Pr
[
δ̂mMC − δ ≤ −∆∗

]
≥
(
Pr
[
δ̂mMC − δ̃mMC ≤ c

])2
Pr
[
δ̂mMC − δ ≥ ∆∗ + 2c

]
(27)

for any ∆∗ ∈ R. Note that the above argument does not require δ̂mMC and δ̃mMC to be correlated. To
maximize Pr

[
δ̂mMC − δ̃mMC ≤ c

]
, we can sample δ̃mMC for a given δ̂mMC as follows: for each δ̂

(i)
MC ,

1. If δ̂(i)MC > 0, then let δ̃(i)MC = δ̂
(i)
MC .

2. If δ̂(i)MC = 0, then with probability p(2,∞)/p0, output 2δ−x for x ∼ δ̂MC|(2,∞); with probability
p(0,1)/p0 output 2δ − x for x ∼ δ̂MC|(0,1); with probability 1− (p(0,1) + p(2,∞))/p0 output δ.

Denote the random variable δdiff := δ̂MC − δ̃MC. It is not hard to see that E[δ2diff ] ≤ E[δ̂2MC] + δ2 ≤
2E[δ̂2MC]. By Bennett’s inequality, with m ≥ 2ν

∆2 log(τ/δ
est), we have

Pr
[
δ̂mMC − δ̃mMC ≤ c

]
⪆ 1− τ

δest
exp

(
− c2

∆2

)
= 1−O

( τ

δest

)
if we set c = O(∆). Let c = 1

4∆, then by setting−∆∗ = −∆ and ∆∗+2c = (1/τ − 1/ρ) δest−∆,
we have ∆ = 0.4 (1/τ − 1/ρ) δest.

To summarize, when we set ∆ with the heuristic, we have

Pr
[
δ̂mMC − δ ≥ ∆∗ + 2c

]
⪅

τ/δest(
1−O

(
τ

δest

))2
≈ τ/δest
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G Pseudocode for Privacy Accounting for DP-SGD with EVR Paradigm

In this section, we outline the steps of privacy accounting for DP-SGD with our EVR paradigm.
Recall from Lemma 16 that for subsampled Gaussian mechanism with sensitivity C, noise variance
C2σ2, and subsampling rate q, one dominating pair (P,Q) is Q := N (0, σ2) and P := (1 −
q)N (0, σ2) + qN (1, σ2). Hence, for DP-SGD with k iterations, the dominating pair is the product
distribution P := P1 × . . .× Pk and Q := Q1 × . . .×Qk where each Pi and Qi follow the same
distribution as P and Q.3

Algorithm 4 Privacy Accounting for DP-SGD with EVR Paradigm

1: Privacy Parameters for DP-SGD: k – number of mechanisms to be composed, σ – noise
multiplier, q – subsampling rate, C – clipping ratio.

2:
3: // Step 1: Estimate Privacy Parameter.
4: Obtain a privacy parameter estimate (ε, δest) from a DP accountant (e.g., FFT/GDP/MC accoun-

tant). Set the smoothing factor τ = 0.99 (one can also adjust the value of τ according to the
privacy guarantee and runtime requirements).

5:
6: // Step 2: Verify Privacy Parameter.
7:
8: // Step 2.1: Derive the required amount of samples for privacy verifi-

cation.
9: Compute the number of required samples m according to Theorem 13, where the second moment

upper bound ν is computed according to Corollary 22 for Simple MC estimator, or Theorem 23
for Importance Sampling estimator. Set ρ = (1 + τ)/2 and set ∆ according to Theorem 14 for
utility guarantee.

10:
11: // Step 2.2: Estimate privacy parameter with MC estimator.
12: If use Simple MC estimator: Obtain i.i.d. samples {ti}mi=1 from P . Compute simple MC

estimate δ̂ = 1
m

∑m
i=1 (1− eε−yi)+ with PRV samples yi = log

(
P (ti)
Q(ti)

)
, i = 1 . . .m.

13: If use Importance Sampling estimator: compute MC estimate according to Definition 18.
14:
15: // Step 3: Release according to verification result.
16: if δ̂ < δest

τ −∆ then release the result of DP-SGD.
17: else terminate program.

3It can also be extended to the heterogeneous case easily.
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H Experiment Settings & Additional Results

H.1 GPU Acceleration for MC Sampling

MC-based techniques are well-suited for parallel computing and GPU acceleration due to their nature
of repeated sampling. One can easily utilize PyTorch’s CUDA functionality, e.g.,

torch.randn(size=(k,m)).cuda()*sigma+mu

, to significantly boost the computational efficiency. Figure 9 (a) shows that when using a NVIDIA
A100-SXM4-80GB GPU, the execution time of sampling Gaussian mixture ((1 − q)N (0, σ2) +
qN (1, σ2)) can be improved by 103 times compared with CPU-only scenario. Figure 9 (b) shows
the predicted runtime for different target false positive rates for k = 1000. We vary σ and set the
target false positive rate as the smallest s × 10−r that is greater than δY (ε), where s ∈ {1, 5} and
r is positive integer. We set δest = 0.8δY (ε), and τ, ρ,∆ are set as the heuristics introduced in the
previous sections. The runtime is predicted by the number of required samples for the given false
positive rate. As we can see, even when we target at 10−10 false positive rate (which means that
∆ ≈ 10−10), the clock time is still acceptable (around 3 hours).

Figure 9: The execution time of sampling Gaussian mixture ((1− q)N (0, σ2) + qN (1, σ2)) when
only using CPU and when using a NVIDIA A100-SXM4-80GB GPU.
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H.2 Experiment for Evaluating EVR Paradigm

H.2.1 Settings

For Figure 1 & Figure 3, the FFT-based method has hyperparameter being set as εerror =
10−3, δerror = 10−10. For the GDP-Edgeworth accountant, we use the second-order expansion
and uniform bound, following [41].

For Figure 4 (as well as Figure 11), the BEiT [4] is first self-supervised pretrained on ImageNet-1k
and then trained finetuned on ImageNet-21k, following the state-of-the-art approach in [34]. For
DP-GD training, we set σ as 28.914, clipping norm as 1, learning rate as 2, and we train for at most
60 iterations, and we only finetune the last layer on CIFAR-100.

H.2.2 Additional Results

k → εY (k)(δ) curve. We show additional results for a more common setting in privacy-preserving
machine learning where one set a target δ and try to find εY (k)(δ) for different k, the number
of individual mechanisms in the composition. We use Y (k) to stress that the PRV Y is for the
composition of k mechanisms. Such a scenario can happen when one wants to find the optimal
stopping iteration for training a differentially private neural network.

Figure 10 shows such a result for Poisson Subsampled Gaussian where we set subsampling rate 0.01,
σ = 2, and δ = 10−5. We set εerror = 10−1, δerror = 10−10 for the FFT method. The estimate in
this case is obtained by fixing δest = τδ and find the corresponding estimate for ε through FFT-based
method [19]. As we can see, the EVR paradigm achieves a much tighter privacy analysis compared
with the upper bound derived by FFT-based method. The runtime of privacy verification in this case
is < 15 minutes for all ks.

Figure 10: k → εY (k)(δ) curve for Poisson Subsampled Gaussian mechanism for subsampling rate
0.01, σ = 2, and δ = 10−5. When running on an NVIDIA A100-SXM4-80GB GPU, the runtime of
privacy verification is < 15 minutes.

Privacy-Utility Tradeoff. We show additional results for the privacy-utility tradeoff curve when
finetuning ImageNet-pretrained BEiT on CIFAR100 dataset with DP stochastic gradient descent (DP-
SGD). For DP-SGD training, we set σ as 5.971, clipping norm as 1, learning rate as 0.2, momentum
as 0.9, batch size as 4096, and we train for at most 360 iterations (30 epochs). We only finetune the
last layer on CIFAR-100.

As shown in Figure 11 (a), the EVR paradigm provides a better utility-privacy tradeoff compare with
the traditional upper bound method. In Figure 11 (b), we show the runtime of DP verification when
ρ = (1 + τ)/2 and we set ∆ according to Theorem 14 (which ensures EVR’s failure probability is
negligible). The runtime is estimated on an NVIDIA A100-SXM4-80GB GPU. As we can see, it only
takes a few minutes for privacy verification, which is short compared with hours of model training.
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Figure 11: (a) Utility-privacy tradeoff curve for fine-tuning ImageNet-pretrained BEiT [4] on CI-
FAR100 when δ = 10−12 with DP-SGD. We follow the training hyperparameters from [34]. (b)
Runtime of privacy verification in the EVR paradigm. For fair comparison, we set ρ = (1 + τ)/2
and set ∆ according to Theorem 14, which ensures EVR’s failure probability is around O(δ). For (b),
the runtime is estimated on an NVIDIA A100-SXM4-80GB GPU.

H.3 Experiment for Evaluating MC Accountant

H.3.1 Settings

Evaluation Protocol. We use Y (k) to stress that the PRV Y is for the composition of k Poisson
Subsampled Gaussian mechanisms. For the offline setting, we make the following two kinds of
plots: (1) the relative error in approximating ε 7→ δY (k)(ε) (for fixed k), and (2) the relative error in
k 7→ εY (k)(δ) (for fixed δ), where εY (k)(δ) is the inverse of δY (k)(ε) from (2). For the online setting,
we make the following two kinds of plots: (1) the relative error in approximating k 7→ εY (k)(δ) (for
fixed δ), and (2) k 7→ cumulative time for privacy accounting until kth iteration.

MC Accountant. We use the importance sampling technique with the tilting parameter being set
according to the heuristic described in Definition 18.

Baselines. We compare MC accountant against the following state-of-the-art DP accountants with
the following settings:

• The state-of-the-art FFT-based approach [19]. The setting of εerror and δerror is specified in the
next section.
• CLT-based GDP accountant [7].
• GDP-Edgeworth accountant with second-order expansion and uniform bound.
• The Analytical Fourier Accountant based on characteristic function [44], with double quadrature

approximation as this is the practical method recommended in the original paper.

H.3.2 Additional Results for Online Accounting

Figure 12 and 13 show the online accounting results for (σ, δ, q) = (0.5, 10−5, 10−3) and (σ, δ, q) =
(0.5, 10−13, 10−3), respectively. For the setting of (σ, δ, q) = (0.5, 10−5, 10−3), we can see that
the MC accountant achieves a comparable performance with a shorter runtime. For the setting
of (σ, δ, q) = (0.5, 10−13, 10−3), we can see that the MC accountant achieves significantly better
performance compared to the state-of-the-art FFT accountant (and again, with a shorter runtime).
This showcases the MC accountant’s efficiency and accuracy in online setting.
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Figure 12: Experiment for Composing Subsampled Gaussian Mechanisms in the Online Setting
with hyperparameter (σ, δ, q) = (0.5, 10−5, 10−3). (a) Compares the relative error in approximating
k 7→ εY (δ). The error bar for MC accountant is the variance taken over 5 independent runs. Note
that the y-axis is in the log scale. (b) Compares the cumulative runtime for online privacy accounting.
We did not show AFA [44] as it does not terminate in 24 hours.

Figure 13: Experiment for Composing Subsampled Gaussian Mechanisms in the Online Setting with
hyperparameter (σ, δ, q) = (0.5, 10−13, 10−3). (a) Compares the relative error in approximating
k 7→ εY (δ). The error bar for MC accountant is the variance taken over 5 independent runs. Note
that the y-axis is in the log scale. (b) Compares the cumulative runtime for online privacy accounting.
We did not show AFA [44] as it does not terminate in 24 hours.
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H.3.3 Additional Results for Offline Accounting

In this experiment, we set the number of samples for MC accountant as 107, and the parameter for
FFT-based method as εerror = 10−3, δerror = 10−10. The parameters are controlled so that the MC
accountant is faster than FFT-based method, as shown in Table 1. Figure 14 (a) shows the offline
accounting results for ε 7→ δY (k)(ε) when we set (σ, q, k) = (0.5, 10−3, 1000). As we can see, the
performance of MC accountant is comparable with the state-of-the-art FFT method. In Figure 15
(a), we decreases q to 10−5. Compared against baselines, MC approximations are significantly more
accurate for larger ε, compared with the FFT accountant. Figure 14 (b) shows the offline accounting
results for k 7→ εY (δ) when we set (σ, q, δ) = (0.5, 10−3, 10−5). Similarly, MC accountant performs
comparably as FFT accountant. However, when we decrease q to 10−5 and δ to 10−14 (Figure 15
(b)), MC accountant significantly outperforms FFT accountant. This illustrates that MC accountant
performs well in all regimes, and is especially more favorable when the true value of δY (ε) is tiny.

Figure 14: Experiment for Composing Subsampled Gaussian Mechanisms: (a) Compares the relative
error in approximating ε 7→ δY (k)(ε) where we set σ = 0.5, k = 1000, q = 10−3. (b) Compares
the relative error in k 7→ εY (δ) where we set σ = 0.5, δ = 10−5, q = 10−3. The error bar for MC
accountant is the variance taken over 5 independent runs. Note that the y-axis is in the log scale.

Table 1: Runtime for k = 1000.
AFA GDP GDP-E FFT MC-IS

18.63 4.1× 10−4 1.50 3.01 2.31

Figure 15: Experiment for Composing Subsampled Gaussian Mechanisms: (a) Compares the relative
error in approximating ε 7→ δY (k)(ε) where we set σ = 0.5, k = 100, q = 10−5. (b) Compares the
relative error in k 7→ εY (δ) where we set σ = 0.5, δ = 10−14, q = 10−5. The error bar for MC
accountant is the variance taken over 5 independent runs. Note that the y-axis is in the log scale. The
curves for AFA, GDP and GDP-Edgeworth are overlapped with each other.
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