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Abstract

Despite being ubiquitous in natural language,001
collocations (e.g., kick+habit) incur a unique002
processing cost, compared to compositional003
phrases (kick+door) and idioms (kick+bucket).004
We confirm this processing cost with be-005
havioural data as well as MINERVA2, a mem-006
ory model, suggesting that collocations con-007
stitute a distinct linguistic category. While the008
model fails to fully capture the observed human009
processing patterns, we find that below a spe-010
cific item frequency threshold, the model’s re-011
trieval failures align with human reaction times012
across conditions. This suggests an alterna-013
tive processing mechanism that activates when014
memory retrieval fails, consistent with an ana-015
logical account of language processing.016

1 Background017

From killing time and playing dead to running018

baths and making beds, word combinations with019

semi-compositional meanings are ubiquitous in hu-020

man language (Cowie, 1998). Often referred to as021

collocations, these idiosyncratic lexical elements022

comprise one word used in its literal sense and023

another in its figurative sense, constrained by an024

arbitrary restriction on substitution (Mel’čuk, 2003;025

Howarth, 1998). To illustrate, one can raise ques-026

tions or lift bans, but neither #lift questions nor027
#raise bans. Collocations are syntactically well028

formed, but deviate from or violate the expected se-029

mantic representation (Culicover et al., 2017). For030

example, the verb kill prototypically requires an031

animate object, so one can kill bugs and kill trees,032

but not *kill books. Yet one can kill time, hope,033

and dreams. Collocations are the largest subset of034

formulaic language (Barfield and Gyllstad, 2009a)035

with many being cross-linguistically attested (Ya-036

mashita, 2018). It is hardly surprising, then, that037

proper knowledge and use of such units provides038

fluency and idiomaticity to the language user (Paw-039

ley and Syder, 1983; Durrant and Schmitt, 2009).040

However, they pose an enormous hurdle to second- 041

language learners and machines. 042

According to Howarth (1998), human lan- 043

guage lies on a theoretical continuum of semantic 044

compositionality—the degree to which the mean- 045

ing of a phrase can be derived from the meaning 046

of its constituent parts and their syntactic relations 047

(Frege, 1892). Fully compositional combinations 048

(e.g., chase rabbits, chase thieves, etc.) and fully 049

non-compositional figurative idioms (e.g., chase 050

one’s tail, chase rainbows)1 lie on extreme ends 051

of the spectrum. Semi-compositional collocations 052

(e.g., chase dreams, chase money, etc.) lie in be- 053

tween. The psychological validity of this contin- 054

uum has been tested with the expectation that a 055

decrease in compositionality is directly propor- 056

tional to a decrease in processing time (Gyllstad 057

and Wolter, 2016). However, empirical evidence 058

shows that while collocations are processed slower 059

and less accurately than fully compositional com- 060

binations (Gyllstad and Wolter, 2016; de Souza 061

et al., 2024), fully opaque and non-compositional 062

figurative idioms (e.g., break the ice) are processed 063

faster and more accurately than compositional com- 064

binations (e.g, break the cup) (Carrol and Con- 065

klin, 2020; Tabossi et al., 2008). It appears that 066

idioms are processed the fastest, followed by com- 067

positional units, and collocations are processed the 068

slowest. 069

This disparity is also reflected in acquisition. 070

Applied Linguistics research shows that second 071

language (L2) learners—be they early sequential 072

bilinguals (Nishikawa, 2019; Riches et al., 2022) or 073

1It is important to note that (Howarth, 1998) also spec-
ifies a fourth category called "pure idioms" (e.g., blow the
gaff, take a leak, shoot the breeze). These do not possess
well-specified literal meanings (see Mueller and Gibbs, 1987,
for further reading) and comprise a very small subset of for-
mulaic language occurring quite infrequently (Grant, 2005).
Furthermore, most of the studies in this area focus on figura-
tive idioms that have an additional literal reading (e.g., kick
the bucket). Therefore, in order to constrain the scope of this
paper, we limit our discussion to figurative idioms.
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adults (Yamagata et al., 2023; Sonbul et al., 2024),074

even at high proficiency levels (Wolter and Gyll-075

stad, 2013; Tsai, 2020)—have trouble acquiring076

and using collocations. In contrast, idioms are077

learned better and used more accurately than col-078

locations (Fioravanti et al., 2021). Cast under the079

broader term of conceptual metaphor (Lakoff and080

Johnson, 1980), collocations are also found to be081

challenging for NLP systems (Liu et al., 2022; Za-082

yed et al., 2018; Tayyar Madabushi et al., 2021) de-083

spite the fact that the last decade has seen immense084

progress (see Tong et al., 2021, for a review).085

Although collocations are an important subset of086

human language, to the best of our knowledge there087

is no model of language processing that specifically088

accounts for collocations.089

2 Accounting for Collocation Processing090

It is generally agreed in the language processing091

literature that idioms are stored and retrieved from092

memory holistically (Carrol and Conklin, 2014;093

Noveck et al., 2023; Luo, 2019). There is less094

consensus on how compositional language is pro-095

cessed, and collocations are largely ignored. Draw-096

ing on ideas from the (in)famous Past Tense De-097

bate in morphological processing, researchers in098

Applied Psycholinguistics have resorted to single-099

versus dual-route models to explain processing at100

the multi-word level (Wray, 2002).101

Single-route and dual-route models. Assuming102

a domain-general hypothesis space, single-route103

models posit that all linguistic forms are stored104

in and retrieved from a single massive associa-105

tive memory system2 based on frequency of in-106

put and use (Bybee, 2012; Ambridge and Lieven,107

2011). The more often a unit is encountered and/or108

used, the better it is entrenched in memory (Div-109

jak, 2019; Langacker, 1987). Eventually, this leads110

to automatization—pure retrieval from memory3111

(Bybee, 2006) which makes processing fast and112

effortless. Positing such a homogenous mechanism113

makes for a parsimonious theoretical account of our114

language abilities, in particular, and our cognition115

in general. However, human memory is not only116

limited in capacity (Christiansen and Chater, 2008)117

but is also unstable (Kornell and Bjork, 2009).118

More importantly, behavioural evidence shows that119

2Or that all forms are processed equally as in a connection-
ist network (see McClelland and Rumelhart, 1985).

3See Logan and Etherton (1994) for a domain-general
cognitive account of automatization.

collocations incur a processing cost versus compo- 120

sitional units even when frequency-matched (see 121

de Souza et al., 2024). While memory undoubtedly 122

plays an important role in language processing, it 123

does not provide a satisfactory account for the pro- 124

cessing cost of collocations which are frequently- 125

occurring linguistic units (Barfield and Gyllstad, 126

2009b). 127

The dual-route model assumes a domain-specific 128

hypothesis space, differentiating between words 129

and rules (Pinker, 1991). Regular word forms are 130

thought to be computed analytically (e.g., walk → 131

walk + ed, scratch → scratch + ed) by way of 132

rules, while irregular word forms (e.g., run → ran, 133

think → thought) are processed via holistic storage 134

and retrieval from memory (Pinker, 2013). 135

This theoretical distinction between computa- 136

tion and storage is a practical trade-off between 137

two independent cognitive processes—procedural 138

computation and declarative memory (Pinker and 139

Ullman, 2002). More on-the-fly, rule-based com- 140

putation means less storage. More storage means 141

less computation. Positing such a heterogenous 142

mechanism makes for a persuasive theoretical ac- 143

count of how human language can be infinitely 144

compositional despite our limited cognitive capac- 145

ities (O’Donnell et al., 2009; Galke et al., 2024). 146

The dual-route explanation is used to account for 147

formulaic language processing as a whole, i.e., it 148

does not distinguish between the various subsets of 149

multi-word units such as idioms, phrasal verbs, bi- 150

nomials, etc. (see Wray, 2002, 2008; Sidtis, 2020). 151

All formulaic language is thought to be stored, 152

while compositional language is computed on the 153

fly. Memory retrieval is faster than analytic process- 154

ing (Logan, 1997; Dasgupta and Gershman, 2021), 155

therefore formulaic language is thought to be pro- 156

cessed faster than non-formulaic language (Carrol 157

and Conklin, 2014; Vilkaite and Schmitt, 2019). 158

This is empirically consistent across a variety of 159

tasks only in the case of fully non-compositional 160

units like idioms (Noveck et al., 2023). However, 161

dual-route hypotheses make a binary distinction be- 162

tween compositional and formulaic language which 163

does not consider the effect of frequency on com- 164

putation and retrieval. If collocations are frequent 165

and retrieved from memory, the processing cost 166

is unpredicted unlike the processing advantage for 167

idioms. 168

Analogy. Neither the single-route nor the dual- 169

route views satisfactorily explain collocational pro- 170
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cessing, underscoring the need for a model which171

can account for a more fine-grained representation172

of semantic compositionality. One such plausi-173

ble mechanism is analogical reasoning (Eddington,174

2000; Ambridge, 2020). Like single-route models,175

this domain-general approach posits that all lin-176

guistic units are processed by a single mechanism177

(Skousen, 1990). However, in addition to memory178

retrieval, it posits on-the-fly analogy without resort-179

ing to any rule-based mechanisms. On receiving an180

input, a memory search is undertaken to find analo-181

gous exemplars previously experienced. The input182

is then evaluated based on the degree of similarity183

in order to find the most frequent category within184

the found set of most similar exemplars (Gentner185

and Namy, 2006). In principle, analogy is un-186

bounded (Blevins and Blevins, 2009)—similarities187

can be detected at various levels ranging from per-188

ceptual (e.g., noticing the shared feature between189

red car and red flower) to relational (e.g., noticing190

that two objects from two different rows of objects191

share the middle position) and multiple mappings192

can be made (Smet and Fischer, 2017; Gentner and193

Markman, 1997). This property makes analogi-194

cal reasoning a powerful processing mechanism195

as it supports flexible cross-domain generalization196

(Doumas et al., 2022). Proponents of this view197

see analogy as the core driver of human cognition198

(Hofstadter and Sander, 2013; Hofstadter, 1982).199

Analogy allows speakers to make abstract gener-200

alizations from known patterns to novel structures,201

providing a flexible account for a variety of phe-202

nomena ranging from narrative building (Fish et al.,203

2024) to language change (Smet and Fischer, 2017).204

However, analogy is effortful (Gick and Holyoak,205

1980; Noveck et al., 2023), and it is unlikely that206

a language user is using on-the-fly analogical pro-207

cesses every single time an input is encountered.208

Furthermore, an adequate model of analogy must209

be constrained enough to explain why speakers gen-210

eralize over certain relations and not others and it211

is hard to predict which analogies will actually be212

drawn (Albright, 2009; Dunbar).213

3 The Present Study214

Based on the review above, it would be uncontro-215

versial to say that memory is critical to all forms216

of language processing (see also Divjak, 2019; Di-217

vjak et al., 2022; Corballis, 2019). It encapsulates218

single-route processes, is an integral component219

of dual-route models, and is the first step in anal-220

ogy (Gentner and Colhoun, 2010). Therefore, as 221

a first step towards a model that accounts for col- 222

locational processing, we test the extent to which 223

simple memory retrieval is sufficient to reproduce 224

human processing trends. 225

We begin by confirming the trends, which we 226

surmise from the literature. To the best of our 227

knowledge, there exists no behavioural study which 228

has investigated the processing of compositional 229

units, collocations and idioms in the same task. We 230

do so by extending de Souza et al. (2024) and test 231

L1 English speakers on an acceptability judgement 232

task (AJT) using stimuli from all three conditions. 233

We analyse reaction times (RTs) and accuracy. 234

Next, we simulate memory retrieval under two 235

empirically ascertained factors that affect colloca- 236

tional processing: frequency (Wolter and Gyllstad, 237

2013) and semantics (Gyllstad and Wolter, 2016; 238

Fioravanti et al., 2021). We implement a well- 239

established frequency-based model of memory— 240

MINERVA2 (Hintzman, 1984), and adopt distri- 241

butional semantic representations (Landauer and 242

Dumais, 1997; Mikolov et al., 2013). We modify 243

MINERVA to simulate RTs and load its memory 244

with contextualized vector representations from 245

Sentence-BERT (Reimers and Gurevych, 2019), 246

according to the frequency of the stimuli in the 247

corpus. We explore successful and failed retrievals 248

to assess their influence on the processing signa- 249

tures of different item conditions. Our research 250

questions are as follows: (1) Is there a statistically 251

significant difference in processing speed and ac- 252

curacy between compositional items, collocations 253

and idioms? (2) Does MINERVA replicate the pro- 254

cessing trends observed in humans? 255

In keeping with the literature, we expect idioms 256

to be processed fastest, followed by compositional 257

items, with collocations being the slowest. We ex- 258

pect MINERVA to also show differences between 259

conditions. However, based on the review above, 260

we do not expect it to match human processing sig- 261

natures. Instead, we expect to see only frequency 262

effects. Given that all items would be familiar to 263

an L1 English speaker and present in MINERVA’s 264

memory, we expect no differences in accuracy. 265

4 Behavioural Experiment 266

4.1 Methodology 267

Stimuli de Souza et al. (2024) introduced a stim- 268

ulus set consisting of 100 Verb-Noun collocations 269

(e.g., spill secrets) and 100 compositional Verb- 270
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Noun combinations containing the same verb as271

the collocation (e.g., spill water). We attempted272

to augment this stimulus set with a matching fig-273

urative idiom (e.g., spill the beans) for each verb274

with the help of the ‘word sketch’ function in The275

Sketch Engine’s enTenTen21 corpus (Kilgarriff276

et al., 2024). However, we were only able to iden-277

tify idioms for 82 verbs in the dataset resulting in278

a final dataset of 246 target items (1 collocation,279

one composition, and one idiom for each of the280

82 verbs). 82 baseline items, nonsense Verb-Noun281

combinations (fry knob), were created to use as dis-282

tractors in the experiment. The dataset was divided283

into 3 folds of 82 items wherein no two items had284

the same verb. As expected, there are statistically285

significant differences between the mean frequen-286

cies of all three constructions with idioms being287

the most frequent, followed by collocations and288

compositional items being the least frequent group289

(see Appendix C for more details). We account290

for this discrepancy by including frequency as a291

covariate in our statistical models.292

Participants & Task A total of 186 L1 English293

speakers (F = 112; M = 71; NB = 3) were294

recruited using Prolific. They were remunerated295

£1.50 for their participation4. The mean age of296

the sample was 38.6 years (SD = 10.81). They297

were asked to judge whether or not the word combi-298

nation presented to them sounded acceptable (i.e.,299

would they as L1 English speakers use this word300

combination in their everyday speech). They were301

asked to respond as quickly and accurately as pos-302

sible, by pressing the ‘y’ key for yes or the ‘n’ key303

for no. During testing, each participant saw 164304

items: 82 target items and 82 distractors. Items305

were presented in an individualized random order.306

A fixation cross with an inter-stimulus interval of307

350 ms was presented between trials. Trials timed308

out at 8,000 ms if no decision was taken.309

Data Pre-processing Data pre-processing was310

carried out using R version 4.4.1 "Race for Your311

Life" (R Core Team, 2024). Due to an error in data312

collection, data of four participants were replaced.313

We also remove all incorrect trials for reaction time314

analyses (2, 752; s.f. Appendix C.1. We then elim-315

inated responses below 450 ms and responses over316

3.5 standard deviation from the grand mean includ-317

ing time-outs. These outliers accounted for 1.484%318

of the total data (n = 30, 504 including distractors).319

4The study received ethics approval.

Figure 1: Left: mean reaction times (ms) by condition.
Error bars indicate bootstrapped confidence intervals.
Right: decile plot of reaction times by condition. Note
the differences in the y-axes.

In terms of accuracy, all participants scored above 320

50%. However, we found 4 items with a mean accu- 321

racy of less than 50%. We eliminated those items 322

along with other items that comprised the same 323

verbs from our analyses. We do not analyse distrac- 324

tors (15, 252). All reaction time (RT) analyses are 325

conducted on this final dataset (n = 13, 369). 326

4.2 Statistical Modelling 327

We first specified a maximal model as “justified 328

by the design” (Barr et al., 2013). The main de- 329

pendent variable was the reaction times (RTs) from 330

the acceptability judgement task while the main 331

predictor variable was Condition (Compositional, 332

Collocation, Idiom; treatment coded, with idiom 333

as the reference level). Phrasal Frequency (scaled) 334

was included as a covariate. The maximal converg- 335

ing random effect structure included intercepts for 336

Participant and Verb. The analysis model in R syn- 337

tax specified using the ’lme4’ (Bates et al., 2015) 338

package is as follows: 339

RT ∼ Condition + Phrasal Frequency + (1 340

| ID) + (1 | Verb) 341

4.3 Results 342

Figure 1 shows the mean reaction times (RTs) by 343

condition, as well as a breakdown by decile. Col- 344

locations have the slowest responses with a mean 345

of 1007.87 ms (SD = 370.84 ms) compared to 346

compositional items (995.32 ms, SD = 375.76 347

ms) and idioms (984.20 ms, SD = 365.39 ms). 348

Our statistical results showed a small, signif- 349

icant difference in RTs between compositional 350

items and idioms (β = 4.69;SE = 2.240; p = 351

0.037), suggesting that compositional units were 352
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processed slower than idioms. A larger differ-353

ence was found between collocations and idioms354

(β = 13.80;SE = 1.760; p < 0.001), replicat-355

ing the processing costs predicted by the litera-356

ture. Unsurprisingly, Phrasal Frequency also has357

a significant effect on RTs (β = −18.50;SE =358

1.640; p < 0.001), corresponding to a 18.5 ms359

decrease in RT for every 1 standard deviation in-360

crease in phrasal frequency. In terms of accuracy,361

we found no significant difference between idioms362

and compositional items, but we do see a marginal363

difference (p = 0.04) between idioms and colloca-364

tions. See Appendix C.1 for detailed results.365

5 Modelling Memory Retrieval with366

MINERVA367

As a first step toward elucidating the cognitive368

mechanisms underlying the processing trend that369

humans display across the compositionality con-370

tinuum, we investigate the extent to which we371

can account for the trend with memory retrieval372

alone. MINERVA is an instance-based model of373

episodic memory that has been successfully ap-374

plied to many cognitive phenomena from frequency375

judgements (Hintzman, 1988) to false memory376

(Arndt and Hirshman, 1998). It has also been used377

to model artificial grammar learning (Jamieson and378

Mewhort, 2009) and, recently, to metaphor recog-379

nition (Nick Reid and Jamieson, 2023).380

MINERVA’s core assumptions are: (i) every item381

encountered leaves a memory trace, represented as382

a distributed set of features, and (ii) similar items383

have similar traces. Similarities between present384

and past encounters drive item-specific and parallel385

memory retrieval. As a global memory model, it386

encapsulates both episodic and semantic memory387

which communicate with each other. On encounter-388

ing a stimulus, the episodic memory sends a probe389

to the semantic memory to retrieve traces from past390

encounters. The familiarity of the probe is then391

calculated as the sum of the values of a similarity392

measure between the probe and each stored trace.393

MINERVA is instantiated in a linear algebra sys-394

tem. The MINERVA memory M is an n×d matrix,395

each row of which contains a d-dimensional mem-396

ory trace vector. When cued for retrieval with a397

probe p ∈ Rd, MINERVA retrieves the represen-398

tation of the probe iff the probe’s familiarity f is399

greater than a threshold K ∈ [0, 1). Familiarity is400

calculated by taking the cosine similarity s of the401

probe to all instances stored in memory, scaling s402

to reflect activation (weighting) of memory items 403

a over elapsed time τ , and linearly combining in- 404

stances in memory to compute a memory echo e. 405

The familiarity score at timestep τ is the cosine 406

similarity of the echo to the probe, following this 407

system of equations: 408

s = sim(p,M) (1) 409

aτ = sτ sign(s) (2) 410

eτ = aτM (3) 411

fτ = sim(eτ , p) (4) 412

Modelling AJT Responses with Taus (τ ) The 413

free parameter τ is used to accentuate differences 414

in similarity values (Hintzman, 1988; Nick Reid 415

and Jamieson, 2023). By raising the value of τ , 416

higher-similarity memory traces will elicit expo- 417

nentially more activation, allowing those traces to 418

play a larger role in the overall activation profile 419

versus pooling a potentially large number of low- 420

similarity items. 421

Following Nick Reid and Jamieson (2023), we 422

depart from prior work wherein τ is kept constant 423

for a particular experiment and model reaction 424

times by dynamically increasing τ for a particu- 425

lar probe p until a desired threshold of familiarity 426

K ∈ [0, 1) is reached. At this point, we take the 427

final value of τ as a proxy for the time required 428

to recognize p from memory, i.e, a proxy for reac- 429

tion time (RT). We set a time-out at τ = 300 after 430

which the next probe is presented. 431

In human acceptability judgements, reaction 432

times serve as a proxy for processing difficulty. 433

We implicitly model acceptability judgements in 434

MINERVA as a function of whether the familiarity 435

threshold K is reached within the allowable time 436

window. If the familiarity score surpasses K before 437

the time-out, i.e., successful recognition, we treat 438

this as a "yes". Conversely, if familiarity remains 439

below the threshold when τ = 300, we treat the 440

failure to retrieve as a "no" response. 441

5.1 Motivations & Assumptions 442

Collocational processing is known to be driven by 443

two factors: semantic transparency and frequency 444

(see Gyllstad and Wolter, 2016; Fioravanti et al., 445

2021). Our model captures semantic transparency 446

by means of distributional semantics, i.e, vector 447

embeddings, while frequency is captured by means 448

of phrasal frequency in an Internet-wide text corpus. 449

We demonstrate the effect of both factors in our 450

ablations in Appendix E. 451
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Figure 2: Illustration of how embeddings are noised
and loaded into MINERVA’s memory matrix M . Colors
depict values within a vector. Note that the noise vectors
ϵ are independently sampled for each memory trace.

Semantics of Memory Traces Using distributed452

vector representations as memory traces for MIN-453

ERVA is well-established in the literature (Chubala454

and Jamieson, 2013; Jamieson et al., 2018;455

Nick Reid and Jamieson, 2023). Given that the456

figurative idioms (e.g., spill the beans) also have a457

compositional reading, we need a contextualized,458

fine-grained vector representation to capture the459

semantics of each word combination. Therefore,460

we rely on Sentence-BERT (sBERT) which pro-461

vides semantically meaningful vector embeddings462

for sentences (Reimers and Gurevych, 2019). To463

derive the vector embedding for each of the 246464

target stimuli, we follow Vulić et al. (2020). First,465

we collect a set of 100 sentences of the word com-466

bination5 from the enTenTen21 corpus, in which467

the noun occurs as the direct object of the verb.468

We feed each sentence to sBERT obtaining a set469

of contextualized word embeddings representing470

each word in the sentence (we perform mean pool-471

ing over sub-words). Given that the higher layers472

of BERT architectures are the most sensitive to473

lexical semantics (Reif et al., 2019), we take our474

embeddings from the last hidden layer of the model.475

From each of the 100 sentences, we extract the em-476

beddings corresponding to the verb and the noun477

and average across them separately, resulting in478

the mean contextualized representation of the verb479

when paired with the noun, and of the noun when480

paired with the verb. Finally, we concatenate the481

mean embedding for the verb with the mean embed-482

ding for the noun to form the vector representation483

of our stimulus6.484

5Distractor items were not included in the simulations as
they are nonsense combinations, have no context sentences
and would have very low frequency in MINERVA’s memory.

6We use concatenation instead of mean pooling as our stim-
uli are all Verb + Direct Object and concatenation preserves
word order and therefore, syntactic role information. However,

Memory Frequencies & Forgetting In accor- 485

dance with the instance theory, MINERVA’s re- 486

trieval time is inversely proportional to the number 487

of memory traces that strongly respond to a partic- 488

ular probe (Nick Reid and Jamieson, 2023). There- 489

fore, we populate MINERVA’s memory matrix us- 490

ing 10, 000 items sampled proportionally to their 491

phrasal frequency. Following prior work, we sim- 492

ulate forgetting by adding zero-centered Gaussian 493

noise to each memory trace vector such that each 494

dimension of each trace has an independent proba- 495

bility F ∈ [0, 1) of being corrupted with noise. The 496

more frequent a particular item, the more traces it 497

will have in memory, averaging out the noise and 498

making high-frequency items easier to retrieve. 499

5.2 Simulations 500

To explore the extent to which simple memory re- 501

trieval is sufficient to reproduce processing trends 502

for each condition, we load the memory matrix 503

as described above (see Figure 2) and then test 504

MINERVA’s recognition capabilities using a noise- 505

less vector embedding of the target stimulus as 506

the probe. To simulate N different participants 507

who are exposed to different samplings of items 508

from the same environmental distributions, as well 509

as different patterns of forgetting, we run each 510

simulation N = 300 times with different random 511

seeds, re-sampling and re-noising the memory ma- 512

trix each time. We perform a thorough hyperparam- 513

eter sweep of activation threshold K and forgetting 514

probability F to ensure robustness. We discuss 515

results for hyperparameter values K = 0.99 and 516

F = 0.8, although our results are robust across 517

many hyperparameter combinations (see Figure 9). 518

We use the same statistical model described in 519

Section 4 to analyse the effect of semantics and 520

frequency on retrieval (i.e., Tau). 521

5.3 Results 522

The results of our computational experiment are 523

shown in Figure 3. As MINERVA was not pre- 524

sented with any baseline items and as all items 525

were in MINERVA’s memory, it should have suc- 526

ceeded at recognizing all items. Thus, we first con- 527

sidered only successful retrievals. Despite being 528

provided with meaningful embeddings and frequen- 529

cies, the model failed to capture human processing 530

trends. Collocations were retrieved faster than id- 531

ioms (β = −0.41;SE = 0.004; p < 0.001) while 532

see Section E.3.
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Figure 3: Left: mean Tau (τ ) by condition for success-
ful retrievals in MINERVA. The y-axis represents mean
Tau, the model’s output which acts as a proxy for reac-
tion times. Error bars indicate bootstrapped confidence
intervals. Right: percentage of failed retrievals, i.e.,
timeouts, per condition. Note that while the pattern of
Taus on successful retrievals is different from the pat-
tern of human RTs, the pattern of timeouts per condition
matches the pattern of human RTs.

compositional items were retrieved slower than id-533

ioms (β = 0.62;SE = 0.004; p < 0.001). See534

Appendix D for more details.535

Given the surprising results, we visually in-536

spected the failures to retrieve, i.e., timeouts (see537

3, right panel). MINERVA timed out on 50% of538

the retrievals for collocations, followed by com-539

positional items (38.6%), with idioms timing out540

the least (33.8%). The pattern of retrieval failures541

in MINERVA appears to qualitatively capture the542

trend in human RTs across the three conditions.543

Additionally, we found that MINERVA always544

succeeds at retrieving items above a high frequency545

threshold (Figure 4, black line). We find a simi-546

lar frequency boundary in humans (Figure 4, green547

line), which lies very close to the MINERVA thresh-548

old. On items above this threshold (16 composi-549

tional, 18 collocations, 17 idioms), participants did550

not show a significant difference in RT by con-551

dition, while still showing a significant effect of552

frequency.553

6 Discussion554

Our behavioural results show that idioms are pro-555

cessed fastest with compositional items coming556

a close second (although the significance was557

marginal) and that collocations are processed by far558

the slowest. This effect occurs despite collocations559

and compositional items being very close in fre-560

quency (with the balance in favour of collocations).561

The result is mirrored in our computational find-562

Figure 4: Percentage of failed retrievals (i.e., timeouts)
in MINERVA per stimulus item, as a function of the
frequency of the item. The x-axis is displayed in log
scale. The black line indicates the frequency threshold
(f = 27123) above which MINERVA times out less
than 1% of the time. The green line (f = 28000) in-
dicates the frequency threshold above which condition
stops being a significant predictor of human RTs.

ings. These stark differences in processing speed 563

for collocations indicate that they should be treated 564

as a separate class of linguistic items, apart from 565

the broad umbrella of formulaic language. 566

Our simulation results suggest that simple mem- 567

ory retrieval, as implemented in a frequency based 568

model of memory, is insufficient to fully explain hu- 569

man processing trends across idioms, collocations, 570

and compositional items. MINERVA was fastest 571

to retrieve collocations, followed by idioms, and 572

finally compositional items were the slowest. Fur- 573

thermore, MINERVA exhibited many more incor- 574

rect responses, i.e., unsuccessful memory retrievals. 575

However, unlike the pattern of Taus for successful 576

retrievals, retrieval failures do appear to capture the 577

key asymmetries in human processing. Once again 578

this effect is especially noticeable for collocations. 579

These findings indicate that additional cognitive 580

mechanisms may be required to fully account for 581

human behavioural patterns. 582

Notably, both asymmetries—retrieval failures in 583

MINERVA and reaction times in humans—only 584

occur below a certain frequency threshold. We sug- 585

gest that items above this threshold are sufficiently 586

frequent so as to be holistically retrieved across 587

conditions. Below this threshold, retrieval starts 588

to fail. Given that MINERVA does not have any 589

processing mechanism beyond memory retrieval, it 590

simply times out on these items. We conjecture that 591

at this point, humans invoke other processing mech- 592
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anisms to facilitate interpreting of the stimulus and593

incur a cost in reaction time. This is consistent with594

usage based theories of language, which posit that595

frequent encounters with a linguistic units lead to596

entrenchment (Langacker, 1987).597

The fact that collocations incur such a process-598

ing cost compared to frequency-matched idioms599

and compositional items show that single-route ac-600

counts provide an incomplete picture. They further601

demonstrate that dual-route accounts, which posit602

a binary class of formulaic versus compositional603

language, are also insufficient to account for the604

processing of this large and frequent subset of lan-605

guage. We posit that that the analogical account of606

language processing may provide a more complete607

explanation of these findings, and that further work608

should explore this proposal.609

As discussed above, memory retrieval is the first610

step in analogical processing. Hence, processing a611

sufficiently frequent item via analogy will simply612

resort to memory retrieval613

. Such a mechanism would be invariant to the614

semantic compositionality of the item in question,615

as we have seen in humans. Below this frequency616

threshold, however, proper analogical machinery617

comes into play.618

In compositional items, both the verb and the619

noun play a prototypical role. Thus, even though620

the language user may not recall this exact verb-621

noun pairing from memory, it is relatively easy to622

map the verb and noun to similar instances of the623

same, due to the high semantic overlap between624

compositional uses of the verb and the noun. In625

collocations, however, the verb is not used in its626

prototypical sense. Resolving the meaning of the627

verb requires a much “farther” mapping, which628

may involve increased search over possible abstrac-629

tions of the verb or extensive structure-mapping.630

Engaging such machinery inevitably incurs a pro-631

cessing cost with respect to compositional items632

(Gentner and Namy, 2006), as reflected in RTs.633

Despite the fact that idioms also time out, we hy-634

pothesize that they are still processed via memory635

retrieval even below the frequency threshold. At636

first, this appears contradictory. However, note that637

the idioms in our dataset are also highly frequent in638

the corpus. We speculate that when encountering639

a novel idiom, the learner implicitly has a choice640

to either memorize the idiom, or discard it entirely.641

By choosing idioms that are highly frequent in the642

corpus, our dataset is conditioned upon learners643

already having memorized the idioms. The lack of644

an analytic mechanism makes it difficult to inter- 645

pret novel idioms. Furthermore, the fact that every 646

learned idiom incurs a fixed cost in remembering 647

it may account for the relative sparsity of idioms 648

in language, i.e., lower type frequency, and their 649

high frequency of occurrence, i.e., higher token 650

frequency (Grant, 2005) . 651

The retrieval failures for idioms seem to stem 652

from a limitation of our dataset—the fact that we 653

only consider figurative idioms which have a com- 654

positional reading. We were unable to ascertain the 655

relative frequency of idiomatic versus literal read- 656

ings in the context sentences of every idiom in our 657

stimuli set which we use to generate embeddings. 658

It is also unknown to what precise extent sBERT 659

can accurately represent idiomatic meanings, nor 660

whether our human participants who interpreted 661

idiomatic stimuli in a figurative sense. Combined, 662

these factors suggest that the semantics of our set 663

of idioms are somewhat akin to our set of compo- 664

sitional items, and some of the processing trends 665

which pertain to compositional items are inadver- 666

tently present in the trend of responses to idioms. 667

In line with the holistic retrieval hypothesis, we 668

surmise that idioms for which the literal reading 669

is much less frequent than the idiomatic one (e.g., 670

kick the bucket) will tend to be processed faster and 671

with fewer timeouts than more ambiguous ones 672

(e.g., hold the key). Future work will attempt to 673

investigate this prediction and further augment our 674

understanding of idiomatic processing by including 675

pure idioms, i.e., those without a literal reading, in 676

the dataset, and employing other behavioural tasks 677

which involve presentation of items within context 678

(e.g., self-paced reading). 679

One intriguing implication of our computational 680

experiment may be of interest to the NLP commu- 681

nity. Specifically, MINERVA’s retrieval mechanism 682

bears similarities to retrieval-augmented generation 683

(RAG) approaches (Lewis et al., 2020, i.a.). Our 684

findings suggest that sBERT embeddings of semi- 685

compositional language are particularly prone to 686

failures in retrieval. Given the prevalence of collo- 687

cations in language, this may significantly impair 688

language understanding and generation in RAG 689

models. 690

Overall, the present study demonstrates that for 691

both humans and machines, collocations are a big- 692

ger “pain in the neck” (Sag et al., 2002) than other 693

subsets of the semantic compositionality contin- 694

uum, and that memory retrieval does leave some- 695

thing on the table. 696
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A Limitations 1065

Our approach relies on contextual embeddings to 1066

capture semantic information. However, these em- 1067

beddings do not always differentiate clearly be- 1068

tween compositional and idiomatic readings. Given 1069

that our idiomatic stimuli also have a productive 1070

reading, the same embedding may be used for both 1071

literal and figurative interpretations. Similarly, we 1072

cannot ensure that our task is eliciting an idiomatic 1073

reading in humans as human listeners disambiguate 1074

based on context. 1075

The current dataset was not built from scratch 1076

with frequency-matching criteria for idioms. Fre- 1077

quency is a well-established predictor of language 1078

processing and an ideal dataset would equate or 1079

carefully control the frequency distributions of id- 1080

ioms relative to other word types. 1081

Our study exclusively examined verb–noun (VN) 1082

collocations. While these are a critical class of mul- 1083

tiword expressions, little is known about other col- 1084

locational structures (e.g., adjective–noun, phrasal 1085

verbs, etc.) which are also prevalent in natural 1086

language and may be processed differently. Ex- 1087

tending our investigation to these additional types 1088

will be important for assessing the generalizabil- 1089

ity of our findings across the broader spectrum of 1090

semi-compositional linguistic units. 1091

MINERVA2 provides a parsimonious framework 1092

for modelling memory retrieval, yet it inherently 1093

simplifies many aspects of human cognitive pro- 1094

cessing. The model does not integrate attentional 1095

mechanisms or dynamic contextual cues beyond 1096

the static embeddings provided, and it does not ac- 1097

count for developmental changes in memory and 1098

language processing. These simplifications may 1099

limit the model’s ability to capture the full com- 1100

plexity of human language processing, particularly 1101

in cases where retrieval failures (time-outs) inter- 1102

act with other cognitive processes.Our simulations 1103

relied on specific hyperparameter settings (e.g., ac- 1104

tivation threshold K=0.99 and forgetting probabil- 1105

ity F=0.8) that were chosen based on qualitative 1106

assessments. Although results were robust across a 1107

range of parameter values, the possibility remains 1108

that different parameterizations could yield differ- 1109

ent patterns. 1110

12

https://doi.org/10.1111/ijal.12311
https://doi.org/10.1111/ijal.12311
https://doi.org/10.1111/ijal.12311
https://doi.org/10.1111/ijal.12311
https://doi.org/10.1111/ijal.12311
https://doi.org/10.1093/applin/amx030
https://doi.org/10.1093/applin/amx030
https://doi.org/10.1093/applin/amx030
https://doi.org/10.1093/applin/amx030
https://doi.org/10.1093/applin/amx030
https://doi.org/10.18653/v1/2020.emnlp-main.586
https://doi.org/10.18653/v1/2020.emnlp-main.586
https://doi.org/10.18653/v1/2020.emnlp-main.586
https://doi.org/10.1017/S0272263113000107
https://doi.org/10.1017/S0272263113000107
https://doi.org/10.1017/S0272263113000107
https://doi.org/10.1017/S0272263113000107
https://doi.org/10.1017/S0272263113000107
https://doi.org/10.1353/lan.2004.0209
https://doi.org/10.1353/lan.2004.0209
https://doi.org/10.1353/lan.2004.0209
https://doi.org/10.1017/S0272263122000225
https://doi.org/10.1017/S0272263122000225
https://doi.org/10.1017/S0272263122000225
https://doi.org/10.1075/jsls.17024.yam
https://doi.org/10.1075/jsls.17024.yam
https://doi.org/10.1075/jsls.17024.yam
https://doi.org/10.1075/jsls.17024.yam
https://doi.org/10.1075/jsls.17024.yam
https://doi.org/10.18653/v1/W18-0910
https://doi.org/10.18653/v1/W18-0910
https://doi.org/10.18653/v1/W18-0910


B Dataset Statistics1111

Table 1: Descriptive statistics of phrasal frequency by
condition

Condition Mean SD N
Compositional 19374.47 30671.53 78
Collocation 21528.21 30971.42 78
Idiom 36784.68 87468.40 78

Figure 5: Item frequencies across conditions, by decile

C Human Data 1112

C.1 Reaction times & Accuracy 1113

Table 2: Descriptive statistics of human reaction times
(ms) by condition

Condition Mean SD N
Idiom 984.20 365.39 4462
Compositional 995.32 375.76 4423
Collocation 1007.87 370.84 4484

Table 3: Descriptive statistics of human accuracy by
condition

Condition Mean SD N
Idiom 0.93 0.25 4785

Compositional 0.92 0.27 4791
Collocation 0.94 0.24 4772

Table 4: Number of incorrect trials by condition

Condition n
Compositional 400
Collocation 464
Idiom 433
Baseline 1455

Table 5: GLMM results of accuracy in humans

Dependent variable:

Accuracy

Compositional −0.076
(0.085)

Collocation 0.196∗∗

(0.089)

Frequency 1.020∗∗∗

(0.187)

Constant 3.510∗∗∗

(0.148)

N 14,348

Note: ∗∗p<0.05; ∗∗∗p<0.01
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D GLMM Results for Main Simulation1114

Table 6: GLM results for human AJT reaction times,
compared to Tau, a proxy for reaction times, simulated
in MINERVA. MINERVA is run with K = 0.99, F =
0.8

Dependent variable:

RT Tau

Human MINERVA

Compositional 4.690∗∗ 0.624∗∗∗

(2.240) (0.004)

Collocation 13.800∗∗∗ −0.410∗∗∗

(1.760) (0.004)

Frequency −18.500∗∗∗ −0.541∗∗∗

(1.640) (0.004)

Constant 1,047.0∗∗∗ 5.900∗∗∗

(2.140) (0.004)

N 13,369 43,708

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

E Ablations 1115

E.1 Semantics-only 1116

In the semantics-only ablation wherein the model 1117

was loaded with all instances being equally fre- 1118

quent, we visually observed that idioms were re- 1119

trieved slower than compositional items when time- 1120

outs were not included. The proportions of time- 1121

outs are similar to those of the main experiment, 1122

with collocations timing out much more frequently. 1123

In the semantics-only condition, however, compo- 1124

sitional items time out less frequently than idioms. 1125

This result is not surprising given the marginal sig- 1126

nificance of the difference between human RTs for 1127

idioms and compositional items. However, investi- 1128

gating the cause of this discrepancy is an interesting 1129

avenue for future work. 1130

Figure 6: Left: mean Tau (τ ) by condition for successful
retrievals in Ablation 1, wherein frequency information
was eliminated. The y-axis represents mean Tau, the
model’s output which acts as a proxy for reaction times.
Error bars indicate bootstrapped confidence intervals.
Right: percentage of failed retrievals, i.e., timeouts, per
condition in Ablation 1.

E.2 Frequency-only 1131

In the frequency-only ablation, the model was 1132

loaded with embeddings comprised entirely of 1133

Gaussian noise. However, each noise-item was 1134

sampled according to correct frequency informa- 1135
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tion. For successful retrievals, we visually ob-1136

served that idioms and collocations were retrieved1137

equally quickly, whereas compositional items were1138

retrieved slower. Given that frequency drives MIN-1139

ERVA’s retrieval mechanism, the pattern of time-1140

outs for Ablation 2 are not surprising. Idioms1141

which are the most frequent subset time out the1142

least, followed by collocations which are slightly1143

more frequent than compositional units which, in1144

turn, time out the most.1145

Figure 7: Left: mean Tau (τ ) by condition for suc-
cessful retrievals in Ablation 2, wherein semantic infor-
mation was eliminated while leaving the correct item
frequency distribution. The y-axis represents mean Tau,
the model’s output which acts as a proxy for reaction
times. Error bars indicate bootstrapped confidence in-
tervals. Right: percentage of failed retrievals, i.e., time-
outs, per condition in Ablation 2.

E.3 Averaging vs Concatenating sBERT1146

Embeddings1147

In this ablation, we investigate the impact which1148

concatenating verb and noun embeddings has on1149

our modelling results. Instead of concatenating1150

verb and noun embeddings, we perform mean-1151

pooling across them, the same as we do for sub-1152

word tokens. As shown in Figure 8, the trends1153

exhibited by the model in the K = 0.99, F = 0.81154

hyperparameter configuration are largely the same1155

as those reported in the main text.1156

Figure 8: Reduced hyperparameter sweep showing the
effects of mean-pooling the verb and noun embeddings
before loading them into MINERVA, instead of concate-
nating them. Note that the hyperparemeter combination
reported in the main text is K = 0.99, F = 0.8.

F Hyperparameter Sweeps for Simulation 1157

Experiments 1158
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Figure 9: Results of the hyperparameter sweep for all values of activation threshold K and forgetting probability F
for our main experiment. Error bars indicate bootstrapped confidence intervals. Note the difference in scales on the
y-axis.

16



Figure 10: Results of the hyperparameter sweep for all values of activation threshold K and forgetting probability
F for Simulation 2: Semantics-only wherein the matrix was loaded with all items having equal frequency. Error
bars indicate bootstrapped confidence intervals. Note the difference in scales on the y-axis.
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Figure 11: Results of the hyperparameter sweep for all values of activation threshold K and forgetting probability
F for Simulation 2: Semantics-only wherein the matrix was loaded with noised embeddings but with the correct
frequency. Error bars indicate bootstrapped confidence intervals. Note the difference in scales on the y-axis.
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Figure 12: Results of the hyperparameter sweep for all values of activation threshold K and forgetting probability
F for the Null Model wherein all the items in the matrix were loaded with noised embeddings and equal frequency.
Error bars indicate bootstrapped confidence intervals. Note the difference in scales on the y-axis.
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