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Abstract

Despite being ubiquitous in natural language,
collocations (e.g., kick+habit) incur a unique
processing cost, compared to compositional
phrases (kick+door) and idioms (kick+bucket).
We confirm this processing cost with be-
havioural data as well as MINERVA2, a mem-
ory model, suggesting that collocations con-
stitute a distinct linguistic category. While the
model fails to fully capture the observed human
processing patterns, we find that below a spe-
cific item frequency threshold, the model’s re-
trieval failures align with human reaction times
across conditions. This suggests an alterna-
tive processing mechanism that activates when
memory retrieval fails, consistent with an ana-
logical account of language processing.

1 Background

From killing time and playing dead to running
baths and making beds, word combinations with
semi-compositional meanings are ubiquitous in hu-
man language (Cowie, 1998). Often referred to as
collocations, these idiosyncratic lexical elements
comprise one word used in its literal sense and
another in its figurative sense, constrained by an
arbitrary restriction on substitution (Mel’cuk, 2003;
Howarth, 1998). To illustrate, one can raise ques-
tions or lift bans, but neither *lift questions nor
#raise bans. Collocations are syntactically well
formed, but deviate from or violate the expected se-
mantic representation (Culicover et al., 2017). For
example, the verb kill prototypically requires an
animate object, so one can kill bugs and kill trees,
but not *kill books. Yet one can kill time, hope,
and dreams. Collocations are the largest subset of
formulaic language (Barfield and Gyllstad, 2009a)
with many being cross-linguistically attested (Ya-
mashita, 2018). It is hardly surprising, then, that
proper knowledge and use of such units provides
fluency and idiomaticity to the language user (Paw-
ley and Syder, 1983; Durrant and Schmitt, 2009).

However, they pose an enormous hurdle to second-
language learners and machines.

According to Howarth (1998), human lan-
guage lies on a theoretical continuum of semantic
compositionality—the degree to which the mean-
ing of a phrase can be derived from the meaning
of its constituent parts and their syntactic relations
(Frege, 1892). Fully compositional combinations
(e.g., chase rabbits, chase thieves, etc.) and fully
non-compositional figurative idioms (e.g., chase
one’s tail, chase rainbows)' lie on extreme ends
of the spectrum. Semi-compositional collocations
(e.g., chase dreams, chase money, etc.) lie in be-
tween. The psychological validity of this contin-
uum has been tested with the expectation that a
decrease in compositionality is directly propor-
tional to a decrease in processing time (Gyllstad
and Wolter, 2016). However, empirical evidence
shows that while collocations are processed slower
and less accurately than fully compositional com-
binations (Gyllstad and Wolter, 2016; de Souza
et al., 2024), fully opaque and non-compositional
figurative idioms (e.g., break the ice) are processed
faster and more accurately than compositional com-
binations (e.g, break the cup) (Carrol and Con-
klin, 2020; Tabossi et al., 2008). It appears that
idioms are processed the fastest, followed by com-
positional units, and collocations are processed the
slowest.

This disparity is also reflected in acquisition.
Applied Linguistics research shows that second
language (L.2) learners—be they early sequential
bilinguals (Nishikawa, 2019; Riches et al., 2022) or

'Tt is important to note that (Howarth, 1998) also spec-
ifies a fourth category called "pure idioms" (e.g., blow the
gaff, take a leak, shoot the breeze). These do not possess
well-specified literal meanings (see Mueller and Gibbs, 1987,
for further reading) and comprise a very small subset of for-
mulaic language occurring quite infrequently (Grant, 2005).
Furthermore, most of the studies in this area focus on figura-
tive idioms that have an additional literal reading (e.g., kick
the bucket). Therefore, in order to constrain the scope of this
paper, we limit our discussion to figurative idioms.



adults (Yamagata et al., 2023; Sonbul et al., 2024),
even at high proficiency levels (Wolter and Gyll-
stad, 2013; Tsai, 2020)—have trouble acquiring
and using collocations. In contrast, idioms are
learned better and used more accurately than col-
locations (Fioravanti et al., 2021). Cast under the
broader term of conceptual metaphor (Lakoff and
Johnson, 1980), collocations are also found to be
challenging for NLP systems (Liu et al., 2022; Za-
yed et al., 2018; Tayyar Madabushi et al., 2021) de-
spite the fact that the last decade has seen immense
progress (see Tong et al., 2021, for a review).

Although collocations are an important subset of
human language, to the best of our knowledge there
is no model of language processing that specifically
accounts for collocations.

2 Accounting for Collocation Processing

It is generally agreed in the language processing
literature that idioms are stored and retrieved from
memory holistically (Carrol and Conklin, 2014;
Noveck et al., 2023; Luo, 2019). There is less
consensus on how compositional language is pro-
cessed, and collocations are largely ignored. Draw-
ing on ideas from the (in)famous Past Tense De-
bate in morphological processing, researchers in
Applied Psycholinguistics have resorted to single-
versus dual-route models to explain processing at
the multi-word level (Wray, 2002).

Single-route and dual-route models. Assuming
a domain-general hypothesis space, single-route
models posit that all linguistic forms are stored
in and retrieved from a single massive associa-
tive memory system’ based on frequency of in-
put and use (Bybee, 2012; Ambridge and Lieven,
2011). The more often a unit is encountered and/or
used, the better it is entrenched in memory (Div-
jak, 2019; Langacker, 1987). Eventually, this leads
to automatization—pure retrieval from memory>
(Bybee, 2006) which makes processing fast and
effortless. Positing such a homogenous mechanism
makes for a parsimonious theoretical account of our
language abilities, in particular, and our cognition
in general. However, human memory is not only
limited in capacity (Christiansen and Chater, 2008)
but is also unstable (Kornell and Bjork, 2009).
More importantly, behavioural evidence shows that

20r that all forms are processed equally as in a connection-
ist network (see McClelland and Rumelhart, 1985).

3See Logan and Etherton (1994) for a domain-general
cognitive account of automatization.

collocations incur a processing cost versus compo-
sitional units even when frequency-matched (see
de Souza et al., 2024). While memory undoubtedly
plays an important role in language processing, it
does not provide a satisfactory account for the pro-
cessing cost of collocations which are frequently-
occurring linguistic units (Barfield and Gyllstad,
2009b).

The dual-route model assumes a domain-specific
hypothesis space, differentiating between words
and rules (Pinker, 1991). Regular word forms are
thought to be computed analytically (e.g., walk —
walk + ed, scratch — scratch + ed) by way of
rules, while irregular word forms (e.g., run — ran,
think — thought) are processed via holistic storage
and retrieval from memory (Pinker, 2013).

This theoretical distinction between computa-
tion and storage is a practical trade-off between
two independent cognitive processes—procedural
computation and declarative memory (Pinker and
Ullman, 2002). More on-the-fly, rule-based com-
putation means less storage. More storage means
less computation. Positing such a heterogenous
mechanism makes for a persuasive theoretical ac-
count of how human language can be infinitely
compositional despite our limited cognitive capac-
ities (O’Donnell et al., 2009; Galke et al., 2024).
The dual-route explanation is used to account for
formulaic language processing as a whole, i.e., it
does not distinguish between the various subsets of
multi-word units such as idioms, phrasal verbs, bi-
nomials, etc. (see Wray, 2002, 2008; Sidtis, 2020).
All formulaic language is thought to be stored,
while compositional language is computed on the
fly. Memory retrieval is faster than analytic process-
ing (Logan, 1997; Dasgupta and Gershman, 2021),
therefore formulaic language is thought to be pro-
cessed faster than non-formulaic language (Carrol
and Conklin, 2014; Vilkaite and Schmitt, 2019).
This is empirically consistent across a variety of
tasks only in the case of fully non-compositional
units like idioms (Noveck et al., 2023). However,
dual-route hypotheses make a binary distinction be-
tween compositional and formulaic language which
does not consider the effect of frequency on com-
putation and retrieval. If collocations are frequent
and retrieved from memory, the processing cost
is unpredicted unlike the processing advantage for
idioms.

Analogy. Neither the single-route nor the dual-
route views satisfactorily explain collocational pro-



cessing, underscoring the need for a model which
can account for a more fine-grained representation
of semantic compositionality. One such plausi-
ble mechanism is analogical reasoning (Eddington,
2000; Ambridge, 2020). Like single-route models,
this domain-general approach posits that all lin-
guistic units are processed by a single mechanism
(Skousen, 1990). Howeyver, in addition to memory
retrieval, it posits on-the-fly analogy without resort-
ing to any rule-based mechanisms. On receiving an
input, a memory search is undertaken to find analo-
gous exemplars previously experienced. The input
is then evaluated based on the degree of similarity
in order to find the most frequent category within
the found set of most similar exemplars (Gentner
and Namy, 2006). In principle, analogy is un-
bounded (Blevins and Blevins, 2009)—similarities
can be detected at various levels ranging from per-
ceptual (e.g., noticing the shared feature between
red car and red flower) to relational (e.g., noticing
that two objects from two different rows of objects
share the middle position) and multiple mappings
can be made (Smet and Fischer, 2017; Gentner and
Markman, 1997). This property makes analogi-
cal reasoning a powerful processing mechanism
as it supports flexible cross-domain generalization
(Doumas et al., 2022). Proponents of this view
see analogy as the core driver of human cognition
(Hofstadter and Sander, 2013; Hofstadter, 1982).

Analogy allows speakers to make abstract gener-
alizations from known patterns to novel structures,
providing a flexible account for a variety of phe-
nomena ranging from narrative building (Fish et al.,
2024) to language change (Smet and Fischer, 2017).
However, analogy is effortful (Gick and Holyoak,
1980; Noveck et al., 2023), and it is unlikely that
a language user is using on-the-fly analogical pro-
cesses every single time an input is encountered.
Furthermore, an adequate model of analogy must
be constrained enough to explain why speakers gen-
eralize over certain relations and not others and it
is hard to predict which analogies will actually be
drawn (Albright, 2009; Dunbar).

3 The Present Study

Based on the review above, it would be uncontro-
versial to say that memory is critical to all forms
of language processing (see also Divjak, 2019; Di-
vjak et al., 2022; Corballis, 2019). It encapsulates
single-route processes, is an integral component
of dual-route models, and is the first step in anal-

ogy (Gentner and Colhoun, 2010). Therefore, as
a first step towards a model that accounts for col-
locational processing, we test the extent to which
simple memory retrieval is sufficient to reproduce
human processing trends.

We begin by confirming the trends, which we
surmise from the literature. To the best of our
knowledge, there exists no behavioural study which
has investigated the processing of compositional
units, collocations and idioms in the same task. We
do so by extending de Souza et al. (2024) and test
L1 English speakers on an acceptability judgement
task (AJT) using stimuli from all three conditions.
We analyse reaction times (RTs) and accuracy.

Next, we simulate memory retrieval under two
empirically ascertained factors that affect colloca-
tional processing: frequency (Wolter and Gyllstad,
2013) and semantics (Gyllstad and Wolter, 2016;
Fioravanti et al., 2021). We implement a well-
established frequency-based model of memory—
MINERVA?2 (Hintzman, 1984), and adopt distri-
butional semantic representations (Landauer and
Dumais, 1997; Mikolov et al., 2013). We modify
MINERVA to simulate RTs and load its memory
with contextualized vector representations from
Sentence-BERT (Reimers and Gurevych, 2019),
according to the frequency of the stimuli in the
corpus. We explore successful and failed retrievals
to assess their influence on the processing signa-
tures of different item conditions. Our research
questions are as follows: (1) Is there a statistically
significant difference in processing speed and ac-
curacy between compositional items, collocations
and idioms? (2) Does MINERVA replicate the pro-
cessing trends observed in humans?

In keeping with the literature, we expect idioms
to be processed fastest, followed by compositional
items, with collocations being the slowest. We ex-
pect MINERVA to also show differences between
conditions. However, based on the review above,
we do not expect it to match human processing sig-
natures. Instead, we expect to see only frequency
effects. Given that all items would be familiar to
an L1 English speaker and present in MINERVA’s
memory, we expect no differences in accuracy.

4 Behavioural Experiment

4.1 Methodology

Stimuli de Souza et al. (2024) introduced a stim-
ulus set consisting of 100 Verb-Noun collocations
(e.g., spill secrets) and 100 compositional Verb-



Noun combinations containing the same verb as
the collocation (e.g., spill water). We attempted
to augment this stimulus set with a matching fig-
urative idiom (e.g., spill the beans) for each verb
with the help of the ‘word sketch’ function in The
Sketch Engine’s enTenTen21 corpus (Kilgarriff
et al., 2024). However, we were only able to iden-
tify idioms for 82 verbs in the dataset resulting in
a final dataset of 246 target items (1 collocation,
one composition, and one idiom for each of the
82 verbs). 82 baseline items, nonsense Verb-Noun
combinations (fry knob), were created to use as dis-
tractors in the experiment. The dataset was divided
into 3 folds of 82 items wherein no two items had
the same verb. As expected, there are statistically
significant differences between the mean frequen-
cies of all three constructions with idioms being
the most frequent, followed by collocations and
compositional items being the least frequent group
(see Appendix C for more details). We account
for this discrepancy by including frequency as a
covariate in our statistical models.

Participants & Task A total of 186 L1 English
speakers (F' = 112; M = 71; NB = 3) were
recruited using Prolific. They were remunerated
£1.50 for their participation*. The mean age of
the sample was 38.6 years (SD = 10.81). They
were asked to judge whether or not the word combi-
nation presented to them sounded acceptable (i.e.,
would they as L1 English speakers use this word
combination in their everyday speech). They were
asked to respond as quickly and accurately as pos-
sible, by pressing the ‘y’ key for yes or the ‘n’ key
for no. During testing, each participant saw 164
items: 82 target items and 82 distractors. Items
were presented in an individualized random order.
A fixation cross with an inter-stimulus interval of
350 ms was presented between trials. Trials timed
out at 8,000 ms if no decision was taken.

Data Pre-processing Data pre-processing was
carried out using R version 4.4.1 "Race for Your
Life" (R Core Team, 2024). Due to an error in data
collection, data of four participants were replaced.
We also remove all incorrect trials for reaction time
analyses (2, 752; s.f. Appendix C.1. We then elim-
inated responses below 450 ms and responses over
3.5 standard deviation from the grand mean includ-
ing time-outs. These outliers accounted for 1.484%
of the total data (n = 30, 504 including distractors).

*The study received ethics approval.
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Figure 1: Left: mean reaction times (ms) by condition.
Error bars indicate bootstrapped confidence intervals.
Right: decile plot of reaction times by condition. Note
the differences in the y-axes.

In terms of accuracy, all participants scored above
50%. However, we found 4 items with a mean accu-
racy of less than 50%. We eliminated those items
along with other items that comprised the same
verbs from our analyses. We do not analyse distrac-
tors (15, 252). All reaction time (RT) analyses are
conducted on this final dataset (n = 13, 369).

4.2 Statistical Modelling

We first specified a maximal model as “justified
by the design” (Barr et al., 2013). The main de-
pendent variable was the reaction times (RTs) from
the acceptability judgement task while the main
predictor variable was Condition (Compositional,
Collocation, Idiom; treatment coded, with idiom
as the reference level). Phrasal Frequency (scaled)
was included as a covariate. The maximal converg-
ing random effect structure included intercepts for
Participant and Verb. The analysis model in R syn-
tax specified using the ’Ime4’ (Bates et al., 2015)
package is as follows:

RT ~ Condition + Phrasal Frequency + (1
| ID) + (1 | Verb)

4.3 Results

Figure 1 shows the mean reaction times (RTs) by
condition, as well as a breakdown by decile. Col-
locations have the slowest responses with a mean
of 1007.87 ms (SD = 370.84 ms) compared to
compositional items (995.32 ms, SD = 375.76
ms) and idioms (984.20 ms, SD = 365.39 ms).
Our statistical results showed a small, signif-
icant difference in RTs between compositional
items and idioms (8 = 4.69; SE = 2.240;p =
0.037), suggesting that compositional units were



processed slower than idioms. A larger differ-
ence was found between collocations and idioms
(B = 13.80; SE = 1.760;p < 0.001), replicat-
ing the processing costs predicted by the litera-
ture. Unsurprisingly, Phrasal Frequency also has
a significant effect on RTs (8 = —18.50; SE =
1.640;p < 0.001), corresponding to a 18.5 ms
decrease in RT for every 1 standard deviation in-
crease in phrasal frequency. In terms of accuracy,
we found no significant difference between idioms
and compositional items, but we do see a marginal
difference (p = 0.04) between idioms and colloca-
tions. See Appendix C.1 for detailed results.

5 Modelling Memory Retrieval with
MINERVA

As a first step toward elucidating the cognitive
mechanisms underlying the processing trend that
humans display across the compositionality con-
tinuum, we investigate the extent to which we
can account for the trend with memory retrieval
alone. MINERVA is an instance-based model of
episodic memory that has been successfully ap-
plied to many cognitive phenomena from frequency
judgements (Hintzman, 1988) to false memory
(Arndt and Hirshman, 1998). It has also been used
to model artificial grammar learning (Jamieson and
Mewhort, 2009) and, recently, to metaphor recog-
nition (Nick Reid and Jamieson, 2023).
MINERVA’s core assumptions are: (i) every item
encountered leaves a memory trace, represented as
a distributed set of features, and (ii) similar items
have similar traces. Similarities between present
and past encounters drive item-specific and parallel
memory retrieval. As a global memory model, it
encapsulates both episodic and semantic memory
which communicate with each other. On encounter-
ing a stimulus, the episodic memory sends a probe
to the semantic memory to retrieve traces from past
encounters. The familiarity of the probe is then
calculated as the sum of the values of a similarity
measure between the probe and each stored trace.
MINERVA is instantiated in a linear algebra sys-
tem. The MINERVA memory M is an n X d matrix,
each row of which contains a d-dimensional mem-
ory trace vector. When cued for retrieval with a
probe p € R% MINERVA retrieves the represen-
tation of the probe iff the probe’s familiarity f is
greater than a threshold K € [0, 1). Familiarity is
calculated by taking the cosine similarity s of the
probe to all instances stored in memory, scaling s

to reflect activation (weighting) of memory items
a over elapsed time 7, and linearly combining in-
stances in memory to compute a memory echo e.
The familiarity score at timestep 7 is the cosine
similarity of the echo to the probe, following this
system of equations:

s = sim(p, M) (1)
ar = s"sign(s) 2)

er =a;M 3)
fr = sim(es,p) 4

Modelling AJT Responses with Taus (7) The
free parameter 7 is used to accentuate differences
in similarity values (Hintzman, 1988; Nick Reid
and Jamieson, 2023). By raising the value of T,
higher-similarity memory traces will elicit expo-
nentially more activation, allowing those traces to
play a larger role in the overall activation profile
versus pooling a potentially large number of low-
similarity items.

Following Nick Reid and Jamieson (2023), we
depart from prior work wherein 7 is kept constant
for a particular experiment and model reaction
times by dynamically increasing 7 for a particu-
lar probe p until a desired threshold of familiarity
K € [0,1) is reached. At this point, we take the
final value of 7 as a proxy for the time required
to recognize p from memory, i.e, a proxy for reac-
tion time (RT). We set a time-out at 7 = 300 after
which the next probe is presented.

In human acceptability judgements, reaction
times serve as a proxy for processing difficulty.
We implicitly model acceptability judgements in
MINERVA as a function of whether the familiarity
threshold K is reached within the allowable time
window. If the familiarity score surpasses K before
the time-out, i.e., successful recognition, we treat
this as a "yes". Conversely, if familiarity remains
below the threshold when 7 = 300, we treat the
failure to retrieve as a "no" response.

5.1 Motivations & Assumptions

Collocational processing is known to be driven by
two factors: semantic transparency and frequency
(see Gyllstad and Wolter, 2016; Fioravanti et al.,
2021). Our model captures semantic transparency
by means of distributional semantics, i.e, vector
embeddings, while frequency is captured by means
of phrasal frequency in an Internet-wide text corpus.
We demonstrate the effect of both factors in our
ablations in Appendix E.
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Figure 2: Illustration of how embeddings are noised
and loaded into MINERVA’s memory matrix M. Colors
depict values within a vector. Note that the noise vectors
€ are independently sampled for each memory trace.

Semantics of Memory Traces Using distributed
vector representations as memory traces for MIN-
ERVA is well-established in the literature (Chubala
and Jamieson, 2013; Jamieson et al., 2018;
Nick Reid and Jamieson, 2023). Given that the
figurative idioms (e.g., spill the beans) also have a
compositional reading, we need a contextualized,
fine-grained vector representation to capture the
semantics of each word combination. Therefore,
we rely on Sentence-BERT (sBERT) which pro-
vides semantically meaningful vector embeddings
for sentences (Reimers and Gurevych, 2019). To
derive the vector embedding for each of the 246
target stimuli, we follow Vuli¢ et al. (2020). First,
we collect a set of 100 sentences of the word com-
bination® from the enTenTen21 corpus, in which
the noun occurs as the direct object of the verb.
We feed each sentence to SBERT obtaining a set
of contextualized word embeddings representing
each word in the sentence (we perform mean pool-
ing over sub-words). Given that the higher layers
of BERT architectures are the most sensitive to
lexical semantics (Reif et al., 2019), we take our
embeddings from the last hidden layer of the model.
From each of the 100 sentences, we extract the em-
beddings corresponding to the verb and the noun
and average across them separately, resulting in
the mean contextualized representation of the verb
when paired with the noun, and of the noun when
paired with the verb. Finally, we concatenate the
mean embedding for the verb with the mean embed-
ding for the noun to form the vector representation
of our stimulus®,

SDistractor items were not included in the simulations as
they are nonsense combinations, have no context sentences
and would have very low frequency in MINERVA’s memory.

We use concatenation instead of mean pooling as our stim-

uli are all Verb + Direct Object and concatenation preserves
word order and therefore, syntactic role information. However,

Memory Frequencies & Forgetting In accor-
dance with the instance theory, MINERVA’s re-
trieval time is inversely proportional to the number
of memory traces that strongly respond to a partic-
ular probe (Nick Reid and Jamieson, 2023). There-
fore, we populate MINERVA’s memory matrix us-
ing 10, 000 items sampled proportionally to their
phrasal frequency. Following prior work, we sim-
ulate forgetting by adding zero-centered Gaussian
noise to each memory trace vector such that each
dimension of each trace has an independent proba-
bility F' € [0, 1) of being corrupted with noise. The
more frequent a particular item, the more traces it
will have in memory, averaging out the noise and
making high-frequency items easier to retrieve.

5.2 Simulations

To explore the extent to which simple memory re-
trieval is sufficient to reproduce processing trends
for each condition, we load the memory matrix
as described above (see Figure 2) and then test
MINERVA'’s recognition capabilities using a noise-
less vector embedding of the target stimulus as
the probe. To simulate N different participants
who are exposed to different samplings of items
from the same environmental distributions, as well
as different patterns of forgetting, we run each
simulation N = 300 times with different random
seeds, re-sampling and re-noising the memory ma-
trix each time. We perform a thorough hyperparam-
eter sweep of activation threshold K and forgetting
probability F' to ensure robustness. We discuss
results for hyperparameter values K = 0.99 and
F = 0.8, although our results are robust across
many hyperparameter combinations (see Figure 9).

We use the same statistical model described in
Section 4 to analyse the effect of semantics and
frequency on retrieval (i.e., Tau).

5.3 Results

The results of our computational experiment are
shown in Figure 3. As MINERVA was not pre-
sented with any baseline items and as all items
were in MINERVA’s memory, it should have suc-
ceeded at recognizing all items. Thus, we first con-
sidered only successful retrievals. Despite being
provided with meaningful embeddings and frequen-
cies, the model failed to capture human processing
trends. Collocations were retrieved faster than id-
ioms (8 = —0.41; SE = 0.004; p < 0.001) while

see Section E.3.
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Figure 3: Left: mean Tau (7) by condition for success-
ful retrievals in MINERVA. The y-axis represents mean
Tau, the model’s output which acts as a proxy for reac-
tion times. Error bars indicate bootstrapped confidence
intervals. Right: percentage of failed retrievals, i.e.,
timeouts, per condition. Note that while the pattern of
Taus on successful retrievals is different from the pat-
tern of human RTs, the pattern of timeouts per condition
matches the pattern of human RTs.

compositional items were retrieved slower than id-
ioms (8 = 0.62; SE = 0.004;p < 0.001). See
Appendix D for more details.

Given the surprising results, we visually in-
spected the failures to retrieve, i.e., timeouts (see
3, right panel). MINERVA timed out on 50% of
the retrievals for collocations, followed by com-
positional items (38.6%), with idioms timing out
the least (33.8%). The pattern of retrieval failures
in MINERVA appears to qualitatively capture the
trend in human RTs across the three conditions.

Additionally, we found that MINERVA always
succeeds at retrieving items above a high frequency
threshold (Figure 4, black line). We find a simi-
lar frequency boundary in humans (Figure 4, green
line), which lies very close to the MINERVA thresh-
old. On items above this threshold (16 composi-
tional, 18 collocations, 17 idioms), participants did
not show a significant difference in RT by con-
dition, while still showing a significant effect of
frequency.

6 Discussion

Our behavioural results show that idioms are pro-
cessed fastest with compositional items coming
a close second (although the significance was
marginal) and that collocations are processed by far
the slowest. This effect occurs despite collocations
and compositional items being very close in fre-
quency (with the balance in favour of collocations).
The result is mirrored in our computational find-
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Figure 4: Percentage of failed retrievals (i.e., timeouts)
in MINERVA per stimulus item, as a function of the
frequency of the item. The x-axis is displayed in log
scale. The black line indicates the frequency threshold
(f = 27123) above which MINERVA times out less
than 1% of the time. The green line (f = 28000) in-
dicates the frequency threshold above which condition
stops being a significant predictor of human RTs.

ings. These stark differences in processing speed
for collocations indicate that they should be treated
as a separate class of linguistic items, apart from
the broad umbrella of formulaic language.

Our simulation results suggest that simple mem-
ory retrieval, as implemented in a frequency based
model of memory, is insufficient to fully explain hu-
man processing trends across idioms, collocations,
and compositional items. MINERVA was fastest
to retrieve collocations, followed by idioms, and
finally compositional items were the slowest. Fur-
thermore, MINERVA exhibited many more incor-
rect responses, i.e., unsuccessful memory retrievals.
However, unlike the pattern of Taus for successful
retrievals, retrieval failures do appear to capture the
key asymmetries in human processing. Once again
this effect is especially noticeable for collocations.
These findings indicate that additional cognitive
mechanisms may be required to fully account for
human behavioural patterns.

Notably, both asymmetries—retrieval failures in
MINERVA and reaction times in humans—only
occur below a certain frequency threshold. We sug-
gest that items above this threshold are sufficiently
frequent so as to be holistically retrieved across
conditions. Below this threshold, retrieval starts
to fail. Given that MINERVA does not have any
processing mechanism beyond memory retrieval, it
simply times out on these items. We conjecture that
at this point, humans invoke other processing mech-



anisms to facilitate interpreting of the stimulus and
incur a cost in reaction time. This is consistent with
usage based theories of language, which posit that
frequent encounters with a linguistic units lead to
entrenchment (Langacker, 1987).

The fact that collocations incur such a process-
ing cost compared to frequency-matched idioms
and compositional items show that single-route ac-
counts provide an incomplete picture. They further
demonstrate that dual-route accounts, which posit
a binary class of formulaic versus compositional
language, are also insufficient to account for the
processing of this large and frequent subset of lan-
guage. We posit that that the analogical account of
language processing may provide a more complete
explanation of these findings, and that further work
should explore this proposal.

As discussed above, memory retrieval is the first
step in analogical processing. Hence, processing a
sufficiently frequent item via analogy will simply
resort to memory retrieval

. Such a mechanism would be invariant to the
semantic compositionality of the item in question,
as we have seen in humans. Below this frequency
threshold, however, proper analogical machinery
comes into play.

In compositional items, both the verb and the
noun play a prototypical role. Thus, even though
the language user may not recall this exact verb-
noun pairing from memory, it is relatively easy to
map the verb and noun to similar instances of the
same, due to the high semantic overlap between
compositional uses of the verb and the noun. In
collocations, however, the verb is not used in its
prototypical sense. Resolving the meaning of the
verb requires a much “farther” mapping, which
may involve increased search over possible abstrac-
tions of the verb or extensive structure-mapping.
Engaging such machinery inevitably incurs a pro-
cessing cost with respect to compositional items
(Gentner and Namy, 2006), as reflected in RTs.

Despite the fact that idioms also time out, we hy-
pothesize that they are still processed via memory
retrieval even below the frequency threshold. At
first, this appears contradictory. However, note that
the idioms in our dataset are also highly frequent in
the corpus. We speculate that when encountering
a novel idiom, the learner implicitly has a choice
to either memorize the idiom, or discard it entirely.
By choosing idioms that are highly frequent in the
corpus, our dataset is conditioned upon learners
already having memorized the idioms. The lack of

an analytic mechanism makes it difficult to inter-
pret novel idioms. Furthermore, the fact that every
learned idiom incurs a fixed cost in remembering
it may account for the relative sparsity of idioms
in language, i.e., lower type frequency, and their
high frequency of occurrence, i.e., higher token
frequency (Grant, 2005) .

The retrieval failures for idioms seem to stem
from a limitation of our dataset—the fact that we
only consider figurative idioms which have a com-
positional reading. We were unable to ascertain the
relative frequency of idiomatic versus literal read-
ings in the context sentences of every idiom in our
stimuli set which we use to generate embeddings.
It is also unknown to what precise extent sSBERT
can accurately represent idiomatic meanings, nor
whether our human participants who interpreted
idiomatic stimuli in a figurative sense. Combined,
these factors suggest that the semantics of our set
of idioms are somewhat akin to our set of compo-
sitional items, and some of the processing trends
which pertain to compositional items are inadver-
tently present in the trend of responses to idioms.
In line with the holistic retrieval hypothesis, we
surmise that idioms for which the literal reading
is much less frequent than the idiomatic one (e.g.,
kick the bucket) will tend to be processed faster and
with fewer timeouts than more ambiguous ones
(e.g., hold the key). Future work will attempt to
investigate this prediction and further augment our
understanding of idiomatic processing by including
pure idioms, i.e., those without a literal reading, in
the dataset, and employing other behavioural tasks
which involve presentation of items within context
(e.g., self-paced reading).

One intriguing implication of our computational
experiment may be of interest to the NLP commu-
nity. Specifically, MINERVA’s retrieval mechanism
bears similarities to retrieval-augmented generation
(RAG) approaches (Lewis et al., 2020, i.a.). Our
findings suggest that sSBERT embeddings of semi-
compositional language are particularly prone to
failures in retrieval. Given the prevalence of collo-
cations in language, this may significantly impair
language understanding and generation in RAG
models.

Overall, the present study demonstrates that for
both humans and machines, collocations are a big-
ger “pain in the neck” (Sag et al., 2002) than other
subsets of the semantic compositionality contin-
uum, and that memory retrieval does leave some-
thing on the table.
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tween compositional and idiomatic readings. Given
that our idiomatic stimuli also have a productive
reading, the same embedding may be used for both
literal and figurative interpretations. Similarly, we
cannot ensure that our task is eliciting an idiomatic
reading in humans as human listeners disambiguate
based on context.

The current dataset was not built from scratch
with frequency-matching criteria for idioms. Fre-
quency is a well-established predictor of language
processing and an ideal dataset would equate or
carefully control the frequency distributions of id-
ioms relative to other word types.

Our study exclusively examined verb—noun (VN)
collocations. While these are a critical class of mul-
tiword expressions, little is known about other col-
locational structures (e.g., adjective—noun, phrasal
verbs, etc.) which are also prevalent in natural
language and may be processed differently. Ex-
tending our investigation to these additional types
will be important for assessing the generalizabil-
ity of our findings across the broader spectrum of
semi-compositional linguistic units.

MINERVA?2 provides a parsimonious framework
for modelling memory retrieval, yet it inherently
simplifies many aspects of human cognitive pro-
cessing. The model does not integrate attentional
mechanisms or dynamic contextual cues beyond
the static embeddings provided, and it does not ac-
count for developmental changes in memory and
language processing. These simplifications may
limit the model’s ability to capture the full com-
plexity of human language processing, particularly
in cases where retrieval failures (time-outs) inter-
act with other cognitive processes.Our simulations
relied on specific hyperparameter settings (e.g., ac-
tivation threshold K=0.99 and forgetting probabil-
ity F=0.8) that were chosen based on qualitative
assessments. Although results were robust across a
range of parameter values, the possibility remains
that different parameterizations could yield differ-
ent patterns.
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B Dataset Statistics C Human Data

C.1 Reaction times & Accurac
Table 1: Descriptive statistics of phrasal frequency by ¥

condition .. . L
Table 2: Descriptive statistics of human reaction times

Condition Mean SD N (ms) by condition
e e
otocation ' : Tdiom 08420 36530 4462

Idiom 36784.68 8746840 78 Compositional 99532 375.76 4423
Collocation ~ 1007.87 370.84 4484

Table 3: Descriptive statistics of human accuracy by
condition

75000

Condition Mean SD N

Idiom 093 025 4785
//Q Compositional 0.92 027 4791

50000

Frequency

25000

Collocation 0.94 024 4772

Compostional Cotlogation Taiom Table 4: Number of incorrect trials by condition
Figure 5: Item frequencies across conditions, by decile Condition n
Compositional 400
Collocation 464
Idiom 433
Baseline 1455

Table 5: GLMM results of accuracy in humans

Dependent variable:

Accuracy
Compositional —0.076
(0.085)
Collocation 0.196**
(0.089)
Frequency 1.020***
(0.187)
Constant 3.510%**
(0.148)
N 14,348
Note: **p<0.05; **p<0.01
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D GLMM Results for Main Simulation

Table 6: GLM results for human AJT reaction times,
compared to Tau, a proxy for reaction times, simulated
in MINERVA. MINERVA is run with K = 0.99, F' =
0.8

Dependent variable:

RT Tau
Human MINERVA
Compositional 4.690** 0.624***
(2.240) (0.004)
Collocation 13.800*** —0.410***
(1.760) (0.004)
Frequency —18.500*** —0.541%**
(1.640) (0.004)
Constant 1,047.0%** 5.900%**
(2.140) (0.004)
N 13,369 43,708
Note: *p<0.1; **p<0.05; ***p<0.01
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E Ablations

E.1 Semantics-only

In the semantics-only ablation wherein the model
was loaded with all instances being equally fre-
quent, we visually observed that idioms were re-
trieved slower than compositional items when time-
outs were not included. The proportions of time-
outs are similar to those of the main experiment,
with collocations timing out much more frequently.
In the semantics-only condition, however, compo-
sitional items time out less frequently than idioms.
This result is not surprising given the marginal sig-
nificance of the difference between human RTs for
idioms and compositional items. However, investi-
gating the cause of this discrepancy is an interesting
avenue for future work.

Successful Retrievals Failed Retrievals (Timeouts)

2
=

a

g
2

Mean Tau
Percentage of Failed Retrievals (Timeouts)

]
=2

[l Compositional @ Collocation [ Idiom

0%

Figure 6: Left: mean Tau (7) by condition for successful
retrievals in Ablation 1, wherein frequency information
was eliminated. The y-axis represents mean Tau, the
model’s output which acts as a proxy for reaction times.
Error bars indicate bootstrapped confidence intervals.
Right: percentage of failed retrievals, i.e., timeouts, per
condition in Ablation 1.

E.2 Frequency-only

In the frequency-only ablation, the model was
loaded with embeddings comprised entirely of
Gaussian noise. However, each noise-item was
sampled according to correct frequency informa-



tion. For successful retrievals, we visually ob-
served that idioms and collocations were retrieved
equally quickly, whereas compositional items were
retrieved slower. Given that frequency drives MIN-
ERVA’s retrieval mechanism, the pattern of time-
outs for Ablation 2 are not surprising. Idioms
which are the most frequent subset time out the
least, followed by collocations which are slightly
more frequent than compositional units which, in
turn, time out the most.

Successful Retrievals Failed Retrievals (Timeouts)

40%

[

30%

Mean Tau

Percentage of Failed Retrievals (Timeouts)
n
o
B3

10%

0%

[l Compositional [lll Collocation [ Idiom

Figure 7: Left: mean Tau (7) by condition for suc-
cessful retrievals in Ablation 2, wherein semantic infor-
mation was eliminated while leaving the correct item
frequency distribution. The y-axis represents mean Tau,
the model’s output which acts as a proxy for reaction
times. Error bars indicate bootstrapped confidence in-
tervals. Right: percentage of failed retrievals, i.e., time-
outs, per condition in Ablation 2.

E.3 Averaging vs Concatenating SBERT
Embeddings

In this ablation, we investigate the impact which
concatenating verb and noun embeddings has on
our modelling results. Instead of concatenating
verb and noun embeddings, we perform mean-
pooling across them, the same as we do for sub-
word tokens. As shown in Figure 8, the trends
exhibited by the model in the K = 0.99, F' = 0.8
hyperparameter configuration are largely the same
as those reported in the main text.

15

Frequency & Semantics
Mean Across Verb and Noun
0.6

[l compositional [l Collocation [J Idiom

50

40

30

960

0.8

75

860

150

100

a
S

Figure 8: Reduced hyperparameter sweep showing the
effects of mean-pooling the verb and noun embeddings
before loading them into MINERVA, instead of concate-
nating them. Note that the hyperparemeter combination
reported in the main text is K = 0.99, F' = 0.8.

F Hyperparameter Sweeps for Simulation
Experiments
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Figure 9: Results of the hyperparameter sweep for all values of activation threshold K and forgetting probability F’

for our main experiment. Error bars indicate bootstrapped confidence intervals. Note the difference in scales on the
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F for Simulation 2: Semantics-only wherein the matrix was loaded with all items having equal frequency. Error
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Figure 11: Results of the hyperparameter sweep for all values of activation threshold K and forgetting probability

F for Simulation 2: Semantics-only wherein the matrix was loaded with noised embeddings but with the correct
frequency. Error bars indicate bootstrapped confidence intervals. Note the difference in scales on the y-axis.
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Figure 12: Results of the hyperparameter sweep for all values of activation threshold K and forgetting probability
F for the Null Model wherein all the items in the matrix were loaded with noised embeddings and equal frequency.
Error bars indicate bootstrapped confidence intervals. Note the difference in scales on the y-axis.
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