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Abstract
As machine learning systems increasingly rely
on data subject to privacy regulation, selectively
unlearning specific information from trained mod-
els has become essential. In image classification,
this involves removing the influence of particular
training samples, semantic classes, or visual styles
without full retraining. We introduce Forget-
Aligned Model Reconstruction (FAMR), a the-
oretically grounded and computationally efficient
framework for post-hoc unlearning in deep image
classifiers. FAMR frames forgetting as a con-
strained optimization problem that minimizes a
uniform-prediction loss on the forget set while
anchoring model parameters to their original
values via an ℓ2 penalty. A theoretical analy-
sis links FAMR’s solution to influence-function-
based retraining approximations, with bounds on
parameter and output deviation. Empirical re-
sults on class forgetting tasks using CIFAR-10
and ImageNet-100 demonstrate FAMR’s effec-
tiveness, with strong performance retention and
minimal computational overhead. The framework
generalizes naturally to concept and style erasure,
offering a scalable and certifiable route to efficient
post-hoc forgetting in vision models.

1. Introduction
As machine learning systems become increasingly pervasive
in sensitive domains, such as medical diagnostics and user-
facing recommendation engines, ensuring compliance with
privacy regulations is paramount. The “right to be forgot-
ten,” codified in regulations such as the EU’s General Data
Protection Regulation (GDPR), mandates that individuals
can request deletion of their data and any downstream influ-
ence it may have on deployed models. This has led to the
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emerging research field of machine unlearning, which aims
to remove specific information—e.g., training samples, se-
mantic concepts, or stylistic patterns—from trained models
without requiring full retraining (Cao & Yang, 2015).

In image classification, forgetting a data point, class, or vi-
sual concept is particularly challenging due to the distributed
and entangled nature of learned representations. Retraining
from scratch on the remaining data, while effective, is com-
putationally expensive and often infeasible at scale. As a
remedy, various unlearning strategies have been developed
to approximate the retrained model’s behavior without the
associated cost (Zhang et al., 2024b).

Frequent retraining incurs prohibitive latency, particularly
for large-scale image classifiers (Gu et al., 2024). Even
differentially private training (ε-DP) only bounds contribu-
tions in expectation and cannot guarantee complete erasure
(Domingo-Ferrer et al., 2021). Early work by Bourtoule et
al. (2021) introduced the SISA (Sharded, Isolated, Sliced,
and Aggregated) framework, which partitions data and re-
tains multiple shard-specific models to facilitate point-wise
retraining. Influence-function-based approaches, such as
those proposed by Guo et al. (2019) and Sekhari et al.
(2021), estimate the effect of removing specific training
samples using a one-step Newton update, although such
techniques rely on convex loss assumptions and are often
unreliable in deep networks.

Several architecture-based approaches tackle the problem
differently. Forsaken (Ma et al., 2023) learns a mask over
neurons to erase the influence of forgotten data. In gener-
ative modeling, diffusion and transformer-based methods
now support object- or identity-style forgetting through fine-
tuning or prompt editing (Zhang et al., 2024a). Panda et
al. (2024) introduced a label-annealing strategy to itera-
tively erase high-level concepts. However, many of these
approaches lack formal guarantees and are typically con-
fined to specific architectures or datatypes. Overall, while
machine unlearning is gaining traction, achieving efficient,
generalizable, and certifiable forgetting remains a significant
challenge.

In this study, we introduce Forget-Aligned Model Recon-
struction (FAMR), a post-hoc forgetting framework that
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directly modifies a trained image classifier to erase specified
targets—such as samples, classes, or visual styles—without
retraining from scratch. The core idea is to combine a for-
getting loss that drives the model’s outputs on the forget set
toward a uniform (maximally uncertain) distribution, with
an ℓ2 anchor penalty that constrains deviations from the
original parameters. This anchored optimization simulta-
neously obfuscates forgotten information and preserves the
rest of the model’s behavior. Because the anchor penalizes
deviation from the initial weights, we can formally bound
parameter and output drift, enabling a certificate that the
forgotten influence is effectively removed (up to optimiza-
tion tolerance). FAMR is efficient, requiring only simple
gradient-based updates, and general: it supports unlearning
of individual samples, entire semantic classes, or stylistic
attributes (e.g., background color or texture patterns). Our
implementation focuses on class-level forgetting in vision
benchmarks, but the formulation naturally extends to any
subset of data. In summary, our contributions are as follows:

• We introduce a theoretically grounded anchored for-
getting objective that combines a uniform-prediction
loss on targeted data with an L2 penalty to the original
model weights. We derive the associated gradient-
update rule and show that, under mild assumptions, the
optimization yields a certified forgetting condition: the
gradient on forgotten targets is exactly balanced by the
anchor term, ensuring no residual influence remains.

• We demonstrate that this framework naturally gener-
alizes to multiple unlearning scenarios. By selecting
the forgetting set T to be individual samples, entire
semantic classes, or style-based groups,

• We empirically validate FAMR on standard image clas-
sification benchmarks, showing that it effectively re-
moves targeted knowledge (samples, classes, or style
cues) with minimal accuracy loss on retained data.

2. Methodology
2.1. Problem Setup

Let D = {(xi, yi)}Ni=1 be the training dataset used to fit
a classifier fθ0 with parameters θ0. The model produces
softmax outputs pθ(y | x) = softmax(fθ(x)) over C class
labels.

Given a forget set T ⊂ D, our goal is to compute new
parameters θ∗ such that:

1. fθ∗(x) gives no confident predictions on x ∈ T .

2. The model remains close to fθ0 on D \ T .

We achieve this by minimizing a task-specific forgetting
loss combined with an L2 anchoring regularizer.

2.2. Forget-Aligned Optimization Objective

The general objective is:

J (θ) = Lforget(θ) +
λ

2
∥θ − θ0∥22, (1)

where λ > 0 controls the strength of the anchor.

2.2.1. (A) SAMPLE OR CLASS FORGETTING (UNIFORM
KL LOSS)

To forget training samples or a full class, we enforce high
uncertainty via uniform predictions:

LKL
forget(θ) =

∑
(x,y)∈T

KL (u ∥ pθ(y | x)) , (2)

where u =
[
1
C , . . . , 1

C

]
is the uniform distribution over C

classes.

2.2.2. (B) STYLE FORGETTING (GRAM MATRIX LOSS)

To forget stylistic patterns, we define a perceptual feature
extractor ϕ(x) (e.g., activations from an intermediate CNN
layer) and use the Gram matrix:

Gϕ(x) = ϕ(x)ϕ(x)⊤. (3)

The style loss penalizes retention of stylistic correlations:

Lstyle
forget(θ) =

∑
x∈T
∥Gϕ(x)−Gtarget∥2F , (4)

where Gtarget is a neutral or baseline style (e.g., average
across classes), and ∥ · ∥F denotes the Frobenius norm.

2.2.3. (C) COMBINED FORGETTING LOSS

In general, the final forgetting loss combines uncertainty-
driven and style-specific objectives:

Lforget(θ) = α · LKL
forget(θ) + β · Lstyle

forget(θ), (5)

where α, β ≥ 0 are task-specific weighting coefficients.

By varying the forget set T and adapting the loss formu-
lation Lforget(θ), FAMR accommodates diverse unlearning
scenarios: (i) sample-level forgetting, via uniform prediction
enforcement on individual instances; (ii) class- or concept-
level forgetting, through KL divergence minimization; (iii)
style-level forgetting, using perceptual Gram matrix losses.

This modular formulation enables FAMR to address privacy,
fairness, and interpretability constraints across application
domains using a unified and consistent optimization strat-
egy.
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2.3. Gradient-Based Update Algorithm

We optimize J (θ) using gradient descent. Below is the
update procedure:

Algorithm 1 Forget-Aligned Model Reconstruction
(FAMR)
Require: Initial weights θ0, forget set T , anchor coefficient

λ, learning rate η, iterations T
1: Initialize θ ← θ0
2: for t = 1 to T do
3: Sample batch (x, y) ∼ T
4: Compute outputs pθ(y | x) = softmax(fθ(x))
5: Compute forgetting gradient: gforget ← ∇θLforget(θ)
6: Compute anchor gradient: ganchor ← λ(θ − θ0)
7: Update: θ ← θ − η · (gforget + ganchor)
8: end for
9: Return Updated weights θ

This lightweight gradient-based routine optimizes the an-
chored forgetting objective with minimal computational
overhead, enabling efficient post-hoc unlearning in deep
networks without retraining or architectural modifications.

3. Theoretical Analysis
We present a theoretical analysis of the FAMR objective,
characterizing its behavior and demonstrating its approxi-
mation to ideal retraining.

3.1. Local Convergence and Stationarity

Assuming Lforget(θ) is smooth and differentiable, and the
anchor term λ

2 ∥θ−θ0∥
2
2 is strongly convex, the full objective

J (θ) is locally strongly convex around θ0. Gradient descent
thus converges to a unique local minimum θ∗ satisfying:

∇Lforget(θ
∗) + λ(θ∗ − θ0) = 0. (6)

This stationarity condition ensures the model is maximally
uncertain on the forget set while minimally deviating from
the original model.

3.2. Approximation to Ideal Retraining

Let w∗ denote the weights obtained by retraining from
scratch on D \ T . Influence-function theory provides a
first-order approximation:

w∗ ≈ θ0 −H−1
∑

(x,y)∈T

∇ℓ(x, y; θ0), (7)

where H is the Hessian of the loss over D. FAMR’s update
solves:

(H + λI)(θ∗ − θ0) = −
∑

(x,y)∈T

∇ℓ(x, y; θ0), (8)

implying:

∥θ∗ − w∗∥ = O
(

λ

λ2
min(H)

∥∥∥∑∇ℓ(x, y; θ0)
∥∥∥) . (9)

Hence, as λ→ 0, θ∗ → w∗.

3.3. Certified Output Divergence Bound

Let fθ∗ be the output of FAMR and fw∗ be the retrained
model. If f is Lipschitz with constant Lf , then for any input
x:

∥fθ∗(x)− fw∗(x)∥ ≤ Lf · ∥θ∗ − w∗∥. (10)

Thus, output differences are tightly controlled by λ, provid-
ing an approximate certificate of removal fidelity.

4. Experiments and Results
We evaluate FAMR on two standard image classifica-
tion datasets: CIFAR-100 (Krizhevsky et al., 2009) and
ImageNet-100 (Deng et al., 2009). For backbone archi-
tectures, we use four pretrained Vision Transformer (ViT)
models—ViT-Tiny (ViT-Ti), ViT-Small (ViT-S), ViT-Base
(ViT-B), and ViT-Large (ViT-L)—sourced from Hugging-
Face’s transformers and timm libraries. All models
are derived from the original ViT architecture proposed by
Dosovitskiy et al. (Dosovitskiy et al., 2020), and were pre-
trained on the full ImageNet-1K dataset using supervised
learning. Each model is fine-tuned on the respective dataset
(CIFAR-100 or ImageNet-100) for 50 epochs using standard
cross-entropy loss. Following fine-tuning, we apply FAMR
to forget a randomly selected target class via post-hoc opti-
mization.FAMR minimizes a KL-divergence loss between
the model’s output distribution and a uniform prior on the
forget set, combined with an L2 anchor loss to constrain
deviations from the original model. The optimization is
performed for 10 epochs with a learning rate of 10−4 and
anchor strength ρ = 0.1.

To quantify forgetting, we report the retained accuracy (Ret-
Acc) over non-forgotten classes, forgotten class accuracy
(For-Acc), cross-entropy (CE) on the forget set, output en-
tropy (Ent), and KL divergence (KL) between pre- and
post-unlearning predictions on the forget set. Entropy is
computed as the average Shannon entropy of the softmax
output, and KL divergence is measured between the logits
of the original and updated models.

As shown in Tables 1 and 2, FAMR drives For-Acc to near-
zero values across all ViT variants, while preserving high
performance on retained classes. Entropy and KL diver-
gence both increase substantially post-optimization, indicat-
ing heightened uncertainty and deviation on the forgotten
class. Notably, larger models such as ViT-B and ViT-L
demonstrate the strongest forgetting effect.

3
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Table 1. FAMR Unlearning Results on CIFAR-100 using Vision
Transformer Variants

Model Ret-Acc (%) For-Acc (%) CE ↓ Ent ↑ KL ↑
ViT-Ti 70.1 1.3 3.42 2.21 2.41
ViT-S 72.5 0.9 3.55 2.33 2.77
ViT-B 73.8 0.0 3.91 2.43 3.02
ViT-L 74.2 0.0 4.02 2.49 3.10

Table 2. FAMR Unlearning Results on ImageNet-100 using Vision
Transformer Variants

Model Ret-Acc (%) For-Acc (%) CE ↓ Ent ↑ KL ↑
ViT-Ti 76.2 2.1 3.14 2.28 2.65
ViT-S 77.4 1.1 3.49 2.45 2.93
ViT-B 79.1 0.0 3.74 2.59 3.11
ViT-L 80.3 0.0 3.88 2.63 3.17

We analyze the temporal evolution of our forgetting pro-
cess across different model architectures and datasets, as
shown in Figure 1. The plots demonstrate the relationship
between model uncertainty (KL divergence) and target class
forgetting for both CIFAR-100 and ImageNet-100 datasets,
with confidence intervals (shaded regions) indicating the
stability of the process. Our analysis reveals a clear progres-
sion where model uncertainty increases as the target class
accuracy decreases, ultimately reaching near-uniform pre-
dictions. The larger models (ViT-B and ViT-L) demonstrate
superior performance, achieving more complete forgetting
while maintaining better performance on retained classes, as
evidenced by their steeper decline in forget accuracy. This
behavior remains consistent across both CIFAR-100 and
ImageNet-100 datasets, demonstrating the robustness of our
approach across different scales. The tight confidence inter-
vals throughout the optimization process indicate stable and
reliable forgetting behavior. Additional temporal analysis
results, including entropy evolution and model architecture
comparisons, are provided in Appendix.

Impact Statement
This work advances machine unlearning to enhance data
privacy and model accountability in deployed ML sys-
tems. FAMR enables post-hoc removal of specific training
data—such as individual samples, classes, or stylistic pat-
terns—without retraining or architectural changes, address-
ing regulatory requirements like GDPR and enhancing user
trust. While intended to advance ethical ML deployment,
the method could potentially be misused for selective era-
sure of audit trails or uneven application across populations.
We encourage responsible deployment with transparency
and fairness. The authors will release code to support re-
producibility and peer review. This work does not involve
human subjects, personally identifiable data, or dual-use

(a) CIFAR-100

(b) ImageNet-100

Figure 1. Evolution of model uncertainty and forgetting process.
The plots show how KL divergence and forget accuracy evolve over
epochs for ViT-B and ViT-L models on CIFAR-100 and ImageNet-
100. The confidence intervals (shaded regions) demonstrate the
stability of the forgetting process.

applications.

5. Conclusion
We introduced FAMR (Forget-Aligned Model Reconstruc-
tion), a scalable and certifiable framework for post-hoc un-
learning in image classifiers. FAMR optimizes a forgetting
loss that drives predictions on the target set toward unifor-
mity, while anchoring model weights to their original values
to preserve performance on retained data. This anchored
formulation enables efficient forgetting of individual sam-
ples, semantic classes, or visual styles, without retraining or
architecture modification. We provided theoretical analysis
linking FAMR to influence-function approximations and
established output divergence bounds. Empirical evalua-
tions on CIFAR-100 and ImageNet-100 show that FAMR
effectively removes forgotten knowledge with minimal loss
in retained accuracy. FAMR is model-agnostic, easily imple-
mentable, and applicable to real-world privacy and fairness
demands.
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Appendix
Comprehensive Temporal Analysis

We provide a detailed analysis of the forgetting process
across different model architectures and datasets. Our anal-
ysis focuses on four key relationships:

• Model uncertainty (KL divergence) vs. target class
forgetting

• Output entropy vs. target class forgetting

• Model uncertainty vs. performance preservation

• Output entropy vs. performance preservation

(a) KL Divergence vs Retain Accuracy (CIFAR-100)

(b) Entropy vs Forget Accuracy (CIFAR-100)

Figure 2. Temporal evolution of model uncertainty and entropy
metrics on CIFAR-100, showing the relationship between forget-
ting progress and model behavior.

Theoretical Extensions

CONVERGENCE ANALYSIS

Let θt be the parameters at iteration t. Under the assump-
tions of smoothness and strong convexity, we can show
that:

(a) KL Divergence vs Retain Accuracy (ImageNet-100)

(b) Entropy vs Forget Accuracy (ImageNet-100)

Figure 3. Temporal evolution of model uncertainty and entropy
metrics on ImageNet-100, demonstrating consistent behavior
across datasets.

Theorem .1. For the FAMR objective J (θ), with learning
rate η ≤ 1

L+λ , where L is the Lipschitz constant of∇Lforget,
the sequence {θt} converges linearly to the optimal solution
θ∗:

∥θt − θ∗∥2 ≤ (1− ηλ)t∥θ0 − θ∗∥2 (11)

ANCHOR OPTIMIZATION ANALYSIS

The anchor term λ
2 ∥θ − θ0∥22 provides several theoretical

guarantees:

Proposition .2. For any ϵ > 0, there exists λ > 0 such that
the solution θ∗ satisfies:

∥θ∗ − θ0∥2 ≤ ϵ (12)

while maintaining the forgetting condition:

Lforget(θ
∗) ≤ Lforget(θ0) (13)

Model Architecture Analysis

We analyze the impact of model architecture on the forget-
ting process by comparing ViT-B/ViT-L with ViT-Ti/ViT-S:

Key observations from our analysis:

6
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(a) Forget Accuracy vs Retain Accuracy (CIFAR-100)

(b) Forget Accuracy vs Retain Accuracy (ImageNet-100)

Figure 4. Comparison of forgetting performance between smaller
(ViT-Ti/ViT-S) and larger (ViT-B/ViT-L) models, showing the
trade-off between forgetting and performance preservation.

• Larger models (ViT-B/ViT-L) achieve more complete
forgetting while maintaining better performance on
retained classes

• Smaller models (ViT-Ti/ViT-S) show faster initial for-
getting but with higher performance impact

• The forgetting process exhibits consistent behavior
across both datasets

• Model uncertainty (KL divergence) and output entropy
show strong correlation with forgetting progress

Theoretical Guarantees

OUTPUT DIVERGENCE BOUND

For any input x, the output difference between the FAMR
solution θ∗ and the ideal retrained model w∗ is bounded by:

Theorem .3. If f is Lipschitz continuous with constant Lf ,
then:

∥fθ∗(x)− fw∗(x)∥ ≤ Lf · ∥θ∗ − w∗∥ (14)

where ∥θ∗ − w∗∥ is controlled by the anchor coefficient λ.

FORGETTING CERTIFICATE

The FAMR framework provides a certificate of forgetting
through the following guarantee:

Proposition .4. For any δ > 0, there exists λ > 0 such that
the FAMR solution θ∗ satisfies:

max
x∈T
∥pθ∗(y|x)− u∥1 ≤ δ (15)

where u is the uniform distribution over classes.

This theoretical analysis demonstrates that FAMR provides
strong guarantees on both the forgetting process and the
preservation of model performance on retained data.
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