
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS CHARACTERIZING THE VALUE OF EDGE
EMBEDDINGS IN GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) are the dominant approach to solving machine
learning problems defined over graphs. Despite much theoretical and empirical
work in recent years, our understanding of finer-grained aspects of architectural
design for GNNs remains impoverished. In this paper, we consider the benefits
of architectures that maintain and update edge embeddings. On the theoretical
front, under a suitable computational abstraction for a layer in the model, as well
as memory constraints on the embeddings, we show that there are natural tasks
on graphical models for which architectures leveraging edge embeddings can be
much shallower. Our techniques are inspired by results on time-space tradeoffs in
theoretical computer science. Empirically, we show architectures that maintain edge
embeddings almost always improve on their node-based counterparts—frequently
significantly so in topologies that have “hub” nodes.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as the dominant approach for solving machine learning
tasks on graphs. Over the span of the last decade, many different architectures have been proposed,
both in order to improve different notions of efficiency, and to improve performance on a variety
of benchmarks. Nevertheless, theoretical and empirical understanding of the impact of different
architectural design choices remains elusive.

One previous line of work (Xu et al., 2018) has focused on characterizing the representational
limitations stemming from the symmetry-preserving properties of GNNs when the node features are
not informative (also called “anonymous GNNs”) — in particular, relating GNNs to the Weisfeiler-
Lehman graph isomorphism test (Leman & Weisfeiler, 1968). Another line of work (Oono & Suzuki,
2019) focuses on the potential pitfalls of the (over)smoothing effect of deep GNN architectures, with
particular choices of weights and non-linearities, in an effort to explain the difficulties of training
deep GNN models. Yet another (Black et al., 2023) focuses on training difficulties akin to vanishing
introduced by “bottlenecks” in the graph topology.

In this paper, we focus on the benefits of maintaining and updating edge embeddings over the course
of the computation of the GNN. More concretely, a typical GNN maintains a node embedding hv at
each node v of the underlying graph. In each layer of the GNN, the embedding at node v is updated
based on the embeddings at its neighbors. But an alternative paradigm is to maintain data at each
edge e of the graph, and to update this edge embedding based on the embeddings of the edges that
share a node with e.

Intuitively, this paradigm seems at least as expressive as maintaining node embeddings, since in
principle each edge could maintain the embeddings of its incident nodes. Additionally, there may be
tasks where initial features are most naturally associated with edges (e.g., attributes of the relationship
between two nodes) — or the final predictions of the network are most naturally associated with
edges (e.g., in link prediction, where we want to decide which potential links are true links).

GNNs that fall in the general edge-based paradigm have been used for various applications – including
link prediction (Cai et al., 2021; Liang & Pu, 2023) as well as reasoning about relations between
objects (Battaglia et al., 2016), molecular property prediction (Gilmer et al., 2017; Choudhary
& DeCost, 2021), and detecting clusters of communities in graphs (Chen et al., 2017) – with
robust empirical benefits. These approaches instantiate the edge-based paradigm in a plethora

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

of ways. However, it is difficult to disentangle to what degree performance improvements come
from added information from domain-specific initial edge embeddings, versus properties of other
particular architectural choices, versus inherent benefits of the edge-based paradigm itself (whether
representational, or via improved training dynamics).

We focus on theoretically and empirically quantifying the added representational benefit from
maintaining edge embeddings. Viewing the GNN as a computational model, we can think of
the intermediate embeddings as a “scratch pad”. Since we maintain more information per layer
compared to the node-based paradigm (1), we might intuitively hope to be able to use a shallower
edge embedding model. However, formally proving depth lower bounds both for general neural
networks (Telgarsky, 2016) and for specific architectures (Sanford et al., 2024b;a) frequently requires
non-trivial theoretical insights – as is the case for our question of interest. In this paper, we show that:

• Theoretically, for certain graph topologies, edge embeddings can have substantial representational
benefits in terms of the depth of the model, when the amount of memory (i.e., total bit complexity)
per node or edge embedding is bounded. Our results illuminate some subtleties of using particular
lenses to understand design aspects of GNNs: for instance, we prove that taking memory into
account reveals depth separations that the classical lens of invariance (Xu et al., 2018) alone cannot.

• Empirically, when given the same input information, edge-based models almost always lead to
performance improvements compared to their node-based counterpart — and often by a large
margin if the graph topology includes “hub” nodes with high degree.

2 OVERVIEW OF RESULTS

2.1 REPRESENTATIONAL BENEFITS FROM MAINTAINING EDGE EMBEDDINGS.

Our theoretical results elucidate the representational benefits of maintaining edge embeddings. More
precisely, we show that there are natural tasks on graphs that can be solved by a shallow model
maintaining constant-size edge embeddings, but can only be solved by a model maintaining constant-
size node embeddings if it is much deeper.

To reason about the impact of depth on the representational power of edge-embedding-based and
node-embedding-based architectures, we introduce two local computation models. In the node-
embedding case, we assume each node of the graph G supports a processor that maintains a state
with a fixed amount of memory. In one round of computation, each node receives messages from the
adjacent nodes, which are aggregated by the node into a new state. In this abstraction, we think of the
memory of the processor as the total bits of information each embedding can retain, and we think
of one round of the protocol as corresponding to one layer of a GNN. The edge-embedding case is
formalized in a similar fashion, except that the processors are placed on the edges of the graph, and
two edge processors are “adjacent” if the edges share a vertex in common. In both cases, the input is
distributed across the edges of the graph, and is only locally accessible.

With this setup in mind, our first result focuses on probabilistic inference on graphs, specifically, the
task of maximum a-posteriori (MAP) estimation in a pairwise graphical model on a graph G = (V,E).
For this task, given edge attributes describing the pairwise interactions ϕ{a,b}, the goal is to compute
argmaxx∈{0,1}V pϕ(x), where pϕ(x) ∝ exp

(∑
{a,b}∈E ϕ{a,b}(xa, xb)

)
.

Theorem (Informal). Consider the task of using a GNN to calculate MAP (maximum a-posteriori)
values in a pairwise graphical model, in which the pairwise interactions are given as input embeddings
to a node-embedding or edge-embedding architecture. Then, there exists a graph with O(n) vertices
and edges, such that:

• Any node message-passing protocol with T rounds and O(1) bits of memory per node processor
requires T = Ω(

√
n).

• There is an edge message-passing protocol with O(1) rounds and O(1) bits of memory.

The proof techniques are of standalone interest: the lower bound on node message-passing protocols is
inspired by tracking the “flow of information” in the graph, reminiscent of graph pebbling techniques
used to prove time-space tradeoffs in theoretical computer science (Grigor’ev, 1976; Abrahamson,
1991). The formal result is Theorem 1, and the proof sketch is included in Section 5.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The view from symmetry. Above, we are not imposing any symmetry constraints – that is,
invariance of the computation at a node or edge to its identity and the identities of its neighbors.
Indeed, the edge message-passing protocol constructed above is highly non-symmetric. However, we
show there is a (different, but also natural) task where even symmetric edge message-passing protocols
achieve a better depth/memory tradeoff than node message-passing protocols. See Theorem 4.

Importance of the memory lens. The memory constraints are crucial for the results above. Without
memory constraints, we can show that the node message-passing architecture can simulate the edge
message-passing architecture, while only increasing the depth by 1 (Proposition 3). Moreover, the
symmetric node message-passing architecture can simulate the symmetric edge message-passing
architecture, again while only increasing the depth by 1. See Theorem 5.

We view this as evidence that many fine-grained properties of architectural design for GNNs cannot
be adjudicated by solely considering them through the lens of symmetries of the network.

2.2 EMPIRICAL BENEFITS OF EDGE-BASED ARCHITECTURES.

The theory, while only characterizing representational power, suggests that architectures that main-
tain edge embeddings should have strictly better performance compared to their node embedding
counterparts. We verify this in both real-life benchmarks and natural synthetic sandboxes.

First, we consider several popular GNN benchmarks (inspired by both predicting molecular properties,
and image-like data), and show that equalizing for all other aspects of the architecture (e.g., depth,
dimensionality of the embeddings) — the accuracy the edge-based architectures achieve is at least
as good as their node-based counterparts. Note, the goal of these experiments is not to propose
a new architecture — there are already a variety of (very computationally efficient) GNNs that in
some manner maintain edge embeddings. The goal is to confirm that — all other things being equal
— the representational advantages of edge-based architectures do not introduce additional training
difficulties. Details are included in Section 8.1.

Next, we consider two synthetic settings to stress test the performance of edge-based architectures.
Inspired by the graph topology that provides a theoretical separation between edge and node-based
protocols (Theorem 1 and Theorem 4), we consider graphs in which there is a hub node, and tasks
that are “naturally” solved by an edge-based architecture. Precisely, we consider a star graph, in
which the labels on the leaves are generated by a “planted” edge-based architecture with randomly
chosen weights. The node-based architecture, on the other hand, has to pass messages between the
leaves indirectly through the center of the star. Empirically, we indeed observe that the performance
of edge-based architectures is significantly better. Details are included in Section 8.2

Finally, again inspired by the theoretical setting in Theorem 1, we consider probabilistic inference
on tree graphs — precisely, learning a GNN that calculates node marginals for an Ising model, a
pairwise graphical model in which the pairwise interactions are just the product of the end points. An
added motivation for this setting is the fact that belief propagation — a natural algorithm to calculate
the marginals — can be written as an edge-based message-passing algorithm. Again, empirically we
see that edge-based architectures perform at least as well as node-based architectures. This advantage
is maintained even if we consider “directed” versions of both architectures, in which case embeddings
are maintained to be sent along each direction of the edge, and the message for the outgoing direction
of an edge depends only on the embeddings corresponding to the incoming directions of the edges.
Details are included in Section 8.3.

3 RELATED WORKS

The symmetry lens on GNNs: The most extensive theoretical work on GNNs has concerned itself
with the representational power of different GNN architectures, while trying to preserve equivariance
(to permuting the neighbors) of each layer. (Xu et al., 2018) connected the expressive power of such
architectures to the Weisfeiler-Lehman (WL) test for graph isomorphism. Subsequent works (Maron
et al., 2019; Zhao et al., 2021) focused on strengthening the representational power of the standard
GNN architectures from the perspective of symmetries—more precisely, to simulate the k-WL test,
which for k as large as the size of the graph becomes as powerful as testing graph isomorphism. Our

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

work suggests that this perspective may be insufficient to fully understand the representational power
of different architectures.

GNNs as a computational machine: Two recent papers (Loukas, 2019; 2020) considered properties
of GNNs when viewed as “local computation” machines, in which a layer of computation allows a
node to aggregate the current values of the neighbors (in an arbitrary fashion, without necessarily
considering symmetries). Using reductions from the CONGEST model, they provide lower bounds
on width and depth for the standard node-embedding based architecture. However, they do not
consider architectures with edge embeddings, which is a focus of our work.

Communication complexity methods to prove representational separations: Tools from dis-
tributed computation and communication complexity have recently been applied not only to under-
stand the representational power of GNNs (Loukas, 2019; 2020), but also the representational power
of other architectures like transformers (Sanford et al., 2024b;a). In particular, (Sanford et al., 2024a)
draws a connection between number of rounds for a MPC (Massively Parallel Computation) protocol,
and the depth of attention-based architectures.

GNNs for inference and graphical models: The paper (Xu & Zou, 2023) considers the approx-
imation power of GNNs for calculating marginals for pairwise graphical models, if the family of
potentials satisfies strong symmetry constraints. They do not consider the role of edge embeddings or
memory.

4 SETUP

Notation. We will denote the graph associated with the GNN as G = (V,E), denoting the vertex
set as V and the edge set as E. The graph induces adjacency relations on both edges and nodes,
namely for v, v′ ∈ V and e, e′ ∈ E, we have: v ∼ v′ if {v, v′} ∈ E; v ∼ e if e = {u, v} for some
u ∈ V ; and e ∼ e′ if e, e′ share at least one vertex. For all graphs considered in this paper, we assume
that {v, v} ∈ E for all v ∈ V , so that adjacency is reflexive. We then define adjacency functions
N = NG : V ∪ E → V and M = MG : V ∪ E → E as NG(a) := {v ∈ V : a ∼ v} and
MG(a) := {e ∈ E : a ∼ e}.1

Graph Neural Networks. A typical way to parametrize a layer l of a GNN (Xu et al., 2018) is to
maintain, for each node v in the graph, a node embedding h

(l)
v , which is calculated in terms of its

neighbor set N (v) as

a(l+1)
v = AGGREGATE

(
h(l)
u : u ∈ N (v)

)
h(l+1)
v = COMBINE

(
a(l+1)
v , h(l)

v

)
, (1)

for parametrized functions AGGREGATE and COMBINE. These updates can be viewed as imple-
menting a (trained) message-passing algorithm, in which nodes pass messages to their neighbors,
which are then aggregated and combined with the current state (i.e., embedding) of a node. The initial
node embeddings h(0)

v are frequently part of the task specification (e.g., a vector of fixed features that
can be associated with each node). When this is not the case, they can be set to fixed values (e.g., the
all-ones vector) or random values.

But an alternative way to parametrize a layer of computation is to maintain, for each edge e, an edge
embedding h

(l)
e which is calculated as:

a(l+1)
e = AGGREGATE

(
h(l)
a : a ∈M(e)

)
h(l+1)
e = COMBINE

(
a(l+1)
e , h(l)

e

)
. (2)

Recall thatM(e) denotes the “neighborhood” of edge e, i.e. all edges a that share a vertex with e.

Local memory-constrained computation. In order to reason about the required depth with dif-
ferent architectures, we will define a mathematical abstraction for one layer of computation in the
GNN. We will define two models for local computation, one for each of the edge-embedding and
node-embedding architecture. Unlike much prior work on GNNs and distributed computation, we
will also have memory constraints — more precisely, we will constrain the bit complexity of the node
and edge embeddings being maintained.

1The graph is assumed to be undirected, as is most common in the GNN literature. Dependence of the
adjacency functions on G is omitted when clear from context.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In both models, there is an underlying graph G = (V,E), and the goal is to compute a function
g : ΦE → {0, 1}V , where Φ is the fixed-size input alphabet,via several rounds of message-passing
on the graph G. This domain of g is ΦE because in both models, the inputs are given on the edges of
the graph — the node model will just be unable to store any additional information on the edges. As
we will see in Section 5, this is a natural setup for probabilistic inference on graphs.

In both models, a protocol is parametrized by the number of rounds T required, and the amount
of memory B required per local processor. For notational convenience, for B ∈ N we define
XB := {0, 1}B , i.e. the length-B binary strings. Recall that N (v),M(v) denote the sets of vertices
and edges adjacent to vertex v in graph G, respectively.
Definition 1 (Node message-passing protocol). Let T,B ∈ N and let G = (V,E) be a graph. A
node message-passing protocol P on graph G with T rounds and B bits of memory is a collection
of functions (ft,v)t∈[T],v∈V where ft,v : XN (v)

B × ΦM(v) → XB for all t, v. For an input I ∈ ΦE ,
the computation of P at a round t ∈ [T] is the map Pt(·; I) : V → XB defined inductively by
Pt(v; I) := ft,v((Pt−1(v

′; I))v′∈N (v), (I(e))e∈M(v)) where P0 ≡ 0. We say that P computes a
function g : ΦE → {0, 1}V on inputs I ⊆ ΦE if PT (v; I)1 = g(I)v for all v ∈ V and all I ∈ I.

In words, the value computed by vertex v at round t is some function of the previous values stored
at the neighbors v′ ∈ N (v), as well as possibly the problem inputs on the edges adjacent to v (i.e.
(I(e))e∈M(v))). Note that Pt(v; I) may indeed depend on Pt−1(v; I), due to our convention that
v ∈ N (v). We can define the edge message-passing protocol analogously:
Definition 2 (Edge message-passing protocol). Let T,B ∈ N and let G = (V,E) be a graph. An
edge message-passing protocol P on graph G with T rounds and B bits of memory is a collection
of functions (ft,e)t∈[T],e∈E where ft,e : XM(e)

B × Φ → XB for all t, e, together with a collection
of functions (f̃v)v∈[V] where f̃v : XM(v)

B → {0, 1}. For an input I ∈ ΦE , the computation
of P at a timestep t ∈ [T] is the map Pt(·; I) : E → XB defined inductively by: Pt(e; I) :=
ft,e((Pt−1(e

′; I))e′∈M(e), I(e)) where P0 ≡ 0. We say that P computes a function g : ΦE →
{0, 1}V on inputs I ⊆ ΦE if f̃v((PT (e; I))e∈M(v)) = g(I)v for all v ∈ V and all I ∈ I.
Remark 3 (Relation to distributed computation literature). These models are very related to clas-
sical models in distributed computation like LOCAL (Linial, 1992) and CONGEST (Peleg, 2000).
However, the latter models ignore memory constraints, so we cannot usefully port lower and upper
bounds from this literature.
Remark 4 (Computational efficiency). In the definitions above, we allow the update rules ft,v, ft,e
to be arbitrary functions. In particular, a priori they may not be efficiently computable. However, our
results showing a function can be implemented by an edge message-passing protocol (Theorem 1,
Part 2 and Theorem 4, Part 2) in fact use simple functions (computable in linear time in the size
of the neighborhood), implying the protocol can be implemented in parallel (with one processor
per node/edge respectively) with parallel time complexity O(TB · maxv |M(v)|). On the other
hand, for the results showing a function cannot be implemented by a node message-passing protocol
(Theorem 1, Part 1 and Theorem 4, Part 1), we prove an impossibility result for a stronger model
(one in which the computational complexity of ft,v is unrestricted) — which makes our results only
stronger.

Symmetry-constrained protocols. Typically, GNNs are architecturally constrained to respect the
symmetries of the underlying graph. Below we formalize the most natural notion of symmetry in our
models of computation. Note, our abstraction of a round in the message-passing protocol generalizes
the notion of a layer in a graph neural network—and the abstraction defined below correspondingly
generalizes the standard definition of permutation equivariance (Xu et al., 2018). We use the notation
{{}} to denote a multiset.
Definition 5 (Symmetric node message-passing protocol). A node message-passing protocol P =
(ft,v)t∈[T],v∈V on graph G = (V,E) is symmetric if there are functions (f sym

t)t∈[T] so that for every
t ∈ [T] and v ∈ V , the function ft,v can be written as:

ft,v((c(v
′))v′∈N (v), (I(e))e∈M(v)) = f sym

t (c(v), {{(c(v′), I({v, v′})) : v′ ∈ N (v)}}).

Definition 6 (Symmetric edge message-passing protocol). An edge message-passing protocol P =
((ft,e)t∈[T],e∈E , (f̃v)v∈V) on graph G = (V,E) is symmetric if there are functions (f sym

t)t∈[T] and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: The graph G for which Theorem 1 exhibits a separation between edge message-passing
and node message-passing. The graph consists of

√
n paths of length

√
n, as well as a single “hub

vertex” connected to all other vertices.

f̃ sym so that for every t ∈ [T] and e = {u, v} ∈ E, the function ft,e can be written as:

ft,e((c(e
′))e′∈M(e), I(e)) = f sym

t (I(e), c(e), {{{{c(e′) : e′ ∈M(u)}}, {{c(e′) : e′ ∈M(v)}}}}),

and for every v ∈ V , f̃v can be written as f̃v((c(e))e∈M(v)) = f̃ sym({{c(e) : e ∈M(v)}}).

5 DEPTH SEPARATION BETWEEN EDGE AND NODE MESSAGE PASSING
PROTOCOLS UNDER MEMORY CONSTRAINTS

We will consider a common task in probabilistic inference on a pairwise graphical model: calculating
the MAP (maximum a-posterior) configuration.

Definition 7 (Pairwise graphical model). For any graph G = (V,E), the pairwise graphical model
on G with potential functions ϕ{a,b} : {0, 1}2 → R is the distribution pϕ ∈ ∆({0, 1}V) defined as
pϕ(x) ∝ exp

(
−
∑

{a,b}∈E ϕ{a,b}(xa, xb)
)
.

Definition 8 (MAP evaluation). Let Φ ⊆ {ϕ : {0, 1}2 → R} be a finite set of potential functions.
A MAP (maximum a-posteriori) evaluator for G (with potential function class Φ) is any function
g : ΦE → {0, 1}V that satisfies g(ϕ) ∈ argmaxx∈{0,1}V pϕ(x) for all ϕ ∈ ΦE .

With this setup in mind, we will show that there exists a pairwise graphical model, and a local function
class Φ, such that an edge message passing protocol can implement MAP evaluation with a constant
number of rounds and a constant amount of memory, while any node message protocol with T rounds
and B bits of memory requires TB = Ω(

√
|V |). Precisely, we show:

Theorem 1 (Main, separation between node and edge message-passing protocols). Fix n ∈ N. There
is a graph G with O(n) vertices and O(n) edges, and a function class Φ of size O(1), so that:

1. Let g be any MAP evaluator for G with potential function class Φ. Any node message-passing
protocol on G with T rounds and B bits of memory that computes g requires TB ≥

√
n− 1.

2. There is an edge message-passing protocol (ft,e)t,e on G with O(1) rounds and O(1) bits of
memory that computes a MAP evaluator for G with potential function class Φ. Additionally, for
all t, e, the update rule ft,e can be evaluated in O(|M(e)|) time.

We provide a proof sketch of the main techniques here, and relegate the full proofs to Appendix A.
The graph G that exhibits the claimed separation is a disjoint union of

√
n path graphs, with an

additional “hub vertex” that is connected to all other vertices in the graph (Fig. 1). The intuition for
the separation is that MAP estimation requires information to disseminate from one end of each path
to the other, and the hub node is a bottleneck for node message-passing but not edge message-passing.
We expand upon both aspects of this intuition below.

Lower bound for node message-passing protocols: Our main technical lemma for the first half
of the theorem is Lemma 2. It gives a generic framework for lower bounding the complexity of any
node message-passing protocol that computes some function g, by exhibiting a set of nodes S ⊂ V
where computing g requires large “information flow” from distant nodes. More precisely, for any
fixed set of “bottleneck nodes” K, consider the radius-T neighborhood of S when K is removed

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

from the graph. In any T -round protocol, input data from outside this neighborhood can only reach
S by passing through K. But the total number of bits of information computed by K throughout
the protocol is only TB|K|. This gives a bound on the number of values achievable by g on S. We
formalize this argument below (proof in Appendix A):

Lemma 2. Let G = (V,E) be a graph. Let P be a node message-passing protocol on G with T
rounds and B bits of memory, which computes a function g : ΦE → {0, 1}V . Pick any disjoint
sets K,S ⊆ V . Define H := G[K̄], F := M(N T−1

H (S)), where N T−1
H (S) is the (T − 1)-hop

neighborhood of S in H .

Then: TB ≥ 1
|K| logmaxIF∈ΦF

∣∣∣{gS (IF , IF) : IF ∈ ΦF
}∣∣∣ .

Remark 9. The proof technique is inspired by and related to classic techniques (specifically, Grig-
oriev’s method) for proving time-space tradeoffs for restricted models of computation like branching
programs ((Grigor’ev, 1976), see Chapter 10 in Savage (1998) for a survey). There, one defines
the “flow” of a function, which quantifies the existence of subsets of coordinates, such that setting
them to some value, and varying the remaining variables results in many possible outputs. In our
case, the choice of subsets is inherently tied to the topology of the graph G. Our technique is also
inspired by and closely related to the “light cone” technique for proving round lower bounds in the
LOCAL computation model (Linial, 1992). However, our technique takes advantage of bottlenecks
in the graph to prove stronger lower bounds (which would be impossible in the LOCAL model where
memory constraints are ignored).

The proof of Part 1 of Theorem 1 now follows from an application of Lemma 2 with a particular
choice of K and S. Specifically, we choose K to be the “hub” node (i.e. K = {0}) and S to be the
set of left endpoints of each path. To show that any MAP evaluator has large information flow to
S (in the quantitative sense of Lemma 2), it suffices to observe that in a pairwise graphical model
on G where a different external field is applied to the right endpoint of each path, and all pairwise
interactions along paths are positive, the MAP estimate on each vertex in S must match the external
field on the corresponding right endpoint.

Upper bound for edge message-passing protocols: The key observation for constructing a
constant-round edge message-passing protocol for MAP estimation on G is that all of the input data
can be collected on the edges adjacent to the hub vertex. At this point, every such edge has access to
all of the input data, and hence can evaluate the function. If G were an arbitrary graph, this final step
would potentially be NP-hard. However, since the induced subgraph after removing the hub vertex
is a disjoint union of paths, in fact there is a linear-time dynamic programming algorithm for MAP
estimation on G (Lemma 6). This completes the proof overview for Theorem 1.

The separation discussed above crucially relies on the existence of a high-degree vertex in G. When
the maximum degree of G is bounded by some parameter ∆, it turns out that any edge message-
passing protocol can be simulated by a node message-passing protocol with roughly the same number
of rounds and only a ∆ factor more memory per processor. The idea is for each node to simulate the
computation that would have been performed (in the edge message-passing protocol) on the adjacent
edges. The following proposition formalizes this idea (proof in Appendix A):

Proposition 3. Let T,B ≥ 1. Let G = (V,E) be a graph with maximum degree ∆. Let P be an
edge message-passing protocol on G with T rounds and B bits of memory. Then there is a node
message-passing protocol P ′ on G that computes P with T + 1 rounds and O(∆B) bits of memory.

6 DEPTH SEPARATION UNDER MEMORY AND SYMMETRY CONSTRAINTS

One drawback of the separation in the previous section is that the constructed edge protocol was
highly non-symmetric, whereas in practice GNN protocols are typically architecturally constrained to
respect the symmetries of the underlying graph. In this section we prove that there is a separation
between the memory/round trade-offs for node and edge message-passing protocols even under
additional symmetry constraints.

Theorem 4. Let n ∈ N. There is a graph G = (V,E) with O(n) vertices and O(n) edges, and a
function g : {0, 1}E → {0, 1}V , so that:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1. Any node message-passing protocol on G with T rounds and B bits of memory that computes g
requires TB ≥ Ω(

√
n).

2. There is a symmetric edge message-passing protocol on G with O(1) rounds and O(log n) bits of
memory that computes g.

For intuition, we sketch the proof of a relaxed version of the theorem where the input alphabet is [n].
It is conceptually straightforward to adapt the construction to binary alphabet (essentially, by adding
new vertices and using a unary encoding). We defer the full proof to Appendix B.

Let G = (V,E) be a star graph with root node 0 and leaves {1, . . . , n}. We define a function
g : [n]E → {0, 1}V by g(I)v = 1 if and only if there is some edge e ̸= {0, v} such that I(e) =
I({0, v}), i.e. the input on edge {0, v} equals the input on some other edge. Since g is defined to
be equivariant to relabelling the edges, and all edges are incident to each other, it is straightforward
to see that there is a symmetric one-round edge message-passing protocol that computes g with
O(log n) memory (in contrast, the edge message-passing protocol constructed in Section 5 was not
symmetric, as it required that the edges incident to the high-degree vertex were labelled by which path
they belonged to). However, there is no low-memory, low-round node message-passing algorithm.
Informally, this is because vertex 0 is an information bottleneck, and Ω(n) bits of information need
to pass through it. Similar to in Section 5, this intuition can be made formal using Lemma 2.

7 SYMMETRY ALONE PROVIDES NO SEPARATION

In the previous sections we saw that examining memory constraints yields a separation between
different GNN architectures (whether or not we take symmetry into consideration). In this section,
we consider what happens if we solely consider symmetry constraints (that is, constraints imposed by
requiring that the computation in a round of the protocol is invariant to permutations of the order of
the neighbors). This viewpoint was initiated by Xu et al. (2018), who showed that when the initial
node features are uninformative (that is, the same for each node), a standard GNN necessarily outputs
the same answer for two graphs that are 1-Weisfeiler-Lehman equivalent (that is, graphs that cannot
be distinguished by the Weisfeiler-Lehman test, even though they may not be isomorphic).

To be precise, we revisit the representational power of symmetric GNN architectures in the setting
where the input features may be distinct and informative. We show that if we remove the memory
constraints from Section 5, but impose permutation invariance for the computation in each round,
any function that is computable by a T -layer edge message-passing protocol can be computed
by a (T + 1)-layer node message-passing protocol. Note that this statement is incomparable to
Proposition 3 because we impose constraints on symmetry, but remove constraints on memory.

Theorem 5 (No separation under symmetry constraints). Let T ≥ 1. Let P be a symmetric edge
message-passing protocol (Definition 6) on graph G = (V,E) with T rounds. Then there is a
(T + 1)-round symmetric node message-passing protocol (Definition 5) P ′ on G that computes the
same function as P .

Remark 10. Theorem 5 and its proof are closely related to the fact that the 1-Weisfeiler-Lehman
test is equivalent to the 2-Weisfeiler-Lehman test, which was reintroduced in the context of higher-
order GNNs (Huang & Villar, 2021). However, the k-Weisfeiler-Lehman test only characterizes the
representational power of k-GNNs with uninformative input features (i.e. that are identical for all
nodes). Theorem 5 shows that even with arbitrary input features on the edges, the computation of
a GNN with edge embeddings and symmetric updates can be simulated by a GNN with only node
embeddings, without losing symmetry.

To prove Theorem 5, note that it suffices to simulate the protocol P for which the update rules
f sym, f̃ sym in Definition 6 are identity functions on the appropriate domains. In order to simulate
P , we construct a symmetric node message-passing protocol P ′ for which the computation at time
t+ 1 and node v on input I is the multiset of features computed by P at time t at edges adjacent to v:
Qt(v; I) := {{Pt(e; I) : e ∈M(v)}}. This is possible since the computation of P at time t and edge
e = (u, v) is Pt(e; I) = (I(e), Pt−1(e; I), {{Qt−1(u; I), Qt−1(v; I)}}). The node message-passing
protocol is tracking Qt−1(·; I); moreover, it can recursively compute Pt−1(e; I) using the same
formula. See Appendix C for the formal proof.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

8 EMPIRICAL BENEFITS OF EDGE-BASED ARCHITECTURES

In this section we demonstrate that the representational advantages the theory suggests are borne out
by experimental evaluations, both on real-life benchmarks and two natural synthetic tasks we provide.
Note that all the experiments were done on a machine with 8 Nvidia A6000 GPUs.

8.1 PERFORMANCE ON COMMON BENCHMARKS

First we compare the performance of the most basic GNN architecture (Graph Convolutional Network,
Kipf & Welling (2016)) with node versus edge embeddings. In the notation of (1) and (2), the
AGGREGATE and COMBINE operations are integrated as a transformation that looks like Eq. (3) or
Eq. (4):2

h(l+1)
v = h(l)

v + σ
(
W (l)MEAN

(
h(l)
w : w ∈ N (v) \ {v}

))
(3)

h(l+1)
e = h(l)

e + σ
(
W (l)MEAN

(
h
(l)
f : f ∈M(e) \ {e}

))
(4)

for trained matrices W (l) and a choice of non-linearity σ. The only difference between these
architectures is that in the latter case, the message passing happens over the line graph of the original
graph (i.e. the neighborhood of an edge is given by the other edges that share a vertex with it) —
thus, this can be viewed as an ablation experiment in which the only salient difference is the type of
embeddings being maintained. To also equalize the information in the input embeddings, we only
use the node embeddings in the benchmarks we consider: for the edge-based architecture (2), we
initialize the edge embeddings by the concatenation of the node embeddings of the endpoints.

In Table 1, we show that this single change (without any other architectural modifications) uniformly
results in the edge-based architecture at least matching the performance of the node-based architecture,
sometimes improving upon it. Note, the purpose of this table is not to advocate a new GNN
architecture3— but to confirm that the increased representational power of the edge-based architecture
indicated by the theory also translates to improved performance when the model is trained. For each
benchmark, we follow the best performing training configuration as delineated in (Dwivedi et al.,
2023).

Model
ZINC MNIST CIFAR-10 Peptides-Func Peptides-Struct

MAE (↓) ACCURACY (↑) ACCURACY (↑) AP (↑) MAE (↓)
GCN 0.3430± 0.034 95.29± 0.163 55.71± 0.381 0.6816± 0.007 0.2453± 0.0001

Edge-GCN (Ours) 0.3297± 0.011 94.37± 0.065 57.44± 0.387 0.6867± 0.004 0.2437± 0.0005

Table 1: Comparison of node-based (3) and edge-based (4) GCN architectures across various graph
benchmarks. The performance of the edge-based architecture robustly matches or improves the
node-based architecture.

8.2 A SYNTHETIC TASK FOR TOPOLOGIES WITH NODE BOTTLENECKS

The topologies of the graphs in Theorem 1 and Theorem 4 both involve a “hub” node, which is
connected to all other nodes in the graph. Intuitively, in node-embedding architectures, such nodes
have to mediate messages between many pairs of other nodes, which is difficult when the node is
constrained by memory. To empirically stress test this intuition, we produce a synthetic dataset
and train a GNN to solve a regression task on a graph with a fixed star-graph topology—a simpler
topology than the constructions in Theorem 1 and Theorem 4—but capturing the core aspect of
both. A star graph is a graph with a center node v0, a set of n leaf nodes {vi}i∈[n], and edge set
{{v0, vi}i∈[n]}. A training point in the dataset is a list (xi, yi)

n
i=1 where xi is the input feature and

yi is the label for leaf node vi.

The input features are in R10, and sampled from a standard Gaussian. The labels yi are produced
as outputs of a planted edge-based architecture. Namely, for a standard edge-based GCN as in (4),
we randomly choose values for the matrices {Wi}i∈[k] for some number of layers k, and set the
labels to be the output of this edge-based GCN, when the initial edge features to the GCN are set
as h

(0)
{v0,vi} := xi, i.e. the input feature xi at the corresponding leaf i. In Table 2, we show the

performance of edge-based and node-based architectures on this dataset, varying the number of leaves
2This is the “residual” parametrization, which we use in experiments unless otherwise stated.
3In particular, the edge-based architecture is often much more computationally costly to evaluate.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

n in the star graph and the depth k of the planted edge-based model. In each case, the numbers
indicate RMSE of the best-performing edge-based and node-based architecture, sweeping over depths
up to 10 (2× the planted model), widths ∈ {16, 32, 64}, and a range of learning rates.

Since the planted edge-based model satisfies both invariance constraints (by design of the GCN
architecture) and memory constraints (since the planted model maintains 10-dimensional embeddings),
we view these results as empirical corroboration of Theorem 4—and even for simpler topologies than
the proof construction.

Depth of Planted Model (RMSE)

Number of
Leaves

5 3 1

Edge Node Edge Node Edge Node

64 0.004 0.3790 0.011 0.3596 0.008 0.3752
32 0.003 0.3664 0.005 0.3626 0.003 0.3614
16 0.007 0.3336 0.002 0.2100 0.002 0.2847

Table 2: Performance (in RMSE ↓) of edge-based and node-based architectures on a star-graph
topology. The first number is the performance of the best edge-based model, and the second is
the best node-based model, across a range of depths up to 10 (2× the planted model), widths
∈ {16, 32, 64}, and a range of learning rates.

8.3 A SYNTHETIC TASK FOR INFERENCE IN ISING MODELS

Finally, motivated by the probabilistic inference setting in Theorem 1, we consider a synthetic
sandbox of using GNNs to predict the values of marginals in an Ising model (Ising, 1924; Onsager,
1944) – a natural type of pairwise graphical model where each node takes a value in {±1}, and
each edge potential is a weighted product of the edge endpoint values. Concretely, the probability
distribution of an Ising model over graph G = (V,E) has the form: ∀x ∈ {±1}n : pJ,h(x) ∝
exp
(∑

{i,j}∈E J{i,j}xixj +
∑

i∈V hixi

)
.

Similar to in Section 8.2, we construct a training set where the graph G and and edge potentials
stay fixed (precisely, Ji,j = 1 for all {i, j} ∈ E). A training data-point consists of a vector of node
potentials {hi}i∈[n], and labels {E[xi]}i∈[n] consisting of the marginals from the resulting Ising
model pJ,h. The node potentials are sampled from a standard Gaussian distribution.

There is a natural connection between GNNs and calculating marginals: a classical way to calculate
{E[xi]} when G is a tree is to iterate a message passing algorithm called belief propagation (7),
in which for each edge {i, j} and direction i → j, a message ν

(t+1)
i→j is calculated that depends on

messages {ν(t)k→i}{k,i}∈E . The belief-propagation updates (7) naturally fit the general edge-message
passing paradigm from (2). In fact, they fit even more closely a “directed” version of the paradigm, in
which each edge {i, j} maintains two embeddings hi→j , hj→i, such that the embedding for direction
hi→j depends on the embeddings {hk→i}{k,i}∈E — and it is possible to derive a similar “directed”
node-based architecture (See Appendix E.2). For both the undirected and directed version of the
architecture, we see that maintaining edge embeddings gives robust benefits over maintaining node
embeddings—for a variety of tree topologies including complete binary trees, path graphs, and
uniformly randomly sampled trees of a fixed size. More details are included in Appendix E.

9 CONCLUSIONS AND FUTURE WORK

Graph neural networks are the best-performing machine learning method for many tasks over graphs.
There is a wide variety of GNN architectures, which frequently make opaque design choices and
whose causal influence on the final performance is difficult to understand and estimate. In this paper,
we focused on understanding the impact of maintaining edge embeddings on the representational
power, as well as the subtleties of considering constraints like memory and invariance. One significant
downside of maintaining edge embeddings is the computational overhead on dense graphs. Hence, a
fruitful direction for future research would be to explore more computationally efficient variants of
edge-based architectures that preserve their representational power and performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Karl Abrahamson. Time-space tradeoffs for algebraic problems on general sequential machines.
Journal of Computer and System Sciences, 43(2):269–289, 1991.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in neural information processing
systems, 29, 2016.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In International Conference on Machine Learning,
pp. 2528–2547. PMLR, 2023.

Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link prediction.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):5103–5113, 2021.

Zhengdao Chen, Xiang Li, and Joan Bruna. Supervised community detection with line graph neural
networks. arXiv preprint arXiv:1705.08415, 2017.

Kamal Choudhary and Brian DeCost. Atomistic line graph neural network for improved materials
property predictions. npj Computational Materials, 7(1):185, 2021.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Dmitrii Yur’evich Grigor’ev. Application of separability and independence notions for proving lower
bounds of circuit complexity. Zapiski Nauchnykh Seminarov POMI, 60:38–48, 1976.

Johan Håstad and Avi Wigderson. The randomized communication complexity of set disjointness.
Theory of Computing, 3(1):211–219, 2007.

Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its
variants. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8533–8537. IEEE, 2021.

Ernst Ising. Beitrag zur theorie des ferro-und paramagnetismus. PhD thesis, Grefe & Tiedemann
Hamburg, Germany, 1924.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

AA Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16, 1968.

Jinbi Liang and Cunlai Pu. Line graph neural networks for link weight prediction. arXiv preprint
arXiv:2309.15728, 2023.

Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on computing, 21(1):193–201,
1992.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint
arXiv:1907.03199, 2019.

Andreas Loukas. How hard is to distinguish graphs with graph neural networks? Advances in neural
information processing systems, 33:3465–3476, 2020.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Marc Mezard and Andrea Montanari. Information, physics, and computation. Oxford University
Press, 2009.

Lars Onsager. Crystal statistics. i. a two-dimensional model with an order-disorder transition. Physical
Review, 65(3-4):117, 1944.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and logarith-
mic depth. arXiv preprint arXiv:2402.09268, 2024a.

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. Advances in Neural Information Processing Systems, 36, 2024b.

John E Savage. Models of computation, volume 136. Addison-Wesley Reading, 1998.

Matus Telgarsky. Benefits of depth in neural networks. In Conference on learning theory, pp.
1517–1539. PMLR, 2016.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Tuo Xu and Lei Zou. Rethinking and extending the probabilistic inference capacity of gnns. In The
Twelfth International Conference on Learning Representations, 2023.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn
with local structure awareness. arXiv preprint arXiv:2110.03753, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Figure 2: A visualization of the information bottleneck induced by “hub nodes”, which is the key
intuition behind Theorems 1 and 4. Here, G is a star graph with n = 8 leaves. Left: The star graph G
itself, which describes the connectivity of the processors in a node-based message-passing protocol
on G. Any message between two leaves must pass through the hub node (as depicted by the red
arrows). Since the hub node has only constant memory, if all nodes need to pass information then
intuitively Ω(n) rounds are necessary. Right: The line graph L(G), which describes the connectivity
of the processors in an edge-based message-passing protocol on G. Each box corresponds to an edge
of the original graph. Messages can be passed directly between boxes (as depicted by the red arrows),
so there is no bottleneck.

APPENDIX

A OMITTED PROOFS FROM SECTION 5

In this section we give the omitted proofs from Section 5. In particular we give the formal proof of
Theorem 1, which states that there is a depth separation between edge message-passing protocols and
node message-passing protocols for a natural MAP estimation problem on the underlying graph G.
Additionally, see Fig. 2 for a visualization of the key insight behind the proofs of Theorems 1 and 4:
the “hub node” information bottleneck. Finally, we remark that a quantitatively stronger (and in fact
tight) separation is possible if one considers general tasks rather than MAP estimation tasks – see
Appendix D.

Proof of Lemma 2. First, we argue by induction that for each t ∈ [T] and v ∈ V \ K, Pt(v; I)
is determined by IM(Nt−1

H (v)) and (Pℓ(k; I))ℓ∈[t],k∈K . Indeed, by definition, P1(v; I) is deter-
mined by IM1(v) for any v ∈ V \ K. For any t > 1 and v ∈ V \ K, Pt(v; I) is determined
by (Pt−1(v

′; I))v′∈N (v) and (I(e))e∈M(v). Note that N (v) ⊆ NH(v) ∪ K. Thus, using the
induction hypothesis for each v′ ∈ NH(v), we get that (Pt−1(v

′; I))v′∈N (v) is determined by⋃
v′∈NH(v) IM(Nt−2

H (v′)) and (Pℓ(k; I))ℓ∈[t],k∈K . So Pt(v; I) is determined by IM(Nt−1
H (v)) and

(Pℓ(k; I))ℓ∈[t],k∈K , completing the induction.

Since P computes g and S ⊆ V \K, we get that gS(I) is determined by IM(NT−1
H (S)) = IF and

(Pℓ(k; I))ℓ∈[T],k∈K . Thus, for any fixed IF ∈ ΦF , we have∣∣∣{gS (IF , IF) : IF ∈ ΦF
}∣∣∣ ≤ ∣∣∣{(Pℓ(k; (IF , IF)))ℓ∈[T],k∈K) : IF ∈ ΦF

}∣∣∣ ≤ |XB |T |K| = 2TB|K|.

The lemma follows.

Proof of Theorem 1. Let G be the graph on vertex set V := {0}∪ [
√
n]× [

√
n] with edge set defined

below (see also Fig. 1):

E := {{0, (i, j)} : i, j ∈ [
√
n]} ∪ {{(i, j), (i+ 1, j)} : 2 ≤ i ≤

√
n, 1 ≤ j ≤

√
n}.

Let Φ be the following set of potential functions:

Φ := {(xa, xb) 7→ 1[xa ̸= xb], (xa, xb) 7→ 1[xa ̸= 1∨xb ̸= 1], (xa, xb) 7→ 1[xa ̸= 0∨xb ̸= 0], (xa, xb) 7→ 0}.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lower bound. We start by proving the lower bound against node message-passing protocols, using
Lemma 2. Let g : ΦE → {0, 1}V be any MAP evaluator for G with potential function class Φ,
and consider any node message-passing protocol on G with T rounds and B bits of memory that
computes g. Let K = {0} (the “hub node” of graph G) and S = {(1, j) : j ∈ [

√
n]} (the set of

left-hand endpoints of the paths in G). Suppose that T ≤
√
n − 2. Let F :=M(NT−1

H (S)). By
assumption on T , we have that {(

√
n− 1, j), (

√
n, j)} ̸∈ F for all j ∈ [

√
n].

Let IF : F → Φ be the mapping that assigns the function (xa, xb) 7→ 0 to each edge {0, (i, j)} ∈ F
and (xa, xb) 7→ 1[xa ̸= xb] to each edge {(i, j), (i+ 1, j)} ∈ F . Intuitively, this means that we are
focusing on the graphical models where the hub node has no interactions with the rest of the graph,
and every non-hub-node is incentivized to match its neighbors.

We claim that even after fixing the potentials on F , the number of restrictions of a possible MAP
assignment to the set S is still exponentially large:∣∣∣{gS(IF , IF) : IF ∈ ΦF

}∣∣∣ ≥ 2
√
n. (5)

Indeed, for any string y ∈ {0, 1}
√
n, consider the mapping IF : F → Φ that assigns the function

(xa, xb) 7→ 1[xa ̸= yj ∨ xb ̸= yj] to each edge {(
√
n− 1, j), (

√
n, j)} ∈ F , assigns (xa, xb) 7→ 0

to each edge {0, (i, j)} ∈ E \F , and assigns (xa, xb) 7→ 1[xa ̸= xb] to all remaining edges in E \F .
Then every minimizer of

min
x∈{0,1}V

∑
{a,b}∈E

I{a,b}(xa, xb)

satisfies x(1,j) = · · · = x(
√
n,j) = yj for all j ∈ [

√
n], since IF incentivizes x(

√
n,j) = yj and there

are positive interactions along each path. Hence, gS(IF , IF) = y. Since y was chosen arbitrarily,
this proves the claim (5). But now Lemma 2 implies that TB ≥

√
n.

We now construct an edge message-passing protocol P on G with T = 3 and B = 4. We (arbitrarily)
identify Φ with {0, 1}2. Intuitively, the three steps of the protocol do the following:

1. First, each edge not adjacent to the hub node “reads” its own input.

2. Second, each edge {0, (i, j)} adjacent to the hub node 0 “reads” its own input and the input
of the adjacent edge {(i, j), (i+ 1, j)}.

3. Third, each edge {0, (i, j)} adjacent to the hub node computes the MAP estimate of the
graphical model specified by the input, using the fact that all of the data is now stored on
edges incident to {0, (i, j)}. It then stores the indices of this MAP estimate corresponding
to node 0 and node (i, j).

We proceed to make this idea formal, which requires defining a collection of update functions (ft,e)t,e.
For all i, j ∈

√
n, define update functions

f1,{(i,j),(i+1,j)}(x, y) := y if i <
√
n

f2,{0,(i,j)}(x, y) := (x{(i,j),(i+1,j)}, x{0,(i,j)}) if i <
√
n

f3,{0,(i,j)}(x, y) := (g0(J(x)), g(i,j)(J(x)))

where the second line is well-defined since edge {0, (i, j)} is adjacent to both itself and edge
{(i, j), (i+1, j)}; and in the third line the function is computing g0 and g(i,j) on the input J(x) ∈ ΦE

defined as

J(x)e :=

{
(x{0,(k,ℓ)})1:2 if e = {(k, ℓ), (k + 1, ℓ)}
(x{0,(k,ℓ)})3:4 if e = {0, (k, ℓ)} ,

where we use the notation va:b for a vector v and indices a, b ∈ N to denote (va, va+1, . . . , vb). Note
that J(x) is a well-defined function of x for every edge {0, (i, j)}, because {0, (i, j)} ∼ {0, (k, ℓ)}
for all i, j, k, ℓ ∈ [n]. Finally, define all other functions ft,e to compute the all-zero function, and
define

f̃v(x) :=

{
(x{0,(1,1)})1:2 if v = 0

(x{0,v})3:4 otherwise
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

This function is well-defined since v = 0 is adjacent to edge {0, (1, 1)} and any vertex v ∈ V \ {0}
is adjacent to edge {0, v}.
Fix any I ∈ ΦE . From the definition, it’s clear that P2({0, (i, j)}; I) = (I{(i,j),(i+1,j)}, I{0,(i,j)})

for all I and (i, j) ∈ [
√
n−1]× [

√
n]. Hence J((P2(e

′; I))e′∈M(e))e = I for all edges e of the form
(0, {i, j}), and so P3({0, (i, j)}; I) = (g0(I), g(i,j)(I)) for all (i, j) ∈ [

√
n] × [

√
n]. This means

that f̃v((P3(e; I))e∈M(v)) = g(I)v for all v ∈ V , so the protocol indeed computes g.

It remains to argue about the computational complexity of the updates ft,e. It’s clear that for all
e ∈ E and t ∈ {1, 2}, the function ft,e can be evaluated in input-linear time. The only case that
requires proof is when t = 3 and e = {0, (i, j)} for some i, j ∈

√
n. In this case |M(e)| = Θ(n),

so it suffices to give an algorithm for evaluating the function g : ΦE → {0, 1}V on an explicit input
J in O(n) time. This can be accomplished via dynamic programming (Lemma 6).

Lemma 6. Fix n ∈ N. Let G, Φ be as defined in Theorem 1. Then there is an O(n)-time algorithm
that computes a MAP evaluator for G with potential function class Φ.

Proof. Intuitively, this is possible since we can iterate over possible values for the hub node 0, and
once the hub node is fixed, the graphical model reduces to

√
n independent Markov chains, for which

MAP estimation is tractable via dynamic programming. We proceed to the formal proof.

Fix any J ∈ ΦE . As preliminary notation, for each c, c0 ∈ {0, 1} and i, j ∈
√
n, let V (i, j) :=

{0} ∪ {(k, j) : 1 ≤ k ≤ i}, and let E(i, j) be the edge set of the induced subgraph G[V (i, j)].
For all indices i, j ∈

√
n and values c, c0 ∈ {0, 1}, let X (c0, c; i, j) denote the set of all partial

configurations x ∈ {0, 1}V (i,j) satisfying the “boundary conditions” x0 = c0 and x(i,j) = c. With
this notation, define

x̂i,j(c, c0; J) := argmin
x∈X (c0,c;i,j)

∑
(a,b)∈E(i,j)

J{a,b}(xa, xb),

Ĉi,j(c, c0; J) := min
x∈X (c0,c;i,j)

∑
(a,b)∈E(i,j)

J{a,b}(xa, xb).

For each j ∈ [
√
n], let

x̂j(c0; J) := x̂√
n,j

((
argmin
c∈{0,1}

Ĉ√
n,j(c, c0; J)

)
, c0; J

)
.

Finally, let x̂(c0; J) ∈ {0, 1}V be the vector which takes value c0 on vertex 0, and value x̂j(c0; J)i
on vertex (i, j) for all i, j ∈

√
n. Let

x̂(J) := argmax
c0∈{0,1}

pJ(x̂(c0; J)).

We claim that x̂(J) is a maximizer of pJ(x). Indeed, for any fixed c0 ∈ {0, 1}, x̂(c0; J) is a
maximizer of pJ(x) subject to x0 = c0, because under this constraint the maximization problem
decomposes into

√
n independent maximization problems, one for each path in G, which by definition

are solved by x̂1(c0; J), . . . , x̂√
n(c0; J).

Moreover, it’s straightforward to see that for any fixed j, Ĉj(c0; J) can be computed in O(
√
n)

time by dynamic programming. Indeed for any i, j, Ĉi,j(c, c0; J) can be computed in O(1) time
from Ĉi−1,j(0, c0; J) and Ĉi−1,j(1, c0; J) as well as J{0,(i,j)} and J{(i−1,j),(i,j)}. Once the values
Ĉi,j(c, c0; J) have been computed for all i ∈ [

√
n] and c ∈ {0, 1}, the vector x̂j(c0; J) can be

computed in O(
√
n) time via a reverse scan over i =

√
n, . . . , 1. It follows that x̂(J) can be

computed in O(n) time.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof of Proposition 3. We claim that there is a node message-passing protocol P ′ on G with T + 1
rounds that at each time t ∈ [T + 1] has computed

P ′
t (v; I) = (Pt−1(e; I))e∈M(v).

That is, each node “simulates” the computation of all incident edges. The key point is that for any
edge e = (u, v) ∈ E, the neighborhoodM(e) is equal toM(u)∪M(v), so node v can simulate the
computation at e using its own data and appropriate data from node u.

We make this idea formal by arguing inductively. Since P0 ≡ 0, it’s clear that this can be achieved for
t = 1. Fix any t > 1 and suppose that P ′

t−1(u; I) = (Pt−2(e; I))e∈M(u) for all u ∈ V and inputs I .
For each v ∈ V , we define a function f ′

t,v by

f ′
t,v((c(v

′))v′∈N (v), (I(e))e∈M(v))e⋆ := ft−1,e⋆((c(v)e)e∈M(v), (c(v
⋆)e)e∈M(v⋆), I(e

⋆))

for each e⋆ = (v, v⋆) ∈M(v). Then by definition and the inductive hypothesis, we have

P ′
t (v; I)e⋆ = f ′

t,v((P
′
t−1(v

′; I))v′∈N (v), (I(e))e∈M(v))e⋆

= ft−1,e⋆((P
′
t−1(v; I)e)e∈M(v), (P

′
t−1(v

⋆; I)e)e∈M(v⋆), I(e
⋆))

= ft−1,e⋆((Pt−2(e; I))e∈M(v), (Pt−2(e; I)e)e∈M(v⋆), I(e
⋆))

= Pt−1(e
⋆; I)

for any edge e⋆ = (v, v⋆) ∈ E, since M(e) = M(v) ∪M(v⋆). This completes the induction
and shows that P ′

T+1(v; I) = (PT (e; I))e∈M(v) for all v, I . Replacing f ′
T+1,v by f̃T,v ◦ f ′

T+1,v
completes the proof.

B OMITTED PROOFS FROM SECTION 6

In this section we provide a formal proof of Theorem 4. For notational convenience, define m = ⌊
√
n⌋.

We define a graph G = (V,E) that is a perfect n-ary tree of depth two. Formally, the graph G has
vertex set V = {0} ∪ [m] ∪ ([m]× [m]). Vertex 0 is adjacent to each i ∈ [m], and each i ∈ [m] is
additionally adjacent to (i, j) for all j ∈ [m]. We define a function g : {0, 1}E → {0, 1}V as follows.
On input I ∈ {0, 1}E , for each edge e ∈ E, define the input summation at e to be

C(I)e :=
∑

e′∈M(e)

I(e′).

Intuitively, one may think of C(I)e as simulating the input on e in the “large alphabet” construction
described in Section 6. Next, define

g(I)(u,j) := 0.

g(I)u := 1[#|e ∈M({0, u}) : C(I)e = C(I){0,u}| > m+ 1].

g(I)0 := 1[∃u ∈ [m] : g(I)u = 1].

In words, g(I)u is the indicator for the event that, among the 2m + 1 edges adjacent to {0, u}
(which include {0, u} itself), more than m + 1 edges have the same input summation as {0, u}.
At a high level, this definition of g was designed to satisfy three criteria. First, g(I)u depends on
the input values on other branches of the tree: in particular, if I{0,v} = 0 for all v ∈ [n], then
C(I)e = C(I){0,u} for all edges e in the subtree of u, so g(I)u exactly measures the event that there
is at least one edge e outside the subtree of u for which C(I)e = C(I){0,u}. Second, there is no
concise “summary” of I such that g(I)u can be determined from this summary in conjunction with
the inputs on the subtree of u. Third, g(I) is equivariant to re-labelings of the tree.

The first two criteria, together with the fact that the root vertex 0 is an “information bottleneck” for
G, can be used to show that any node message-passing algorithm that computes g on G requires
either large memory or many rounds. The third criterion enables construction of a symmetric edge
message-passing protocol for g. The arguments are formalized in the claims below.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Claim 7. For graph G and function g as defined above, any node message-passing protocol on G
that computes g with T rounds and B bits of memory requires TB ≥ Ω(m).

Proof. Consider any input I ∈ {0, 1}E with I({0, u}) = 0 for all u ∈ [m]. Then for any u, j ∈ [m],
we have

C(I){u,(u,j)} = C(I){0,u} =

m∑
i=1

I({u, (u, i)}).

Thus g(I)u = 1 if and only if there exists some v ∈ [m] \ {u} with C(I){0,u} = C(I){0,v}, or
equivalently

∑m
i=1 I({u, (u, i)}) =

∑m
i=1 I({v, (v, i)}).

Fix T,B and suppose that P is a node message-passing protocol on G that computes g with T rounds
and B bits of memory. Define sets of vertices K := {0} and S := {1, . . . ,m/2}. Let H := G[K]

and F :=M(NT−1
H (S)). Then for any T , we have that

F = {{0, u} : 1 ≤ u ≤ m/2} ∪ {{u, (u, j)} : 1 ≤ u ≤ m/2, 1 ≤ j ≤ m}.

Define a vector IF ∈ ΦF by

I{0,u} = 0 for 1 ≤ u ≤ m/2

I{u,(u,j)} = 1[j ≤ u] for 1 ≤ u ≤ m/2, 1 ≤ j ≤ m.

Now fix any x ∈ {0, 1}S . We claim that there is some IF ∈ ΦF such that gS(IF , IF) = x. Indeed,
let us define IF by:

I{0,v} = 0 for m/2 < v ≤ m

I{v,(v,j)} = xv−m/21[j ≤ v −m/2] for m/2 < v ≤ m, 1 ≤ j ≤ m.

Then C(I){0,u} = u for all 1 ≤ u ≤ m/2, and C(I){0,v} = (v−m/2)xv−m/2 for all m/2 < v ≤ m.
It follows that for any 1 ≤ u ≤ n/2, xu = 1 if and only if there exists some v ∈ [m] \ u with
C(I){0,u} = C(I){0,v}, and hence xu = g(I)u. We conclude that∣∣∣{gS(IF , IF) : IF ∈ ΦF

}∣∣∣ ≥ 2m/2.

Applying Lemma 2 we conclude that TB ≥ Ω(m) as claimed.

Claim 8. For graph G and function g as defined above, there is a symmetric edge message-passing
protocol on G that computes g with O(1) rounds and O(logm) bits of memory.

Proof. In the first round, each edge processor reads its input value. In the second round, each edge
processor sums the values computed by all neighboring edges (including itself). In the third round,
each edge processor computes the indicator for the event that strictly more than m+ 1 neighboring
edges (including itself) have the same value as itself. In the final aggregation round, the output of a
vertex is the indicator for the event that any neighbor has value 1.

By construction, the value computed by any edge e after the second round is exactly C(I)e. Thus,
after the third round, the value computed by any edge {0, u} is exactly g(I)u. Moreover, the value
computed by any edge {u, (u, j)} is 0 after the third round, since such edges only have m + 1
neighbors. It follows by construction of the final aggregation step that the protocol computes g.

Proof of Theorem 4. Immediate from Claims 7 and 8.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C OMITTED PROOFS FROM SECTION 7

Proof of Theorem 5. Without loss of generality, we may assume that the functions (f sym
t)t∈[T] and

f̃ sym are all the identity function (on the appropriate domains). The reason is that any symmetric
edge message-passing protocol P̃ on T rounds may be simulated by running P and then applying a
universal function (depending only on P̃) to each node’s output value – see Lemma 9.

We argue by induction that for each t ∈ [T], there is a (t+1)-round symmetric node message-passing
protocol that, on any input I , computes the function Qt(u; I) := {{Pt(e; I) : e ∈M(u)}} for every
node u ∈ V . That is, the protocol at node u simulates the multiset of computations performed by
edges incident to u. This is similar to the idea for Proposition 3 but requires significant care to ensure
symmetry of the protocol is preserved.

Consider t = 1. For any e = (u, v) ∈ E, we have by symmetry and the initial assumption that
P1(e; I) = (I(e), 0, {{{{0 : v′ ∈ N (u)}}, {{0 : u′ ∈ N (v)}}}}). (6)

We define a two-round node message-passing protocol on G where the first update at node u computes
P ′
1(u; I) = {{I(e) : e ∈M(u)}}.

For the second update at node u, the node is required to compute a function of the data
(P ′

1(u; I), {{(P ′
1(v; I), I({u, v})) : v ∈ N (u)}}). It does so by applying the following transformation

to this data:
(P ′

1(u; I), {{(P ′
1(v; I), I({u, v})) : v ∈ N (u)}}) 7→ {{(I({u, v}), 0, |N (u)|, |P ′

1(v; I)|) : v ∈ N (u)}}
7→ {{(I({u, v}), 0, {{|N (u)|, |P ′

1(v; I)|}}) : v ∈ N (u)}}
= {{P1({u, v}; I) : v ∈ N (u)}} =: P ′

2(u; I),

where the first step drops the term P ′
1(u; I), inserts the constant |N (u)| into each element of the

multiset, and replaces each set P ′
1(v; I) by its cardinality; the second step symmetrizes the tuple

(|N (u)|, |P ′
1(v; I)|); and the equality uses the fact that |P ′

1(v; I)| = |N (v)| together with Eq. (6). By
construction, this protocol is symmetric, and we can see that P ′

2(u; I) = Qt(u; I), which proves the
induction for step t = 1.

Now pick any t > 1. For any e = {u, v} ∈ E, we know that the original protocol’s computation at e
can be written as:

Pt(e; I) = (I(e), Pt−1(e; I), {{Qt−1(u; I), Qt−1(v; I)}}).
By the induction hypothesis, there is a t-round symmetric node message-passing protocol P ′ that, at
node v on input I , computes

P ′
t (v; I) = {{Pt−1(e; I) : e ∈M(v)}} = Qt−1(v; I).

Note that since Pt−1(e; I) is an element of the tuple Pt(e; I), for each 1 ≤ s ≤ t − 1 there is a
fixed function γs such that γs(Qt−1(v; I)) = Qs(v; I) for all v, I . Using this fact, we extend P ′

to t + 1 rounds. The update at round t + 1 and node u is required to be a function of the data
(P ′

t (u; I), {{(P ′
t (v; I), I({u, v})) : v ∈ N (u)}}). By the induction hypothesis, this is equal to the

data (Qt−1(u; I), {{(Qt−1(v; I), I({u, v})) : v ∈ N (u)}}). For notational convenience, write
St−1,u := {{(Qt−1(v; I), I({u, v})) : v ∈ N (u)}}

and
S1:t−1,u := {{(Q1:t−1(v; I), I({u, v})) : v ∈ N (u)}}

where Q1:t−1(u; I) refers to the tuple (Q1(u; I), . . . , Qt−1(u; I)). Observe that Q1:t−1(v; I) can be
determined from Qt−1(v; I) (for any v) due to the existence of the functions γ1, . . . , γt−1; hence,
S1:t−1,u can be computed from St−1,u. Using these observations, defining P ′

t+1(u; I) via the
following sequence of transformations to the data (Qt−1(u; I), St−1,u) is well-defined:
(Qt−1(u; I), St−1,u) 7→ (Q1:t−1(u; I), S1:t−1,u)

7→ {{(I({u, v}), {{Q1:t−1(u; I), Q1:t−1(v; I)}}) : v ∈ N (u)}}
7→ {{(I({u, v}), Pt−1({u, v}; I), {{Qt−1(u; I), Qt−1(v; I)}}) : v ∈ N (u)}}
= {{Pt({u, v}; I) : v ∈ N (u)}}
= Qt(u; I) =: P ′

t+1(u; I)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The second transformation inserts Q1:t−1(u; I) into each element of the multiset S1:t−1(u; I) and
symmetrizes with Q1:t−1(v; I). The final transformation drops Q1:t−2(u; I) and Q1:t−2(v; I) and
inserts Pt−1({u, v}; I). This insertion is well-defined because the definition of Pt−1({u, v}; I) can
be iteratively unpacked, and it is ultimately a function of the existing data

(I({u, v}), {{Q1:t−1(u; I), Q1:t−1(v; I)}}).
To conclude, we have shown that P ′ computes Qt(v; I) at node u on input I , and that this can be
achieved while satisfying symmetry. This completes the induction. Since QT (u; I) is precisely the
output of P at node u on input I (after the node aggregation step), this shows that P can be simulated
by a (T + 1)-round symmetric node message-passing protocol on G.

Lemma 9. Let T ≥ 1, and let P = ((ft,e)t∈[T],e∈E , (f̃v)v∈V) be a symmetric edge message-passing
protocol on G = (V,E) with T rounds. Consider the T -round edge message-passing protocol
P ◦ = ((f◦

t,e)t∈[T],e∈E , (f̃
◦
v)v∈V) where for all t, e,

f◦
t,e((c(e

′))e′∈M(e), I(e)) := (I(e), c(e), {{c(e′) : e′ ∈M(u)}}, {{c(e′) : e′ ∈M(v)}}),
and for every v ∈ V ,

f̃◦
v ((c(e))e∈M(v)) := {{c(e) : e ∈M(v)}}.

Then there is a function h such that f̃v((PT (e; I))e∈M(v)) = h(f̃◦
v ((P

◦
T (e; I))e∈M(v))) for all v, I .

Proof. We prove by induction that for each t ∈ {0, . . . , T} there is a function ht such that Pt(e; I) =
ht(P

◦
t (e; I)) for all e, I . For t = 0 this is immediate from the convention that P0 ≡ P ◦

0 ≡ 0. Fix any
t ∈ {1, . . . , T}. Since P is symmetric, there is a function f sym

t so that for all e = (u, v) ∈ E and
inputs I ,

Pt(e; I) = f sym
t (I(e), Pt−1(e; I), {{Pt−1(e

′; I) : e′ ∈M(u)}}, {{Pt−1(e
′; I) : e′ ∈M(v)}})

= f sym
t (I(e), ht−1(P

◦
t−1(e; I)), {{ht−1(P

◦
t−1(e

′; I)) : e′ ∈M(u)}}, {{ht−1(P
◦
t−1(e

′; I)) : e′ ∈M(v)}})
which is indeed a well-defined function (independent of e, I) of

P ◦
t (e; I) = (I(e), P ◦

t−1(e; I), {{P ◦
t−1(e

′; I) : e′ ∈M(u)}}, {{P ◦
t−1(e

′; I) : e′ ∈M(v)}}).

This completes the induction. Finally, since P is symmetric, there is a function f̃ sym such that
f̃v((PT (e; I))e∈M(v)) = f̃ sym({{PT (e; I) : e ∈M(v)}}) for all v, I . Hence we can write

f̃v((PT (e; I))e∈M(v)) = f̃ sym({{PT (e; I) : e ∈M(v)}})
= f̃ sym({{hT (P

◦
T (e; I)) : e ∈M(v)}})

which is a well-defined function (independent of v, I) of {{P ◦
T (e; I) : e ∈M(v)}} as needed.

D A QUANTITATIVELY TIGHT DEPTH/MEMORY SEPARATION

For each n ∈ N, let Kn := ([n], En) be the complete graph on [n]. In this section we show that there
is a function that can be computed by an edge message-passing protocol on Kn with constant rounds
and constant memory per processor, but for which any node message-passing protocol with T rounds
and B bits of memory requires TB ≥ Ω(n). We remark that this separation is quantitatively tight
due to Proposition 3, although it is possible that a larger (e.g. even super-polynomial in n) depth
separation may be possible if the node message-passing protocol is restricted to constant memory per
processor.

At a technical level, the lower bound proceeds via a reduction from the set disjointness problem in
communication complexity, similar to the lower bounds in Loukas (2019).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Definition 11. Fix m ∈ N. The set disjointness function DISJm : {0, 1}m × {0, 1}m → {0, 1} is
defined as

DISJm(A,B) := 1[∀i ∈ [m] : AiBi = 0].

The following fact is well-known; see e.g. discussion in Håstad & Wigderson (2007).

Lemma 10. In the two-party deterministic communication model, the deterministic communication
complexity of DISJm is at least m.

The main result of this section is the following:

Theorem 11. Fix any even n ∈ N. Define g : {0, 1}En → {0, 1}n by

g(I)v := 1[∃{i, j} ∈ En : i, j ≤ n/2 ∧ I({i, j}) = I({n+ 1− i, n+ 1− j}) = 1]

for all I ∈ {0, 1}En and v ∈ [n]. Then the following properties hold:

• Any node message-passing protocol on Kn with T rounds and B bits of memory that
computes g requires TB ≥ Ω(n)

• There is an edge message-passing protocol on Kn with O(1) rounds and O(1) bits of
memory that computes g.

Proof. Let m :=
(
n/2
2

)
. Let P = (ft,v)t,v be a node message-passing protocol on Kn that computes

g with T rounds and B bits of memory. We design a two-party communication protocol for DISJm
as follows. Suppose that Alice holds input X ∈ {0, 1}m and Bob holds input Y ∈ {0, 1}m. Let us
index the edges {i, j} ∈ En with i, j ≤ n/2 by [m], and similarly index the edges {i, j} ∈ En with
i, j > n/2 by [m], in such a way that edge {i, j} has the same index as edge {n+ 1− i, n+ 1− j}.
Let I ∈ {0, 1}En be defined by

I({i, j}) :=


X{i,j} if i, j ≤ n/2

Y{i,j} if i, j > n/2

0 otherwise
.

Initially, Alice computes P̂0(v) := 0 for all v ∈ {1, . . . , n/2}, and Bob computes P̂0(v) := 0 for all
v ∈ {n/2 + 1, . . . , n}. The communication protocol then proceeds in T rounds. At round t ∈ [T],
Alice sends (P̂t−1(v))1≤v≤n/2 to Bob, and Bob sends (P̂t−1(v))n/2+1≤v≤n to Alice. Alice then
computes

P̂t(v) := ft,v((P̂t−1(v
′))v′∈[n], (I(e))e∈MKn (v))

for each 1 ≤ v ≤ n/2, and Bob computes the same for each n/2 < v ≤ n. Note that for any i ≤ n/2
and edge e ∈ MKn

(i), Alice can compute I(e). Similarly, for any i > n/2 and edge e ∈ MKn
(i),

Bob can compute I(e). Thus, this computation is well-defined. After round T , Alice and Bob output
1− P̂T (1) and 1− P̂T (n) respectively.

This defines a communication protocol. Since P̂t(v) ∈ {0, 1}B for each v ∈ [n] and t ∈ [T], the total
number of bits communicated is at most nBT . Moreover, by induction it’s clear that Alice and Bob
output 1− PT (1; I) and 1− PT (n; I) respectively. By assumption that P computes g and the fact
that g(I)v = 1 − DISJm(X,Y) for all v ∈ [n], we have that 1 − PT (1; I) = 1 − PT (n; I) = 0 if
DISJm(I) = 0, and 1− PT (1; I) = 1− PT (n; I) = 1 if DISJm(I) = 1. Thus, this communication
protocol computes DISJm. By Lemma 10, it follows that nBT ≥ m = Ω(n2), so BT = Ω(n) as
claimed.

Next, we exhibit an edge message-passing protocol on Kn that computes g with six rounds and one
bit of memory. Intuitively, the protocol proceeds via the following steps:

1. First, each edge “reads” its input.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

2. Second, each edge {i, j} swaps its value with the value at {n + 1 − i, n + 1 − j}; since
these two edges are not adjacent, this takes two steps.

3. Third, each edge {i, j} with i, j ≤ n/2 checks if the input at {n+ 1− i, n+ 1− j} (which
it now knows) equals its own input.

4. Fourth, an aggregation step is performed across the entire graph. Since the graph is complete,
this can be done in two steps.

We proceed to make this intuition more formal. For 1 ≤ t ≤ 6 and e ∈ En, define ft,e : {0, 1}M(e)×
{0, 1} → {0, 1} as follows:

f1,{i,j}(x, y) := y

f2,{i,j}(x, y) := x{n+1−i,j}

f3,{i,j}(x, y) := x{i,n+1−j}

f4,{i,j}(x, y) := 1[y = x{i,j} ∧ i, j ≤ n/2]

f5,{i,j}(x, y) := 1[∃k ∈ [n] : x{i,k} = 1]

f6,{i,j}(x, y) := 1[∃k ∈ [n] : x{i,k} = 1].

Also define f̃v : {0, 1}M(v) → {0, 1} for each v ∈ [n] by f̃v(x) := x{x,1}. It can be checked that
the computation of P at timestep t = 6 is

P6({i, j}; I) := 1[∃k, ℓ ∈ [n/2] : I({k, ℓ}) = I({n+ 1− k, n+ 1− ℓ})] = g(I).

From the definition of f̃ , it follows that P computes g.

E FURTHER DETAILS ON SYNTHETIC TASK OVER ISING MODELS

E.1 BACKGROUND ON BELIEF PROPAGATION

A classical way to calculate the marginals {E[xi]} of an Ising model, when the associated graph is a
tree, is to iterate the message passing algorithm:

ν
(t+1)
i→j = tanh

hi +
∑

k∈∂i\j

tanh−1
(
tanh(Jik)ν

(t)
k→i

) (7)

When the graph is a tree, it is a classical result ((Mezard & Montanari, 2009), Theorem 14.1) that the
above message-passing algorithm converge to values ν∗ that yield the correct marginals, namely:

E[xi] = tanh

(
hi +

∑
k∈∂i

tanh−1 (tanh(Jik)ν
∗
k→i)

)
.

The reason the updates converge to the correct values on a tree topology is that they implicitly
simulate a dynamic program. Namely, we can write down a recursive formula for the marginal of
node i which depends on sums spanning each of the subtrees of the neighbors of i (i.e., for each
neighbor j, the subgraph containing j that we would get if we removed edge {i, j}).
If we root the tree at an arbitrary node r, we can see that after completing a round of message
passing from the leaves to the root, and another from the root to the leaves, each subtree of i will be
(inductively) calculated correctly.

Moreover, even though the updates (7) are written over edges, the dynamic programming view makes
it clear an equivalent message-passing scheme can be written down where states are maintained over
the nodes in the graph. Namely, for each node v, we can maintain two values hv,down and hv,up,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

which correspond to the values that will be used when v sends a message upwards (towards the root)
or downwards (away from the root). Then, for appropriately defined functions F,G (depending on
the potentials J and h), one can “simulate” the updates in (7):

h
(t+1)
v,up ← F

(
{h(t)

w,up : w ∈ v ∪ Children(v)}
)

(8)

h
(t+1)

v,down ← G

(
h
(t)

Parent(v),down,
{
h
(t)
w,up

}
w∈Children(v)

)
(9)

Intuitively, hv,up captures the effective external field induced by the subtree rooted at v on
Parent(v). After the upward messages propagate, the root r can compute its correct marginal.
Once hParent(v),down is the correct marginal for Parent(v) at some step, hv,down will be the correct
marginal for v at all subsequent steps.

E.2 GCN-BASED ARCHITECTURES TO CALCULATE MARGINALS

The belief-propagation updates (7) naturally fit the general edge-message passing paradigm from
(2). In fact, they fit even more closely a “directed” version of the paradigm, in which each edge
{i, j} maintains two embeddings hi→j , hj→i, such that the embedding for direction hi→j depends
on the embeddings {hk→i}{k,i}∈E . With this modification to the standard edge GCN architecture
Eq. (4), it is straightforward to implement (7) with one layer, using a particular choice of activation
functions and weight matrices W (since, in particular, in our dataset all edge potentials Ji,j are set
to 1). Similarly, with a directed version of the node GCN architecture Eq. (3), where each node
maintains an “up” embedding as well as a “down” embedding, it is straightforward to implement the
“node-based” dynamic programming solution (8)-(9).

We call the architectures that do not maintain directionality Node-U and Edge-U (depending on
whether they use a node-based or edge-based GCN). We call the “directed” architectures Node-D and
Edge-D respectively. Since there are only initial node features (input as node potentials {hi}i∈), for
the edge based architectures we initialize the edge features as a concatenation of the node features of
the endpoints of the edge. The results we report for each architecture are the best over a sweep of
depth ∈ {5, 10, 15, 20, 25, 30} and width ∈ {10, 32, 64}.

E.3 EDGE-BASED MODELS IMPROVE OVER NODE-BASED MODELS

In Figure 3 we show the results for several tree topologies: a complete binary tree (of size 31), a
path graph (of size 30), and uniformly randomly chosen trees of size 30 (the results in Figure 3 are
averaged over 3 samples of tree). The architectures in the legend (Node-U, Edge-U, Node-D, Edge-D)
are based on a standard GCN, and detailed in Section E.2

We can see that for both the undirected and directed versions, adding edge embeddings improves
performance. The improved performance of all directed versions compared to their undirected
counterpart is not very surprising: the standard, undirected GCN architecture treats all neighbors
symmetrically — hence, the directed versions can more easily simulate something akin to the belief
propagation updates (7) as well as the node-based dynamic programming (8)-(9).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 3: Comparison of four architectures for calculating node marginals in an Ising model. The
architectures considered are node-embedding (3) and edge-embedding (4) versions of a GCN (corre-
spondingly labeled Node-U and Edge-U), as well as their “directed” counterparts, as described in
Section E.2, correspondingly labeled Node-D and Edge-D. The x-axis groups results according to the
topology of the graph, the y-axis is MSE (lower is better). The mean and variances are reported over
3 runs for the best choice of depth and width over the sweep described in Section E.2.

23

	Introduction
	Overview of results
	Representational benefits from maintaining edge embeddings.
	Empirical benefits of edge-based architectures.

	Related Works
	Setup
	Depth separation between edge and node message passing protocols under memory constraints
	Depth separation under memory and symmetry constraints
	Symmetry alone provides no separation
	Empirical benefits of edge-based architectures
	Performance on common benchmarks
	A synthetic task for topologies with node bottlenecks
	A synthetic task for inference in Ising models

	Conclusions and future work
	Omitted Proofs from section:map-separation
	Omitted Proofs from section:new
	Omitted Proofs from section:mapsymmetry
	A quantitatively tight depth/memory separation
	Further details on synthetic task over Ising models
	Background on belief propagation
	GCN-based architectures to calculate marginals
	Edge-based models improve over node-based models

