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ABSTRACT

Granger causality, commonly used for inferring causal structures

from time series data, has been adopted in widespread applica-

tions across various fields due to its intuitive explainability and

high compatibility with emerging deep neural network prediction

models. To alleviate challenges in better deciphering causal struc-

tures unambiguously from time series, the use of interventional

data has become a practical approach. However, existing methods

have yet to be explored in the context of imperfect interventions

with unknown targets, which are more common and often more

beneficial in a wide range of real-world applications. Additionally,

the identifiability issues of Granger causality with unknown in-

terventional targets in complex network models remain unsolved.

Our work presents a theoretically-grounded method that infers

Granger causal structure and identifies unknown targets by lever-

aging heterogeneous interventional time series data. We further

illustrate that learning Granger causal structure and recovering

interventional targets can mutually promote each other. Compara-

tive experiments demonstrate that our method outperforms several

robust baseline methods in learning Granger causal structure from

interventional time series data.
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1 INTRODUCTION

Time series data, capturing complex systems dynamic behaviors,

are widely collected in many research areas, such as economics, bio-

informatics, and geo-informatics. Due to the rapid advancements

in sensor and computing technologies, there has been a significant

increase in research modeling time series data in recent years. Re-

searchers have developed various methods leveraging time series

data to perform related analysis such as optimization [29, 30], clas-

sification [26, 44, 46, 47], clustering [19, 27, 48], forecasting [41, 49],

and causal structure learning [12, 21, 24, 28, 31, 39]. Among these

tasks, causal structure learning is particularly challenging but im-

portant. Multivariate time series data, which capture the evolving

states of multiple variables over time, facilitate deriving better

systems understanding across various domains. Causal structure

learning in multivariate time series data focuses on understanding

how different variables influence each other. This knowledge is

beneficial for explaining the data generation process and guiding

the design of time series analysis methods [14].

Granger causality has been widely used for analyzing time se-

ries data to discover causal relationships in numerous real-world

applications, including modern healthcare systems [42], medical

time series generation [23] and time series anomaly detection [35].

Many methods for learning causal structures in time series have

been developed based on the principles of Granger causality [6,

21, 28, 39, 43]. However, Granger causality tests based on linear

models can be ineffective when faced with even slight non-linear

causal relationships in the measurements. Consequently, a signifi-

cant amount of research efforts have been focused on addressing

issues for Granger causality considering non-linearities [21, 28, 39].

Learning causal structures based solely on observational data is

challenging [36, 37] because, under the faithfulness assumption, the

true causal structure can only be identified within a Markov Equiva-

lence Class (MEC) [40]. However, this identifiability improves when

we consider interventional data. We have observed that domain ex-

perts might be able to gather interventional data in practice, where

the underlying generative process varies across different conditions.

This characteristic of distribution shift presents unique challenges

as well as opportunities for learning causal structures in time series.
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In these scenarios, the causal structure can be identified within an

Interventional Markov Equivalence Class (I-MEC), which is a more

specific subset of the Markov equivalence class [2, 17, 45]. With

sufficient interventional observations, the causal structure can be

precisely identified [9, 10]. Numerous methods have approached

causal structure learning with interventional data by framing it

within a continuous optimization framework [2, 12, 31], incorpo-

rating a continuous acyclicity constraint [50]. To address identifi-

ability challenges with time series data, the authors of [12] have

extended the work of [2, 31], to effectively handle observational

and interventional time series data under both perfect [11, 45] and

imperfect interventions [34] with known interventional targets [2]

(See Figure 1). However, in real-world applications, imperfect inter-

ventions with unknown targets are more common [51], requiring

information about interventional targets limits their applications

in more general cases. Therefore, learning causal structures from

interventional time series data is still an open problem.

Figure 1: Intervention types on time series:With known inter-

ventional target (red nodes), altered all causal relationships

from parent nodes in imperfect interventions (red dotted

lines) versus disconnection from parent nodes in perfect in-

terventions.

In this paper, we emphasize on the following parts, compared to

previous work:

• Practicality.Most methods require knowledge regarding inter-

ventional targets. However, in practical scenarios, distinguishing

which variables originate from the non-intervened domain and

identifying the exact interventional targets often proves to be

challenging.

• Accuracy. In previous research, understanding of imperfect in-

terventions has been limited to the node level. However, as illus-

trated in Figure 2, edge-level imperfect interventions can clarify

the specific situations leading to imperfect interventions, which

has not been explicitly studied.

• Identifiability. Despite the development of advanced Score-

based [12, 24, 31] or Granger causality-based [6, 21, 28, 39, 43]

causal structure learning methods for time series, issues related

to the identifiability of Granger causality with unknown inter-

ventional targets remain unresolved.

Consequently, we introduce a theoretically-guaranteed Interven-

tional Granger Causal structure learning (IGC) method. This ap-

proach is designed for the simultaneous inference of Granger causal

structure and the identification of unknown interventional targets

at the edge level. It also leverages interventional time series data

across multiple domains, efficiently differentiating among those

Figure 2: (Left): Existingmethods (node-level imperfect inter-

vention on an unknown target) can only identify the exact

node(s); (Right): whereas our method (edge-level interven-

tion identification) can identify both the node(s) and exact

edge(s).

that have not been intervened upon and those that have, espe-

cially in scenarios where interventional targets are unknown and

the distinctions are not readily apparent. In summary, the main

contributions of the paper are highlighted as:

• We have formalized the task of learning Granger causal structure

from heterogeneous interventional time series data. The inter-

ventional targets are unknown and samples from observational

distribution may be indistinguishable from other interventional

distribution.

• A theoretically-guaranteed method called Interventional Granger

Causal structure learning (IGC) is developed to simultaneously

infer Granger causal structure and identify unknown interven-

tional targets at the edge level.

• We have shown that the exact minimization of the proposed

objective will identify the (I,D)-Markov equivalence class of

the ground truth graph in the context of unknown target setting,

then resolve the identifiability issues of Granger causality.

• Extensive experiments on both synthetic and real-world time

series data have demonstrated our proposed IGC outperforms

several robust baselines by utilizing interventional data.

2 RELATEDWORK

Granger Causal Structure Learning: Much work has been con-

ducted on inferring causal structure based on Granger causality in

multivariate time series. Recent approaches for inferring Granger

causal structure leverage the expressive power of neural network

and are often based on regularized autoregressive models. [1] pro-

posed the Lasso Granger method. [39] proposed the sparse-input

multi-layer perceptron (MLP) and long short-term memory (LSTM)

to model the nonlinear Granger causality within multivariate time

series. [21] integrated an efficient economy statistical recurrent

unit architecture with input layer wights regularized in a group-

wise manner. [28] proposed a generalized vector autoregression

model that utilizes self-explaining neural networks (SENNs) for

inferring Granger causal structure, with an additional focus on

detecting signs of Granger-causal effects. [4, 5] proposed a Granger

causal discovery algorithm that builds a causal adjacency matrix

for imputed and high-dimensional data using sparse regulariza-

tion. Although these methods are powerful techniques for inferring

Granger causal structure, they do not fully utilize interventional

data, nor do they address the identifiability problem.

4409
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Causal Structure Learning from Interventional Data: A se-

ries of parametric studies treat data from different distributions,

often referred to as domains or environments, as interventional

data. [13] studied the problem of causal structure learning in linear

systems from observational data given in multiple domains, across

which the causal coefficients may vary. [45] studied the problem of

causal structure learning in the setting where both observational

and interventional data is available and extended the identifiabil-

ity results from perfect intervention [17] to general interventions.

[2] proposed a differentiable causal structure learning method for

static data that can leverage perfect, imperfect and unknown target

interventions using score function to identify the I-MEC. [24] pro-

pose a novel latent intervened non-stationary learning method to

recover the domain indexes and the causal structure. [12] extends

[2, 31] to address both observational and interventional time series

data, including perfect and imperfect interventions with known

targets. However, effectively handling both observational and in-

terventional time series data in an imperfect setting with unknown

interventional targets remains a challenge.

3 PRELIMINARIES

Non-linear Granger Causality: Consider multivariate time series

T = {x1, ..., x𝑇 }, where x ∈ R𝑑 . Assume that causal relationships

between variables are given by the following structural model:

𝑥𝑖𝑡+1 = 𝑔𝑖 (𝑥
1

1:𝑡 , . . . , 𝑥
𝑑
1:𝑡 ) for 1 ≤ 𝑖 ≤ 𝑑, (1)

where 𝑔𝑖 (·) is a function that specifies how the past values are

mapped to series 𝑖 . Time series 𝑗 is Granger non-causal for time

series 𝑖 if for all 𝑥1
1:𝑡
, . . . , 𝑥𝑑

1:𝑡
and all 𝑥

𝑗

1:𝑡
≠ 𝑥

𝑗

1:𝑡
[39]:

𝑔𝑖 (𝑥11:𝑡 , . . . , 𝑥
𝑗

1:𝑡
, . . . , 𝑥𝑑

1:𝑡 ) = 𝑔𝑖 (𝑥
1

1:𝑡 , . . . , 𝑥
𝑗

1:𝑡
, . . . , 𝑥𝑑

1:𝑡 ) . (2)

Interventions: In the context of causal structure learning, an inter-

vention on a variable 𝑥𝑖 , involves altering its conditional probability

P(𝑥𝑖 |PA(𝑥𝑖 )) to a new conditional probability P̃(𝑥𝑖 |PA(𝑥𝑖 )), where
PA(𝑥𝑖 ) is the set of parents of the node 𝑥𝑖 in the causal graph. It

is possible to apply interventions to several variables at once. The

set of variables on which 𝑘-th interventions are made is referred to

as the interventional targets, symbolized by I𝑘 ∈ R𝑑 . The interven-
tional family is defined as I := (I1, . . . , I𝑛), where 𝑛 represents the

total number of interventions conducted.

Types of Interventions: The type of interventions depicted in

Figure 1 are generally categorized as imperfect intervention (also

known as soft or parametric intervention) [8, 34]. In contrast, a

specific case within this broad category is the perfect interven-

tion (also referred to as hard or structural intervention), where

P(𝑥𝑖 |PA(𝑥𝑖 )) = P(𝑥𝑖 ) [2, 11, 22, 45].

4 INTERVENTIONAL GRANGER CAUSAL

STRUCTURE LEARNING

In this section, we first discuss the challenge of learning Granger

causal structure from interventional time series data in situations

where the interventional targets are unknown, and samples from

the observational distribution is indistinguishable from those of

other interventional distributions. Subsequently, we propose our

Interventional Granger Causal structure learning (IGC) method to

learn both the underlying Granger causal structure and unknown

interventional targets across different environments.

4.1 Granger Causality with Interventions

First, we start with a linear Lasso Granger methodology capable

of handling both observational and interventional data, drawing

inspiration from the concepts applied to independent and identi-

cally distributed (i.i.d.) datasets [2] and structural vector autore-

gression model [12]. The core principle of these methods involve

constructing a Directed Acyclic Graph (DAG) representing the

ground truth causal graph from the interventional data. This is

achieved by incorporating a distinct distribution family specifically

for the intervened nodes within the log-likelihood objective. Unlike

these methods that model the post-intervention distribution, our

approach concentrates on comparing the distributions before and

after the intervention under the framework of Granger causality

to help interpret the impact of the intervention on time series data

more clearly. Specifically, we employ W𝑒0 ∈ R𝑑×𝑑 to represent the

parameters of the density function for observational data under

the condition of no interventions. For each intervention I𝑘 ∈ I,
we define another corresponding set of parameters W𝑒𝑘 ∈ R𝑑×𝑑 ,
which captures the differences in density functions before and after

the 𝑘-th intervention. In other words, the density function after the

𝑘-th intervention can be represented asW𝑒0 +W𝑒𝑘 . The collection

of these parameters is denoted byW := {W𝑒0 ,W𝑒1 , ...,W𝑒𝑛 }. The
integrated training loss function, as described in Equation (3), takes

into account both observational and interventional data:

L(X;W) =
𝑛∑︁
𝑘=1

𝑇∑︁
𝑡=1

𝑙∑︁
𝜏=1

L𝑘 (X𝑡 − (W𝑒0 +W𝑒𝑘 )X𝑡−𝜏 ), (3)

where 𝑛 represents the total number of interventions and L𝑘 sig-

nifies the training loss based on the time series data from the 𝑘-th

intervention. In this model, we do not know which environment

among 𝑛 environments is non-intervend and we assume that W𝑒0

remains constant across 𝑛 different environments, interventions,

domains, or distributions. A time series 𝑗 is Granger non-causal
for time series 𝑖 if and only if the corresponding weight w𝑖 𝑗 in

the matrixW𝑒0 is zero. Intuitively, if all elements in W𝑒𝑘 are zero,

this suggests that the 𝑘-th environment is non-intervened. The

optimization process can be expressed as follows:

min

W𝑒
0
,W𝑒𝑘

𝑛∑︁
𝑘=1

𝑇∑︁
𝑡=1

𝑙∑︁
𝜏=1

| |X𝑡 − (W𝑒0 +W𝑒𝑘 )X𝑡−𝜏 | |22 + 𝜆Ω(W𝑒0 ,W𝑒𝑘 ),

(4)

where 𝜏 is the time lag. The final estimated Granger causal struc-

ture without interventions is represented by W𝑒0 , and W𝑒𝑘 de-

notes the underlying intervention structures after the 𝑘-th inter-

vention. The implementation details of the regularization penalty

term Ω(W𝑒0 ,W𝑒𝑘 ) will be discussed in the following section.

4.2 Non-linear Granger Causality with

Interventions

Linear Granger causal models, with their simplicity and straight-

forwardness, provide a clear but often oversimplified view of rela-

tionships among variables. In practice, it is challenging to model

the highly non-linear relationships among multiple variables from
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time series data. In our proposed IGC, we assume that there exist

functions 𝑓𝑖 : R
𝑑×𝑇 → R and 𝑔𝑖 : R

𝑑×𝑇 → R such that:

E[𝑥𝑖,𝑡+1 |PA(𝑥𝑖,𝑡+1)] = 𝑓𝑖 (X𝑡 :𝑡−𝑇 ) + 𝑔𝑖 (X𝑡 :𝑡−𝑇 ) . (5)

𝑓𝑖 (x1, .., x𝑑 ) does not depend on x𝑘 ∈ R𝑇 if x𝑘 ∩ PA(𝑥𝑖,𝑡+1) = ∅;
and 𝑔𝑖 (X𝑡 :𝑡−𝑇 ) = 0 if 𝑥𝑖,𝑡+1 is not intervened, under the assumption

of no instantaneous effects [33]. Thus, our objective is to learn

𝑓 = (𝑓1, ..., 𝑓𝑑 ) and 𝑔 = (𝑔1, ..., 𝑔𝑑 ) such that the estimated Granger

causal structure from 𝑓 and interventional targets from 𝑔.

Let us first define W𝑒𝑘 = W𝑒0 + W𝑒𝑘 and concentrate on a

single variable 𝑥𝑖 within a specific environment 𝑒𝑘 . We define a

set of parameters, which can be represented as: 𝜙𝑖𝑒𝑘 , where 𝜙
𝑖
𝑒𝑘

=

{W𝑖
:,1,𝑒𝑘

, . . . ,W
𝑖
:,𝑑,𝑒𝑘

} and 𝜙𝑒𝑘 = {𝜙1𝑒𝑘 , . . . , 𝜙
𝑑
𝑒𝑘
}. Then the overall

objective becomes:

min

𝜙𝑒𝑘

𝑑∑︁
𝑖=1

𝑇∑︁
𝑡=2

| |𝑥𝑒𝑘
𝑖,𝑡

− F𝑖 (𝑥𝑒𝑘𝑡−1:1;𝜙
𝑖
𝑒𝑘
) | |2

2
+ 𝜆

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

| |W𝑖
:, 𝑗,𝑒𝑘

| |2, (6)

where F𝑖 (·) is defined as:

F𝑖 (𝑥𝑒𝑘 ;𝜙𝑖𝑒𝑘 ) = 𝑓𝑖 (𝑥
𝑒𝑘
;W

𝑖
𝑒0
) + 𝑔𝑖 (𝑥𝑒𝑘 ;W𝑖

𝑒𝑘
), (7)

and F𝑖 (·) generates the estimate 𝑥𝑖 for the next timestep in 𝑒𝑘 ,

time series 𝑗 is Granger non-causal for time series 𝑖 in the 𝑒𝑘 if

and only ifW

𝑖
:, 𝑗,𝑒𝑘

is zero. With the above proposed objective and

heterogeneous interventional time series data from 𝑛 environments,

we propose minimizing Equation (8) to prioritize the discovery of

the Granger causal structure that remains consistent across all

environments E = {𝑒1, . . . , 𝑒𝑛}.

min

𝜙

∑𝑛

𝑘=1

∑𝑑

𝑖=1

∑𝑇

𝑡=2 | |𝑥
𝑒𝑘
𝑖,𝑡

− F𝑖 (𝑥𝑒𝑘𝑡−1:1;𝜙
𝑖
𝑒𝑘
) | |2

2

+ 𝜆
∑𝑑

𝑖=1

∑𝑑

𝑗=1 | | (W
𝑖
:, 𝑗,𝑒1

, ...,W
𝑖
:, 𝑗,𝑒𝑛

) | |2,
(8)

where 𝜙 = {𝜙𝑒1 , . . . , 𝜙𝑒𝑛 } represents the collection of parameters

across all 𝑛 environments.

To learn the unknown interventional targets while maintaining

consistency in the Granger causal structure, the overall penalized

objective becomes:

min

𝜙

∑𝑛

𝑘=1

∑𝑇

𝑡=2

∑𝑑

𝑖=1

∑𝑑

𝑗=1 | |𝑥
𝑒𝑘
𝑖,𝑡

− F𝑖 𝑗 (𝑥𝑒𝑘𝑗,𝑡−1:1;W
𝑖
:, 𝑗,𝑒𝑘

) | |2
2

+ (1 − 𝛼)𝜆
∑𝑑

𝑖=1

∑𝑑

𝑗=1 | | (W
𝑖
:, 𝑗,𝑒0

,W𝑖
:, 𝑗,𝑒1

, ...,W𝑖
:, 𝑗,𝑒𝑛

) | |2

+ 𝛼𝜆
∑𝑑

𝑖=1

∑𝑑

𝑗=1

∑𝑛

𝑘=1 | |W𝑖
:, 𝑗,𝑒𝑘

| |2,

(9)

where 𝛼 ∈ (0, 1) controls the tradeoff in sparsity across and within

groups. After learning, time series 𝑗 is Granger non-causal to 𝑖
if W

𝑖
:, 𝑗,𝑒0

is zero across 𝑘 distributions. Furthermore, there is no

intervention from time series 𝑗 to 𝑖 in the 𝑘-th distribution ifW
𝑖
:, 𝑗,𝑒𝑘

is zero, which can be mathematically expressed as:

P(𝑥𝑒0
𝑖,𝑡
|𝑥𝑒0
𝑗,𝑡−1:𝑡−𝜏 ) = P(𝑥𝑒𝑘

𝑖,𝑡
|𝑥𝑒𝑘
𝑗,𝑡−1:𝑡−𝜏 ) . (10)

4.3 Model Architecture

In line with the concepts presented in Section 4.2, IGC utilizes

historical time series data as its input and forecasts the data for the

subsequent timestep as its output. The principal contribution of

our study is the integration of heterogeneous interventional time

series data, which aids in the identification of both the Granger

causal structure and the interventional targets. The architecture of

the model is illustrated in Figure 3.

Figure 3: The information flow in various environments is

represented by different colors. During the learning pro-

cess, the prediction network (P) generates data for the next

timestep. Information about unknown targets is contained

within the intervention networks (I𝑒 ), and the Granger causal

structure is captured within the causal network (C).

Intervention Networks. Consider a set of time series data X =

{X𝑒1 , . . . ,X𝑒𝑛 } from 𝑛 environments or distributions. For each spe-

cific environment 𝑒𝑘 , there exists an intervention network I𝑒𝑘 =

{I1𝑒𝑘 , . . . , I
𝑑
𝑒𝑘
}, where each function I

𝑖
𝑒𝑘

is defined as:

I
𝑖
𝑒𝑘
(X𝑡 ;𝑒𝑘 ;W𝑖

𝑒𝑘
) : R𝑇×𝑑 → R𝑇×ℎ . (11)

In this context, I
𝑖
𝑒𝑘
(·) represents the intervention network for node

𝑖 in 𝑒𝑘 , X𝑡 ;𝑒𝑘 ∈ R𝑇×𝑑 is the historical multivariate time series data

in 𝑒𝑘 , and W
𝑖
𝑒𝑘

∈ R𝑑×ℎ denotes the parameters of the intervention

network I
𝑖
𝑒𝑘
.

Granger Causal Network. For the time series data set X, a shared

Granger causal network is applicable to all environments within

X. This network is defined as C = {C1, . . . ,C𝑑 }, where each C𝑖 is

described by the function:

C𝑖 (X𝑡 ;W𝑖
𝑒0
) : R𝑇×𝑑 → R𝑇×ℎ . (12)

In this context, X𝑡 represents the historical multivariate time series

data from each environment within X presented in sequence, and

W
𝑖
𝑒0

∈ R𝑑×ℎ are the parameters of the Granger causal network for

node 𝑖 .

Information Aggregator. After generating both the intervention

information and the Granger causal information, we use a mecha-

nism to aggregate them:

Z
𝑖
𝑡 ;𝑒𝑘

= Agg(I𝑖𝑒𝑘 (X𝑡 ;𝑒𝑘 ;W
𝑖
𝑒𝑘
),C𝑖 (X𝑡 ;𝑒𝑘 ;W𝑖

𝑒0
)), (13)

where Agg(·) is an aggregation function and we have adopted

summation in our experiments. We leave a learnable aggregation

operator as a future research direction.

Prediction Network. The prediction network P is designed to

forecast the 𝑖-th data point for the subsequent timestep:

X̂

𝑖
𝑡+1;𝑒𝑘 = P(Z𝑖𝑡 ;𝑒𝑘 ), (14)

where X̂

𝑖
𝑡+1;𝑒𝑘 ∈ R represents the predicted value at timestep 𝑡 + 1,

while Z
𝑖
𝑡 ;𝑒𝑘

∈ R𝑇×ℎ denotes the aggregated embedding obtained

from the previous step.
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To enhance flexibility, components such as I𝑒 (·), C(·), and P(·)
can be effectively modeled using a variety of neural network ar-

chitectures, including MLP, LSTM, SENNs, and Transformer. In

our experiments, we employed MLPs and trained the model with

respect to Equation (9). As illustrated in Figure 3, information about

unknown targets is obtained from the intervention networks I𝑒 ,

while the Granger causal structure is estimated from the causal

network C. The IGC operates under the Assumption 1.

Assumption 1. (Causal Consistency). There exists a consistent causal
structure and common parametersW𝑒0 across different environments.
The dissimilarity between the parameters for one environment and the
common parametersW𝑒0 lies within a range defined by a lower bound
𝜖𝑙 , and an upper bound 𝜖𝑢 . This range captures the extent of variation
allowed between the common parameters and different environments.
To avoid identical data across environments, the condition 𝜖𝑙 = 0

indicates that there is no significant intervention. Mathematically it
can be expressed as: 𝜖𝑙 ≤ |W𝑒𝑘 | ≤ 𝜖𝑢 ,∀1 ≤ 𝑘 ≤ 𝑛, 0 ≤ 𝜖𝑙 ≤ 𝜖𝑢 .

4.4 Optimizing the Penalized Objective

To optimize the objective stated in Equation (9) for the proposed

IGC method, we use proximal gradient descent [32], which is par-

ticularly beneficial for our purposes as it results exact zeros in the

columns of input parameters, an essential aspect for interpreting

Granger non-causality and intervention within our framework. The

proximal operator is the group-wise soft-thresholding operator. De-

tailed updates of the proximal gradient descent are included in the

Appendix A.1. The proximal steps on the input weights for the

penalty in Equation (9) is shown in Algorithm 1, where Soft(·) is a
group soft-thresholding operator on the input weights [32].

Algorithm 1 Proximal steps for the penalty in Equation (9)

1: procedure Input(𝛼 > 0, 𝜆 > 0, (W𝑖
:, 𝑗,𝑒0

, ...,W𝑖
:, 𝑗,𝑒𝑘

) )
2: for 𝑘 = 1 to 𝑛 do

3: W
𝑖
:, 𝑗,𝑒𝑘

= Soft𝛼𝜆 (W𝑖
:, 𝑗,𝑒𝑘

)
4: end for

5: (W𝑖
:, 𝑗,𝑒0

, ...,W𝑖
:, 𝑗,𝑒𝑘

) = Soft(1−𝛼 )𝜆 ((W𝑖
:, 𝑗,𝑒0

, ...,W𝑖
:, 𝑗,𝑒𝑘

))
6: return (W𝑖

:, 𝑗,𝑒0
, ...,W𝑖

:, 𝑗,𝑒𝑘
)

7: end procedure

5 IDENTIFIABILITY

Figure 4: The complex interactions in time series data (left)

lead to a Granger causal structure (right) that is not a strict

DAG.

The identifiability of Granger causal structure for observational

time series data has been established, where the parametersW can

be identified from standard results in vector autoregressive (VAR)

models [31]. For linear time series interventional data, the identifi-

ability results have been studied in [3]. Specifically, the model is

identifiable if each variable is influenced by a unique set of inter-

vened variables. In the context of non-linear interventional time

series data with known interventional targets, [12] expanded upon

the I-Markov Equivalence Class to (I,D)-Markov Equivalence

Class for graphs within a subset of DAGs rather than all DAGs.

However, addressing the challenge of identifying Granger causal

structure in non-linear time series data with unknown interven-

tional targets remains a significant and unresolved area of research.

To address this issue, our initial step is to establish the negative

score function for a DAG G:

−SI (G) := E
X |P𝑒𝑘 ,G∗ [L𝑟𝑒𝑔 (X)], (15)

where L𝑟𝑒𝑔 denotes the regularized loss minimized in Equation

(9), with the loss | | · | |2
2
being negative log-liklihood, over the time

series data X, which is generated from the ground truth G∗
, under

the interventional distribution P𝑒𝑘 for each I𝑘 ∈ I. Based on these

definitions, the following theorem holds:

Theorem 5.1. Let ˆG ∈ D be a DAG and ˆI be an interventional fam-
ily, which ( ˆG, ˆI) ∈ argmaxG,I S(G,I). Under the assumption that
the density models have sufficient capacity to represent the ground
truth distribution, that I∗-faithfulness holds, that the density models
are strictly positive, that the ground truth densities P𝑒𝑘 have differ-
entiable entropy. For 𝜆G, 𝜆I > 0 in Equation (9) small enough, ˆG is
(I∗,D)-Markov equivalent to G∗ and ˆI = I∗.

The Granger causal strcture we’ve learned is not a strict DAG due to

the intricate nature of time series data, as shown in Figure 4. How-

ever, rather than focusing directly on the Granger causal structure,

our approach centers on the complex interactions within the time

series data. Particularly, given the forward-in-time property, the

unrolled temporally extended graph is a DAG ∈ R𝑑×𝑇 and does not

include any cyclic subgraphs, thus we omit the DAG constraint [50]

in our theoretical analysis. Establishing the identifiability of this

DAG also allows us to identify the Granger causal structure. The

IGC methodology, characterized by its time-windowed approach,

offers flexibility for detecting the causal relationship between any

two variables (𝑥𝑖,𝑡 , 𝑥 𝑗,𝑡 ′ ) in this DAGwith a given time lag 𝑝 = 𝑡 ′−𝑡 .
If we set D to be the subset D𝑠 of DAGs which correspond to sta-

tionary dynamics with constant-in-time conditional distributions

(For detailed information and the proof of Theorem 5.1, please refer

to the Appendix A.2), Theorem 5.1 can be restated as follows:

Corollary 5.2. Let ˆG ∈ D𝑠 be a DAG and ˆI be an interventional
family. Given the same assumptions as Theorem 5.1, and for 𝜆G, 𝜆I
in Equation (9) small enough, ˆG is (I∗,D𝑠 )-Markov equivalent to
G∗ and ˆI = I∗.

The Theorem 5.1 extends prior work [2, 12] by showing that, under

appropriate assumptions, maximizing S(G,I) with respect G and

I recovers both the (I∗,D)-Markov equivalent class of G∗
and

the ground truth interventional family I∗
.
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Dataset Metrics VAR PCMCI NGC eSRU DyNoTears GVAR CUTS IGC

Linear (n=5)

Acc 0.640(±0.080) 0.800(±0.040) 0.920(±0.000) 0.960(±0.000) 0.800(±0.040) 0.960(±0.000) 0.920(±0.000) 1.000(±0.000)
AUROC 0.650(±0.017) 0.770(±0.012) 0.925(±0.011) 0.967(±0.008) 0.740(±0.005) 0.985(±0.015) 0.933(±0.005) 1.000(±0.000)

F1 0.609(±0.008) 0.667(±0.017) 0.909(±0.000) 0.952(±0.000) 0.725(±0.024) 0.949(±0.000) 0.911(±0.000) 1.000(±0.000)
SHD 9(±2) 5(±1) 2(±0) 1(±0) 5(±1) 1(±0) 2(±0) 0(±0)

Linear (n=10)

Acc 0.560(±0.030) 0.610(±0.030) 0.820(±0.040) 0.850(±0.050) 0.650(±0.020) 0.930(±0.010) 0.880(±0.020) 0.930(±0.010)
AUROC 0.562(±0.024) 0.710(±0.012) 0.848(±0.010) 0.812(±0.008) 0.524(±0.006) 0.980(±0.013) 0.865(±0.042) 0.989(±0.018)

F1 0.551(±0.029) 0.456(±0.048) 0.847(±0.014) 0.869(±0.022) 0.596(±0.032) 0.912(±0.014) 0.872(±0.012) 0.928(±0.017)
SHD 44(±3) 39(±3) 18(±4) 15(±5) 35(±2) 7(±1) 12(±2) 7(±1)

Linear (n=20)

Acc 0.518(±0.030) 0.555(±0.030) 0.815(±0.030) 0.730(±0.020) 0.565(±0.023) 0.783(±0.040) 0.838(±0.020) 0.955(±0.005)
AUROC 0.538(±0.035) 0.545(±0.035) 0.822(±0.011) 0.723(±0.035) 0.511(±0.005) 0.854(±0.019) 0.832(±0.017) 0.973(±0.006)

F1 0.671(±0.012) 0.351(±0.052) 0.812(±0.000) 0.772(±0.012) 0.322(±0.046) 0.800(±0.038) 0.816(±0.011) 0.955(±0.002)
SHD 193(±6) 178(±12) 74(±12) 108(±6) 174(±9) 87(±16) 65(±8) 18(±2)

Dataset Metrics VAR PCMCI NGC eSRU DyNoTears GVAR CUTS IGC

Non-linear (n=5)

Acc 0.458(±0.080) 0.560(±0.040) 0.960(±0.000) 0.760(±0.040) 0.800(±0.080) 0.920(±0.040) 0.920(±0.040) 1.000(±0.000)
AUROC 0.517(±0.035) 0.567(±0.009) 0.967(±0.008) 0.767(±0.018) 0.740(±0.005) 0.912(±0.019) 0.935(±0.015) 1.000(±0.000)

F1 0.563(±0.013) 0.522(±0.012) 0.952(±0.000) 0.727(±0.006) 0.725(±0.054) 0.920(±0.020) 0.915(±0.016) 1.000(±0.000)
SHD 14(±2) 11(±1) 1(±0) 6(±1) 5(±2) 2(±1) 2(±1) 0(±0)

Non-linear (n=10)

Acc 0.520(±0.020) 0.580(±0.020) 0.880(±0.020) 0.710(±0.030) 0.620(±0.030) 0.920(±0.010) 0.860(±0.030) 0.930(±0.020)
AUROC 0.512(±0.004) 0.626(±0.015) 0.892(±0.009) 0.709(±0.038) 0.548(±0.008) 0.901(±0.020) 0.859(±0.031) 0.959(±0.005)

F1 0.658(±0.029) 0.600(±0.020) 0.893(±0.011) 0.721(±0.012) 0.498(±0.042) 0.913(±0.016) 0.834(±0.009) 0.942(±0.011)
SHD 48(±2) 42(±2) 12(±2) 29(±3) 38(±3) 9(±1) 14(±3) 7(±2)

Non-linear (n=20)

Acc 0.508(±0.008) 0.545(±0.025) 0.795(±0.018) 0.647(±0.013) 0.543(±0.020) 0.825(±0.048) 0.805(±0.020) 0.943(±0.008)
AUROC 0.515(±0.010) 0.548(±0.020) 0.800(±0.014) 0.641(±0.014) 0.587(±0.008) 0.882(±0.016) 0.820(±0.035) 0.950(±0.015)

F1 0.659(±0.008) 0.461(±0.022) 0.793(±0.020) 0.714(±0.003) 0.435(±0.017) 0.821(±0.027) 0.811(±0.004) 0.944(±0.006)
SHD 197(±3) 182(±10) 82(±7) 141(±5) 183(±8) 70(±19) 78(±8) 23(±3)

Table 1: Comparative results (mean ± std.) for synthetic interventional datasets.

6 EXPERIMENTS

We evaluate our proposed IGC1
for inferring Granger causal stru-

ture and compare them with various state-of-the-art (SOTA) base-

lines across several interventional time series datasets, demonstrat-

ing the superior performance of our proposed IGC method. The

competing SOTA methods for learning Granger causal structure

that we benchmarked are listed as follows: 1) VAR (Vector Au-

toRegressive) [15, 16] is a linear model used in Granger causality

test. PCMCI [38] integrates conditional independence tests with

optimized conditioning sets for inferring causal structure. NGC

[39] includes the component-wise MLP and the component-wise

LSTM, featuring sparse input weight layers, is proposed as an ef-

fective approach for inferring non-linear Granger causality. eSRU

[21] (economy Statistical Recurrent Units) are a specialized form of

recurrent neural networks (RNNs) tailored to identify the network

structure of non-linear Granger causal relationships. DyNoTears

[31] is a score-basedmethodwith continuous optimization for learn-

ing causal structure. GVAR [28] model integrates SENNs with tra-

ditional vector autoregression for Granger causal inference. CUTS

[4, 5] is a neural Granger causal discovery algorithm for imputed

and high dimensional data.

For evaluation purposes, we utilize the following metrics: Ac-

curacy refers to the rate at which a model correctly predicts the

presence or absence of edges in the ground-truth graph. AUROC

(Area Under the Receiver Operating Characteristic) curve is rep-

resented by the area under a curve plotting the true positive rate

against the false positive rate at various thresholds. AUPRC (Area

Under the Precision-Recall Curve) focuses on the relationship be-

tween precision and recall across different thresholds. The F1 Score

1
https://github.com/Tamuzzy/IGC

represents the harmonic mean of precision and recall, with pre-

cision being the proportion of correctly detected edges relative

to all edges predicted by the model. SHD (Structural Hamming

Distance) denotes the count of incorrectly predicted edge states.

Recall measures the fraction of edges in the ground-truth graph

that are accurately identified by the model.

6.1 Granger Causal Structure Learning

Firstly, we follow the functional causal model [18] detailed in Equa-

tion (16) to generate synthetic interventional time series data:

𝑋 𝑖𝑡 =
∑︁

𝑓𝑖 (𝑋 𝑗 ) + 𝜖𝑖,𝑡 , (16)

where 𝑋 𝑗 ∈ PA(𝑋𝑖,𝑡 ) and the function 𝑓𝑖 can be selected from a set

of functions which includes linear, cubic, tanh, and sinc functions,

as well as their mixtures. The noise term 𝜖𝑖,𝑡 is generated from

either a uniform distribution U(−0.5, 0.5) or a standard normal

distribution N(0, 1).
Linear Synthetic Interventional Time Series Data: In the linear

setting, we generate the time series data by following these steps:

• We constructed the Granger causal graph G by employing two

tunable parameters: 𝑛 (number of nodes) and 𝑝 (probability of

edge creation). In our experiments, we set 𝑛 to be 5, 10, and 20,

and 𝑝 = 0.4, we sample the weights uniformly at random from

U([−0.6,−0.4] ∪ [0.4, 0.6]).
• We generate the data with first autoregessive order, where data

only depends on the previous time step. We generate 5, 10, and

20 sequences with 500 time steps with standard Gaussian noises.

• To generate the interventional time series data in 𝑒𝑘 , we adopt

an imperfect setting where the weights from PA(𝑋 𝑖𝑡 ;𝑒𝑘 ) to 𝑋
𝑖
𝑡 ;𝑒𝑘

are altered at a specific timestep 𝑡 = 200 by adding a random

number within the range U([−0.15, 0) ∪ (0, 0.15]).
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Table 1 illustrates that IGC achieves the best performance, and

performs slightly better at 𝑛 = 20 than at 𝑛 = 10, which suggests

that the distinction does not significantly weaken our method.

Non-linear Synthetic Interventional Time Series Data: To

evaluate the efficiency of IGC in the context of non-linear synthetic

interventional time series data, we follow the same generation

procedure as that used in the linear setting. However, instead of

employing a linear function, we modify the underlying generation

function 𝑓𝑖 in Equation (16) to employ a 2-layer fully connected

neural network with the Leaky ReLU activation and 0.1 negative

non-linearity. The network weights are sampled uniformly from

U([−0.6,−0.4] ∪ [0.4, 0.6]). To implement imperfect interventions,

we add a random vector, drawn from N(0, 1) to the network’s

second layer.

Figure 5: SHD results for Linear (left) and Non-linear (right)

Synthetic Interventional Time Series Data.

As illustrated in Table 1, we compare the performance of IGC against

other methods for 𝑛 = {5, 10, 20}. The results confirm that our

method consistently outperforms the others, even when the vari-

able size is large. Figure 5 presents the comparison of the results

for learning Granger causal structure with varying numbers of

variables in both linear and non-linear settings. From the results,

we observe that the introduction of interventional data disrupts

the stationary assumption underlying these models, leading to

poor performance in inferring the Granger causal structure. In

contrast, our model exhibits enhanced capability in managing the

non-stationarity induced by interventions, thereby achieving more

accurate inference of the Granger causal structure.

Lorenz-96 Model

Metric/Methods Acc AUPRC AUROC SHD

VAR 0.765(±0.008) 0.464(±0.046) 0.745(±0.047) 94(±3)
PCMCI 0.720(±0.020) 0.724(±0.007) 0.788(±0.033) 112(±8)
NGC 0.653(±0.028) 0.956(±0.016) 0.979(±0.016) 139(±11)
eSRU 0.823(±0.010) 0.834(±0.033) 0.934(±0.021) 70(±4)

DyNoTears 0.785(±0.013) 0.779(±0.035) 0.811(±0.015) 86(±5)
GVAR 0.845(±0.010) 0.916(±0.024) 0.970(±0.009) 62(±4)
CUTS 0.755(±0.023) 0.785(±0.015) 0.876(±0.017) 98(±9)
IGC 0.925(±0.008) 0.979(±0.003) 0.985(±0.002) 30(±2)

Table 2: Comparative results (mean±std.) for Lorenz-96.

Lorenz-96 Model: The Lorenz 96 model, a standard benchmark

for Granger causal inference techniques [25], is a continuous-time

dynamic system with𝑚 variables, defined by non-linear differential

equations:

𝑑𝑥𝑖

𝑑𝑡
= (𝑥𝑖+1 − 𝑥𝑖−2)𝑥𝑖−1 − 𝑥𝑖 + 𝐹, (17)

where 𝑥0 := 𝑥𝑚 , 𝑥−1 := 𝑥𝑚−1, and 𝑥𝑚+1 := 𝑥1; and 𝐹 is a forcing

constant that, in combination with𝑚, controls the non-linearity

of the system [20, 39]. We numerically simulate𝑚 = 20 variables

and 𝑇 = 500 observations under 𝐹 = 40. This choice is predicated

on the understanding that a higher number of variables coupled

with a higher non-linearity (𝐹 = 40) presents a more challenging

inference problem.While adhering to the experimental setup of [28],

our study introduces a more challenging setting. We manipulated

the data with𝑚 = 20 variables and 𝑇 = 500 observations under

𝐹 = 40 by altering the value of 𝐹 to 50 for samples when 𝑡 > 250,

thus introducing an intervention in the dataset to simulate real-

world complexities. From Table 2, we observe that our proposed IGC
achieves competitive performance even in more complex situations.

Tennessee Eastman Dataset

Metric/Methods Acc Recall F1 SHD Metric/Methods Acc Recall F1 SHD

CORL 0.838 0.043 0.071 176 NoTears-MLP 0.925 0.036 0.046 82

DirectLiNGAM 0.918 0.046 0.061 89 PCMCI 0.882 0.094 0.044 129

FCI 0.966 0.167 0.091 37 DyNoTears 0.928 0.094 0.071 78

GES 0.903 0.040 0.060 106 eSRU 0.936 0.054 0.068 70

GEOLEM 0.890 0.031 0.046 120 GVAR 0.928 0.188 0.133 78

ICALiNGAM 0.908 0.079 0.116 100 NGC 0.852 0.089 0.148 161

MCSL 0.951 0.080 0.070 53 CUTS 0.922 0.094 0.066 85

NoTears 0.968 0 0 35 IGC 0.968 0.286 0.103 35

Table 3: Comparative results for TEP Dataset.

Tennessee Eastman Process (TEP): The Tennessee Eastman Pro-

cess (TEP) [7], serves as a widely recognized benchmark in chemical

engineering research. This simulator is particularly valuable for

studies in anomaly detection and root cause analysis, due to its

capability to replicate process faults and the comprehensive descrip-

tion it offers of the entire production process. The TEP includes five

principal units: a two-phase reactor, a condenser, a recycle compres-

sor, a liquid-vapor separator, and a product stripper, involving 41

measured and 12 manipulated variables. The observational dataset

is devoid of anomalies and comprises 500 observations. Within

the TEP, there are 21 predefined faults, resulting in 21 distinct test

datasets. Each dataset contains 960 observations, recorded at 3-

minute intervals. The initial 160 observations in each dataset are

anomaly-free. Starting from observation 161 and continuing to the

end of the dataset, one of the 21 faults is introduced, marking a

transition to conditions where the system’s behavior deviates from

the norm. In our research, we have utilized 22 measured variables

and 11 manipulated variables. We have employed various causal

structure learningmethods on the observational data and integrated

our propsoed IGC approach on both observational data and inter-

ventional data with anomalies. The results, summarized in Table

3, demonstrate that our method consistently outperforms several

other techniques, reinforcing its efficacy in handling interventional

time series data. The higher Recall and F1-Score of our proposed

method compared to NoTears can be attributed to a greater number

of True Positives (TP) since the TEP dataset with a quite sparse

adjacency matrix ∈ R33×33, where only 66 elements being 1 (includ-

ing 33 diagonal elements). Our method, which is based on Granger
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Figure 6: The estimated Granger causal structure and the estimated unknown interventional targets across three different

environments, we have highlighted the discrepancies in the results using red blocks to indicate areas of disagreement.

causality, leverages historical temporal information effectively. In

contrast, NoTears is not specifically designed for time series data,

leading to its less efficient capture of this crucial information.

6.2 Interventional Family Recovery

So far, our focus has been on inferring Granger causal structure,

without addressing the issue of interventional family recovery,

which is crucial for a deeper understanding of various time series

analysis tasks. Although there have been some experiments target-

ing known interventions, to the best of our knowledge, this study

is the first to delve into the recovery of unknown interventional

targets from interventional time series data. This approach not only

enhances our understanding of the underlying processes but also

clarifies the interaction between the Granger causal structure learn-

ing and the recovery of unknown targets. To bridge the identified

gap, we assessed the model’s capability in accurately identifying

unknown interventional targets within synthetic datasets. We first

formulate the problem as follows:

Problem 1. Consider a Granger causal graph G ∈ R𝑑×𝑑 , with the

assumption that the time series generation follows Equation (16).

We introduce interventional family, denoted as I := {I1, . . . , I𝑛},
where each I𝑘 ∈ R𝑑×𝑑 . This implies that, after 𝑡 time steps, some

specific edges in the Granger causal graph G are chosen as interven-

tional targets in 𝑘-th intervention. The problem is to recover these

interventional targets based solely on the observed intervened or

non-intervened time series data from several environments, with-

out access to the knowledge of non-intervened time series data.

Figure 6 illustrated that the Granger causal structure, generated

from the causal network, is stable across multiple environments,

despite changes in causal strength following the interventions. Re-

garding the intervention networks, the results highlight the effects

of interventions. We used red blocks to indicate areas of disagree-

ment in Figure 6 and we attribute these discrepancies to instances

where the intervention strength was insufficient or below certain

thresholds. We also evaluated the task of recovering interventional

targets on synthetic interventional time series data from several

distinct environments, as illustrated in Figure 7. We found that our

method prioritizes environments experiencing high-intensity inter-

ventions, potentially overlooking those with milder interventions.

Thus, it is important to set thresholds based on the specific appli-

cation to determine whether the environment is being intervened.

It is also worth noting that the number of interventions should be

less than a threshold, which can be described as: |I | ≤ 𝑛.

Figure 7: Evaluation of the interventional family recovery.

7 CONCLUSION

In this study, we have investigated the Granger causal structure

learning task, incorporating heterogeneous interventional time se-

ries data. To address the issue of identifying Granger non-causality

in interventional time series data with unknown targets, we have

introduced a novel condition that ensures the recovery of these

unknown targets and the accurate identification of the true causal

structure within the (I,D)-Markov Equivalence Class. We solved

the identifiability issues for accurately determining causal relation-

ships in Granger causality. Our theoretical analysis is supported

by empirical results, demonstrating that our proposed Interven-

tional Granger Causal (IGC) structure learning method outperforms

existing methodologies in both synthetic and real-world datasets,

even in the absence of interventional target information. Poten-

tial avenues for future research include applying our method to

a broader spectrum of time series applications, which includes

detecting anomalies and root cause analysis within time series data.
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A APPENDIX

A.1 Proximal Gradient Descent Updates

As for Equation (9), we establish the following definitions:

𝑔(𝜙) :=
𝑛∑︁
𝑘=1

𝑇∑︁
𝑡=2

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

| |𝑥𝑒𝑘
𝑖,𝑡

− F𝑖 𝑗

(
𝑥
𝑒𝑘
𝑗,𝑡−1:1; (W

𝑖
:, 𝑗,𝑒0

+W
𝑖
:, 𝑗,𝑒𝑘

)
)
| |2
2
.

(18)

ℎ(𝜙) : = (1 − 𝛼)𝜆
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

| | (W𝑖
:, 𝑗,𝑒0

,W𝑖
:, 𝑗,𝑒1

, ...,W𝑖
:, 𝑗,𝑒𝑘

) | |2

+ 𝛼𝜆
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝑛∑︁
𝑘=1

| |W𝑖
:, 𝑗,𝑒𝑘

| |2 .

(19)

A proximal mapping for the functionℎ(𝜙) can be defined as follows:

proxℎ (u) = argmin

z

1

2

| |z − u| |2
2
+ (1 − 𝛼)𝜆 | |z| |2

+ 𝛼𝜆
𝑛∑︁
𝑖=1

| |𝑧𝑖 | |2 .
(20)

For 𝑘 = 0, 1, . . . , 𝑛, the updating steps at the 𝑚-th iteration are

represented as:

W
𝑖 (𝑚)
:, 𝑗,𝑒𝑘

= proxℎ,𝑡𝑘
(W𝑖 (𝑚−1)

:, 𝑗,𝑒𝑘
− 𝑡𝑘∇W

𝑖
:, 𝑗,𝑒𝑘

𝑔(𝜙 (𝑚−1) )) . (21)

Thus, u = {𝑢0, 𝑢1, . . . , 𝑢𝑛} is a vector, and it is defined as:

𝑢𝑘 = W
𝑖 (𝑚−1)
:, 𝑗,𝑒𝑘

− 𝑡𝑘∇W
𝑖
:, 𝑗,𝑒𝑘

𝑔(𝜙 (𝑚−1) ), (22)

and

W
𝑖 (𝑚)
:, 𝑗,𝑒𝑘

= proxℎ (𝑢𝑘 ) .

First, let’s examine the scenario when z = 0. According to the

Karush-Kuhn-Tucker (KKT) conditions, we obtain the following:

0 ∈


𝑧0
𝑧1
...

𝑧𝑛

 −

𝑢0
𝑢1
...

𝑢𝑛

 + (1 − 𝛼)𝜆


𝑧0

| |z | |2
𝑧1

| |z | |2
...
𝑧𝑛
| |z | |2


+ 𝛼𝜆


0

𝑧1
| |𝑧1 | |2
...
𝑧𝑛

| |𝑧𝑛 | |2

 . (23)

One could set z = 0, while Equation (24) holds:
𝑢0
𝑢1
...

𝑢𝑛

 − 𝛼𝜆


0

𝑧1
| |𝑧1 | |2
...
𝑧𝑛

| |𝑧𝑛 | |2

 = (1 − 𝛼)𝜆


𝑧0

| |z | |2
𝑧1

| |z | |2
...
𝑧𝑛
| |z | |2


. (24)

Identifying edge cases for u is straightforward as it involves an

element-wise comparison between u and z. Additionally, it is worth

noting that | |z| |2 ≤ 1, leading to the following considerations:

z = 0 ⇔ ||u − 𝛼𝜆


0

𝑢1
| |𝑢1 | |2
...
𝑢𝑛

| |𝑢𝑛 | |2

 | |2 ≤ (1 − 𝛼)𝜆. (25)

In the case z ≠ 0, Equation (23) suggests:
𝑢0
𝑢1
...

𝑢𝑛

 − 𝛼𝜆


0

𝑧1
| |𝑧1 | |2
...
𝑧𝑛

| |𝑧𝑛 | |2

 = (1 − 𝛼)𝜆


𝑧0

| |z | |2
𝑧1

| |z | |2
...
𝑧𝑛
| |z | |2


+


𝑧0
𝑧1
...

𝑧𝑛

 . (26)

When considering elements in z that are non-zero, their sign aligns

with the corresponding element in u. Now, let’s establish the fol-

lowing definition:

𝑆𝛼𝜆 (u) =


𝑢0

𝑢1 − 𝛼𝜆 𝑢1
| |𝑢1 | |2

...

𝑢𝑛 − 𝛼𝜆 𝑢𝑛
| |𝑢𝑛 | |2

 . (27)

An alternative representation of Equation (26) is achieved by trans-

forming it into:

𝑆𝛼𝜆 (u) = (1 + (1 − 𝛼)𝜆
| |z| |2

)


𝑧0
𝑧1
...

𝑧𝑛

 . (28)

If we apply the L2 norm to both sides as follows:

| |𝑆𝛼𝜆 (u) | |2 = (1 + (1 − 𝛼)𝜆
| |z| |2

) · | |z| |2

⇒ ||z| |2 = | |𝑆𝛼𝜆 (u) | |2 − (1 − 𝛼)𝜆.
(29)

Upon substituting Equation (29) into Equation (28), we obtain:

z = (1 − (1 − 𝛼)𝜆
| |𝑆𝛼𝜆 (u) | |2

) · 𝑆𝛼𝜆 (u) (30)

To summarize:

proxℎ (u) =
{
0 if | |𝑆𝛼𝜆 | |2 ≤ (1 − 𝛼)𝜆
(1 − (1−𝛼 )𝜆

| |𝑆𝛼𝜆 | |2 ) · 𝑆𝛼𝜆 (u) if | |𝑆𝛼𝜆 | |2 > (1 − 𝛼)𝜆

= (1 − (1 − 𝛼)𝜆
max

(
| |𝑆𝛼𝜆 | |2, (1 − 𝛼)𝜆

) ) · 𝑆𝛼𝜆 (u)
(31)

A.2 Discussion and the Proof of Theorem 5.1.

The identifiability condition for the unrolled, temporally extended

DAG ∈ R𝑑×𝑇 , which includes all variables across all time steps, has

been established in the work [12]. Specifically, it assumes that the

edges within the graph G∗
remain constant over time. Furthermore,

it assumes that for any given window 𝑋 ∈ R𝑑×𝑤 , where𝑤 repre-

sents the window’s width, the distribution P𝑋 over the variables

within this window stays invariant across different timesteps. This

implies that the conditional distribution P(𝑥𝑖,𝑡 |PA(𝑥𝑖,𝑡 )) for any
variable 𝑥𝑖 is independent of the time index 𝑡 . The subset of all DAGs

that can be segmented in this manner into a directed sequence of

a repeating subgraph or window is defined as D𝑠 . This segmen-

tation is based on the fact that repetition of the same conditional

distributions and edges over time corresponds to stationary or fixed

dynamics. The IGC methodology, notable for its time-windowed

framework, provides the flexibility to detect causal relationship

inW𝑖,𝑡
:, 𝑗,𝑡 ′,𝑒0

between any pair of variables (𝑥𝑖,𝑡 , 𝑥 𝑗,𝑡 ′ ) with a given

time lag 𝑝 = 𝑡 ′ − 𝑡 across any DAG or within any time window.

When the assumptions outlined in Theorem 5.1. holds, Theorem
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1 from [2] becomes applicable, ensuring that our learned graph
ˆG

is I-Markov equivalent to G∗
. Additionally, given that

ˆG ∈ D, by

invoking the Theorem 3.2 from [12],
ˆG is (I,D)-Markov equiv-

alent to G∗
. Since the true Granger causal structure is originally

derived from G∗
, by establishing

ˆG is (I,D)-Markov equivalent to

G∗
, we have addressed the challenges related to the identifiability

in Granger causality and mitigate the concerns associated with ac-

curately determining causal relationships within the framework of

Granger causality. Theorem 1 from [2] and Theorem 3.2 from [12]

operate under the implicit assumption that, for each intervention

𝑘 , the ground truth interventional target I
∗
𝑒𝑘

is precisely known.

This assumption, however, does not always available in real-world

scenarios. To address this discrepancy, we propose an extension to

Theorem 3.2 from [12] that accommodates unknown interventional

targets. In this context, as our proposed IGC method, the interven-

tional targets I are learned in a manner similarly to how the graph

G is determined. We are now ready to prove our Theorem 5.1.

Proof. Leveraging Theorem 2 from [2], we address scenarios

where I ≠ I∗
. The core concept of the proof is that S(G∗,I∗) >

S(G,I) whenever G ∉ (I∗,D)-MEC(G∗
) or when I ≠ I∗

. For

the sake of clarity, we define:

𝜂 (G,I) := inf

𝜙

∑︁
𝑘∈[𝐾 ]

𝐷𝐾𝐿 (𝑃𝑒𝑘 | |𝐹
𝑒𝑘
GI𝜙 ) . (32)

Lemma A.1. Let 𝑖 ∈ 𝑉 and 𝐴 ⊂ 𝑉 \{𝑖}, if (𝑝1, 𝑝2) ∉ Z(𝑖, 𝐴) and
both 𝑝1 and 𝑝2 are strictly positive, then:

inf

(𝑓 1,𝑓 2 ) ∈Z(𝑖,𝐴) )
𝐷𝐾𝐿 (𝑝1 | |𝑓 1) + 𝐷𝐾𝐿 (𝑝2 | |𝑓 2) > 0.

(33)

Case 1. Let I represent the set of all intervention sets I for which

there is at least one intervention 𝑘0 ∈ [𝐾] and one variable 𝑖 ∈ [𝑑]
such that 𝑖 is included in the true intervention set I

∗
𝑘0

but is not

included in I𝑘0 . Assuming I ∈ I and considering G as an arbitrary

DAG, the principle of I∗
-faithfulness implies that

𝑃𝑒0 (𝑥𝑖 |PA(𝑥𝑖 )) ≠ 𝑃𝑒𝑘
0

(𝑥𝑖 |PA(𝑥𝑖 )) . (34)

It also means (𝑃𝑒0 , 𝑃𝑒𝑘
0

) ∉ Z(𝑖,PA(𝑖)), where,

Z(𝑖, 𝐴) := {(𝑓 1, 𝑓 2) |𝑓 1 (𝑥𝑖 |𝑥𝐴) = 𝑓 2 (𝑥𝑖 |𝑥𝐴) and 𝑓 1, 𝑓 2 > 0}.
(35)

Given that 𝑖 ∉ I𝑘0 , it follows from the definition provided in Equa-

tion (7) that, for all values of 𝜙 ,

𝐹
𝑒0
GI𝜙 (𝑥𝑖 |PA(𝑥𝑖 )) = 𝐹

𝑒𝑘
0

GI𝜙 (𝑥𝑖 |PA(𝑥𝑖 ))

i.e.(𝐹𝑒0GI𝜙 , 𝐹
𝑒𝑘

0

GI𝜙 ) ∈ Z(𝑖,PA(𝑖)) .
(36)

The following holds and for all 𝜙 we have (𝐹𝑒0 , 𝐹𝑒𝑘0 ) ∈ Z(𝑖,PA(𝑖))
due to Lemma A.1:

𝜂 (G,I) ≥ inf

𝜙
𝐷𝐾𝐿 (𝑃𝑒0 | |𝐹

𝑒0
GI𝜙 ) + 𝐷𝐾𝐿 (𝑃𝑒𝑘0 | |𝐹

𝑒𝑘
0

GI𝜙 )

≥ inf

(𝐹𝑒0 ,𝐹𝑒𝑘0 ) ∈Z(𝑖,PA(𝑖 ) )
𝐷𝐾𝐿 (𝑃𝑒0 | |𝐹𝑒0 ) + 𝐷𝐾𝐿 (𝑃𝑒𝑘

0

| |𝐹𝑒𝑘0 )

> 0.

(37)

Formin{|G|− |G∗ |, |I |− |I∗ |} ≥ 0, thenS(G∗,I∗) > S(G,I). Let
us define S := {(G,I) ∈ 𝐷𝐴𝐺 × I|min{|G| − |G∗ |, |I | − |I∗ |} < 0}.
To prove that S(G∗,I∗) − S(G,I) > 0 for all (G,I) ∈ S, we

need to choose 𝜆G, 𝜆I > 0 small enough. Choosing 𝜆G + 𝜆I <

min(G,I)∈S
𝜂 (G,I)

−min{ | G |− |G∗ |, | I |− |I∗ | } since:

𝜆G + 𝜆I < min

(G,I)∈S
𝜂 (G,I)

−min{|G| − |G∗ |, |I | − |I∗ |}

⇔ 𝜆G + 𝜆I <
𝜂 (G,I)

−min{|G| − |G∗ |, |I | − |I∗ |} ;∀(G,I) ∈ S

⇔ −(𝜆G + 𝜆I )min{|G| − |G∗ |, |I | − |I∗ |} < 𝜂 (G,I)
⇔ 0 < 𝜂 (G,I) + (𝜆G + 𝜆I )min{|G| − |G∗ |, |I | − |I∗ |},

(38)

then we have:

0 < 𝜂 (G,I) + (𝜆G + 𝜆I )min{|G| − |G∗ |, |I | − |I∗ |};∀(G,I) ∈ S
≤ 𝜂 (G,I) + 𝜆G ( |G| − |G∗ |) + 𝜆I ( |I| − |I∗ |)
= S(G∗,I∗) − S(G,I).

(39)

From this point forward, we can assume that I
∗
𝑘
⊂ I𝑘 for all 𝑘 ∈

[𝐾], and this assumption is valid because any deviation from this

condition would fall under Case 1.

Lemma A.2. Given the assumptions outlined in Theorem 5.1:

S(G∗,I∗) = inf

𝜙

∑︁
𝑘∈[𝐾 ]

𝐷𝐾𝐿 (𝑃𝑒𝑘 | |𝐹
𝑒𝑘
GI𝜙 )

+ 𝜆G ( |G| − |G∗ |) + 𝜆I ( |I| − |I∗ |).
(40)

Case 2. Let I := {I|I∗
𝑘

⊂ I𝑘∀𝑘}and[∃(𝑘0, 𝑖) s.t. 𝑖 ∈ I𝑘0 and 𝑖 ∉

I
∗
𝑘0
]}. Given that I ∈ I and G is a DAG, it becomes evident that

|I | > |I∗ |. If |G| ≥ |G∗ |, then S(G∗,I∗) −S(G,I) > 0 by Lemma

A.2. Define a set S := {(G,I) ∈ 𝐷𝐴𝐺×I| |G| < |G∗ |}. To prove that
S(G∗,I∗) − S(G,I) > 0 for all (G,I) ∈ S, we need to choose 𝜆G
small enough. Choosing 𝜆G < min(G,I)∈S

𝜂 (G,I)+𝜆I ( |I |− |I∗ | )
| G |− |G∗ |

since:

𝜆G <
𝜂 (G,I) + 𝜆I ( |I| − |I∗ |)

|G| − |G∗ | ;∀(G,I) ∈ S

⇔ 𝜆G ( |G| − |G∗ |) < 𝜂 (G,I) + 𝜆I ( |I| − |I∗ |)
⇔ 0 < 𝜂 (G,I) + 𝜆G ( |G| − |G∗ |) + 𝜆I ( |I| − |I∗ |),

(41)

then we have:

0 < 𝜂 (G,I) + 𝜆G ( |G| − |G∗ |) + 𝜆I ( |I| − |I∗ |);∀(G,I) ∈ S
= S(G∗,I∗) − S(G,I) .

(42)

In the scenarios described by Case 1 and Case 2, all instances where

I ≠ I∗
are accounted for. Consequently, this leads to the conclusion

that I must be equal to I∗
. By noting that S(G∗,I∗) − S(G,I) =

SI∗ (G∗) −SI∗ (G), we can employ the same steps as [12] to prove

that
ˆG ∈ (I∗,D) −MEC(G∗). □
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