
Published as a conference paper at ICLR 2024

SPATIO-TEMPORAL APPROXIMATION: A TRAINING-
FREE SNN CONVERSION FOR TRANSFORMERS

Yizhou Jiang1∗, Kunlin Hu2∗, Tianren Zhang1, Haichuan Gao1, Yuqian Liu1,
Ying Fang3†, Feng Chen1,4†
1Department of Automation, Tsinghua University, Beijing, China
2Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
3College of Computer and Cyber Security, Fujian Normal University, Fuzhou, China
4LSBDPA Beijing Key Laboratory, Beijing, China
{jiangyz20, hukl22, zhangtr22}@mails.tsinghua.edu.cn,
ghc2023@mail.tsinghua.edu.cn, liuyuqian21@mails.tsinghua.edu.cn,
fy20@fjnu.edu.cn, chenfeng@mail.tsinghua.edu.cn

ABSTRACT

Spiking neural networks (SNNs) are energy-efficient and hold great potential for
large-scale inference. Since training SNNs from scratch is costly and has limited
performance, converting pretrained artificial neural networks (ANNs) to SNNs is
an attractive approach that retains robust performance without additional train-
ing data and resources. However, while existing conversion methods work well
on convolution networks, emerging Transformer models introduce unique mech-
anisms like self-attention and test-time normalization, leading to non-causal non-
linear interactions unachievable by current SNNs. To address this, we approximate
these operations in both temporal and spatial dimensions, thereby providing the
first SNN conversion pipeline for Transformers. We propose Universal Group Op-
erators to approximate non-linear operations spatially and a Temporal-Corrective
Self-Attention Layer that approximates spike multiplications at inference through
an estimation-correction approach. Our algorithm is implemented on a pretrained
ViT-B/32 from CLIP, inheriting its zero-shot classification capabilities, while im-
proving control over conversion losses. To our knowledge, this is the first di-
rect training-free conversion of a pretrained Transformer to a purely event-driven
SNN, promising for neuromorphic hardware deployment. Codes are available at
https://github.com/ViviaHu/STA.

1 INTRODUCTION

The recent success of large Transformer models has increased the need for efficient inference. Spik-
ing neural networks (SNNs), as the third generation of neural networks, use multi-step sparse spike
accumulations instead of dense multiply-accumulations, providing significant advantages in energy
and speed. This makes SNNs a prospective candidate to replace ANNs for large-scale deployment.

Due to the non-differentiability of spiking neurons, obtaining large-scale SNNs remains a challenge.
Existing method using surrogate gradients (Neftci et al., 2019; Lee et al., 2020; Zhu et al., 2022)
or synaptic plasticity (Bicknell & Häusser, 2021; Liu et al., 2022) requires training from scratch on
large datasets, incurring high complexity, and still struggle to achieve high performance. Instead, in
practice, limited training data and resources create a more urgent need to directly convert powerful
ANNs into equivalent SNNs in a training-free fashion (Diehl et al., 2015). Such ANN-to-SNN con-
version replaces ANN activations with temporal spike sequences, nearly preserving all capabilities
of the source model. Thus, it can directly reduce the inference power consumption of open-source
ANN models without other modification, even for those pretrained on large private datasets.

Nevertheless, such training-free conversion seem to be impossible for mainstream large-scale ANNs
based on Transformers (Vaswani et al., 2017; Dosovitskiy et al., 2020; Radford et al., 2021). Their
computational characteristics differs from convolutional networks, leading to two critical conflicts
(Li et al., 2022). First, the matrix products between variable features in self-attention are non-causal
during inference, relying on complete input spike sequences. Such multiplications are incompatible
with the additive accumulation over time in SNN and thus cannot be directly calculated. Second,

∗Equal contribution. † Corresponding author.

1

Published as a conference paper at ICLR 2024

unlike ReLU and BatchNorm in CNNs, operations such as GELU and LayerNorm in Transformers
depend on complicated non-linearities at test-time, so that cannot be accurately represented by the
quantized piece-wise linearity of spiking neurons.

Due to such inherent discrepancies, existing spiking networks cannot strictly implement Transformer
operations through a directly corresponding structure. Fortunately, the spatial population coding
and temporal memory properties of SNNs can be further leveraged to enhance the representational
capacity on both dimensions. By redefining spiking computations as a gradual approximation pro-
cess to ANN floating-point values, we propose our conversion pipeline, termed Spatio-Temporal
Approximation (STA), consisting of two novel spiking modules as universal approximators. Spa-
tially, we adopt the strategy of trading space for precision, introducing local neuron populations to
simulate precise non-linearities through multiple discrete binary spikes. These modules are driven
by synthetic data regardless of their actual input at inference for universality. Temporally, to ob-
tain stationary spike emissions for rate-coding, we remodel the non-causal multiplications into an
estimation-correction process. Based on the accumulated input memory, we first approximately
estimate future reactions, then correct the results with the actual input as time progresses.

With our STA pipeline, we convert a ViT-B/32 model pretrained on CLIP (Radford et al., 2021) into
an SNN. The resulting SNN directly inherits the capabilities like zero-shot classification and trans-
ferability from the large multimodal Transformer. It also achieves state-of-the-art accuracy for SNNs
on multiple benchmarks after supervised fine-tuning. Additionally, our converted SNN requires no
floating-point operations, enabling energy-efficient deployment on neuromorphic hardware.

In summary, our main contributions are as follows:

• We propose Spatio-Temporal Approximation (STA), a training-free pipeline to convert ANN
Transformers to SNNs via universal approximations in both spatial and temporal domains.

• We provide theoretical analysis on the error bounds and convergence rates of both key mod-
ules in STA, proving their efficacy in approximating ANN computation.

• To our knowledge, we are the first to directly convert a pretrained mainstream Transformer
(ViT-B/32 from CLIP) into an SNN without additional training or fine-tuning, while still
retaining the generalization performance of the original model.

2 RELATED WORK

2.1 ANN-TO-SNN CONVERSION

Converting ANNs to SNNs is an active area of research for improving performance and training
efficiency on large-scale tasks (Diehl et al., 2015), whereby ReLU activations in ANN are replaced
by ”soft-reset” IF neurons (Rueckauer et al., 2017; Han et al., 2020). Its key directions include:

Training-free conversion is directly conducted on pretrained ANNs through threshold balancing
(Diehl et al., 2015; Rueckauer et al., 2017), parameter calibration (Li et al., 2021) and functional
spike emission (Wang et al., 2022a; Li & Zeng, 2022) to convert to SNN and calibrate by only a
few examples without retraining or fine-tuning. Thus, they can be applied on high-performing open-
source ANN models. However, these methods are mostly limited to CNNs, lacking applicability to
Transformers (Li et al., 2022) and suffering from long simulation steps.

Training-dependent conversion tailors the ANN for SNN compatibility before conversion (Bu
et al., 2021; Ding et al., 2021; Bu et al., 2022; Jiang et al., 2023; Hao et al., 2023), or fine-tunes the
SNN after conversion (Wang et al., 2022b). Despite reducing conversion loss and latency, they entail
greater training costs and weaker generalization, while maintaining CNN-like structural constraints.

Our work presents a training-free approach that extends conversion beyond CNNs to Transformers.
As spiking equivalents of Attention Blocks, our proposed modules approximates them spatially and
temporally, thus retaining the applicability of large-scale pretrained models to complex scenarios.

2.2 TRANSFORMER AND SPIKE-BASED TRANSFORMER

Transformers have achieved impressive results on numerous tasks like natural language processing
(Brown et al., 2020; Devlin et al., 2018) and computer vision (Dosovitskiy et al., 2020) via the
self-attention mechanism that captures global dependencies by aggregating features across spatial

2

Published as a conference paper at ICLR 2024

Attention LayerNorm MLPInput Output

Non-Linear 𝑘 = 1 ∑ 𝑥 − 𝜇 2

LayerNorm

Matmul
Product

𝑸 ⋅ 𝑲T

Non-Linear

Non-Linear GELU

Scalar
Product 𝑘 ∘ 𝒙 − 𝜇

Softmax
Scalar

Product

Non-Linear 𝑒𝒙

1

∑𝑒𝑥𝑖
∘ 𝑒𝒙

Figure 1: The modules and operators in each Residual Attention Block of ViT.

dimensions. Transformers differ from CNNs in two key aspects: 1) interactions between spatial
features, and 2) complex non-linearity/normalization, both not achievable by existing SNNs.

Spike-Based Transformers are recently proposed models for direct SNN training. Li et al. (2022)
substitutes the activations with spiking neurons but retains many floating-point operations. Zhou
et al. (2022) intruduces a purely spiking self-attention module by modifying the Softmax opera-
tion. Zhou et al. (2023) presents the first fully event-driven Transformer through tailored residual
connections. Additionally, Zhang et al. (2022a;b) design specified Transformers for event-based
cameras, which do not readily extend to conventional visual data. All these models differ from
ANN Transformers structurally and require training from scratch, while our method directly lever-
ages conversion to inherit capabilities from pretrained ANN Transformers without training.

3 PRELIMINARIES AND PROBLEM ANALYSIS

3.1 NEURONS FOR ANN & SNN

In ANNs using ReLU activation, for neurons in layer l, we denote their output as vector xl, and the
weight matrix between layer l− 1 and l as W l. Ignoring bias, its floating-point inference process is:

xl = max
(
W lxl−1, 0

)
, l = 1, 2, ...T. (1)

As for SNNs, similar to Han et al. (2020), we consider the soft-reset Integrate-and-Fire (IF) neurons.
When the l-th layer receives weighted binary spikes xl−1

s (t) ∈ {0, 1}, the update rule is:

ml(t) = pl(t− 1) +W lvl−1
th ⊗ xl−1

s (t),

 sl(t) = H(ml(t)− vl
th)

pl(t) = ml(t)− vl
th ⊗ xl

s(t)
, (2)

where ml(t) and pl(t) represent the potentials before and after the trigger of spike sl(t), vl
th is the

threshold, and H(·) is Heaviside step function. The firing rate is measured as the average number of
spikes over time T , denoted as s̄l. The converted SNN exhibits similarities with ReLU ANN on the
activation values for each layer, i.e., xl ≈ s̄l, due to their comparable linear growth arithmetic.

3.2 OPERATIONS IN TRANSFORMERS

A basic attention block in Transformer is shown in Fig. 1, relying on two main types of opera-
tions that differ from those in conventional CNNs for conversion. More details on the modules in
Transformer are provided in the Appendix.A.

1) Non-linear operators. While CNNs primarily use ReLU activation for non-linearity, Trans-
former involves more complex nonlinear functions like GELU (Hendrycks & Gimpel, 2016), square
root, exponentiation, etc., which cannot be directly achieved by the piece-wise linear dynamics of IF
neurons. This requires us to approximate their computational characteristics in the spatial domain.

2) Variable Scalar / Matmul product. The inference in CNNs is conducted through variable fea-
tures multiplied by constant weight matrices, while Transformers contain more variable-variable
multiplications, such as the query-key products in self-attention. Additionally, LayerNorm in Trans-
former computes normalization coefficients dynamically during inference, preventing integration
into weight matrices as with BatchNorm in CNNs (Rueckauer et al., 2017). Thus, computing these
multiplications with spiking neurons is challenging and may require temporal modifications.

4 SPATIAL APPROXIMATION FOR NON-LINEARITY

As Transformer’s floating-point non-linearity poses challenges for SNN conversion, our goal is
developing spiking counterparts to simulate their spatial reactions. The proposed approximators

3

Published as a conference paper at ICLR 2024

𝑦 = 𝑓(𝑥) 𝑦 = 𝑓 RELU(𝑥) 𝒚𝑠 = 𝑓 IF(𝒙𝑠)

ANN Approximator SNN with Spiking UGONon-Linearity

𝑥 ∈ 𝒟

𝒘1, 𝒃1

𝒘2 , 𝒃2

𝑥𝑖 ∈ 𝒟 , 𝑖 = 1, … 𝑀
M samples

N neurons
T-step

simulation

Figure 2: Spatial approximation process with UGO.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

2

4

6

8

10
Ground Truth GELU
ANN Approximator
SNN UGO

Figure 3: An approximated UGO for
GELU with N = 16, T = 16.

should: 1) consist only IF neurons, and 2) be universally applicable to all operations, models and
data. Due to the insufficient representation capability of each single neuron, we adopt groups of neu-
rons to substitute individual operators. These approximators are pre-trained by synthetic floating-
point data independent of real examples, and thus universally applicable to all scenarios.

4.1 NEURON GROUPS FOR UNIVERSAL APPROXIMATION

We first examine common non-linear operators like GELU or square root that are low-dimensional
with complicated computations. We note that with the Universal Approximation Theorem (Hornik
et al., 1989), single-layer ANNs can approximate these continuous functions over definite intervals.
Further, ANNs with ReLU activation can be efficiently converted to equivalent SNNs. Therefore, we
propose the Universal Group Operator (UGO), a small groups of spiking neurons for approximation.
Definition 1 (Universal Group Operator). Let f : x 7→ y defined on domain x ∈ D be a real
continuous unary function. Its spiking universal group operator f̂ comprises two fully connected
(FC) layers surrounding a single hidden IF layer with N neurons, such that ∃ϵ > 0 where for any
spike input xs with mean x̄s = x, the output spikes ys satisfy E |ȳs − y| ≤ ϵ.

The input and output layers have weights w1,w2 ∈ Rn, and biases b1 ∈ Rn, b2 ∈ R, respectively.

Construction. Three stages are required to obtain a universal group operator, shown in Fig. 2:

1. Data Synthesis. Due to LayerNorm in Transformers, the input range of any function f is always
empirically restricted to a small continuous interval D, e.g., statistically, D = [−10, 10] for GELU.
To enable the UGO to approximate f without real training data, we roughly synthesize a mixture
of uniform/normal distribution D̂ that covers D, and sample M points {xi} from D̂ to cover all
possible inputs. The floating-point data pairs {xi, f(xi)} serve as the synthetic training data.

2. ANN Construction. We manually select a suitable hyperparameter size N to define the scale of
an ANN f̂n based on the complexity of f , with typically N ∈ [8, 32] for balanced accuracy and
efficiency. It is then trained on the synthetic data using ReLU or other tailored activation as in Jiang
et al. (2023) for approximation.

3. SNN Conversion. The pretrained ANN is finally converted to an SNN f̂IF of IF neurons over T
time-steps using existing methods like Li et al. (2021). Its conducts purely event-driven inference
via spike accumulation and can directly replace its ANN counterpart with equivalent functionality.

The universal group operators thus allow implementation of all low-dimensional operations in Trans-
formers for SNN conversion. As the synthesized data covers all possible inputs during inference, the
pretrained UGOs are universally applicable to all test samples at high accuracy. Fig. 3 demonstrates
a conversion result for GELU with N = 16, T = 16, and more details are in the Appendix.B.

Approximation Error Analysis. While bringing high efficiency, the small scale of UGOs also raise
concerns about their accuracy and generalizability. To qualitatively analyze how the design impacts
performance, we consider errors from three sources: insufficient sampling, limited parameterization
and spiking quantization. This yields the following error bound:

Theorem 1 (Error Bound for Spatial Approximation). For an optimal f̂∗, the error ϵ∗ satisfies

ϵ∗ ≤ O

(√
N logN logM

M

)
︸ ︷︷ ︸

Empirical Gap

+ O
(
Lf |y|max

N2

)
︸ ︷︷ ︸

Parameterization Gap

+
∥w1 |x|max + b1∥∞ · ∥w2∥1

T︸ ︷︷ ︸
Quantization Gap

, (3)

4

Published as a conference paper at ICLR 2024

where Lf is the Lipschitz constant of f on D. Proof in Appendix. C.

The terms correspond to the gap between function f , the optimal learner, the optimal fixed-scaled
ANN, and its SNN counterpart. This theoretical analysis guides our implementation in two aspects:

1. ANN training: The Quantization Gap reflects that the two weighted layers contribute differently
to the error depending on distinct norms ∥w1 |x|max + b1∥∞ and ∥w2∥1. Thus, unlike common
L1/L2 regularizations, it is adopted as a layer-specific regularization during training.

2. Hyperparameter determination: While larger M and T always improve performance, the optimal
scale N depends on the case. Note that ∥w2∥1 can be scaled up to N ·w2max, all three gaps correlate
differently with N , requiring experimental search for a balance on accuracy and conversion loss.

4.2 INTEGRATION FOR HIGH-DIMENSIONAL OPERATIONS

𝒙

𝒙 − 𝜇

 𝒙 − 𝜇 2

𝜎2

𝑓 𝜎2 ≈ 1 𝜎2 + 𝜖

xx 𝒙 − 𝜇

 𝜎2 + 𝜖

scalar
product

^2

Figure 4: Integration for LayerNorm.

By proposing the universal group operator, we have
achieved event-driven unary operations. However,
such scheme is infeasible for normalization func-
tions like LayerNorm and Softmax, as their higher-
dimensional input space cannot be sufficiently cov-
ered by the synthesized training data as in UGOs.

To address this issue, we achieve them by integrat-
ing three types of basic spiking operations. Take
LayerNorm as an example, as in Fig.4 (and Soft-
max in Appendix.D). The ANN implementation is

LN(xi) = γ
xi − µ√
σ2 + ϵ

+ β, where ϵ is a small con-

stant, decomposed into the following parts:

1. Weighted addition: Simple, high-dimensional
computations such as zero-centering and variance for binary inputs via fixed-weight linear layers.

2. Universal group operator: The normalization coefficient 1/
√
σ2 + ϵ computed by a UGO.

3. Multiplication: Scalar or Matmul product between two variables, to be achieved in Section.5.

Such modular integration enables constructing high-dimensional spiking operators with UGOs,
demonstrating the spatial aspect of our Spatio-Temporal Approximation pipeline. Nevertheless, per-
forming variable multiplication in SNNs remains an unresolved issue due to its temporal characteris-
tics. This computational requirement arises not just for normalization, but is critical for self-attention
in Transformers. Therefore, we next focus on the spiking implementation of multiplications.

5 TEMPORAL APPROXIMATION FOR MULTIPLICATIONS

Unlike conventional networks, the self-attention in Transformer performs multiplications between
variable feature matrices rather than fixed weights. During inference, these matrices are encoded by
incomplete temporal sequences, so directly computing their product is non-causal. Naively avoid-
ing this can lead to uneven spike outputs and performance degradation. To address this, we pro-
pose Temporal-Corrective Self-Attention Layer (TCSA), employing an estimation-correction mech-
anism. The product is first estimated using the temporally available sequences, and then corrected
by the next actual spike input. This distributes each spikes’ contribution to the product across all
time steps, smoothing the output for enhanced stability of multiplication.

5.1 TEMPORAL SPLIT FOR SPIKE-BASED MULTIPLICATION

To analysis this problem, we first consider basic matrix multiplication A ·B. For simplicity, assume
a matrix M with shared scalar threshold vm for each element is split into a spike sequence Ms(t) ∈
{0, 1}, t = 1, . . . , T . In conventional architectures, such operations typically occur between fixed-

5

Published as a conference paper at ICLR 2024

correction
𝑸𝒊 = 𝑖Ψ𝑖 − (𝑖 − 1)Ψ𝑖−1

/𝑇 =

 𝑖−1

 𝑖−1
++

 𝑖

 𝑖
++××

×× 𝑷𝑖−1

𝑷𝑖

Naive Temporal Split

t = i－1

t = i

/𝑡2 =

 𝑖−1

 𝑖−1
++

 𝑖

 𝑖
++××

×× Ψ𝑖−1 = 𝑸 ~𝑖−1

Ψ𝑖 = 𝑸 ~𝑖

Corrective Temporal Split

𝑸𝑖

 = 𝑷 ~𝑇

estimation

{𝑷𝑡} {𝑸𝑡}

≈ 1 ∙ ≈ (2𝑖 − 1) ∙

Sequence Mean = Ψ𝑇 = 𝑸 ~𝑇

improve stability

keep equivalence

Figure 5: Spike multiplications with naive temporal split and estimation-correction mechanism.

weight matrix W and binary variable features X , computed as

WX = W · vxX̄s =
vx
T

T∑
t=1

WXs(t). (4)

Thus,vxWXs(t) are used as a weighted spike output at each step, and are accumulated for result.

In contrast, for common inter-variable multiplications in Transformer such as query-key products,
the operations are rather different. Note that before the input at step t, both matrices are incomplete,
with only inputs at [1, t− 1] available in their temporal split sequences.
Definition 2 (Naive Temporal Split for Causality). Let A,B,As,Bs be two variable matrices and
their encoded spiking sequences in T steps with thresholds va, vb. The temporary product Φ(t) is
the sum of all currently available binary terms in the matrix product at step t considering causality:

Φ(t) ≜
t∑

i=1

As(i)

t∑
j=1

Bs(j) =

t∑
i,j=1

As(i)Bs(j). (5)

Since Φ(t− 1) is available before step t, the increment ϕ(t) to obtain Φ(t) is defined as below:

ϕ(t) ≜ Φ(t)− Φ(t− 1) = As(t)Bs(t) +As(t)

t−1∑
i=1

Bs(i) +

t−1∑
i=1

As(i)Bs(t), (6)

which uses only Boolean ANDs and additions. Accordingly, let P (t) ≜ vavb
T ϕ(t) be the output at t:

P̄ =
1

T

T∑
t=1

P (t) =
1

T

T∑
t=1

vavb
T

ϕ(t) =
vavb
T 2

Φ(T) = AB, (7)

which aligns with the objective of ANN-to-SNN conversion.

5.2 ESTIMATION-CORRECTION FOR FIRING-RATE STABILITY

Although the naive method in Def.2 maintains numerical equivalence in the conversion, its output
P (t) contains 2t − 1 terms due to the incomplete sequence temporarily. This implies a linearly
growing magnitude over time, leading to uneven firing rates along the time dimension. As these
spikes propagate, the large inputs in the last few steps make subsequent neurons hoard substantial
residual membrane potential, preventing effective spike emission. To mitigate such instability, it is
necessary to estimate the distribution of future input spikes earlier on, so as to react proactively.

Methodology. Considering the temporal consistency of rate-coding, we propose that by regarding
the available sequence at t as a t-point sampling of the complete T -step simulation, the overall firing
rate can be approximated by that of a shorter t-step time interval. The estimation is thus defined as:
Theorem 2 (Temporal Estimation). The unbiased estimations of A and product AB at step t are

Â(t) =
va
t

t∑
i=1

As(i), Ψ(t) = Â(t)B̂(t) =
vavb
t2

Φ(t), (8)

Such estimation provides two key benefits: 1) Guaranteed evenness: As EΨ(t) = AB for any t,
the estimation is independent of t with small temporal variation, resulting in sparse spike outputs.

6

Published as a conference paper at ICLR 2024

2) Progressive approximation: Since limt→T Ψ(t) = Ψ(T) = AB, the estimate gradually approx-
imates the exact statistic for the full sequence. Each step’s output brings the estimate closer to the
final result. Thus, we propose:
Definition 3 (Temporal Correction). The corrective increment Q(t) as the output sequence is:

Q(t) ≜ tΨ(t)− (t− 1)Ψ(t− 1) =
vavb
t

[
1

1− t
Φ(t− 1) + ϕ(t)

]
(9)

where all computations are Boolean ANDs and their weighted additions, such that

Q̄ =
1

T

T∑
t=1

Q(t) = Ψ(T) = AB. (10)

This mechanism is the core of our Temporal-Corrective Self-Attention Layer as a spiking self-
attention module, and is also similarly adopted in Section.4.2 for multiplications. In practice, spike
multiplications are always constantly weighted, e.g., vaAs(t1)WAWBvbBs(t2), and the weights
of additions at each step t can be pre-integrated into the linear layers W before inference. Thus,
the computations remain hardware friendly. Moreover, our estimation-correction algorithm allows
reusing accumulated Φ(t) values from prior time steps during the update, reducing computations.

Estimation Error Analysis. The performance of our corrective multiplication method relies heavily
on accurate estimation. We quantitatively analyzed how our estimate Ψ converges to the ground
truth over time steps. Considering that all multiplications are obtained from scalar multiplications,
for clarity, we assume all elements are independent with a threshold vth = 1.
Theorem 3 (Convergence Rate of Temporal Estimation). Assuming two independent floating-point
elements a & b, and their converted T -step spiking sequence follows a stationary independent pro-
cess with Ta & Tb spikes emitted. Denote the number of arrived spikes by step t as x, the estimated
Ψ(t) satisfy: (Proof in Appendix.E)

E {Ψ(t)} = ab, D {Ψ(t)} =
ab(1− a)(1− b)

(T − 1)2
·
(
T

t
− 1

)2

∝
(
1

t
− 1

T

)2

. (11)

It demonstrates the estimation error decreases quadratically with t initially, then stabilizes in the
final few steps. This mechanism acts as a smoothing filter, providing the temporal component of our
Spatio-Temporal Approximation pipeline.

6 IMPLEMENTATION AND EXPERIMENTS

To demonstrate the advantages of our training-free Transformer conversion approach, we apply our
pipeline to the Image Encoder of CLIP (Radford et al., 2021), a prevalent Language-Image model.
This allows our converted model to leverage CLIP’s powerful generalization abilities such as zero-
shot classification. In comparison to conventional ResNet architectures, Transformers can better
exploit large-scale pretraining to achieve superior performance. Furthermore, for a fair comparison
with existing methods, we fine-tune the pretrained ViT on benchmarks like CIFAR and ImageNet,
achieving state-of-the-art results of SNN with smaller conversion error and faster simulation.

6.1 CONVERSION IMPLEMENTATION

Our work enables all Transformer computations in SNN to be conducted without specified con-
version methodology. In practice, we combine prior techniques to complete the entire conversion,
including MMSE (Li et al., 2021) to determine optimal neuron thresholds, signed neurons (Wang
et al., 2022a) to handle negative weighted inputs, and burst spikes (Li & Zeng, 2022) to mitigate
lagging inputs and reduce residual potentials. Implementation details are provided in Appendix.F.

6.2 ZERO-SHOT CLASSIFICATION

Settings and Models. CLIP is a multi-modal ANN trained on image-text pairs with diversified
Image Encoder backbones including ResNet and Vision Transformer (ViT). It performs various

7

Published as a conference paper at ICLR 2024

Table 1: Comparison with other backbones and baselines on zero-shot classification of CLIP.

Dataset Model Method ANN Acc. T=32 T=64 T=128 T=256

CIFAR-10

ResNet-50 Calib. (Li et al., 2021) 72.35 64.08 68.13 71.04 71.19
SNM (Wang et al., 2022a) 58.69 61.22 70.68 70.88

ResNet-101 Calib. (Li et al., 2021) 79.64 38.21 55.37 67.44 71.21
SNM (Wang et al., 2022a) 43.25 52.68 68.42 72.96

ViT-B/32 STA (Ours) 89.74 87.71 88.20 88.29 88.34

CIFAR-100 ResNet-50 Calib. (Li et al., 2021) 41.01 24.67 33.41 38.20 39.01
SNM (Wang et al., 2022a) 35.64 34.71 39.95 41.13

ViT-B/32 STA (Ours) 64.26 62.55 62.74 62.98 63.01

ImageNet-200 ResNet-50 Calib. (Li et al., 2021) 45.63 22.50 34.51 41.82 42.03
SNM (Wang et al., 2022a) 25.43 38.17 42.25 42.95

ViT-B/32 STA (Ours) 62.25 59.79 61.24 61.53 61.66

CIFAR-10.1 ResNet-50 Calib. (Li et al., 2021) 65.05 61.01 63.44 64.39 64.42
SNM (Wang et al., 2022a) 44.56 58.26 63.53 64.06

ViT-B/32 STA (Ours) 84.15 83.05 83.25 83.58 83.52

CIFAR-10.2 ResNet-50 Calib. (Li et al., 2021) 63.90 58.97 61.01 62.50 62.68
SNM (Wang et al., 2022a) 46.83 54.68 62.94 63.08

ViT-B/32 STA (Ours) 80.35 78.55 79.65 79.77 79.83

tasks based on natural language prompts. Since no existing methods directly convert Transformers,
we use pretrained ResNet-50 backbone for our baselines. Following standard CLIP configuration for
zero-shot prediction, we evaluate on CIFAR-10/100, ImageNet-200 benchmarks, and distribution-
shifted CIFAR-10.1/10.2 datasets. Details in Appendix.G.1.

Classification performance. The results in Table.1 show that the converted ViT model substantially
exceeds ResNet across all datasets and time settings. This confirms that large-scale pretrained Trans-
former are superior to convolutional networks for zero-shot classification, emphasizing the value of
SNN conversion targeted on Transformers over CNNs.

Accuracy loss from conversion. Despite having more parameters than ResNet-50 (87.8M vs
25.6M), our ViT model still experiences much lower accuracy drop after conversion. Two main
factors contribute: 1) Self-attention layers have lower precision requirements than convolutions,
making them less prone to numerical errors. 2) Transformer architecture provides more robust fea-
tures with larger label margins, maintaining predictions even under conversion perturbations.

Limitations of existing works. We make two key observations: 1) Larger convolutional networks
like ResNet-101 do not improve SNN conversion performance over ResNet-50, as their ANN ac-
curacy still lags behind ViT while depth exacerbates conversion errors. This highlights the need
for advanced architectures like Transformers. 2) Many current conversion methods only succeed on
models like resnet-20 or VGG-16, while being incompatible with deep residual networks. Thus we
selectively demonstrate those with better ResNet-50 results from CLIP.

6.3 STANDARD CLASSIFICATION AND ABLATION STUDIES

-1.61 -1.79

+45.64

Correction

UGO Gaps

Figure 6: Ablations on components in
CIFAR-100, T=32.

Standard Classification. We fine-tune our ViT on
benchmarks and compared its performance on con-
ventional image classification tasks to resnet-20 and
pretrained ResNet-50 baselines from CLIP. Table.2
shows results on CIFAR-100, with other results on
CIFAR-10 / ImageNet in the Appendix.G.2. Com-
pared to other conversion methods, our algorithm
achieves near peak accuracy with fewer steps (T =
32 or 64), while most baselines require over 128
steps for optimal accuracy. The remaining small
accuracy gap to ANN ViT is largely due to the unavoidable approximation error from the Universal
Group Operators. This demonstrates the faster simulation time advantages of our approach.

Ablations. We also conduct ablation experiments to analyze the spatial and temporal impact in our
pipeline, in Fig.6. Our results lead the the following conclusions: 1) UGO nearly eliminates the three

8

Published as a conference paper at ICLR 2024

Table 2: Comparison with other backbones and baselines on standard classification of CIFAR-100

Model Method ANN Acc. T=32 T=64 T=128 T=256

resnet-20

RMP (Han et al., 2020)

76.12

30.60 42.61 62.59 69.86
TSC (Han & Roy, 2020) 35.87 49.70 65.42 70.59
Opt. (Deng & Gu, 2020) 49.81 69.82 75.75 75.94
Calib. (Li et al., 2021) 74.25 75.08 75.58 76.24
SNM (Wang et al., 2022a) 74.58 75.89 76.11 76.18
Burst (Li & Zeng, 2022) 71.14 75.50 75.89 76.03

ResNet-50
(CLIP)

Opt. (Deng & Gu, 2020)
81.13

64.48 71.71 76.67 79.52
Calib. (Li et al., 2021) 75.61 77.29 78.13 80.02
SNM (Wang et al., 2022a) 68.24 75.30 77.91 80.75

ViT-B/32 STA (Ours) 87.35 84.15 85.25 85.69 85.98

Gaps in Eq.3, thereby retaining nonlinear computation capabilities after spatial approximation. 2)
The estimation-correction mechanism for temporal multiplication prevents large residual potential
accumulation caused by output lag, thus significantly improving performance over the naive method.

6.4 ENERGY ESTIMATION

The energy efficiency of SNN stems from two aspects: 1) Sparsity and event-driven computation,
where only a small fraction of synapses are active during inference. 2) Low-power synaptic opera-
tions like Boolean logic and weighted additions instead of expensive floating-point operations. The
consumption of ANN inference is characterized by floating-point operations (FLOPs) with energy
cost EMAC , while SNNs rely on synaptic operations (SOPs) with EAC . Therefore, the ratio of
inference energy for SNN versus ANN for a module is estimated in Rathi & Roy (2020) as:

γ =
ESNN

EANN
=

SOPs · EAC

FLOPs · EMAC
, with EMAC ≈ 4.6J,EAC ≈ 0.9J (12)

Using an empirical firing rate denoted as η, we analyze both components in our pipeline:

Universal Group Operator. A unary non-linear operator like GELU requires FLOPs ≈ 70 pri-
marily due to exponents in tanh, while a UGO with N neurons requires SOPs = 2NTη. For a
high accuracy implementation with N = 32, T = 32, η ≈ 9.1%, UGOs reduce computational costs
by 41% compared to GELU. This saving is further amplified in high-dimension operations.

Spike Multiplications. We illustrate this with the N × N query-key matrix products, where
FLOPs = 3N3. While naively implementing matrix multiplication requires O(T 2) spike prod-
ucts, our proposed TCSA layer reduces complexity to O(T) with accumulated Φ(t). Specifically,
SOPs = 4TN3η. With η ∈ [3%, 13%] at T = 32 across all 12 blocks, the attention modules
achieve 33% savings on average, up to 75% for the sparsest cases.

Admittedly, due to the unique computational demands of Transformer, its energy savings from SNN
conversion are not superior than convolutional spiking networks. However, our work still demon-
strates potential for low power usage: training UGOs with sparsity constraints or optimizing multi-
plication estimations could further reduce the η in our Spatial-Temporal Approximation pipeline. In
addition, the latest hardware (Pei et al., 2019) allows utilizing both floating-point and event-driven
computation synergistically, thereby further improving energy performance.

7 CONCLUSION AND DISCUSSION

For the first time, this paper establishes a bridge between mainstream pretrained Transformers and
SNNs. By designing novel spiking operators and layers, we approximate Tranformers in both spa-
tial and temporal dimensions in a purely event-driven fashion, breaking with convention. Since all
Transformer-based models share similar computation modules, our proposed pipeline is broadly ap-
plicable to various language and vision models, including the Text Encoder in CLIP, or even Large
Language Models, as our subsequent work. These pretrained large models are often transferable
without additional training or fine-tuning, and our training-free conversion pipeline avoids perfor-
mance degradation, promoting practical SNN usage on various downstream applications. While
the converted ViT has slightly higher computations than conventional spiking CNNs, it provides
stronger performance and robustness with fewer simulation steps. This enables potential energy-
efficient deployment of open-source large models in the future with neuromorphic hardware.

9

Published as a conference paper at ICLR 2024

8 ACKNOWLEDGMENTS

This work was supported in part by the National Key Research and Development Program of China
under STI 2030——Major Projects 2021ZD0200300, and in part by the National Natural Science
Foundation of China under Grant 62176133, and in part by the Tsinghua-Guoqiang research pro-
gram under Grant 2019GQG0006 and in part by the Natural Science Foundation of Fujian Province,
China, under Grant 2022J01656.

REFERENCES

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks. The Journal of Machine
Learning Research, 20(1):2285–2301, 2019.

Brendan A Bicknell and Michael Häusser. A synaptic learning rule for exploiting nonlinear dendritic
computation. Neuron, 109(24):4001–4017, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural networks. In International
Conference on Learning Representations, 2021.

Tong Bu, Jianhao Ding, Zhaofei Yu, and Tiejun Huang. Optimized potential initialization for low-
latency spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 11–20, 2022.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. In International Conference on Learning Representations, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.
In 2015 International joint conference on neural networks (IJCNN), pp. 1–8. ieee, 2015.

Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. Optimal ann-snn conversion for fast
and accurate inference in deep spiking neural networks. arXiv preprint arXiv:2105.11654, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Bing Han and Kaushik Roy. Deep spiking neural network: Energy efficiency through time based
coding. In European Conference on Computer Vision, pp. 388–404. Springer, 2020.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13558–13567, 2020.

Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and Zhaofei Yu. Reducing ann-snn conversion
error through residual membrane potential. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 11–21, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

10

Published as a conference paper at ICLR 2024

Haiyan Jiang, Srinivas Anumasa, Giulia De Masi, Huan Xiong, and Bin Gu. A unified optimization
framework of ann-snn conversion: Towards optimal mapping from activation values to firing
rates. In International conference on machine learning. PMLR, 2023.

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik
Roy. Enabling spike-based backpropagation for training deep neural network architectures. Fron-
tiers in neuroscience, pp. 119, 2020.

Yang Li and Yi Zeng. Efficient and accurate conversion of spiking neural network with burst spikes.
arXiv preprint arXiv:2204.13271, 2022.

Yudong Li, Yunlin Lei, and Xu Yang. Spikeformer: A novel architecture for training high-
performance low-latency spiking neural network. arXiv preprint arXiv:2211.10686, 2022.

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann: Towards
efficient, accurate spiking neural networks calibration. In International conference on machine
learning, pp. 6316–6325. PMLR, 2021.

Yuhan Helena Liu, Stephen Smith, Stefan Mihalas, Eric Shea-Brown, and Uygar Sümbül.
Biologically-plausible backpropagation through arbitrary timespans via local neuromodulators.
Advances in Neural Information Processing Systems, 35:17528–17542, 2022.

Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation for
smooth functions. SIAM Journal on Mathematical Analysis, 53(5):5465–5506, 2021.

Shangyun Lu, Bradley Nott, Aaron Olson, Alberto Todeschini, Hossein Vahabi, Yair Carmon, and
Ludwig Schmidt. Harder or different? a closer look at distribution shift in dataset reproduction.
In ICML Workshop on Uncertainty and Robustness in Deep Learning, volume 5, pp. 15, 2020.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
architecture. Nature, 572(7767):106–111, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Nitin Rathi and Kaushik Roy. Diet-snn: Direct input encoding with leakage and threshold optimiza-
tion in deep spiking neural networks. arXiv preprint arXiv:2008.03658, 2020.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers
generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018. https://arxiv.org/abs/
1806.00451.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
version of continuous-valued deep networks to efficient event-driven networks for image classifi-
cation. Frontiers in neuroscience, 11:682, 2017.

Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(11):1958–1970, 2008.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media,
1999.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

11

https://arxiv.org/abs/1806.00451
https://arxiv.org/abs/1806.00451

Published as a conference paper at ICLR 2024

Yuchen Wang, Malu Zhang, Yi Chen, and Hong Qu. Signed neuron with memory: Towards simple,
accurate and high-efficient ann-snn conversion. In International Joint Conference on Artificial
Intelligence, 2022a.

Ziming Wang, Shuang Lian, Yuhao Zhang, Xiaoxin Cui, Rui Yan, and Huajin Tang. Towards loss-
less ann-snn conversion under ultra-low latency with dual-phase optimization. arXiv preprint
arXiv:2205.07473, 2022b.

Jiqing Zhang, Bo Dong, Haiwei Zhang, Jianchuan Ding, Felix Heide, Baocai Yin, and Xin Yang.
Spiking transformers for event-based single object tracking. In Proceedings of the IEEE/CVF
conference on Computer Vision and Pattern Recognition, pp. 8801–8810, 2022a.

Jiyuan Zhang, Lulu Tang, Zhaofei Yu, Jiwen Lu, and Tiejun Huang. Spike transformer: Monocular
depth estimation for spiking camera. In European Conference on Computer Vision, pp. 34–52.
Springer, 2022b.

Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Han Zhang, Zhengyu Ma, Huihui Zhou, and Yonghong
Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural net-
work. arXiv preprint arXiv:2304.11954, 2023.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. arXiv preprint
arXiv:2209.15425, 2022.

Yaoyu Zhu, Zhaofei Yu, Wei Fang, Xiaodong Xie, Tiejun Huang, and Timothée Masquelier. Train-
ing spiking neural networks with event-driven backpropagation. Advances in Neural Information
Processing Systems, 35:30528–30541, 2022.

12

Published as a conference paper at ICLR 2024

Appendix

A MODULES IN TRANSFORMERS

This section provides a detailed overview of all the modules, operators, and formulas in the Residual
Attention Block of the Transformer. Taking ViT-B/32 as an example, it consists of one convolutional
layer, 12 sequentially connected Residual Attention Blocks, and a final linear layer. Each Attention
Block contains the following modules:

1. Multi-Head Attention is the core module of each block, allowing the model to jointly attend to
information from different representation subspaces. In self-attention, the same input vector is first
projected h times into queries Q, keys K, and values V using different learned linear projections.
Attention is then performed in parallel for each projection:

Headi = Softmax(QiK
T
i)Vi, for i = 1, ..., h (13)

The outputs of the h heads are concatenated and projected once more by WO to get the final values:

MultiHead(Q,K,V) = Concat(Head1, ...,Headh)W
O (14)

The uniqueness of Attention is that it performs a large number of matrix multiplications between
feature matrices, such as X = QiK

T
i , which is different from the multiplications with constant

weight matrices like WO.

In addition, the Softmax function is applied to the result of the query-key multiplication for the
attention weights in each heads. Specifically, Softmax normalizes the attention weights to output a
probability distribution:

Softmax(xi) =
exi∑
i e

xi
, (15)

which requires nonlinear operations like exponentiation and inverse.

2. Layer Normalization (LayerNorm), is used twice in each block before and after the attention
module to stabilize and accelerate training. It normalizes the activations of each layer by subtracting
the mean and dividing by the standard deviation:

LN(xi) = γ
xi − µ√
σ2 + ϵ

+ β, (16)

where µ and σ2 are the mean and variance calculated over all hidden units in the same layer.

Notably, unlike BatchNorm which tracks global statistics during training across entire channels,
LayerNorm normalizes each element independently. This normalizing occurs at both training and
inference, requiring dynamic statistics, which hinders weights absorption into matrices compared to
BatchNorm for SNN conversion. Therefore, it also requires more complex nonlinear operations like
square root and inverse at inference.

3. Gaussian Error Linear Unit (GELU) is used as the non-linear activation function in the MLP in
each self-attention block. It applies the cumulative distribution function of the Gaussian distribution
to each input element xi, and is approximated as:

QuickGELU(xi) = x · sigmoid(1.702x), (17)

which allows gradients to flow efficiently through the activation during backpropagation.

Attention LayerNorm MLPInput Output

Non-Linear 𝑘 = 1 ∑ 𝑥 − 𝜇 2

LayerNorm

Matmul
Product

𝑸 ⋅ 𝑲T

Non-Linear

Non-Linear GELU

Scalar
Product 𝑘 ∘ 𝒙 − 𝜇

Softmax
Scalar

Product

Non-Linear 𝑒𝒙

1

∑𝑒𝑥𝑖
∘ 𝑒𝒙

Figure 7: The modules and operators in each Residual Attention Block of ViT.

13

Published as a conference paper at ICLR 2024

B SETTINGS OF UNIVERSAL GROUP OPERATOR

The Universal Group Operator achieves four main operations: 1) Exponentiation in Softmax, 2)
GELU in MLP, 3) Inverse in Softmax, 4) Inverse of Square Root in LayerNorm. The settings
required for training a UGO are organized as follows:

1. Data Synthesis. The synthesized distribution D̂ and the sample number M .
2. ANN Construction. The hidden-layer size N , the loss function, optimizer and scheduler.
3. SNN Conversion. The selected threshold Vth.

These settings are summarized in Table.3, where the Loss Penalty refers to the Quantization Gap
in Eq.3. To empirically demonstrate D in practice, the inputs of each module under real sampling
conditions are provided in Fig.8.

The fitting results of Universal Group Operators implemented in our algorighm are shown in Fig.9.

Table 3: Hyperparameters and settings for UGO training.

Exp GELU Inverse LayerNorm

D̂ U(-35,3) 50% U(-25,25) 50% U(3,38) 75% U(0.01,1) 100%U(-12,2) 50% U(-1,1) 50% U(2,75) 25%
M 164384 samples * 128 batch * 1000 epoch

N 32 32 16 8

Loss Huber Huber+Penalty Huber+Penalty MSE

Optim− LR SGD-0.01 SGD-0.01 SGD-0.01 Adam-0.01

Scheduler
MultiStepLR StepLR MultiStepLR CosineAnnealingLR
milestones=[500,800] step=100 milestones=[500,800]
γ = 0.5 γ = 0.5 γ = 0.1

Vth Determined by Li et al. (2021)

20 10 0
0.00

0.02

0.04

Pr
ob

ab
ilit

y

Exp

10 0 10
0.00

0.05

0.10

GELU

0.0 0.5 1.0
0.00

0.01

0.02

Inverse

0 2 4
0.0

0.1

0.2

0.3

LayerNorm

Figure 8: Empirical input distribution D sampled from 10 CIFAR-10 input images.

20 15 10 5 0
0.0

0.2

0.4

0.6

0.8

1.0
Exp

10 5 0 5 10

0.0

2.5

5.0

7.5

10.0
GELU

0.25 0.50 0.75 1.00

2

4

6

8

10
Inverse

0.00 0.25 0.50 0.75 1.00
0

2

4

6

8

10
Sqrtinv

f(x)
ANN
SNN

Figure 9: Fitting Results for the Universal Group Operators.

14

Published as a conference paper at ICLR 2024

C PROOF FOR THEOREM 1

Theorem 1 (Error Bound for UGO). For an optimal f̂∗, its approximation error ϵ∗ satisfies

ϵ∗ ≤ O

(√
N logN logM

M

)
︸ ︷︷ ︸

Empirical Gap

+ O
(
Lf |y|max

N2

)
︸ ︷︷ ︸

Parameterization Gap

+
∥w1 |x|max + b1∥∞ · ∥w2∥1

T︸ ︷︷ ︸
Quantization Gap

, (18)

where Lf is the Lipschitz constant of f on D.

Proof. We decompose the error into three gaps:

• The Empirical Gap between f and the optimal learning machine fm due to limited M and
model complexity regarding to N .

• The Parameterization Gap between fm and a single-layer ANN fn with N neurons due
to the limited parameters determined by N .

• The Quantization Gap between fn and the UGO f̂ due to spiking discretization regarding
to T .

Empirical Gap. We first quote a lemma from Bartlett et al. (2019).

Lemma 1. For deep neural networks with arbitrary piecewise linear activation function where
W is the number of weights and L is the number of layers, its VC-dimension is bounded by
Ω(WL log(W/L)) and O(WL log(W)).

For fm, we have L = 1 and W = 2N , thus dV C = O(N log(N)). According to the classical
conclusion in Vapnik (1999), the empirical gap between fm and f with M samples is:

ϵemp = O

√dV C log M
dV C

M

 = O

(√
N logN logM

M

)
. (19)

Parameterization Gap. Considering that the parameter quantity 2N of the ANN is much smaller
than the sampling quantity M in practice, the ANN fn cannot empirically fit all data, leading to a
gap between fn and fm. We modify the conclusion from Lu et al. (2021):

Lemma 2. For deep ReLU networks with width N and depth L approximating f ∈ C([0, 1])d with
Lipschitz constant Lf , the optimal approximation error is O

(
Lf ·N−2/d · L−2/d

)
.

Accordingly, the gap in our implementation for f is

ϵparm = |y|max · O
(
Lf ·N−2

)
= O

(
Lf |y|max

N2

)
. (20)

Quantization Gap. When converting the ANN fn to an SNN, we set the threshold as the maximum
output of neurons to avoid truncation errors:

Vth = max(w1 · x+ b1) ≤ ∥w1 |x|max + b1∥∞ . (21)

The quantization error on the IF neuron outputs is Vth

T , so the error of the result is:

ϵquant ≤
Vth · ∥w2∥1

T
=

∥w1 |x|max + b1∥∞ · ∥w2∥1
T

. (22)

It can also be generalized to:

ϵquant ≤
N |w2|

T
∥w1 |x|max + b1∥∞ (23)

Combining Eq.19, 20, 22, the result is proved.

15

Published as a conference paper at ICLR 2024

𝒙

𝒙 − 𝜇

 𝒙 − 𝜇 2

𝜎2

𝑓 𝜎2 ≈ 1 𝜎2 + 𝜖

xx 𝒙 − 𝜇

 𝜎2 + 𝜖

scalar
product

^2

Figure 10: Integration for Layernorm.

𝒙

data offset

...

𝑒𝒙

 𝑒𝑥𝑗

xx

1

 𝑒
𝑥𝑗

scalar
product

𝒙

 𝑒
𝑥𝑗

data clamping

data clamping

𝑓 inv 𝑒𝑥𝑗 ≈
1

 𝑒
𝑥𝑗

 𝑓 inv 𝑒𝑥𝑗 ≈
1

 𝑒
𝑥𝑗

𝑓 exp 𝑥𝑖 ≈ 𝑒𝑥𝑖 𝑓 exp 𝑥𝑖 ≈ 𝑒𝑥𝑖

Figure 11: Integration for Softmax.

D DETAILS OF HIGH-DIMENSIONAL OPERATIONS

We have roughly introduced the decomposition process of high-dimensional operations represented
by LayerNorm in 4.2. In this section, the implementation details of LayerNorm and Softmax will be
explained.

D.1 LAYERNORM

In order to adapt LN(x) = γ x−µ√
σ2+ϵ

+β to SNN computations, we unroll it into the following steps:

1. Calculate the decentralized inputs x− µ = x− 1
n

∑n
i=1 xi = W dcx, xi ∈ {0, 1}.

2. Calculate self-scalar product of x− µ, i.e. h = (W dcx) ◦ (W dcx), which can be imple-
mented with TCSA in SNN.

3. Calculate the variance σ2 = h̄ = W avg(W dcx) ◦ (W dcx).
4. Approximate the inverse of the standard deviation via (spiking) UGO, i.e. 1√

σ2+ϵ
≈

f̂(σ2) = vthy, yi ∈ {0, 1}
5. Calculate scalar product of the inverse and the decentralized inputs with factor γ, β to get

LN(x) = γ x−µ√
σ2+ϵ

+ β ≈ γvth(W
dcx) ◦ y + β, implemented with TCSA in SNN.

D.2 SOFTMAX

Like LayerNorm, Softmax can also be roughly decomposed into three suboperations: weighted
summation, UGO approximation, and split multiplication. Specifically, as shown in Fig.11, Softmax
is unrolled into the following steps:

1. Translate the inputs to [−∞, 1] by subtracting an offset (vthxi)max−1 (vth can be neuron-
wise and (vthxi)max is usually in dimension 0) to ensure that no overflow occurs during
the exponential operation. This translation has no effect on the result, as it will be cancelled
out by the numerator and denominator in the subsequent division. Similar to LayerNorm,
xi ∈ {0, 1}.

2. Clamp the translated inputs to a suitable range that the exponential UGO can handle, avoid-
ing UGO output exceptions due to too small or too large input.

3. Approximate the exponential function value via (spiking) UGO, i.e. exi ≈ f̂exp(xi) =
vexpth yexpi , yexpi ∈ {0, 1}.

4. Calculate
∑n

i=1 e
xi =

∑n
i=1 v

exp
th yexpi .

5. Clamp
∑n

i=1 e
xi to a suitable range that the inverse UGO can handle.

6. Approximate the inverse via (spiking) UGO, i.e. 1∑n
i=1 exi

≈ f̂inv (
∑n

i=1 e
xi) = vinvth yinv,

yinv ∈ {0, 1}.
7. Calculate scalar product of the inputs and the inverse to get Softmax(x) = x∑n

i=1 exi
=

vinvth yinvx.

16

Published as a conference paper at ICLR 2024

E PROOF FOR THEOREM 3

Theorem 3 (Convergence Rate of Temporal Estimation). Assuming two independent floating-point
elements a & b, their converted T -step spiking sequence follows a stationary independent process
with Ta & Tb spikes emitted. Denote the number of arrived spikes by step t as x, the estimated Ψ(t)
satisfy:

E {Ψ(t)} = ab, D {Ψ(t)} =
ab(1− a)(1− b)

(T − 1)2
·
(
T

t
− 1

)2

. (24)

Proof. Considering a single scalar a, let N(t) denote the number of spikes from sequences as that
have arrived by time t. Given N(T) = Ta, the probability of emitting x spikes in the first t steps is:

P (N(t) = x|N(T) = Ta)

=P (N(T) = Ta|N(t) = x) · P (N(t) = x)

P (N(T) = Ta)

=P (N(T − t) = Ta− x) · P (N(t) = x)

P (N(T) = Ta)

=

(
T − t

Ta− x

)(
t

x

)(
T

Ta

)−1

. (25)

For the expectation of x and corresponding estimation â(t):

E(x) =
∑
x

x ·
(

T−t
Ta−x

)(
t
x

)(
T
Ta

) = t
∑
x

(
T−t
Ta−x

)(
t−1
x−1

)(
T
Ta

) = t

(
T−1
Ta−1

)(
T
Ta

) = t
Ta

T
= ta (26)

E(â(t)) =
E(x)
t

= a. (27)

The second order is similarly derived as:

E(x2) =
∑
x

x2 ·
(

T−t
Ta−x

)(
t
x

)(
T
Ta

)
=t

{∑
x

(x− 1)

(
T−t
Ta−x

)(
t−1
x−1

)(
T
Ta

) +
∑
x

(
T−t
Ta−x

)(
t−1
x−1

)(
T
Ta

) }

=t(t− 1)

(
T−t
Ta−x

)(
t−2
x−2

)(
T
Ta

) + ta

=ta(t− 1)
(Ta− 1)

(T − 1)
+ ta. (28)

For the variance:

D(x) = E(x2)− E2(x) = ta
(1− a)(T − t)

T − 1
(29)

D (â(t)) =
D(x)
t2

=
a(1− a)

T − 1
·
(
T

t
− 1

)
. (30)

As the input elements a & b are independent in neural networks, the statistics of their product is:

E (Φ(t)) = E
(
âb̂
)
= ab (31)

D (Φ(t)) =
ab(1− a)(1− b)

(T − 1)2
·
(
T

t
− 1

)2

. (32)

17

Published as a conference paper at ICLR 2024

F IMPLEMENTATION OF UGO-APPROXIMATED ANN CONVERSION TO SNN

Due to the large network size of ViT, traditional methods like MaxNorm(Rueckauer et al., 2017)
are not sufficient to preserve ANN’s performance. Therefore we use some advanced, training-free
techniques for conversion.

F.1 THRESHOLD BALANCING

When a UGO-approximated ANN is obtained, the activation functions have all been replaced with
ReLU, which is convenient for us to directly convert it to SNN. A small number of training samples
are needed to obtain the maximum activation value and its quantitative estimate to determine the
threshold potential of the neurons (Li et al., 2021). Our optimization objective is:

min
vl
th

(
QT

(
zl, T,vl

th

)
− ReLU

(
zl
))

, QT
(
zl, T,vl

th

)
=

vl
th

T
· clamp

(⌊
T

vl
th

zl

⌋
, 0, T

)
,

(33)
where zl = W lxl−1. As Eq.33 has no closed-form solution, we find the optimal threshold by grid
search, enumerating n(n = 100 in our experiments) values within [0.5zl

max, z
l
max].

F.2 SIGNED NEURONS WITH MEMORY POTENTIAL

For the IF neuronal structure that can only release positive spikes, if the input from a neuron’s
negative-weighted synapse arrives late and the positive-weighted input has already been converted
into a spike, a portion of the significant negative potential information will not be transmitted. There-
fore, we introduce Signed Neurons with Memory potentials(SNM) which allow negative spikes to
be released(Wang et al., 2022a) to ensure that negative-weighted information is not lost. In this
perspective, Eq.2 can be refined as:

ml(t) = pl(t− 1) +W lsl(t),

r̃l(t) = rl(t− 1),

sl,i(t) =

 vl,ith , ml,i(t) ≥ vl,ith

−vl,ith , ml,i(t) ≤ −vl,ith and r̃l,i(t) > 0
0, otherwise

, (34)

pl(t) = ml(t)− sl(t),

rl(t) = r̃l(t− 1) + sl(t)

where r̃l(t) and rl(t) denotes the memory potential before and after spikes’ triggering.

F.3 BURST SPIKES WITH ρ-SCALE THRESHOLD

In order to minimize the effect of lagging inputs generated during SNN inference, we use the burst
spikes mechanism, which allows neurons to clear off residual potentials in the form of Γ(Γ = 2 in
our experiments) high-frequency spikes between regular emissions(Li & Zeng, 2022). The threshold
of the residual potential is set to ρvth. Considering its small scale in relation to vth and without
disrupting the quantization relationship established by Eq.33, we set ρ = 0.5.

F.4 ALGORITHM

18

Published as a conference paper at ICLR 2024

Algorithm 1 STA Conversion Pipeline

Input Pretrained ANN; Non-linearities {fi} with synthetic distributions {D̂i}; Simulation length
T
for each nonlinear function fi in Transformer do

Initialize UGO model f̂i with Ni hidden neurons
Sample M points {xj}j=1,...,M from D̂i

Optimize f̂i using labels {fi(xj)}j=1,...,M

end for
Replace non-linearites {fi} in pretrained ANN with {f̂i}
Replace multiplications in pretrained ANN with TCSA (cf.Eq.9)
for l = 1, 2, ...L-th ReLU layer in the ANN do

Collect the input xl and the output xl+1

Find the optimal threshold vl
th for SNN by grid search (cf.Eq.33)

end for
Output Converted SNN

Algorithm 2 STA Inference
Input Converted SNN; Simulation length T ; Burst length Γ; Burst scale ρ

for t = 1, 2, ..., T do
for each forward operation g in the SNN do

if g is a multiplication layer then
Output temporary scaled product

∑t
j=1 k(t)X1(j)W1W2X2(j) using TCSA (cf.Eq.9)

end if
if g is a non-spiking linear layer then

Output Wx(t) + b
end if
if g is a spiking linear layer constructed by IF neurons then

Calculate △v = Wx(t) + b
Release positive & negative spikes with threshold vth, and update potentials v (cf.Eq.34)
for i = 1, 2, ...Γ do

Release spikes with threshold ρvth, and update potentials v
end for

end if
end for

end for

19

Published as a conference paper at ICLR 2024

G SUPPLEMENTARY FOR EXPERIMENTS

G.1 DATASETS

CIFAR-10 is a dataset developed by the Canadian Institute for Advanced Research (CIFAR), widely
used as a benchmark dataset for developing and evaluating image classification models due to its
manageable size and variety of classes. It consists of 60,000 color images sampled from TinyImages
Dataset(Torralba et al., 2008), divided into 50,000 training images and 10,000 testing images. There
are 10 different classes in CIFAR-10, including common objects like airplanes, cars, birds, cats, etc.

CIFAR-10.1 & CIFAR-10.2 are new testing sets for CIFAR-10, each incorporating 2,000 images
from TinyImages Dataset. There are small distribution shifts between them and the original data
set, which may be attributed to different generation conditions (such as illumination, angle, etc.) or
adversarial attacks. Therefore, they are created to assess the robustness and generalization of models
trained on CIFAR-10(Recht et al., 2018; Lu et al., 2020).

In our experiments, since there is no training set for the above two datasets, we use the training
samples of CIFAR-10 to determine the threshold potentials for SNN. The high accuracy in the results
demonstrates that the converted SNN not only retains the generalization ability of the pretrained
model but also has the robustness to this distribution shift.

CIFAR-100 is also a subset of TinyImages Dataset and serves as a more challenging version of
CIFAR-10, consisting of 100 fine-grained classes, categorized into 20 superclasses. Like CIFAR-
10, it includes 50,000 training images and 10,000 testing images.

ImageNet is one of the largest public image databases, containing about 14 million images labeled
into 1,000 categories(the full dataset is over 20,000). Unlike TinyImages Dataset, it consists of high-
resolution images from the Internet. ImageNet provides a wide range of help for the realization of
tasks such as image classification, target detection and semantic segmentation in large-scale scenar-
ios. ImageNet-200 is a well-chosen subset of ImageNet containing 200 categories that can help train
and evaluate models more efficiently.

G.2 ADDITIONAL RESULTS

We provide additional results on standard classification tasks using fine-tuned ViT-B/32 from CLIP,
as well as other models like resnet-20 and ResNet-34 trained directly on these dataset. The pretrained
ResNet-50 does not surpass the performance of direct training, while ViT-B/32 performs well on
generalization.

To determine the optimal scale N and training method for the Universal Group Operator (UGO), we
conducted ablation experiments on the CIFAR-100 dataset with T = 32. By modifying the UGO
parameters, we compared different settings’ impact on overall accuracy. The results in Table.6 show
that as we increased N, accuracy shows decelerated growth with efficiency continually declined.
Considering both factors, we selected a balanced approach that achieves good accuracy without
excessive computational cost. The ablation experiments guided our selection of an appropriate UGO
scale and training method.

To verify the effectiveness of the techniques mentioned in F, we did several sets of ablation exper-
iments on cifar-10 with T = 32. Table.7 shows that the SNM structure significantly improves the
performance of the converted SNN. The neuron-wise search of potential threshold and the introduc-
tion of the burst spikes mechanism also play an important role in model conversion, especially when
combined with SNM. This may be due to the unique dynamic characteristics caused by estimation-
correction mechanism.

20

Published as a conference paper at ICLR 2024

Table 4: Comparison with other backbones and baselines on standard classification of CIFAR-10

Model Method ANN Acc. T=32 T=64 T=128 T=256

resnet-20

RMP (Han et al., 2020)

95.68

38.04 59.73 90.10 90.47
TSC (Han & Roy, 2020) 57.64 71.22 91.30 92.30
Opt. (Deng & Gu, 2020) 87.30 92.50 94.32 95.28
Calib. (Li et al., 2021) 94.77 95.02 95.17 95.44
SNM (Wang et al., 2022a) 94.13 95.43 95.75 95.69
Burst (Li & Zeng, 2022) 94.92 95.51 95.40 95.61

ResNet-50
(CLIP)

Opt. (Deng & Gu, 2020)
95.71

71.37 81.52 85.43 88.10
Calib. (Li et al., 2021) 87.64 91.85 92.79 94.60
SNM (Wang et al., 2022a) 90.30 91.42 92.44 94.31

ViT-B/32 STA (Ours) 96.16 95.49 95.74 95.68 95.82

Table 5: Comparison with other backbones and baselines on standard classification of ImageNet

Model Method ANN Acc. T=32 T=64 T=128 T=256

ResNet-34

RMP (Han et al., 2020) 70.64 - - - 55.65
Opt. (Deng & Gu, 2020) 70.95 33.01 59.52 67.54 70.06
Calib. (Li et al., 2021) 75.66 64.54 71.12 73.45 74.61
SNM (Wang et al., 2022a) 73.30 55.28 62.72 65.53 69.31

ViT-B/32 STA (Ours) 83.60 78.72 82.33 82.56 82.79

Table 6: Ablations for settings of Universal Group Operators classification on CIFAR-100, T=32.

N and Penalty Exp GELU Inverse LayerNorm

T=32, N in Table.3, Baseline Accuracy=84.15

8 -10.46 -5.24 -6.43 +0.00
8 + Penalty -12.62 -4.92 -9.76 -6.14
16 -4.62 -2.43 -0.14 +0.02
16 + Penalty -4.51 -1.41 +0.00 -1.79
32 +0.00 -0.40 +0.08 -0.24
32 + Penalty -0.08 +0.00 +0.56 -1.58
64 +0.22 -0.03 +0.52 -0.05

Table 7: Ablations for conversion techniques on CIFAR-10, T=32

Technique Settings SNN Acc.
MMSE Burst Spikes Use SNM

layer-wise Γ = 0 × 11.35
layer-wise Γ = 0

√
15.57

neuron-wise Γ = 0 × 13.48
neuron-wise Γ = 0

√
54.32

neuron-wise Γ = 2, ρ = 0.5 × 19.84
neuron-wise Γ = 2, ρ = 0.5

√
95.26

21

Published as a conference paper at ICLR 2024

Table 8: Neuron numbers and weights in each UGO unit.

GELU Softmax-Exp Softmax-Inv LayerNorm

Non-linear Neurons of Original Units 3072 768 1 768
Non-linear Neurons of UGO Units 3072+(3072×)32 768+(768×)32 16 768+8
Weights of Original Units 0 0 0 0
Weights of UGO Units 32×2 32×2 16×2 8×2

H PARAMETER STATISTICS OF UGO UNITS

In the ANN-SNN conversion for ResNet, the number of neurons is exactly the same as the number of
RELU activation layers in the original backbone. However, in the case of ViT-B/32, replacing many
”non-linear operators” with ”neurons” significantly increases the required number of activations.
Also, defining the number of ”neurons” used in the Attention Block is challenging, because its non-
linearity is based on multiplications and Softmax instead of activation functions. We provide Table.8
to clarify the required number of neurons for ViT-B/32.

It shows the number of neurons and parameters for each module and its corresponding Universal
Group Operator (UGO). A ViT-B model consists of 12 blocks, each containing 1 GELU activations,
2 LayerNorm operations, and 1 Softmax operation. Since all UGOs share the same parameters, the
increase in weights is minimal. However, some modules like GELU need to be applied to each input
feature, resulting in a significant computational load (see numbers listed in the brackets). But since
we have replaced the non-linear operation with a linear one, the actual complexity does not increase
significantly. The non-linear modules originally do not involve synaptic operations, thus the number
of weights for these modules is zero.

22

	Introduction
	Related Work
	ANN-to-SNN conversion
	Transformer and Spike-Based Transformer

	Preliminaries and Problem Analysis
	Neurons for ANN & SNN
	Operations in Transformers

	Spatial Approximation for Non-linearity
	Neuron Groups for Universal Approximation
	Integration for High-Dimensional Operations

	Temporal Approximation for Multiplications
	Temporal Split for Spike-based Multiplication
	Estimation-Correction for Firing-Rate Stability

	Implementation and Experiments
	Conversion Implementation
	Zero-shot Classification
	Standard Classification and Ablation Studies
	Energy Estimation

	Conclusion and Discussion
	Acknowledgments
	Modules in Transformers
	Settings of Universal Group Operator
	Proof for Theorem 1
	Details of High-Dimensional Operations
	LayerNorm
	Softmax

	Proof for Theorem 3
	Implementation of UGO-approximated ANN conversion to SNN
	Threshold Balancing
	Signed Neurons with Memory Potential
	Burst Spikes with -Scale Threshold
	Algorithm

	Supplementary for Experiments
	Datasets
	Additional Results

	Parameter statistics of UGO Units

