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Abstract: A long-standing goal in robot learning is to develop methods for robots to
acquire new skills autonomously. While reinforcement learning (RL) comes with the
promise of enabling autonomous data collection, it remains challenging to scale in
the real-world partly due to the significant effort required for environment design and
instrumentation, including the need for designing reset functions or accurate success
detectors. On the other hand, imitation learning (IL) methods require little to no
environment design effort, but instead require significant human supervision in the form
of collected demonstrations. To address these shortcomings, recent works in autonomous
IL start with an initial seed dataset of human demonstrations that an autonomous policy
can bootstrap from. While autonomous IL approaches come with the promise of
addressing the challenges of autonomous RL—environment design challenges—as well
as the challenges of pure IL strategies—extensive human supervision—in this work, we
posit that such techniques do not deliver on this promise and are still unable to scale up
autonomous data collection in the real world. Through a series of targeted real-world
experiments, we demonstrate that these approaches, when scaled up to realistic settings,
face much of the same scaling challenges as prior attempts in RL in terms of environment
design. Further, we perform a rigorous study of various autonomous IL methods across
different data scales and 7 simulation and real-world tasks, and demonstrate that while
autonomous data collection can modestly improve performance (on the order of 10%),
simply collecting more human data often provides significantly more improvement.
Our work suggests a negative result: that scaling up autonomous data collection for
learning robot policies for real-world tasks is more challenging and impractical than
what is suggested in prior work. We hope these insights about the core challenges of
scaling up data collection help inform future efforts in autonomous learning.
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1 Introduction

Enabling robots to acquire skills in the wild from autonomous, self-supervised interaction has been a
long-standing goal in robot learning. To this end, a variety of efforts have focused on developing methods
for reinforcement learning (RL) in the real-world [1–3]. Despite substantial progress, RL for real-world
robotics requires a significant amount of human effort on environment design, such as developing reset
mechanisms, safe guards, success detectors, and reward functions. These challenges—exacerbated by
sample efficiency issues—have constrained the complexity of tasks that are possible with today’s methods
for real-world RL. As a consequence, many have shifted their attention to imitation learning (IL) methods,
which scale much better with task complexity [4, 5]. However, IL methods rely on increasingly large
amounts of high-quality human demonstrations as tasks become more diverse and complex, thus shifting
the human effort required to human supervision—i.e., demands on the time of expert operators. In fact,
from “pure autonomous” RL methods to “pure human” IL methods, there exists a spectrum that trades
off between environment design effort and human supervision effort. We visualize this spectrum in Fig. 1,
where one might expect that by moving from either side towards the middle of this spectrum, the human
effort in both environment design and supervision can go down.
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A variety of works have attempted to move toward the middle of this spectrum, either by reducing
environment design challenges (often increasing supervision requirements) for RL methods [6–10] or
decreasing supervision requirements (often increasing environment assumptions) for IL methods [11–19].
Our hope as a field is that somewhere in the middle lies an effort-minimizing approach that will enable
robot learning methods to effectively scale.

Figure 1: Conceptual diagram illustrating the
expected vs. actual effort tradeoff for human
supervision and environment design.

One proposed middle-ground approach is autonomous IL,
where we let a policy autonomously collect its own data
using a policy trained on an initial amount of human data and
iteratively re-train with the successful rollouts [17–19]. Many
hope that this approach will finally push us to the bottom of
the “U” in Fig. 1 (solid line), since the promise of autonomous
IL is to reduce human data collection effort while partially
mitigating safety and exploration issues.
In this work, we examine the challenges of applying au-
tonomous IL to useful and realistic manipulation tasks in
the real world—beyond what is often shown in simpler toy
settings. We find that in practice this middle ground approach unfortunately suffers from many of the same
scaling challenges as prior work. We observe that the true effort curve looks more like Fig. 1 (dashed line):
as we try to reduce environment design effort or reduce human supervision collection effort, we find that
the total human effort required to see comparable success rates plateaus.
Our study is organized into two parts. First, in §3, we demonstrate that autonomous IL methods still suffer
from high environment design costs—for example, reset functions and success detection. In practice, these
costs limit the complexity of tasks that can be tackled with autonomous IL. Second, in §4, we select 7
simulation and real-world tasks where environment design costs can be minimized, and through 10K+
real-world evaluations and over 100 hours of autonomous data collection, we rigorously evaluate a range of
autonomous IL methods. While several methods lead to mild performance improvements (on the order of
10%) on top of an IL policy trained on the initial human demonstrations, we consistently find that collecting
a few more human demonstrations surprisingly is a more efficient use of total effort. Our work suggests a
negative result: that scaling up autonomous IL for real-world tasks might be much more challenging
than what is conceived by the field and what prior work suggest, given that these methods still
require significant environment design effort and underperform simply redirecting this effort to collecting
demonstrations. This work sheds light on the true bottlenecks of scaling up data collection, such as finding
generalizable solutions to environment challenges and developing methods to scale up human supervision.

2 From RL to IL: Preliminaries and Related Work

Here, we introduce the spectrum of robot learning methods from RL to IL, their assumptions, and prior work.

2.1 Reinforcement Learning

Reinforcement Learning (RL) methods adopt the model of a standard Markov decision process (MDP)
M=(S,A,T ,R,ρ0,γ) consisting of a state space S, continuous action space A, transition function T :
S×A×S→ [0,1], reward function R :S×A→R, initial state distribution ρ0, and discount factor γ∈ [0,1].
These methods aim to learn a policy π to maximize the expected discounted sum of rewards J(π) =
E[∑∞

t=0γtR(st,at)]. Implementing RL algorithms in practice is challenging due to a number of factors:
Success Detector (S, R). As an evaluation mechanism or for early termination of episodes, it is typical to
utilize a success detector f :S→{0,1} to detect if a state s falls within a set of terminal states S+⊂S. The
success detector f may be learned, scripted, or labeled by a human.
Reset Mechanism (ρ0). Generating full episodes assumes the ability to sample from ρ0. This requires
access to a reset policy (commonly referred to as a backward policy πb) such that following πb leads to
a new initial state s′0∼ρ0. The existence of πb necessitates that all s′0∈ρ0 are reachable from any s∈S at
which the episodes terminate. However, this assumption does not hold in the case of irreversible actions. In
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practice, it is common to instrument environments with hand-crafted primitives, physical reset mechanisms,
or require humans to perform resets [20, 21].
Stationary Dynamics (T ). In most works, T is assumed to be stationary. This can significantly restrict
the real-world environments on which RL can be used.
Crafting environments that meet the above requirements can be surprisingly challenging in practice. As
a result, many works have focused on highly controlled “toy” tasks which—while presenting challenges
from a learning perspective—have been selected such that it is easy to learn or specify a success detector
and easy to perform resets, or require humans to do resetting and success detection [1, 2, 10, 20, 21]. Thus,
these tasks tend to involve relatively simple manipulations (e.g., lifting or pushing objects, opening drawers,
etc.) that do not capture the complex manipulations that we eventually hope for robots to accomplish.

2.2 Imitation Learning

In contrast, Imitation Learning (IL) methods aim to learn a policy π that imitates the behaviors from a
datasetD where each demonstration ξ ∈D consists of state-action transitions {(s0,a0),...,(sT ,aT )} [22].
Rather than assuming access to reward R, IL generally assumes that each demonstration ξ is given by
an expert, and thus attains maximum reward. While avoiding the requirements of a reward function, an
automated reset function, and success detector, IL imposes additional key assumptions:
Data Collection Time. The creation ofD requires access to expert operator(s) to collect demonstrations.
In practice, it is common for the operator to additionally perform resets between episodes.
Optimal Demonstrations. The majority of works assume D is composed of optimal demonstrations.
Producing high-quality demonstrations imposes additional burdens on operators, such as practicing before
collecting demonstrations, as well as filtering out low-quality demonstrations during data collection [23, 24].

2.3 The Middle Ground: Mixed Autonomy Methods

In an attempt to strike a balance between the environment design challenges of pure RL and human
supervision challenges of pure IL, several works have proposed methods that mix human demonstrations
and learning from autonomous execution. Closer to the left side of Fig. 1, hybrid RL+IL methods use a prior
dataset of human demonstrations to guide RL (providing some amount of exploration guidance and sample
efficiency gains) [6, 8–10, 25]. Closer to the right side of Fig. 1 are interactive imitation learning (IIL)
methods, which allow a human to intervene on a robot’s autonomous execution, and use these interventions
as a learning signal [11, 13, 17, 26]. In practice, these works still require significant environment design
effort (e.g., to prevent unsafe behaviors or instrument success detectors) and human supervision effort (e.g.,
for resetting environments, or supervising autonomous execution until an intervention is needed).
More recently, interest has grown in autonomous IL methods which self-bootstrap starting from a policy
trained on human demonstrations [17–19]. The hope is that these methods can bypass the need for high envi-
ronment design effort by removing reward and safety constraints. They could also reduce human supervision
by only requiring a fraction of the initial data that pure IL would require for the same tasks. In this work,
our aim is to stress-test these ideas with various autonomous IL methods as we scale up task complexity.

Algorithm 1: Autonomous IL Recipe
Given rounds M, alg. A, alg. B, filter F, mixture fn mix

1 DH← Collect NH human demonstrations
2 π0← Train alg. A on DH
3 for i in 1...M do
4 Di

A← Collect NA rollouts of πi−1 under filter F
5 πi← Train alg. B on mix(DH ,D1

A,...,Di
A)

We provide a general recipe for autonomous
IL in Alg. 1. Given a dataset of human
demonstrations DH , a policy π0 is trained
using algorithm A (Line 2). For M rounds, a
new dataset Di

A is generated by collecting NA
rollouts (Line 4) with a filter function F. A
new policy πi is trained using algorithm B on
a mixture of the prior datasets specified with
a function mix (Line 5). The simplest, naı̈ve instantiation is filtered behavior cloning (BC): where both
algorithms A and B are BC, the number of rounds M=1, and the filter function F only accepts successful
episodes, so as not to pollute the training data with failures (Line 4). Past works have alluded to this idea
that naı̈vely adding successful autonomous rollouts added to the training data in this way should be helpful
to performance [17–19]. We systematically test whether this is the case in the single task setting. We first
analyze the challenges of satisfying the environment assumptions of Alg. 1 as we scale task complexity
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(§3), and then test whether autonomous IL can meaningfully reduce human supervision effort across a
variety of variations and design choices in this recipe (§4).

3 Challenges of Scaling Up: Analyzing Environment Design

In this section, we provide a case study on the challenges of running autonomous IL in practice on
useful real-world tasks. These challenges correspond to satisfying pre-conditions of most autonomous IL
algorithms as in Alg. 1, but for concreteness, we limit the discussion to filtered BC as a simple instantiation
of Alg. 1: (1) π0 must achieve nontrivial success given NH demonstrations; (2) the success detector f
used to define the filter F must be accurate; (3) the environment dynamics T must be stationary; (4) the
reset mechanism to sample from ρ0 must be robust. This case study illustrates that environment design
effort, while often underemphasized, is difficult to reduce as we approach more useful and realistic tasks.
Useful but Feasible Tasks: from organizing laundry to folding socks. To test if autonomous IL delivers
on its promise of addressing challenges of IL and RL, we need to select useful real-world tasks, where
IL and RL techniques struggle. Consider the task of folding laundry: this task requires manipulation
of deformable clothing of many shapes and sizes with a broad distribution of initial states (e.g., object
configurations). For autonomous IL, this causes a few issues: (1) The initial autonomous policy must
achieve nontrivial success rates in order for us to collect any autonomous data: thus a large amount of initial
human supervision effort (demonstrations) is already necessary for these realistic tasks. Recent works have
shown one can achieve challenging tasks similar to laundry folding—albeit with limited generalization, i.e.,
limited variations in scenes or initial configurations—via imitation learning on thousands of demonstrations
[27]. (2) We need to be able to reset the environment to initial configurations that autonomous IL can
bootstrap from, which is often infeasible for realistic tasks like laundry folding which have a broad set
of initial configurations. (3) Performing controlled evaluations on different models is challenging when
the set of initial conditions is so broad. Thus, to even begin to study the problem of autonomous IL, we
scope the task down significantly to a more controlled setting: sock folding from an arbitrary configuration
(see Fig. 2). This task nevertheless represents a step up in difficulty from toy tasks (e.g., folding a square
cloth that always begins unfolded). A diffusion-based imitation policy [5] trained on our sock folding
task attains only∼30% success trained on 250 human demonstrations.
Reliable Success Detection: from folding socks to hanging mitts. To train on only successful autonomous
data without human supervision, we need a precise and reliable success detector. Without a good success
detector, datasets can be polluted with false positives, and controlled evaluation becomes very challenging.
Even when limiting ourselves to the sock folding task, simple object shape and area heuristics (which have
been used in prior work on toy cloth folding tasks) prove to be insufficient for crisply detecting whether a
sock has been folded in half; indeed, autonomous execution inevitably encounters “edge cases” which are
challenging even to annotate by hand. We also attempt to train a success classifier on terminal states from
a combination of 200 human demonstrations and 700 hand-annotated rollouts of the autonomous policy
with an approach similar to [18], still obtaining a validation error of 10-20%, representing the challenge
of training success detectors for realistic tasks, even under generous data assumptions, without the use of
more specialized or domain-specific techniques. Please see Appx. A for more details.
Despite our attempts to reduce environment design effort, we find it necessary to “shape” the task to fit our
requirements—e.g., changing the choice of sock (to be shorter and stiffer) as well as the material of the table
to be a higher friction surface (often used in prior work with cloth manipulation [28]). Even with this task

Figure 2: Initial and final success states in 4 real-world environments (top) and 5 simulation environments (bottom).
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structure, autonomous rollouts yet again produce many edge cases where detecting success is challenging
without full state information. For example, a common failure case is a Z-fold of the sock—where the
sock would be folded twice in a Z-shape—which is difficult to perceive without depth information. Given
these difficulties, we find it necessary to select a task with a more reliable success detector. To maintain
task usefulness, we consider hanging a deformable oven mitt with a small loop on a hook (Fig. 2).
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Figure 3: Success rate on Hang-
OvenMitt over 600 rollouts, with
window size of 50 rollouts.

Environment Stationarity: from hanging mitts to rigid-body tasks.
While success detection is straightforward on the oven mitt task (and can
be done simply by using color thresholds—see Appx. A), we encounter
a new, significant challenge in scaling up autonomous data collection
for this task: non-stationarity of the environment over time. Fig. 3 shows
the success rate of a diffusion policy trained on 200 demonstrations
of HangOvenMitt. Note that the success rate of this fixed policy
significantly decreases over the course of several hundred rollouts in a
day. Interestingly, the initial success rates are still reproducible after the
object is at rest for several hours. We hypothesize that with continuous
interactions and resets, the state of the object becomes marginally more
deformed over time, in a way that is restored after the object remained at rest. This confounding factor
impedes controlled comparisons between policies. Deformability is just one source of environment
non-stationarity: lighting, object textures, and even camera positions can change unpredictably or over
time. We need to control for these sources of variation, especially in autonomous IL, where the changes
in data distribution can have different implications on the policy. To avoid issues of non-stationarity due
to deformability, we find it necessary to move to rigid-body tasks.
Robust Reset Functions: simple rigid-body tasks. To autonomously collect data, designing a robust reset
function is critical for all the tasks we have discussed so far: if the reset fails even 1% of the time, significant
human supervision effort is required to monitor the scene. This places several limitations on the tasks we
can do with autonomous IL: (1) The reset function must be easier than the task itself. Thankfully, this is true
in many complex manipulation tasks, including many tasks with deformable objects. For example, in the
case of sock folding, the scene can be reset simply by flinging the sock (from any configuration) whereas
the forward task of folding requires much more precision. (2) The policy cannot encounter irreversible
states. For the oven mitt reset procedure, we encounter a variety of irreversible states: the mitt gets lodged
under the hook or falls out of the robot workspace, at a rate of approximately once every 100 rollouts. This
is solved by adding reset instrumentation (specifically, a string attached to the object) such that the robot can
pull the object back into a reachable position. This instrumentation vastly increases the robustness of the
reset policy at the cost of environment design time. We provide more information on the implementation of
the reset functions in Appx. A.
Summary. To perform useful tasks in the real world, autonomous IL methods encounter a variety of
challenges that consistently keep environment design costs high. Tasks cannot be too complex or evaluation
and data collection become costly. Success detection and reset functions must also be extremely robust.
Environments must be stationary during the course of learning and evaluation. All of these requirements
makes it difficult to apply autonomous IL for useful and realistic tasks in the real world.

Takeaway: Scaling task complexity for methods that involve truly autonomous real-world data collection
remains challenging. Given these environment design challenges, autonomous IL methods are realisti-
cally limited to rigid-body tasks with easy and safe reset functions like pick-place, articulated object
manipulation, or insertion.

4 Challenges of Scaling Up: Analyzing Human Supervision

In §3, we describe environment design challenges that hinder scaling up IL on useful, realistic tasks. Now
let us assume that environment challenges are surmountable (i.e., by limiting tasks to simple rigid-body
manipulation like pick-place or insertion). In such settings, can autonomous IL methods meaningfully
reduce the amount of human supervision needed to learn an effective policy? Once again, our attempts to
reduce this source of effort lead us to several key challenges in scaling autonomous data collection.

5



4.1 Experiment Overview

We study a variety of instantiations of Alg. 1, from straightforward techniques such as filtered BC (simply
rolling out a policy trained on human data and adding successful rollouts back into the training set), to more
complex ones such as active learning and offline RL. For the majority of experiments, we use Diffusion Pol-
icy [5] as the choice for algorithms A and B given its expressivity and ability to capture multimodal action dis-
tributions [5]. We also set M=1 unless otherwise specified, and train models from scratch at each iteration.
• In §4.2, we study the impact of data scales (of NH and NA); and number of rounds (setting M>1).
• In §4.3, we investigate novelty-based reweighting strategies (more sophisticated mix functions).
• In §4.4, we study active learning guided by failures (where F excludes rollouts whose initial states are

near previous successes).
• In Appx. B, we provide ablations on data weights (upweighting human or autonomous data with mix),

training methods (modifying B to train from scratch versus fine-tune πi−1), policy class (replacing A
and B with ACT [4]), offline RL algorithms (where F allows both successes and failures, and B is an
offline RL algorithm), and training with out-of-distribution autonomous successes (modifying Line 4).

Task Selection. Due to the environment challenges described in §3, we limit our analysis to two rigid-body
real-world tasks shown in Fig. 2: HangTape (on a hook) and NutInsertion (on a peg) as well as four simu-
lation tasks from LIBERO [29]: SoupInBasket, BookInCaddy, StackBowls, and RedMugOnPlate; and one
task from Robomimic [24]: Square. These simulation tasks (shown in Fig. 2) enable a thorough evaluation
of design choices for scaling up autonomous data collection while avoiding environment design challenges.
Appx. A contains more details on task implementation, success detection, and reset procedures. For each
policy evaluation in this work, we perform 100 trials for real-world tasks and 200 trials for simulation tasks.
Data Scale Definitions. Throughout this section, we abbreviate data quantities as follows: ↓=low,
⋄=medium, ↑=high amounts of data for human demonstrations (H) compared to autonomous data (A). For
example, ↓H means NH is a low amount of demonstrations, and ↓H + ↑A means low amount of demonstra-
tions combined with high amount of autonomous data, generated by rolling out a policy trained on ↓H until
the requisite number of autonomous successes is reached. Generally, the exact data amounts are not equal
between A and H, and we chose the H data scales so that BC performance was roughly in the 20-50% range
for ↓ and 50-70% for ↑. Exact data quantities for each environment are provided in plots and in Appx. A.

4.2 Diminishing Returns of Filtered BC

In this section, we instantiate filtered BC (naı̈ve autonomous IL), where autonomous rollouts from a policy
trained on human data are simply added to the training data. We study the impact of data weights, data
scales, and number of collection rounds. In all experiments, we train a Diffusion Policy from scratch on
the human-autonomous data mixture. Guided by our results on data weights (Appx. B.2), we train from
scratch with 50-50 human-autonomous mixtures for the experiments in this section. Please see Appx. B for
additional training details and hyperparameters, and for ablations on training methods (e.g., fine-tuning).
Human and Autonomous Data Scales. We now study how the scale of initial human data and the ratio
of human data to autonomous data affect performance. In Fig. 4, we compare the low and medium human
data regimes across all simulation and real environments, for various ratios of human to autonomous data.
Overall, adding autonomous data can modestly improve policy performance on both low and high data
regimes (on average 10-20%); but occasionally, it has a minor negative effect (Square, BookInCaddy (↓H),
StackBowls (↑H)). In most cases, any positive effect saturates as autonomous data scales. In line with
prior work in data quality, we suspect that some amount of autonomous data is good for capturing more
state diversity, but sometimes that data can also cause action consistency to decrease [23, 30]. Moreover,
adding more human data (purple vs. orange) tends to have a stronger effect than adding autonomous data.
Multiple Collection Rounds. Observing the somewhat positive effect for incorporating autonomous data,
one might expect this trend to continue for multiple rounds of autonomous data collection followed by
training on the newest round of autonomous data (i.e., when M>1). This procedure is similar to running
Reward-Weighted Regression seeded by demonstrations [31]. In Fig. 5, we run autonomous collection for
2–4 rounds in several simulation and real environments. Interestingly, multiple rounds can in fact improve
performance (most LIBERO tasks), but just like a single round of collection, it can also saturate performance
(BookInCaddy, SoupInBasket (↑H), and real tasks) or even hurt performance (Square). We suspect that
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Figure 4: Performance of filtered BC over difference scales of human and autonomous data with 50-50 co-training on
various simulation and real environments. More autonomous data often helps (left to right within each line plot), but
having more initial human data (labeled H) generally has a stronger effect (purple vs. orange).
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Figure 5: Multiple Rounds (in order, left to right) of filtered BC in simulation and real environments. We see either
saturating increases or decreases in performance.

unlike LIBERO tasks, in Square there are challenging bottleneck states in which subtle variations in the
action distributions in autonomous data can greatly affect policy performance (see Appx. B). Furthermore,
with the exception of SoupInBasket (↓H), multiple rounds seem to plateau in performance after the initial
improvement, and collecting a few additional human demonstrations often beats this plateaued success
rate. Thus, multiple rounds of autonomous collection might not be worth the added effort.

4.3 Inconsistent Response to Novelty-Based Reweighting
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Figure 6: Policy perfor-
mance in simulation (Square)
across different novelty-based
reweighting schemes, using
both action-variance and image
embedding-variance with
ensembles of size 3 as novelty
metrics.

Adding successful autonomous data to human data can yield modest
improvements in some cases. Instead of simply adding all successful
autonomous data to the training dataset, one might ask the question, is
all the autonomous data equally useful? Specifically, what states and
actions are valuable to learn from? Building on prior work [13, 23, 30], we
consider using state novelty as a metric for the utility of a new state-action
pair. Our intuition is that more common states are either redundant or
potentially have conflicting actions; this data is likely less useful than more
novel states. Building on prior work, we inform the sampling weights of
the autonomous dataset in the mixture function mix based on different
notions of novelty. We use two measures of novelty in Fig. 6 on the Square
task; see Appx. B.5 for formal definitions.
1. Action Novelty: Measure novelty as proportional to the variance in action

predicted by an ensemble of policies trained on the same data.
2. Image Embedding Novelty: Measure novelty as proportional to the

variance in image embeddings from an ensemble of vision encoders of policies trained on the same data.
Both novelty metrics measure policy uncertainty, but in action novelty the uncertainty is more action-driven,
whereas embedding novelty is more state-driven. For both action- and embedding-based novelty metrics,
reweighting has a slight positive effect on performance compared to the naive strategies for ↓H, a more no-
table effect for ⋄H, and a slight decrease for ↑H. Thus, novelty-reweighting provides inconclusive results and
still underperforms just adding a bit more human data. Yet, these results confirm our intuition that in many
cases, much of the autonomous data is redundant and can be filtered out without decreasing performance.

4.4 Inability to Learn from Failure Data

Reweighting the autonomous dataset (e.g., using novelty) still depends on the distribution of states visited
by the autonomous policy. And in the novelty-weighting case study, by setting F such that only successful
autonomous rollouts are included in the autonomous dataset, we are critically biasing this distribution
toward states where the policy is already proficient. Does learning from failure data yield any improvement?
We study two approaches to learn from failures: active learning and offline RL (Appx. B).
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Active Learning Guided by Failures. Are there more intelligent ways to target the new data we collect?
One such approach, inspired by active learning methods, is to use autonomous failure data to generate
a distribution of failure states to intelligently query a user. Querying a user for a single expert action at
arbitrary failure states is challenging in practice, and it is often easier for a user to provide a complete
demonstration. Therefore, we implement a more practical approach: sampling from the distribution of
initial states from failed autonomous rollouts to query for complete demonstrations. In Fig. 7, we compare
(1) using the autonomous policy to collect new demonstrations near the failure initial states (Near-Failure
A), and (2) querying a human for demonstrations initialized at these states (Near-Failure H).

0 25 50 75
0

20

40

60

80

100

Su
cc

es
s R

ate

20H

Square
(sim)

0 10 20 30
0

20

40

60

80

100

20H

HangTape
(real)

# Additional Rollouts
Random H
Near-Failure H

Random A
Near-Failure A

Figure 7: Results for Square and HangTape,
querying either an autonomous policy (Near-
Failure A) or human (Near-Failure H) for new
demonstrations near the set of autonomous
failures’ initial states. Adding targeted hu-
man data helps much more than equivalent
amounts of random human data, targeted au-
tonomous data, or random autonomous data.

Incorporating near-failure autonomous data has no positive ef-
fect beyond the naı̈ve method of random selection. However,
collecting new human demonstrations near autonomous failures
(Near-Failure H) does yield improvement over an equal number
of randomly selected human demonstrations (Random). Similar
to the filtered BC case study, collecting more human demonstra-
tions tends to yield larger improvement than even high amounts
of autonomous data, especially if those demonstrations are
collected from autonomous failures’ initial states.
Summary. We find that the most salient factors leading to
policy improvement for autonomous IL are, in order: (1) the
amount and utility of new human demonstration data and (2)
the availability of some amount of autonomous data. Data
weights, amount and rounds of autonomous collection, and
novelty-based reweighting strategies all have little effect in
comparison. Repeatedly, we find that additional human data is significantly better than access to even ten
times the amount of autonomous data. This suggests that even under the assumption of no environment
challenges, many autonomous IL methods struggle to match the performance of simply incorporating a
small amount of additional human data.

Takeaway: Even for simple tasks that do not pose environment challenges, both straightforward and
more advanced autonomous IL methods only modestly improve performance, and often plateau as
autonomous data increases.

5 Discussion

In this work, we take a practical look at the challenges involved in scaling autonomous IL to complex
tasks. While autonomous IL does not require all of the assumptions of fully autonomous methods like
RL, we affirm that they still require immense environment design effort which scales with task complexity.
Designing robust resets and precise success detectors remains an open challenge for such complex tasks,
as does dealing with environment non-stationarity. These factors are critical to conducting meaningful
evaluations and deploying algorithms with any level of autonomy in the real world, and so scaling robot
learning requires advances in how we can mitigate or amortize environment design effort. For example, a
direction for improvement is in learning general purpose success detectors using foundation models. Even
assuming we can reduce environment design effort, in this work our best attempts at learning from the
autonomous data could not match the improvement of marginally increasing human supervision effort with
traditional IL. We hope future work will build on the insights in our work to extract as much as possible
from autonomous data collection—for example, by guiding both human and autonomous data collection
based on insights (e.g., novelty, failure states) gleaned from the autonomous trials.
Limitations. While our study of autonomous IL considers a wide variety of methods, we primarily
consider single-task imitation learning, and the performance of autonomous IL methods may differ in
multi-task settings. Multi-task environments could also enable learning the reset and the task at the same
time, alleviating some environment design effort. Finally, we focus on settings where models are trained
from scratch; future work should study effects of large-scale pre-training in the autonomous IL setting.
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[6] M. Veceŕık, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl, T. Lampe,
and M. A. Riedmiller. Leveraging Demonstrations for Deep Reinforcement Learning on Robotics
Problems with Sparse Rewards. arXiv, 2017.
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A Task Details

In this section, we give additional information on the tasks studied in this work. We give verbal descriptions
in Appx. A.1, definitions of data scales in Appx. A.2, and details on the evaluation procedures in Appx. A.3.

A.1 Task Descriptions

• FoldSock. Fold a sock (with random configuration) neatly in half.
• HangOvenMitt. Hang an oven mitt (with random position and orientation) on a hook (fixed position).
• HangTape. Hang a roll of masking tape (with random initial position) on a hook (fixed position).
• NutInsertion. Insert a plastic nut (with random initial position) on a peg (fixed position).
• Square: Insert a square nut on a square peg (from [24]).
• SoupInBasket: Place a small soup can into a basket (from [29]).
• BookInCaddy: Place a book into a narrow book caddy (from [29]).
• StackBowls: Stack two bowls together and place both on a plate (from [29]).
• RedMugOnPlate: Put a red mug on a specific plate (from [29]).
We include an illustration of initial state distributions, sample initial and successful states, and sample
camera observations for the NutInsertion and HangTape tasks in Fig. 8.

Figure 8: For the HangTape and NutInsertion tasks, we include scene images depicting the initial state distribution
(using an overlay of initial state samples), a sample initial state, a successful state, and a view of the initial state from
the wrist camera’s perspective.

A.2 Data Scale Definitions

For concision, and to focus on trends, we abbreviate data scales (i.e., number of demonstrations) as low (↓),
medium (⋄), and high (↑) for each of human demonstrations (H) and autonomous rollouts (A). Due to the
fact that tasks vary widely in difficulty, the absolute value of demonstrations for each data scale varies per
task. We include these values in Table 1.
Example. To generate the training set for the ↓H + ↓A setting on the NutInsertion task, we do the following:
• Collect 50 human demonstrations from randomly sampled initial states.
• Train an initial policy on the human demonstrations to convergence (approximately 47% success rate).
• Collect 100 successful autonomous rollouts (by rolling out the policy over 200 times and filtering out the

failures).

A.3 Evaluation Procedure

Unless otherwise specified, all success rates in this work are calculated by uniformly sampling an initial
state s0∼ρ0 and rolling out the learned policy under consideration until either a success state is achieved or
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Env ↓H ⋄H ↓A ⋄A ↑A
FoldSock 100 250 — — —

HangOvenMitt 200 500 — — —
HangTape 20 50 40 100 320

NutInsertion 50 100 100 250 —-
Square 10 50 100 200 500

SoupInBasket 2 5 50 — 100
BookInCaddy 2 5 50 — 100
StackBowls 2 5 50 — 100

RedMugOnPlate 2 5 50 — 100
Table 1: Legend of data scales for each environment.

a maximum time horizon is reached. For all simulation results, we perform 200 trials. For all real results,
we perform 100 trials.

A.4 Success Detection and Resets

In this section, we provide additional details and rationales for the success detection and reset pipelines that
we used in our real-world tasks. For tasks in simulation, success detection and resets were provided by the
environment.

A.4.1 Success Detection
• FoldSock. As we found that scripting a sock-foldedness detector based on heuristics like object shape and

area produced false positive and false negative rates on the order of 20%, we attempted to train a success
classifier using a similar procedure to [18]. We assemble a training dataset of 200 human demonstrations
(which are curated to be always successful) and roughly 700 rollouts from the autonomous collection
policy (which we hand-label as success or failure). The training set includes 301 successful trajectories
and 438 failure trajectories, and we sample from the end from each rollout (last 5 images) to yield
images to associate with the success/failure label. We train a ResNet-18-based architecture with a binary
classification head. The validation error of the trained classifier is approximately 15%.

• HangOvenMitt, HangTape, NutInsertion. These tasks include bottlenecks which must be reached in order
to succeed at the task: hanging an object on a hook or placing an object on a peg. Therefore, successes
and failures are easy to separate. For simplicity, we use scripted rules similar to prior work (e.g., [10]).
Specifically, we use color thresholds at pixels located at these bottlenecks, coupled with the condition
that the gripper must be open for five steps prior to success. This ensures that the agent has placed the
relevant object at the bottleneck in question. We manually verify that the error rate of this detection
scheme is near-zero. While we could in principle train classifiers to learn the boundary between success
and failure, our higher-level message is that environment challenges like success detection can be a
bottleneck for realistic tasks like FoldSock, and can influence task design to make tasks more constrained
such that success and failure are easy to detect. In §4, we set aside environment challenges (i.e., assume
that robust success detection is available) in order to study whether autonomous IL can reduce human
supervision challenges.

A.4.2 Resets

In our study, we use object-centric primitives of various complexity to perform resets. Instrumenting
environments with hand-crafted primitives, physical reset mechanisms, or requiring humans to perform
resets is a common technique in real-world reinforcement learning [20, 21]. As we illustrate in §3, the
human effort of environment design (e.g., by instrumenting the environment to make reset primitives
possible) remains when we utilize autonomous IL methods, and these can get more involved as we move
towards more useful and complex tasks.
• FoldSock. We reset the scene by flinging the sock: locating the sock using a segmentation pipeline

(GroundingDINO [32] + FastSAM [33]), picking it up using a top-down grasp, bringing it to the center
of the workspace, and executing a fling primitive to randomize its configuration for the next episode.
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• HangOvenMitt. The final state of the mitt has two cases—in the case of success, the mitt is hanging and
the mitt can be pulled off the hook by replaying a pre-recorded trajectory; in the case of failure, the mitt
is pulled back to a reachable location via a string attached to the robot—and in both cases, the mitt’s
location is then randomized using a parameterized pick-and-place primitive.

• HangTape. We follow a similar procedure as in HangOvenMitt: if the tape is on the hook (i.e., the
previous episode was successful), we replay a pre-recorded trajectory to pull it off of the hook. Otherwise,
we detect the location of the tape using a simple color mask and execute a pick-and-place primitive to
randomize its initial location for the next episode.

• NutInsertion. We once again utilize the fact that the final state of the previous episode is either a success,
for which the nut can be removed from the peg using a pre-recorded trajectory, or a failure, for which the
nut’s location can be randomized using a pick-and-place primitive.

B Analyzing Human Supervision: Additional Results

In this section, we provide further details on the results in §4 of the main text. In Appx. B.1, we ablate the
choice of training from scratch on human-autonomous mixtures (the recipe used in all experiments in the
main text). We also provide additional details regarding training with different data weights (Appx. B.2),
data scales (Appx. B.3), policy class (Appx. B.3.1), number of rounds (Appx. B.4), and novelty-based
reweighting (Appx. B.5), active learning from failures (Appx. B.6), and offline RL (Appx. B.7). While
experiments in the main text focus on autonomous data collected in-distribution, we provide additional
experiments in Appx. B.8 on training with autonomous data collected from out-of-distribution (OOD)
scenarios. Finally, we provide qualitative examples of human and autonomous trajectory distributions in
Appx. B.9.

B.1 Training from Scratch vs. Fine-tuning

All of the models trained on human-autonomous data mixtures in §4 are trained from scratch until
convergence. In this subsection, we justify this choice by comparing training from scratch to methods
involving fine-tuning.
Specifically, we focus on a single round of autonomous collection for the Square task in simulation. Unless
otherwise specified, each model is trained on a mixture of 50% autonomous, 50% human data. We compare
the following training recipes:
• Scratch: Train a new model from scratch on the human-autonomous mixture.
• Fine-tune: Fine-tune the autonomous policy checkpoint that generated the autonomous data on the

human-autonomous mixture.
• Pre-train Autonomous + Fine-tune: Pre-train a policy from scratch on the autonomous data only, and

then fine-tune on the human-autonomous mixture.
• Scratch Add: Directly aggregate human and auto data in one dataset (no explicit 50-50 sampling), and

train from scratch on this dataset.
In Table 2, we find that training from scratch, fine-tuning from the base policy, and training on combined
human and auto datasets all perform comparably. In fact, training methods seem to matter much less than
the amount of autonomous data provided. Therefore, for simplicity, we use the Scratch training method for
all other experiments in the main text.

Method ⋄H + ↓A ⋄H + ⋄A ⋄H + ↑A
Scratch 69% 61.5% 79.5%

Fine-tune 68.5% 66% 67.5%
Pre-train Auto + Fine-tune 68.5% 69.5% 73.5%

Scratch Add 68.5% 66% 77.5%
Table 2: Comparing different training methods on Square in simulation, for medium amounts of human data (⋄H) but
for increasing amounts of autonomous data (↓A to ⋄A to ↑A). All methods perform equivalently in each data regime.
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B.2 Human and Autonomous Data Weights

Our experiments on Data Weights study the impact of relative sampling weights of human-to-autonomous
data in the training mixture (i.e., changing mix). These experiments keep the amount of autonomous
data fixed (↓A) and investigate if success rate changes for two scales of human data (↓H and ⋄H) at
different sampling ratios (75-25, 50-50, 25-75). We include these results in table form in Table 3 and
Table 4. We find that changing the training data weights has almost no impact for a given data scale.
This is line with expectations from prior work when using importance weighted objectives with highly
expressive models [34]. Guided by these results, we use the simple training from scratch setting with 50-50
human-autonomous mixtures for the remaining experiments in §4.

Env ↓H 75-25 ↓H 50-50 ↓H 25-75 ⋄H 75-25 ⋄H 50-50 ⋄H 25-75
Square 15.5% 22% 21% 37.5% 38.5% 41%

SoupInBasket 37% 33.5% 40.5% 72% 74% 77.5%
BookInCaddy 28.5% 30.5% 36.5% 58% 60% 62%
StackBowls 53% 59.5% 57% 69.5% 76% 68.5%

RedMugOnPlate 80% 80% 83% 82.5% 81.5% 82%

Table 3: Different training weightings of human to autonomous data in simulation have negligible effects.

Env ↓H 75-25 ↓H 50-50 ↓H 25-75
HangTape 47% 55% 57%

NutInsertion 59% 58% 48%
Table 4: Different training weightings of human to autonomous data in real have negligible effects.

B.3 Human and Autonomous Data Scales

Our experiments on Data Scales (Fig. 4) use a 50-50 mixture and examine how success rate is impacted by
the scale of initial human data and the ratio of human to autonomous data. We include the results in table
form in Table 5. Including some amount of autonomous data tends to have mild positive effects in most
cases, though these effects generally saturate as autonomous data scales. Increasing the scale of human
data generally has a stronger effect than adding autonomous data.

Env ↓H ↓H + ↓A ↓H + ↑A ⋄H ⋄H + ↓A ⋄H + ↑A
Square 15.5% 22% 16% 44.5% 38.5% 43.5%

SoupInBasket 16.5% 33.5% 45.5% 54.5% 74% 83%
BookInCaddy 40.5% 30.5% 33% 51.5% 60% 61.5%
StackBowls 50.5% 59.5% 54% 83% 76% 81.5%

RedMugOnPlate 58% 80% 82.5% 79% 81.5% 86%
HangTape 44% 55% 46% 80% 80% 86%

NutInsertion 44% 58% 64% 53% 61% —

Table 5: Scales of human data compared to autonomous data for 50-50 co-training on various simulation (top) and
real (bottom) environments. More autonomous data often helps, but having more human data generally has a stronger
effect.

B.3.1 Human and Autonomous Data Scales under Different Policy Classes

In this section, we provide additional results on Data Scales using a 50-50 mixture, keeping the task
the same but testing two different policy classes: Diffusion Policy (DP) [5] and Action Chunking with
Transformers (ACT) [4]. Both methods are capable of modeling diverse action distribution modes. While
ACT underperforms DP in this task, the effects on success rate when re-training with different scales of
autonomous data are largely similar: there is mild improvement which appears to plateau. The compatible
results on ACT and Diffusion Policy suggest that our observations are not unique to the policy class.
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Env Method ↓H ↓H + ↓A ↓H + ↑A ⋄H ⋄H + ↓A ⋄H + ↑A
HangTape DP 44% 55% 48% 80% 80% 86%
HangTape ACT 26% 32% 27% 32% 44% 40%

Table 6: Scales of human data to autonomous data for 50-50 co-training on the HangTape environment when varying
the policy class between Diffusion Policy (DP) [5] and Action Chunking with Transformers (ACT) [4]. Similar trends
exist between the two policy classes: autonomous data often helps, but no more than additional human data, and the
improvement quickly plateaus.

We choose Diffusion Policy for the remainder of experiments in this work because it is a state-of-the-art IL
method and has the same policy class as a state-of-the-art offline RL method, IDQL, which we look at in
§4.4.

B.4 Multiple Collection Rounds

Our experiments on Multiple Collection Rounds (Fig. 5) measure if any positive effects of autonomous
data continue over multiple iterations. Specifically, we replace the autonomous data in the training mixture
with the latest round of autonomous data collection, and re-train the model from scratch. The amount of
autonomous data is kept constant at each round (⋄A; ↑A for LIBERO tasks). We investigate the effects
of multiple collection rounds at multiple scales of human data (↓H and ⋄H) in simulation and at the ↓H
scale in real. We present the results in table form in Table 7 and Table 9, generally observing plateaus
in performance after an initial improvement in the first iteration. Interestingly, in the Square task, we
observe a slight decrease in performance. Unlike the LIBERO tasks, Square contains a more challenging
bottleneck state, and we hypothesize that subtle variations in the action distributions over multiple rounds of
autonomous data collection and training may amplify this challenge. As evidence, in Table 8, we examine
the “staged” success rate in Square over multiple iterations: note that the subtask for “moving the square”
increases in success rate while the full task (which includes the insertion bottleneck) decreases in success
rate.

Env Base Round 1 (⋄A) Round 2 (⋄A) Round 3 (⋄A) Round 4 (⋄A)
Square (↓H) 15.5% 17% 13% 21% 18.5
Square (⋄H) 44.5% 38.5% 36% 35% 35%

SoupInBasket (↓H) 16.5% 45.5% 60% 78% —
SoupInBasket (⋄H) 54.5% 84% 82.5% 82% —
BookInCaddy (↓H) 40.5% 40% 37.5% 44% —
BookInCaddy (⋄H) 51.5% 64% 74.3% 72% —

Table 7: Multiple Rounds of autonomous collection using medium autonomous data (⋄A) and training in simulation
(↓H and ⋄H). We see either saturating increases or decreases in performance.

Stage Base Round 1 (⋄A) Round 2 (⋄A) Round 3 (⋄A) Round 4 (⋄A)
Moves Square 67.5% 99.5% 100% 100% 94.5%
Full Success 44.5% 38.5% 36% 35% 35%

Table 8: Multiple Rounds of autonomous collection in Square (↓H), illustrating the success rate for an intermediate
stage (moving the square) and the full task.

Env Base Round 1 (⋄A) Round 2 (⋄A)
HangTape (↓H) 44% 55% 50%

NutInsertion (↓H) 47% 57% 46%
Table 9: Multiple Rounds of autonomous collection using medium autonomous data (⋄A) in real for HangTape and
NutInsertion. We see that even though success rates improve in Round 1, they do not improve in Round 2.
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B.5 Novelty-Based Reweighting Strategies

In §4.3, we consider if state novelty can be used as a proxy to extract more useful autonomous data, and
form the basis for a sampling weight. In this section, we provide more details on these novelty measures.
Given an ensemble of policies E={π1,π2,...,πN}, we instantiate two measures of novelty building on ideas
from prior work [13, 23, 30].

1. Action Novelty: Measure state novelty as proportional to the variance in the mean action predic-
tions. This variance can be measured by an ensemble of policies trained on the same data:

ActionNovelty(s)=
NA

∑
i=1

Var j(µ ji)

where µ j is the mean of the predicted action distribution π j(s) and NA is the number of action
dimensions.

2. Image Embedding Novelty: Measure state novelty as proportional to the variance in image
embeddings produced by an ensemble of vision encoders (i.e., the encoders from each policy in
E):

EmbeddingNovelty(s)=
Nh

∑
i=1

Var j(h ji)

where h j=enc j(s) (i.e., the embedding from the encoder associated with policy π j) and Nh is the
number of embedding dimensions.

Given a novelty measure, we assign the training weight for state s to be proportional to exp(Novelty(s)/β)
where β is a temperature hyperparameter.

B.6 Active Learning Guided by Failures

In §4.4, we examine if we can target data collection by utilizing initial states of failed autonomous
rollouts. We provide performance trends for policies trained on different amounts of additional human and
autonomous data, both targeted and random, when added to the initial ↓H dataset (10 demonstrations in
the case of Square and 20 demonstrations in the case of HangTape). We see consistently that random and
targeted human data collection outperforms the same amount of random and autonomous data, and also
has a higher slope. In Square, there appears to be a dropoff in the relative improvement of targeted human
data above random human data. Neither random nor targeted autonomous data improve upon the initial
policy in Square, and the improvements from autonomous data are mild in HangTape.

B.7 Offline RL with Autonomous Successes and Failures

Square SoupInBasket BookInCaddy
0

25

50

75

100

Su
cc

es
s R

ate

 

 
H + A (BC)
H + A (SUB)
H + A (IDQL)

H + A (BC)
H + A (SUB)
H + A (IDQL)

Figure 9: Offline RL results, comparing IDQL
trained on mixed success and failure data to
the naı̈ve autonomous IL strategy (BC), and a
suboptimal (SUB) version of naı̈ve autonomous
IL trained on both successes and failures. IDQL
matches BC and slightly beats SUB.

One can argue that failure data has more to offer than just
initial states as in §4.4. We turn to offline RL to learn directly
from both successful and failure examples: modifying F to
accept both successes and failures, and setting B to be an
offline RL algorithm. We use Implicit Diffusion Q-Learning
(IDQL) [35], a state of the art offline RL algorithm, that uses
both success and failure data to learn a Q-function expectile,
and then uses this to sample high Q-value actions from a
generative actor. To not introduce even more environment
challenges, we use sparse rewards provided by the same
success detection function. We use Diffusion Policy as the
generative actor, resampling actions under the Q-function at
each time step. In Fig. 9, we compare IDQL to DP trained on
successful autonomous data (BC) and a mixture of successful
and failure data (SUB). We observe that incorporating failures
through IDQL does not outperform naı̈ve autonomous IL, and only slightly outperforms the suboptimal
autonomous IL trained on success and failure data. This could be because IDQL struggles to learn a good
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Q-function estimate from such a small amount of data and such a high dimensional state space (images).
These findings are consistent with prior offline RL results in practice [36].

B.8 Training on Out-of-Distribution Autonomous Successes

The experiments in the main text focus on training with autonomous data that is collected from in-
distribution initial states (i.e., initial states are sampled from ρ0 uniformly, or in the case of the active
learning experiments, a reweighted version of ρ0). In this section, we examine possible benefits from
training on successful autonomous data from out-of-distribution (OOD) scenarios. More specifically, we
generate the autonomous data by rolling out the initial policy from a new initial distribution ρ ′0 and collect
autonomous successes which are the result of the policy generalizing to the new distribution.
In Table 10, we examine the impact on success rates when adding OOD autonomous data in the HangTape
task. Specifically, we collect OOD autonomous data where one of two factors is varied compared to the
initial distribution: the object (i.e., the tape is changed to a different roll of tape with a different color)
and the distribution of initial object positions (i.e., the initial locations are sampled at an expanded outer
boundary of the original distribution). When adding 50 successful autonomous rollouts from either of these
OOD conditions to 50 in-distribution human demonstrations, we find positive impacts both in-distribution
and in the OOD conditions. We see a similar trend in Table 11 on the NutInsertion task, where we collect
autonomous data in OOD initial positions (i.e., the initial locations are from an expanded outer boundary)
and find that both in-distribution and OOD performance improves.
These insights suggest that OOD autonomous data—i.e., successes that are the result of generalization
in the initial policy—may be valuable, at the cost of potentially increasing environment design effort to
change the initial state distribution of the environment.

Data Mixture Success (ID) Success (OOD Position) Success (OOD Object)
50 H (ID) 80% 13% 27%

50 H (ID) + 50 A (OOD Position) 90% 23% —
50 H (ID) + 50 A (OOD Object) 83% — 51%

Table 10: Success rates both in-distribution (ID) and out-of-distribution (OOD) for policies trained on mixtures of
in-distribution human data and OOD autonomous data on the HangTape task.

Data Mixture Success (ID) Success (OOD Object)
50 H (ID) 44% 40%

50 H (ID) + 50 (OOD Object) 52% 50%

Table 11: Success rates both in-distribution (ID) and out-of-distribution (OOD) for policies trained on mixtures of
in-distribution human data and OOD autonomous data on the NutInsertion task.

B.9 Qualitative Examples of Human and Autonomous Data Distributions

In this section, we take a qualitative look at the data distributions of teleoperated human demonstrations
compared to autonomous rollouts from policies trained on the human data. We additionally compare the
distribution of rollouts from policies co-trained on human and autonomous data.
Fig. 10 illustrates sample initial state distributions from these three categories. In the left column, we
superimpose initial states from human teleoperated demonstrations; these initial states are sampled from
the initial state distribution of the task. These correspond to data sources for the ↓H settings of HangTape
and NutInsertion (20 and 50 demonstrations respectively). In the middle column, we sample initial states
from successful autonomous rollouts from a Diffusion Policy trained on the human data. These policies
are used as the autonomous data collection policies. Note that only a random sample of the successful
autonomous data is shown for visualization purposes (a sample of 20 and 50 for HangTape and NutInsertion
respectively). Finally, in the right column, we show sample initial states from successful rollouts of a
Diffusion Policies co-trained on the human data and autonomous data (with 50-50 data weights). These
policies correspond to the ↓H + ↓A settings from §4.2.
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Figure 10: Comparison of initial states from human demonstrations, autonomous rollouts, and rollouts from policies
co-trained on human and autonomous data. The left column shows, from the wrist camera perspective, superimposed
initial states from human data. These initial states are sampled from the initial state distribution of the task, and
correspond to the data for the ↓H setting. Specifically, this corresponds to 20 demonstrations for HangTape and 50
demonstrations for NutInsertion. In the middle column, we illustrate initial states from sampled successful rollouts of
the autonomous collection policy (trained on the human data). In the right column, we illustrate initial states from
successful evaluation rollouts from the ↓H + ↓A policy, which is co-trained with a 50-50 mixture of human and
autonomous data. Note that, for visualization purposes, the middle and right columns show same number of sampled
successful initial states as there are demonstrations in the left column.

In Fig. 11, we similarly illustrate trajectories (end-effector positions) for human demonstrations, sampled
successful autonomous rollouts, and sampled successful rollouts of policies trained on human+autonomous
data. From Fig. 10, we see a narrowing effect in the distribution of successful initial states, which is
more pronounced in the HangTape environment. The policy trained on human demonstrations learns to
interpolate between initial locations of the tape that are represented in the human data, especially towards at
the center of the distribution. When the policy is re-trained with a mixture of human data and autonomous
data, the spread in the distribution of initial states appears to get reduced. However, note that we observe
mild overall increases in success rate from autonomous data, and so this is likely due to the policy becoming
slightly more robust towards the center of the distribution.
In Fig. 11, we observe an increased homogenization in the successful trajectory paths. This extends beyond
just the initial state distributions; note that in both the HangTape and the NutInsertion task, the segments of
the trajectories before grasping the object are straighter and less diverse than the corresponding segments
in the human data. Additionally, note that the strategies used post-grasp to place the object at its final
location (hanging the tape on the hook in the case of HangTape, or placing the nut on the peg in the case
of NutInsertion) become more consistent in the autonomous data (as well as the policy co-trained on
autonomous data) compared to the human demonstrations.

C Training Hyperparameters

For all simulation experiments, we train using Diffusion Policy [5] with the hyperparameters in Table 12
and Table 13. Our real-world experiments use the same hyperparameters, except with an observation history
of 1, a step embedding dimension of 128, and 2000 warmup steps. We train policies for the HangTape task
for 400K steps and policies for the NutInsertion task for 500K steps. For our ACT experiments, we use the
default hyperparameters from [4] except with a chunk size of 16. We execute 8 actions for each inference
step at execution time. For the HangTape task, we train policies with 20 human demonstrations for 200K
steps and policies with 50 human demonstrations for 400K steps based on model selection between 200K,
400K, and 500K steps.
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Figure 11: Illustration of trajectories (as 3D end-effector paths) from various policies, with green representing the start
of the trajectory and blue representing the end. For reference, we show the scene setup with a sample initial object
location in the leftmost column. The second column illustrates human teleoperated demonstration trajectories. The third
column illustrates successful autonomous rollouts from a Diffusion Policy trained on the human demonstrations (↓H).
The fourth column illustrates successful rollouts from a Diffusion Policy co-trained on human data and autonomous
data (↓H + ↓A).

Diffusion Architecture Conv1D UNet
Prediction Horizon 16
Observation History 2

Num Action 8
Kernel Size 5

Num Groups 8
Step Embedding Dim 256

UNet Down Dims [256, 512, 1024]
Num Diffusion Steps 100
Num Inference Steps 10
Inference Scheduler DDIM
Observation Input FiLM

Image Encoder ResNet-18
Image Embedding Dim 256

Proprioception yes

Table 12: Hyperparameters for Diffusion Policy, shared for all simulation experiments.

Training Steps 500K
Batch Size 64
Optimizer AdamW

Learning Rate 1e-4
Weight Decay 1e-6

Learning Rate Schedule Cosine Decay
Linear Warmup Steps 1000

Table 13: Training Hyperparameters, shared for all simulation experiments.
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