
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GOAL-GUIDED EFFICIENT EXPLORATION VIA LARGE
LANGUAGE MODEL IN REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world decision-making tasks typically occur in complex and open environ-
ments, posing significant challenges to reinforcement learning (RL) agents’ explo-
ration efficiency and long-horizon planning capabilities. A promising approach is
LLM-enhanced RL, which leverages the rich prior knowledge and strong plan-
ning capabilities of LLMs to guide RL agents in efficient exploration. How-
ever, existing methods mostly rely on frequent and costly LLM invocations and
suffer from limited performance due to the semantic mismatch. In this paper,
we introduce a Structured Goal-guided Reinforcement Learning (SGRL) method
that integrates a structured goal planner and a goal-conditioned action pruner to
guide RL agents toward efficient exploration. Specifically, the structured goal
planner utilizes LLMs to generate a reusable, structured function for goal genera-
tion, in which goals are prioritized. Furthermore, by utilizing LLMs to determine
goals’ priority weights, it dynamically generates forward-looking goals to guide
the agent’s policy toward more promising decision-making trajectories. The goal-
conditioned action pruner employs an action masking mechanism that filters out
actions misaligned with the current goal, thereby constraining the RL agent to
select goal-consistent policies. We evaluate the proposed method on Crafter and
Craftax-Classic, and experimental results demonstrate that SGRL achieves supe-
rior performance compared to existing state-of-the-art methods.

1 INTRODUCTION

Reinforcement learning (RL) has achieved impressive success in addressing challenging decision-
making tasks across a wide range of domains, such as Atari games (Hessel et al., 2018; Vinyals et al.,
2019), robotics (Brunke et al., 2022; Haarnoja et al., 2024), and natural language processing (Pad-
makumar & Mooney, 2021; Ouyang et al., 2022). However, these remarkable successes have mostly
occurred in environments characterized by closed, predefined tasks with clear goals and immediate
feedback, which fail to capture the complexity and dynamics of the real world (Team et al., 2021;
Cai et al., 2023). In recent years, increasing attention has been devoted to decision-making in open-
world environments such as Minecraft (Fan et al., 2022; Lin et al., 2022) and Crafter (Hafner, 2022;
Moon et al., 2023), which pose significant challenges in generalization, deep exploration, long-term
decision-making, and reasoning. Consequently, solving decision-making problems in open-world
environments is widely recognized as a pressing and significant challenge.

Recently, LLM-enhanced RL has been regarded as a promising direction for addressing decision-
making challenges in open-world environments (Liu et al., 2023; Zhou et al., 2024; He et al., 2024;
Schoepp et al., 2025) due to the remarkable capabilities of LLMs in various decision-making and
reasoning tasks. A variety of methods, such as using LLMs as decision-makers (Shinn et al., 2023;
Carta et al., 2023; Gaven et al., 2024) or as skill planners (Ichter et al., 2022; Zhang et al., 2023;
Lin et al., 2023; Yang et al., 2025), have emerged and significantly improved sample efficiency
and generalization, thereby enhancing performance. However, these methods still struggle to fully
unlock and leverage the planning capabilities of LLMs, as they either force the models to perform
fine-grained planning (an area where they are not particularly adept) or fail to effectively coordinate
the relationship between the LLM and RL agent components. In order to harness the capabilities
of LLMs, recent studies have explored a more direct and effective approach that uses an LLM to
generate high-level goals for guiding exploration in the RL agent (Du et al., 2023; Zheng et al.,
2024; Shukla et al., 2024; Zhang & Lu, 2024). To mention a few, ELLM (Du et al., 2023) leverages

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
0

100

Su
cc

es
s R

at
e

(%
)

Steps (M)
(a)

Collect Wood (1)

0 1 2 3 4 5
0

100

Steps (M)
(b)

Place Table (2)

0 1 2 3 4 5
0

100

Steps (M)
(c)

Make Wood Pickaxe (3)

0 1 2 3 4 5
0

100

Steps (M)
(d)

Collect Stone (4)

0 1 2 3 4 5
0

50

Steps (M)
(e)

Make Stone Pickaxe (5)

0 1 2 3 4 5
0

10

Steps (M)
(f)

Collect Iron (6)

0 1 2 3 4 5
0.0

0.5

Steps (M)
(g)

Make Iron Pickaxe (7)

0 1 2 3 4 5
0.00

0.05

Steps (M)
(h)

Collect Diamond (8)

CodeGoal AdaRefiner ELLM PPO

Figure 1: Success rate curves for 8 main achievements on Craftax-Classic, ordered from left to right
by achievement depth from 1 to 8. A complete and more intuitive version is shown in Figure 10 of
the Appendix C.

a pre-trained LLM to generate potential exploration goals, guiding the RL agent to explore towards
potentially useful targets. AdaRefiner (Zhang & Lu, 2024) iteratively refines task understanding
through feedback from the RL agent, thereby improving the quality of LLM-generated goals and
fostering more effective collaboration between LLM and RL agent. However, due to the reliance on
frequent and intensive LLM invocations, these methods suffer from low practical utility and poor
computational efficiency.

Inspired by Ma et al. (2024); Xie et al. (2024), in which LLMs generate reward-shaping code to
provide immediate feedback to RL agents and achieve strong performance on several benchmarks,
we hypothesize that structured, goal-specifying code can also serve as a stable and executable inter-
face between LLMs and RL agents, thereby enabling effective long-horizon exploration. Thus, we
conducted preliminary experiments based on the simple idea of leveraging LLM-generated code to
guide the exploration of RL agents, which we term CodeGoal. Figure 1 presents the success rate of
CodeGoal in comparison with PPO, as well as ELLM (Du et al., 2023)1 and AdaRefiner (Zhang &
Lu, 2024)2 on the Crafter-Classic benchmark. From Figure 1, we can observe that compared with
ELLM (Du et al., 2023), AdaRefiner (Zhang & Lu, 2024), and PPO, CodeGoal achieves competitive
success rates when unlocking key achievements, demonstrating that using code-generated goals to
guide RL agents is a viable approach.

It is worth noting that the experimental results in Figure 1 also reveal two key limitations: (1) the
agent fails to quickly unlock deeper achievements such as Collect Diamond; (2) integrating textual
goals into the RL agent’s decision-making process yields limited immediate benefits, evidenced
by the apparent ineffectiveness of goal guidance within the first 2M steps. This motivates us to
propose a novel LLM-based goal-conditioned RL approach, which first leverages LLMs to generate
a parameterized, well-structured, and reusable goal-generation function, and then utilizes the LLMs
to optimize both the parameters of this function and the goal-conditioned policy constraints, thereby
encouraging RL agents to explore effectively in open-world environments.

The main contributions are summarized as follows:

• We propose Structured Goal-guided Reinforcement Learning (SGRL), an LLM-enhanced
RL method that constructs a structured goal-generation function and dynamically adjusts
both goal priority weights and goal-conditioned action constraints, thereby significantly im-
proving the RL agent’s exploration efficiency and overall performance, while maintaining
low LLM invocation frequency and minimal input token consumption per call.

• We develop a structured goal planner that leverages the LLM to construct a reusable, struc-
tured goal-generating function that selects forward-looking goals and dynamically adjusts
their priority weights during training. Furthermore, a goal-conditioned action pruner is de-
signed to filter out actions misaligned with the goal, thereby constraining agents to select
goal-consistent policies.

• Extensive experimental results in the challenging open-world environments Crafter and
Craftax-Classic demonstrate that SGRL consistently outperforms or matches existing
LLM-enhanced RL methods across multiple metrics, including success rate, total score,
cumulative reward, and achievement depth.

1using DeepSeek-V3 model as goal generator, queried every 200 steps under training time and cost con-
straints.

2using DeepSeek-V3 model as both adapter and decision LLM, queried every 200 steps under training time
and cost constraints.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

RL Agent

Action

 Env

You see: grass, sand, ...
Inventory: wood: 3
Status: Health: 100%,
Fullness: 100%, Hydration:
88%, Wakefulness: 100%,
Sky brightness level: 78%

Obs_text

Obs_pixel

Goal-Conditioned

Action Pruner

Goal

Goal

Mask

Obs_pixel，
Reward

Overall Framework
You are an
experienced
Python dev-
eloper impl-
ementing a
c l a s s P r i -
Goal for the
Crafter game.
... ...

Prompt

Respond

```python
class PriGoal:
    def __init__(self):
...
    def determine_goal(self, 
text_obs):
...
```

As an experienced python
developer, please optimize the
goal generation code to output
the priority value for each goal.

Iterative
Prompting

(a)

(c)

Goal-Action Mask Bank

Goal,
Mask

Respond

Prompt

(b)

You are the goal analyst for Crafter
games. Agent have a goal: {Goal}.
L i s t a c t i o ns t h a t a r e r e l a t e d t o
achieving the goal.

Structured Goal
Planner

{"Sleep": [0, 0, 0, 0, 0, 0, 1, 0, ..., 0]}
{"Find cows": [0, 1, 1, 1, 1, 0, ..., 0]}
{"Craft stone pickaxe": [0, ... 1, 0, ...]}
...

Obs_text

Figure 2: (a) Structured Goal Planner: generates goals with priority weights based on environment
states and distilled task knowledge; (b) Goal-Conditioned Action Pruner: filters invalid or irrelevant
actions based on current goals; (c) The overall framework of SGRL.

2 PRELIMINARY

2.1 GOAL-CONDITIONED REINFORCEMENT LEARNING

A goal-conditioned reinforcement learning (GCRL) (Liu et al., 2022) problem can be formulated
as a goal-augmented MDP, denoted as a tuple < S,A,G, pg, φ,P, r, ρ0, γ >, where S, A and G
denote the state space, action space and goal space, respectively; pg and ρ0 denote the desired goal
distribution and initial state distribution, respectively; φ : S → G is a mapping function that maps
the state to a specific goal; P : S×A → S represents the state transition function; r : S×A×G → R
is the reward function; and γ is the discount factor.

At each timestep t, given the state st and the desired goal g, the agent takes an action at according
to its policy π(at | st, g) to interact with the environment and then receives the next state st+1

and reward rt+1. The agent’s goal is to maximize the expected sum of discounted rewards over the
state-goal distribution:

J (π) = Eg∼pg,s0∼ρ0,
at∼π(·|st,g)

[∑
t

γtr (st, g, at)

]
. (1)

2.2 LLM AS GOAL PLANNER

Formally, given a natural language task description ω ∈ Ω, a sequence of goals is generated by
an LLM-based goal planner. At each planning step h, the LLM takes the state-goal history τh =
{s1, g1, . . . , sh−1, gh−1, sh} as input and generates the next goal:

gh ∼ πLLM(· | τh, ω),

where the goal gh is expressed in natural language and belongs to the language space L, which con-
tains possible linguistic expressions such as sentences or phrases describing actionable intentions.
For practical purposes, a task-specific subset G ⊆ L is often considered to restrict the goal space to
valid and executable instructions. Subsequently, the agent choose a policy π conditioned on both
the current environment state sh ∈ S and the goal gh:

ah ∼ π(· | sh, gh),

where ah ∈ A denotes the agent’s action at time step h.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHOD

This section develops a novel LLM-enhanced RL method called Structured Goal-guided Reinforce-
ment Learning (SGRL). Figure 2 (c) shows an overview of the SGRL framework, which consists
of three key components: (1) a structured goal planner, which receives textual observations from
the environment and provides forward-looking goals; (2) a goal-conditioned action pruner, which
takes the goal from the structured goal planner as input and generates an action mask; and (3) an RL
agent, which executes actions according to a policy conditioned on the current environmental state,
goal and most recent reward. The details are introduced in the next subsections.

3.1 STRUCTURED GOAL PLANNER

The core task of the structured goal planner is to generate the goal function and optimize the goal
priority weights by LLMs through task-specific prompting, as illustrated in Figure 2 (a). Specifically,
given a basic task introduction, its rules, and a few code examples, the LLM generates an executable,
structured function for goal generation according to task-specific and environmental state-related
prompting. Then, in just a few iterations and optimizations, we can obtain a reusable, structured
goal generation function with priority weights, which can provide forward-looking goals to guide
RL agent exploration efficiency. Furthermore, in actual execution, the structured goal planner adjusts
the weights of goals based on the agent’s unlocked achievements at different training stages.

Formally, at each timestep t, the structured goal planner constructs a function {(git, wit)}ki=1 ∼ φ(st),
which maps the current state st ∈ S to a set of k candidate goals gt with priority weights wt. Here,
git ∈ G denotes the i-th goal from the goal space G, and wit ∈ [0, 1] is the normalized priority
value for that goal, satisfying

∑k
i=1 wi = 1. These priority values serve to rank candidate goals to

guide the agent’s exploration toward the most relevant and achievable objectives. The goal planning
function φ(s) is constructed directly by LLM with task-specific and current state-related prompts,
unlike the method in which the LLM as a goal planner that generates goals gt ∼ πLLM(· | τt, ω)
without explicitly defining a reusable goal-generating function. It is worth noting that the structured
goal generation method can provide semantically forward-looking goals to improve the RL agent’s
exploration efficiency, while maintaining a low LLM invocation frequency and minimal input token
consumption per call.

3.2 GOAL-CONDITIONED ACTION PRUNER

The core task of the goal-conditioned action pruner is to constrain the agent to select goal-consistent
policies, as shown in Figure 2 (b). Specifically, we first leverage the LLM with rich prior knowledge
to filter from the candidate action set those actions aligned with the current goal. This filtering is
implemented via a goal-action masking mechanism. In practice, we construct a goal-action mask
bank to store goal-mask pairs, eliminating redundant LLM queries when the same goal reappears.

Formally, at each timestep t, the action pruner produces a binary mask m(git) ∈ 0, 1|A| base on
the candidate goals {g1t , . . . , gkt }, which are obtained from the LLM or the goal-action mask bank.
Each element ofm(git) indicates whether the action is relevant to the goal git. Then, the action pruner
extracts actions relevant to any given goal git in an element-wise fashion as follows:

M = maxi=1,...,k m(git). (2)

However, it is worth noting that strictly adhering to goal guidance at all times is not always op-
timal, especially when using a general-purpose LLM without fine-tuning or domain-specific ex-
pertise. Therefore, we introduce a masking coefficient that grants the RL agent some autonomy
in decision-making. Specifically, we design a three-phase cosine annealing schedule for the ex-
ploration coefficient ξ ∈ [0, 1], which gradually adjusts the strength of action masking throughout
training. Specifically:

ξ(t) =


1
2

(
1 + cos

(
t

0.4T · π
))
, 0 ≤ t < 0.4T

1
2

(
1− cos

(
t−0.4T
0.4T · π

))
, 0.4T ≤ t < 0.8T

1.0, t ≥ 0.8T

. (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Then, the coefficient ξ is used to stochastically relax the mask via a Bernoulli sampling mechanism:

M̃ j = max
(
M j ,Bernoulli(ξ · (1−M j))

)
, (4)

whereM j is the the j−th element ofM , j = 1, . . . , |A|. Equation (4) allows masked-out actions to
be sampled with a small probability, thereby mitigating policy rigidity caused by inaccurate masks or
shifts in environmental dynamics. Notably, we provide the performance comparison of algorithms
with different masking strategies in Appendix F.

3.3 RL AGENT

In this subsection, we introduce how the RL agent makes decisions based on its current state, as well
as goals and action mask constraints.

First, the goal set with priority weights {(git, wit)}ki=1 is encoded into a goal embedding vector gemb
t

via the encoder network. The embedding vector gemb
t is concatenated with the state st to form an

augmented state [st; g
emb
t], which serves as the input to the policy network πθ(· | st, gemb

t). Then,
based on the action mask M̃ , the raw logits output can be obtained to enforce action feasibility:

logits = actor logits� M̃ + (1− M̃) · (−C), (5)
where � denotes element-wise multiplication, and C � 0 is a sufficiently large constant (e.g., 106)
that suppresses the logits of invalid actions to near negative infinity.

In practice, the policy πθ(at | st, gemb
t) of the RL agent is updated using the PPO algorithm (Schul-

man et al., 2017) with state augmentation by optimizing the following objective:

Lπ = E st,g
emb
t ∼D,

at∼πold(·|st,gemb
t),

st+1∼P(·|st,at)

[
min

(
πθ(at | st, gemb

t)

πold(at | st, gemb
t)

Ât, clip
(
πθ(at | st, gemb

t)

πold(at | st, gemb
t)

, 1− ε, 1 + ε

)
Ât

)]
,

(6)
where Ât is the estimated advantage function, ε is the clipping parameter, and D denotes the replay
buffer or on-policy rollout distribution. The mask M̃ affects both the behavior policy πold and the
updated policy πθ, ensuring consistency between sampling and optimization.

4 RELATED WORKS

4.1 OPEN-WORLD ENVIRONMENTS

Open-world environments (Team et al., 2021; Cai et al., 2023) are inherently challenging due to
requirements for generalization, exploration, multi-objective optimization, and long-horizon plan-
ning and reasoning (Hafner, 2022; Wang et al., 2023). There are three main approaches for ap-
plying RL in open-world environments in the existing literature. One approach is hierarchical re-
inforcement learning (Hutsebaut-Buysse et al., 2022), which simplifies complex decision-making
processes by constructing a multi-level subtask structure. However, due to the inherent limitations
of reinforcement learning algorithms in planning and reasoning, the generalization and long-term
decision-making capabilities of these methods are still constrained. Another approach is model-
based RL (Moerland et al., 2023; Walker et al., 2023), which learns an explicit environment dy-
namics model to enable more sample efficient through simulated rollouts. However, these methods
require learning an accurate world model, which results in significantly higher computational over-
head, particularly in open-world environments with high-dimensional observations. With the rapid
development of LLMs, recent studies have explored integrating LLMs into RL pipelines (Zhou et al.,
2024; Schoepp et al., 2025). Leveraging their extensive prior knowledge, reasoning capabilities, and
strong generalization, LLMs have been employed to provide high-level planning for RL agents (Du
et al., 2023; Zhang & Lu, 2024; Prakash et al., 2023; Yan et al., 2025), which are discussed in detail
in the following subsection.

4.2 LLM-ENHANCED RL

LLM-enhanced RL (Zhou et al., 2024; Schoepp et al., 2025), in which LLMs are employed as goal
generators or policy selectors, with the core idea being to exploit their extensive prior knowledge for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

more effective task decomposition and decision-making. To mention a few, SayCan (Ichter et al.,
2022), BOSS (Zhang et al., 2023) and When2Ask (Hu et al., 2024) utilize LLMs as skill planner to
construct high-level plans or feasible skill sequences base on natural language instructions or task
descriptions. However, these methods rely on assumed access to pretrained skills, and the generated
plans lack structured representations, limiting their scalability and adaptability. Furthermore, some
works (Hu & Sadigh, 2023; Prakash et al., 2023; Yan et al., 2025) take a more direct straightfor-
ward approach, utilizing LLMs as policy teacher. Due to the fact that these methods either rely
on a library of pretrained skills for high-level decision-making or depend on the LLMs’ reasoning
and language-to-action capabilities for low-level guidance, they typically require significant com-
putational resources or extensive pretraining infrastructure. In addition, ELLM (Du et al., 2023),
AdaRefiner (Zhang & Lu, 2024), LLMV-AgE (Chi et al., 2025) and Ruiz-Gonzalez et al. (2024)
employ LLMs as goal generators to produce semantic subgoals that guide exploration. Unfortu-
nately, due to their reliance on frequent and intensive LLM invocations, these methods suffer from
low practical utility and poor computational efficiency.

5 EXPERIMENTS

In this section, experiments are conducted on two open-world RL benchmarks: Crafter (Hafner,
2022) and Craftax-Classic (Matthews et al., 2024). The experiments aim to answer the following
questions: 1) How does the exploration efficiency of SGRL compare with existing LLM-enhanced
RL methods? 2) How do goal-conditioned policy constraints contribute to the performance of
SGRL?

To answer these questions, we compare SGRL against the following algorithms: ELLM (Du et al.,
2023), which generates goals to guide agent exploration through online queries of an LLM; AdaRe-
finer (Zhang & Lu, 2024), which enhances the quality of the LLM-generated goals by refining the
prompts; and PPO (Schulman et al., 2017), which is a pure RL algorithm that does not involve
an LLM. Notably, for the specific hyperparameter settings of the PPO algorithm, we follow the
Stable-Baselines3 (Raffin et al., 2021)3 implementation for Crafter, and follow the official in Craftax
benchmark (Matthews et al., 2024)4 implementation for Craftax-Classic. In addition, human expert
performance (Hafner, 2022) is included as a reference.

5.1 EXPERIMENTAL SETUP AND EVALUATION METRICS

5.1.1 ENVIRONMENT

Crafter is a widely used benchmark for open-world environments, evaluating agents on generaliza-
tion, exploration, and long-term reasoning through 22 diverse achievements. The Craftax-Classic
environment re-implements Crafter in JAX. Both benchmarks feature sparse rewards, complex goal
hierarchies, and open-world exploration, making them ideal for evaluating our framework’s ability
to provide structured semantic guidance. Further details of the environmental setup are provided in
Appendix A.1.

The evaluation metrics from Matthews et al. (2024), including success rate, score, return, and
achievement depth, to comprehensively assess the performance of SGRL compared to the base-
line algorithms. In addition, the training speed is reported in steps per second (SPS), presented in
the tables as SPS (×102) for readability. Further details can be found in Appendix A.2.

5.1.2 COMPUTE RESOURCES

Experiments on Crafter were conducted using a single A100 GPU with 40 GB of VRAM. Exper-
iments on Craftax-Classic were performed on a system equipped with an NVIDIA GeForce RTX
4090 (24 GB) and an Intel(R) Core(TM) i9-14900K CPU. Results for both our algorithm and base-
line methods are based on the same configurations. All reported results are averaged over five
random seeds and learning curves are smoothed over time.

3available at https://github.com/DLR-RM/stable-baselines3
4available at https://github.com/MichaelTMatthews/Craftax

6

https://github.com/DLR-RM/stable-baselines3
https://github.com/MichaelTMatthews/Craftax

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
0

50

100

Su
cc

es
s R

at
e

(%
)

(a)

Eat Cow (1)

0 1 2 3 4 5
0

50

(b)

Collect Drink (1)

0 1 2 3 4 5
0

50

100

(c)

Wake Up (1)

0 1 2 3 4 5
0

50

100

(d)

Collect Sapling (1)

0 1 2 3 4 5
0

50

100

(e)

Collect Wood (1)

0 1 2 3 4 5
0

50

100

(f)

Defeat Zombie (1)

0 1 2 3 4 5
0

20

(g)

Defeat Skeleton (1)

0 1 2 3 4 5
0

50

100

(h)

Place Plant (2)

0 1 2 3 4 5
0

50

100

Su
cc

es
s R

at
e

(%
)

(i)

Place Table (2)

0 1 2 3 4 5
0.0

0.5

(j)

Eat Plant (3)

0 1 2 3 4 5
0

50

100

(k)

Make Wood Sword (3)

0 1 2 3 4 5
0

50

100

(l)

Make Wood Pickaxe (3)

0 1 2 3 4 5
0

25

50

(m)

Collect Coal (4)

0 1 2 3 4 5
0

50

100

(n)

Collect Stone (4)

0 1 2 3 4 5
0

50

(o)

Place Stone (5)

0 1 2 3 4 5
0

50

(p)

Place Furnace (5)

0 1 2 3 4 5
0

50

Su
cc

es
s R

at
e

(%
)

Steps (M)
(q)

Make Stone Sword (5)

0 1 2 3 4 5
0

50

Steps (M)
(r)

Make Stone Pickaxe (5)

0 1 2 3 4 5
0

20

Steps (M)
(s)

Collect Iron (6)

0 1 2 3 4 5
0.0

0.5

Steps (M)
(t)

Make Iron Sword (7)

0 1 2 3 4 5
0

2

4

Steps (M)
(u)

Make Iron Pickaxe (7)

0 1 2 3 4 5
0.00

0.25

0.50

Steps (M)
(v)

Collect Diamond (8)

SGRL
AdaRefiner
ELLM
PPO

Figure 3: Success rate curves for all achievements on Craftax-Classic. Achievements are ranked
based on their depth and the importance of unlocking them for subsequent tasks. Achievements
ranked later have greater depth and exert a stronger influence on subsequent achievements. A more
intuitive version is shown in Figure 13 in Appendix D.

eat
 co

w

co
lle

ct
dri

nk

wak
e u

p

co
lle

ct
sap

lin
g

co
lle

ct
woo

d

de
fea

t z
om

bie

de
fea

t sk
ele

ton

pla
ce

pla
nt

pla
ce

tab
le

eat
 pl

an
t

mak
e w

oo
d s

word

mak
e w

oo
d p

ick
ax

e

co
lle

ct
co

al

co
lle

ct
sto

ne

pla
ce

sto
ne

pla
ce

fur
na

ce

mak
e s

ton
e s

word

mak
e s

ton
e p

ick
ax

e

co
lle

ct
iro

n

mak
e i

ron
 sw

ord

mak
e i

ron
 pi

ck
ax

e

co
lle

ct
dia

mon
d

0.01

0.1

1

10

100

Su
cc

es
s R

at
e

(%
)

SGRL AdaRefiner ELLM PPO

Figure 4: Success rates across all achievements on Craftax-Classic at 5M steps.

5.2 MAIN RESULTS

Figure 3 shows the success rate curves for all 22 achievements on Craftax-Classic. From Figure 3,
we can observe that SGRL consistently achieves higher success rates than the baselines when reach-
ing the final few achievements (see Figure 3 (q)-(v)). However, for achievements like Wake Up (see
Figure 3 (c)) and Place Plant (see Figure 3 (h)), which do not facilitate later exploration, SGRL’s
performance plateaus once high success rates are reached. This phenomenon demonstrates that our
goal-generation method produces farsighted objectives, enabling SGRL to transcend short-term re-
wards and maintain a stable and coherent policy in long-horizon decision-making tasks. Moreover,
as shown in Figure 3 (v), SGRL successfully unlocks the Collect Diamond achievement shortly
after 3.7M steps, whereas AdaRefiner, ELLM, and PPO fail to achieve it even by 5M steps, demon-
strating SGRL’s effectiveness in enhancing exploration efficiency. Figure 4 provides a more direct
visualization, which clearly highlights SGRL’s advantage in unlocking late-stage achievements, con-
firming its capability for effective long-horizon planning. More experimental results can be found
in Appendix D.

Method Score(%) Reward Achievement Depth SPS (×102)
Human 50.5 ± 6.8 14.3 ± 2.3 8 -
SGRL 33.8 ± 1.5 13.0 ± 0.3 8 18.5
AdaRefiner 28.5 ± 2.3 12.3 ± 0.9 7 0.3
ELLM 28.4 ± 2.5 12.2 ± 1.0 6 0.9
PPO 24.8 ± 5.7 11.9 ± 1.1 6 135.3

Table 1: Performance of SGRL and baseline methods on Craftax-Classic at 5M steps.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Su
cc

es
s R

at
e

(%
)

(a)

Eat Cow (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

(b)

Collect Drink (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(c)

Wake Up (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(d)

Collect Sapling (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(e)

Collect Wood (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(f)

Defeat Zombie (1)

0 1 2 3 4 5 6 7 8 9 10
0

20

40

(g)

Defeat Skeleton (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(h)

Place Plant (2)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Su
cc

es
s R

at
e

(%
)

(i)

Place Table (2)

0 1 2 3 4 5 6 7 8 9 10
0.0

0.5

(j)

Eat Plant (3)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(k)

Make Wood Sword (3)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(l)

Make Wood Pickaxe (3)

0 1 2 3 4 5 6 7 8 9 10
0

50

(m)

Collect Coal (4)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(n)

Collect Stone (4)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(o)

Place Stone (5)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(p)

Place Furnace (5)

0 1 2 3 4 5 6 7 8 9 10
0

50

Su
cc

es
s R

at
e

(%
)

Steps (M)
(q)

Make Stone Sword (5)

0 1 2 3 4 5 6 7 8 9 10
0

50

Steps (M)
(r)

Make Stone Pickaxe (5)

0 1 2 3 4 5 6 7 8 9 10
0

25

50

Steps (M)
(s)

Collect Iron (6)

0 1 2 3 4 5 6 7 8 9 10
0

10

Steps (M)
(t)

Make Iron Sword (7)

0 1 2 3 4 5 6 7 8 9 10
0

20

Steps (M)
(u)

Make Iron Pickaxe (7)

0 1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

Steps (M)
(v)

Collect Diamond (8)

SGRL
SGRL w/ Static-Prun
SGRL w/o Prun
SGRL w/o Priority

Figure 5: Ablation Studies. Success rate curves for all achievements on Craftax-Classic. Achieve-
ments are ranked based on their depth and the importance of unlocking them for subsequent tasks.
Achievements ranked later have greater depth and exert a stronger influence on subsequent achieve-
ments. A more intuitive version is shown in Figure 20 in Appendix E.1.

eat
 co

w

co
lle

ct
dri

nk

wak
e u

p

co
lle

ct
sap

lin
g

co
lle

ct
woo

d

de
fea

t z
om

bie

de
fea

t sk
ele

ton

pla
ce

pla
nt

pla
ce

tab
le

eat
 pl

an
t

mak
e w

oo
d s

word

mak
e w

oo
d p

ick
ax

e

co
lle

ct
co

al

co
lle

ct
sto

ne

pla
ce

sto
ne

pla
ce

fur
na

ce

mak
e s

ton
e s

word

mak
e s

ton
e p

ick
ax

e

co
lle

ct
iro

n

mak
e i

ron
 sw

ord

mak
e i

ron
 pi

ck
ax

e

co
lle

ct
dia

mon
d

0.01

0.1

1

10

100

Su
cc

es
s R

at
e

(%
)

SGRL SGRL w/ Static-Prun SGRL w/o Prun SGRL w/o Priority

Figure 6: Ablation Studies. Success rates across all achievements on Craftax-Classic at 10M steps.

Table 1 summarizes the overall performance of SGRL and baseline methods on Craftax-Classic at
5M steps. As demonstrated in Table 1, SGRL outperforms AdaRefiner, ELLM, and PPO in terms of
overall score and achievement depth on Craftax-Classic. In addition, SGRL maintains a high reward
level, yet does not exhibit a significant advantage in this regard. We attribute this to the misalign-
ment between reward magnitude and exploration depth in the environment, which forces a trade-off
between completing simple, reliably rewarded achievements and pursuing more challenging but po-
tentially high-impact ones. This is evidenced by human performance: experts achieve very high
scores without a corresponding increase in total reward. Further, SGRL requires only minimal LLM
invocation, resulting in faster training speed. Moreover, to better illustrate the performance of the
proposed method, we provide results for various algorithms in the Crafter environment, which can
be found in Appendix D.

5.3 ABLATION STUDY

5.3.1 ABLATION VARIANTS

To evaluate the contributions of each component of SGRL, we conducted ablation studies using
three variants of SGRL on Craftax-Classic as follows: (1) SGRL w/ Static-Prun: This variant re-
tains the action pruning mechanism but replaces the adaptive pruning coefficient with a static mask-
ing scheme; (2)SGRL w/o Prun: This variant removes the goal-conditioned action pruner entirely;
(3)SGRL w/o Priority: This variant removes the priority assignment for goals.

5.3.2 ABLATION ANALYSIS

Figure 5 shows the success rate curves of SGRL and its ablation variants for all 22 achievements
on Crafter. From Figure 5, we can observe that SGRL significantly outperforms all variants on
most of the deeper achievements after approximately 8M steps, indicating that both components of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

our algorithm contribute substantially to its performance. Moreover, it is noteworthy that SGRL w/
Static-Prun, a variant of SGRL with strict action masking, exhibits strong early performance but is
ultimately outperformed by SGRL in later stages, suggesting that over-reliance on the LLM may
lead the agent to converge to suboptimal policies (see Figure 5 (c), (o), (p) and (q)).

Methd Score (%) Reward Achievement
Depth

SGRL 43.9 ± 2.6 14.9 ± 0.4 8
SGRL w/ Static-Prun 38.5± 1.9 14.2± 0.4 8
SGRL w/o Prun 40.0± 2.1 14.7± 0.2 8
SGRL w/o Priority 35.3± 1.6 13.9± 0.6 7

Table 2: Ablation results on Craftax-Classic at 10M steps.

Figure 6 and Table 2 present
the success rates, scores, re-
wards, and achievement depth
across all 22 achievements in
the Crafter environment at 10M
steps. The results demonstrate
that SGRL achieves clear advan-
tages on long-horizon tasks such
as Make Iron Pickaxe and Col-
lect Diamond, which require sequential planning and tool construction. Notably, the design of goal
prioritization plays a critical role in enabling SGRL to rapidly unlock deep achievements like Col-
lect Diamond by guiding the agent to focus on high-value, forward-looking goals during exploration.
More experimental results are in Appendix E.1.

0 2 4 6 8 10
Steps (M)

Drink water

Collect water

Sleep

Collect wood for table

Collect wood for wood pickaxe

Collect wood for wood sword

Craft wood sword

Collect coal

Collect stone for stone sword

Collect wood for stone pickaxe

Collect stone

Collect stone for furnace

Place furnace

Collect stone for stone pickaxe

Craft stone sword

Craft stone pickaxe

Collect wood for iron pickaxe

Collect stone for iron pickaxe

Collect coal for iron pickaxe

Collect iron

Collect wood for iron sword

Collect coal for iron sword

Collect iron for iron sword

Collect iron for iron pickaxe

Craft iron pickaxe

Collect diamond

Go
al

0.57

0.26

0.17

0.29

0.25

0.19

0.30

0.29

0.17

0.38

0.570.570.57

0.43

0.37

0.620.38

0.43

0.57

0.38

0.260.260.26

0.29

0.37

0.190.33

0.29

0.26

0.32

0.170.170.17

0.29

0.25

0.19

0.30

0.29

0.17

0.30

0.57

0.26

0.17

0.29

0.21

0.19

0.47

0.30

0.29

0.15

0.37

0.570.570.57

0.43

0.47

0.62

0.47

0.38

0.43

0.51

0.37

0.260.260.26

0.29

0.32

0.19

0.32

0.33

0.29

0.34

0.34

0.170.170.17

0.29

0.21

0.19

0.21

0.30

0.29

0.15

0.29

0.57

0.26

0.17

0.29

0.21

0.19

0.43

0.30

0.19

0.18

0.39

0.570.570.57

0.43

0.47

0.62

0.43

0.38 0.62 0.60

0.39

0.260.260.26

0.29

0.32

0.19

0.29

0.33 0.19

0.22

0.34

0.170.170.17

0.29

0.21

0.19

0.29

0.30

0.19

0.18

0.28

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.330.330.33

0.33

0.33

0.33

0.33

0.33 0.33

0.33

0.330.330.33

0.33

0.33

0.33

0.33

0.33 0.33

0.33

0.330.330.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

SGRL
SGRL w/o Prun
SGRL w/ Static-Prun
SGRL w/o Priority

Figure 7: Ablation Studies. Goals with priority weights on
Craftax-Classic, where a higher-level goal is visualized only from
the point it is assigned a non-zero weight.

Furthermore, for an in-depth
analysis of SGRL’s superiority,
Figure 7 presents the goals with
priority weights on Craftax-
Classic. For clarity, a higher-
level goal is visualized only
from the point at which it is as-
signed a non-zero weight. The
figure shows that SGRL consis-
tently assigns a small priority
weight to more forward-looking
goals compared to the abla-
tion algorithms at earlier stage,
which motivates its agent to be-
gin exploring more challenging
achievements sooner. We hy-
pothesize that this is the primary
driving force behind SGRL’s
rapid attainment of superior per-
formance. For more detailed
results, refer to Appendix E.2,
where we present the heatmap of
goals with priority weights and
provide a detailed analysis.

In summary, all ablation results collectively indicate that both the goal priority weights and action
mask in our proposed SGRL play distinct roles. Specifically, assigning priorities to goals within the
structured goal planner is crucial for generating reasonable and effective goals. The goal-conditioned
action pruner effectively enhances the agent’s exploration capability in long-horizon tasks.

6 CONCLUSION

This paper proposes a novel LLM-enhanced RL method called SGRL that leverages LLMs to im-
prove RL agents’ exploration efficiency and long-horizon planning capabilities in open-world envi-
ronments. Specifically, we develop a structured goal planner that leverages the LLM to construct
reusable goal-generating functions that select forward-looking goals and dynamically adjust their
priority weights. Then, a goal-conditioned action pruner is designed to filter out actions misaligned
with the goal, thereby guiding RL agents to select goal-consistent policies. Finally, extensive exper-
imental results demonstrate that SGRL achieves superior performance compared to existing LLM-
enhanced RL baselines in terms of long-horizon planning and exploration efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on developing an LLM-enhanced RL method and does not involve human sub-
jects, personal data, or sensitive information. The experiments are conducted on publicly available
benchmark datasets and simulated environments. We believe our research raises no direct ethical
concerns and may contribute positively by improving the exploration efficiency and long-horizon
planning capabilities of RL methods.

REPRODUCIBILITY STATEMENT

All implementation details, including source code, hyperparameters, prompts and outputs of LLM
and scripts, are provided in the appendix and supplementary material to enable full reproducibility
of our results.

REFERENCES

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems, 5(1):411–444, 2022.

Shaofei Cai, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Open-world multi-task control
through goal-aware representation learning and adaptive horizon prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13734–13744, 2023.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In ICML, 2023.

Haotian Chi, Songwei Zhao, Ivor Tsang, Yew-Soon Ong, Hechang Chen, Yi Chang, and Haiyan
Yin. LLMV-age: verifying LLM-guided planning for agentic exploration in open-world RL. In
ICLR 2025 Workshop: VerifAI: AI Verification in the Wild, 2025.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In ICML, 2023.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In NeurIPS, 2022.

Loris Gaven, Clement Romac, Thomas Carta, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Sac-glam: Improving online rl for llm agents with soft actor-critic and hindsight rela-
beling. arXiv preprint arXiv:2410.12481, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H Huang, Dhruva Tirumala, Jan Humplik, Markus
Wulfmeier, Saran Tunyasuvunakool, Noah Y Siegel, Roland Hafner, et al. Learning agile soccer
skills for a bipedal robot with deep reinforcement learning. Science Robotics, 9(89):eadi8022,
2024.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. In ICLR, 2022.

Jianliang He, Siyu Chen, Fengzhuo Zhang, and Zhuoran Yang. From words to actions: Unveiling
the theoretical underpinnings of llm-driven autonomous systems. In ICML, 2024.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In AAAI, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bin Hu, Chenyang Zhao, Pu Zhang, Zihao Zhou, Yuanhang Yang, Zenglin Xu, and Bin Liu. En-
abling intelligent interactions between an agent and an LLM: A reinforcement learning approach.
In RLC, 2024.

Hengyuan Hu and Dorsa Sadigh. Language instructed reinforcement learning for human-AI coor-
dination. In ICML, 2023.

Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. Hierarchical reinforcement learning:
A survey and open research challenges. Machine Learning and Knowledge Extraction, 4(1):
172–221, 2022.

Brian Ichter, Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog,
Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, Dmitry Kalashnikov, Sergey Levine,
Yao Lu, Carolina Parada, Kanishka Rao, Pierre Sermanet, Alexander T Toshev, Vincent Van-
houcke, Fei Xia, Ted Xiao, Peng Xu, Mengyuan Yan, Noah Brown, Michael Ahn, Omar Cortes,
Nicolas Sievers, Clayton Tan, Sichun Xu, Diego Reyes, Jarek Rettinghouse, Jornell Quiambao,
Peter Pastor, Linda Luu, Kuang-Huei Lee, Yuheng Kuang, Sally Jesmonth, Nikhil J. Joshi, Kyle
Jeffrey, Rosario Jauregui Ruano, Jasmine Hsu, Keerthana Gopalakrishnan, Byron David, Andy
Zeng, and Chuyuan Kelly Fu. Do as i can, not as i say: Grounding language in robotic affordances.
In CoRL, 2022.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
From natural language instructions to feasible plans. Autonomous Robots, 47(8):1345–1365,
2023.

Zichuan Lin, Junyou Li, Jianing Shi, Deheng Ye, Qiang Fu, and Wei Yang. Juewu-mc: Playing
minecraft with sample-efficient hierarchical reinforcement learning. In IJCAI, 2022.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: prob-
lems and solutions. In IJCAI, 2022.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. In ICLR, 2024.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Thomas Jack-
son, Samuel Coward, and Jakob Nicolaus Foerster. Craftax: A lightning-fast benchmark for
open-ended reinforcement learning. In ICML, 2024.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118,
2023.

Seungyong Moon, Junyoung Yeom, Bumsoo Park, and Hyun Oh Song. Discovering hierarchical
achievements in reinforcement learning via contrastive learning. In NeurIPS, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, et al. Training language models to follow
instructions with human feedback. In NeurIPS, 2022.

Aishwarya Padmakumar and Raymond J Mooney. Dialog policy learning for joint clarification and
active learning queries. In AAAI, 2021.

Bharat Prakash, Tim Oates, and Tinoosh Mohsenin. LLM augmented hierarchical agents. arXiv
preprint arXiv:2311.05596, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

Unai Ruiz-Gonzalez, Alain Andres, Pedro G Bascoy, and Javier Del Ser. Words as beacons: guiding
rl agents with high-level language prompts. arXiv preprint arXiv:2410.08632, 2024.

Sheila Schoepp, Masoud Jafaripour, Yingyue Cao, Tianpei Yang, Fatemeh Abdollahi, Shadan
Golestan, Zahin Sufiyan, Osmar R Zaiane, and Matthew E Taylor. The evolving landscape of
llm-and vlm-integrated reinforcement learning. arXiv preprint arXiv:2502.15214, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. In NeurIPS, 2023.

Yash Shukla, Wenchang Gao, Vasanth Sarathy, Alvaro Velasquez, Robert Wright, and Jivko Sinapov.
Lgts: Dynamic task sampling using llm-generated sub-goals for reinforcement learning agents.
In AAMAS, 2024.

Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob
Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michael Mathieu, et al. Open-ended
learning leads to generally capable agents. arXiv preprint arXiv:2107.12808, 2021.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Jacob C Walker, Eszter Vértes, Yazhe Li, Gabriel Dulac-Arnold, Ankesh Anand, Théophane Weber,
and Jessica B Hamrick. Investigating the role of model-based learning in exploration and transfer.
In ICML, 2023.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive panning with LLMs enables open-world multi-task agents. In
NeurIPS, 2023.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and
Tao Yu. Text2reward: Automated dense reward function generation for reinforcement learning.
In ICLR, 2024.

Xue Yan, Yan Song, Xidong Feng, Mengyue Yang, Haifeng Zhang, Haitham Bou Ammar, and Jun
Wang. Efficient reinforcement learning with large language model priors. In ICLR, 2025.

Yongjin Yang, Sinjae Kang, Juyong Lee, Dongjun Lee, Se-Young Yun, and Kimin Lee. Automated
skill discovery for language agents through exploration and iterative feedback. arXiv preprint
arXiv:2506.04287, 2025.

Jesse Zhang, Jiahui Zhang, Karl Pertsch, Ziyi Liu, Xiang Ren, Minsuk Chang, Shao-Hua Sun, and
Joseph J Lim. Bootstrap your own skills: Learning to solve new tasks with large language model
guidance. In CoRL, 2023.

Wanpeng Zhang and Zongqing Lu. Adarefiner: Refining decisions of language models with adaptive
feedback. In NAACL, 2024.

Qinqing Zheng, Mikael Henaff, Amy Zhang, Aditya Grover, and Brandon Amos. Online intrin-
sic rewards for decision making agents from large language model feedback. arXiv preprint
arXiv:2410.23022, 2024.

Jiehan Zhou, Yang Zhao, Jiahong Liu, Peijun Dong, Xiaoyu Luo, Hang Tao, Shi Chang, and Han-
jiang Luo. Llm4rl: Enhancing reinforcement learning with large language models. In CCECE,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ENVIRONMENTS AND EVALUATION METRICS

A.1 ENVIRONMENTS

Crafter (Hafner, 2022) is a widely adopted benchmark for open-world RL, designed to assess agents’
generalization, exploration, and long-term reasoning capabilities through 22 diverse achievements.
These achievements are organized in a hierarchical dependency structure of up to 8 depth levels,
where early-stage skills (e.g., collect wood, place table) unlock preconditions for increasingly com-
plex tasks. The deepest and most challenging achievement (i.e., Collect Diamond) requires agents to
master long sequences of dependencies, from crafting stone tools to mining iron and finally access-
ing diamonds deep underground. Crafter’s procedurally generated environments further exacerbate
challenges in sparse rewards, efficient exploration, and hierarchical planning, making it a strong
testbed for evaluating structured goal-guided learning.

Craftax-Classic (Matthews et al., 2024) is a high-performance, JAX-based reimplementation of
Crafter that achieves a 250x simulation speedup via vectorization and parallelization. It faithfully
reproduces Crafter’s core task structure, environmental dynamics, and evaluation metrics, while en-
abling large-scale experimentation at 1B+ environment steps within practical compute budgets.

A.2 EVALUATION METRICS

To demonstrate the effectiveness of our algorithm, we introduce the evaluation metrics as follows:

• Achievement Success Rate. This metric reflects the agent’s learning capability and explo-
ration depth by measuring the probability that each predefined achievement is successfully
unlocked.

• Geometric Mean Score. This metric reflects the balance between both easy and difficult
goals. Following the official Crafter evaluation protocol (Hafner, 2022), it is defined as:

score = exp

(
1

N

N∑
i=1

log(1 + %i)

)
− 1,

where %i ∈ [0, 100] denotes the success rate of the i-th achievement, and N is the total
number of predefined achievements.

• Achievement Depth. This metric measures the agent’s exploration depth based on the fur-
thest achievement it unlocks.

• Episode Return. This metric reports the cumulative reward received per episode.

• Steps Per Second (SPS): This metric measures the number of environment steps processed
per second, indicating the computational efficiency and speed of learning for each method.

B IMPLEMENTATION DETAILS

B.1 LLM

We utilize DeepSeek-R1 (Guo et al., 2025) model to generate structured goal-generating planner
code. Additionally, we use DeepSeek-V3 (Liu et al., 2024) model for selecting actions related to
the defined goals. For all LLM queries, we follow the implementation of AdaRefiner (Zhang & Lu,
2024) to set the decoding parameters: a temperature of 0.5, top-p of 1.0, and a maximum token limit
of 100. DeepSeek-V3 model is employed to replicate the results of ELLM and AdaRefiner.

B.2 TEXT EMBEDDING

For text embedding, we use paraphrase-MiniLM-L6-v2 (Reimers & Gurevych, 2019) model
as the encoder.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.3 PROMPT DESIGN

B.3.1 PROMPT DESIGN FOR STRUCTURED GOAL PLANNER

In the Structured Goal Planner, the large model is employed to generate goal-generation code and
to update the priorities of goals. To enable the LLM to produce high-quality code, we adopt a
multi-stage prompting process:

• Design Stage. At this stage, the model is asked to first design the class structure and key
functional modules according to the task requirements.

• Implementation Stage. After the design, the model is prompted to output detailed, com-
plete Python code that follows PEP8 standards with clear logic and sufficient comments.

• Reflection and Revision Stage. Finally, the model is prompted to reflect on the generated
code, identify potential issues, and provide corrections or optimizations.

To guide the model in updating goal priorities, the prompt additionally specifies that every 2 million
steps the LLM should update the priority values of goals within the generated code. This ensures
that goal selection remains dynamic and aligned with the agent’s current objectives.

Prompt Template for Structured Goal Planner Design

Crafter is a 2D open-world survival game with visual input; its world is procedurally gen-
erated. Players must search for food and water, find shelter to sleep, defend against mon-
sters, gather materials, and craft tools. Crafter’s objective is to evaluate an agent’s capabili-
ties through a series of semantically meaningful achievements that can be unlocked in each
playthrough—for example, discovering resources and crafting tools. Consistently unlocking
all achievements requires strong generalization, deep exploration, and long-term reasoning.
You are an experienced Python developer. The task is to create a key functional module of
an advanced goal-generation system that can dynamically produce prioritized goals based
on textual environment observations. The system must include functions for survival-need
assessment, a tool-crafting tree, resource-collection configuration, and achievement tracking.
You should primarily design the OptimizedGoalGenerator class structure and its key
functional modules. The Agent will call the determine goal function to obtain goals:

def determine_goal(self, text_obs):
return top_three_goal

Each goal is a dictionary of the form:

{’goal’: ,
’priority’: , }

The state of environmental text is represented by text obs:
Example 1:
You see: plant, zombie, tree, grass, sand, path, stone
Inventory: wood: 1
Status: health: 11%, Fullness: 0%, Hydration: 0%, Wakefulness: 88%
Sky brightness level: 68% Example 2:
You see: plant, tree, grass, path, stone
Inventory:
Status: health: 99%, Fullness: 77%, Hydration: 66%, Wakefulness: 77%
Sky brightness level: 99%

Now please provide the OptimizedGoalGenerator class structure and its key func-
tional modules.

class OptimizedGoalGenerator:
def __init__(self):

...
def determine_goal(self, text_obs):

...

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Prompt Template for Structured Goal Planner Implementation

Crafter is a 2D open-world survival game with visual input, where the world is procedu-
rally generated. Players need to find food and water, locate a place to sleep, defend against
monsters, gather materials, and craft tools. The objective of Crafter is to evaluate an agent’s
capabilities through a series of semantically meaningful achievements, which can be un-
locked in each game session, such as discovering resources and crafting tools. Continuously
unlocking all achievements requires strong generalization, deep exploration, and long-term
reasoning.
As a Python expert, your task is to create an advanced goal generation system that dynami-
cally generates prioritized goals based on environmental observation text. The system should
include survival needs assessment, a crafting dependency tree, resource collection configu-
ration, and achievement tracking.
Environment Details:
Items: sapling, wood, stone, coal, iron, diamond, wood pickaxe, stone pickaxe,
iron pickaxe, wood sword, stone sword, iron sword (all with max: 9, initial: 0)
Collectable resources: tree, stone, coal, iron, diamond, water, grass (with required tools,
output, and leaves defined)
Placable objects: stone, table, furnace, plant (with usage, location, and type defined)
Craftable tools: wood pickaxe, stone pickaxe, iron pickaxe, wood sword, stone sword,
iron sword (with required materials, nearby crafting stations, and output quantity)
Achievements: collect coal, collect diamond, collect drink, collect iron, col-
lect sapling, collect stone, collect wood, defeat skeleton, defeat zombie, eat cow,
eat plant, make iron pickaxe, make iron sword, make stone pickaxe, make stone sword,
make wood pickaxe, make wood sword, place furnace, place plant, place stone,
place table, wake up
Environment Text Rendering Function:

def render_craftax_text_describ_2(self, view_arr, index):
(map_view, mob_map, inventory_values, status_values) = view_arr

mob_id_to_name = ["zombie", "cows", "skeletons", "arrows"]
block_id_to_name = ["invalid", "out of bounds", "grass",

"water", "stone", "tree", "wood", "path",
"coal", "iron", "diamond", "crafting

table", "furnace", "sand", "lava",
"plant", "ripe plant"]

text_view_values = set()

block_names = np.vectorize(lambda x:
block_id_to_name[x])(map_view[index])

text_view_values.update(block_names.flatten())

mob_ids = np.argmax(mob_map[index], axis=-1)
mob_names = np.vectorize(lambda x: mob_id_to_name[x])(mob_ids)
mob_mask = mob_map[index].max(axis=-1) > 0.5
text_view_values.update(mob_names[mob_mask].flatten())
text_view = ", ".join(text_view_values)

inv_names = ["wood", "stone", "coal", "iron", "diamond",
"sapling",

"wood pickaxe", "stone pickaxe", "iron pickaxe",
"wood sword", "stone sword", "iron sword"]

text_obs_inv = ", ".join([f"{name}: {value}"
for name, value in zip(inv_names,

inventory_values[index])
if value > 0])

status_names = ["Health", "Fullness", "Hydration",
"Wakefulness", "Sky brightness level"]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt Template for Structured Goal Planner Implementation (continued)

status = ", ".join([f"{name}: {int(value / 0.09)}%"
for name, value in zip(status_names,

status_values[index])])

text_obs = "You see: " + text_view + "\nInventory: " +
text_obs_inv + "\nStatus: " + status

return text_obs

Example Environmental Text Observations:
Example 1:
You see: plant, zombie, tree, grass, sand, path, stone
Inventory: wood: 1
Status: health: 11%, Fullness: 0%, Hydration: 0%, Wakefulness: 88%, Sky brightness level:
68%
Example 2:
You see: plant, tree, grass, path, stone
Inventory:
Status: health: 99%, Fullness: 77%, Hydration: 66%, Wakefulness: 77%, Sky brightness
level: 99%
You have already designed the code architecture. Your goal is to complete this code and
create an advanced goal generation system capable of dynamically generating prioritized
goals based on environmental observation text.
The code architecture:
{last llm response}

Prompt Template for Structured Goal Planner Reflection and Revision

You are an expert Python developer and code reviewer for Crafter’s goal generation sys-
tem. Your task is to critically analyze the previously designed goal planner and provide an
evaluation. For each submitted code version:

• If the code is complete, correct, and efficiently implements all required functionali-
ties (survival needs assessment, resource collection, crafting, achievement tracking,
threat handling, and goal prioritization), label it as good.

• If there are issues, missing features, or opportunities for optimization, label it as
bad, and provide a clear explanation of the problems.

After evaluation, if the code is labeled bad, generate a fully optimized and corrected version
of the code that addresses all identified issues. The optimized code should:

• Correctly handle all environmental observations and edge cases.
• Properly assess and prioritize survival needs.
• Integrate resource collection, crafting, and achievement goals with correct depen-

dencies.
• Handle threats and defensive behaviors appropriately.
• Be modular, readable, and maintainable, following Python best practices.

Please review the following Structured Goal Planner code. Evaluate its quality: provide the
label good if it is fully correct and functional, or bad if improvements are needed. For bad
code, explain the deficiencies clearly and provide a complete, optimized version of the code
that fixes all issues while preserving the intended functionality.
The goal-generated code: {last llm response}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Prompt Template for Updating Goal Priority Values

You are the Goal Priority Analyst for Crafter games. Your task is to update the priority
weights of goals in the goal generation code, based on the current state and action trajectory
of the intelligent agent. You act as a specialized assistant whose only responsibility is to
adjust priority values to improve goal selection; do not change any code logic or structure.
Inputs provided to you:

• Goal generation code: A Python code module that defines goals, their attributes,
and initial priority weights. ({goal code.py})

• Agent state and trajectory: A structured representation of the current state of the
intelligent agent, including completed goals, actions taken, and environment status.
({agent state.json})

Your instructions:
• Read the goal generation code and the agent state/trajectory.
• Update the numeric priority weights in the code to reflect the current importance

of each goal.
• Do not change any function definitions, logic, or class structures. Only modify

numeric values associated with goal priorities.
• Ensure the updated code is fully executable and maintains its original structure.
• Keep all interfaces unchanged so that the planner can call the updated code directly.

Example Workflow:
1. Load the goal generation code and parse the goals.
2. Analyze the agent’s current state and past actions.
3. Determine new priority weights for each goal.
4. Replace only the priority numbers in the code with the updated values.
5. Output the complete updated Python code.

Output Format:
• Return the entire Python code as a single code block.
• Ensure all class and function definitions remain intact.
• Only the numeric priority values are changed.

B.3.2 PROMPT DESIGN FOR GOAL-CONDITIONED ACTION PRUNER

In the Goal-Conditioned Action Pruner, the large model selects actions that are directly relevant to
a given goal through the use of prompts, thereby enabling goal-driven behavior. To guide the model
in generating goal-consistent actions, the prompt explicitly defines the meaning of each action in the
action space and provides examples illustrating which actions should be chosen for specific goals.
In this way, the model can effectively filter actions that align with the goal, ensuring that the agent
maintains coherent and goal-directed behavior during execution.

Prompt Template for Goal-Conditioned Action Pruner Implementation

You are the goal analyst for Crafter games, and a goal planner provides goal guidance for
game characters. The agent needs to perform one or more steps to achieve this goal, and you
help the agent choose the appropriate actions to accomplish it.
Tips:

• The goal is something that the intelligent agent is currently capable of executing
under certain conditions.

• The intelligent agent may need to move to a certain location to trigger the execution
condition.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Prompt Template for Goal-Conditioned Action Pruner Implementation (continued)

• The action space consists of the following 17 actions:
1. noop # do nothing
2. move left
3. move right
4. move up
5. move down
6. do
7. sleep
8. place stone
9. place table

10. place furnace
11. place plant
12. make wood pickaxe
13. make stone pickaxe
14. make iron pickaxe
15. make wood sword
16. make stone sword
17. make iron sword

• Among them, the action noop means do nothing.
• The action do means it can complete the following: eat plant, attack zombie, attack

skeleton, attack cow, chop tree for wood, mine stone, mine coal, mine iron, mine
diamond, drink water, chop grass for sapling.

Examples:
• Goal: {Mine Iron}

Related actions: {move left, move right, move up, move down, do}
• Goal: {make stone pickaxe}

Related actions: {move left, move right, move up, move down,
make stone pickaxe}

• Goal: {sleep}
Related actions: {sleep}

• Goal: {attack cow}
Related actions: {move left, move right, move up, move down, do}

For each given goal, generate a set of feasible actions from the action space. Include any
movements or execution actions that can reasonably help achieve the goal. Focus on feasi-
bility rather than strict optimality.
The current goal is: goal.
Please select actions that are relevant to the goal.

B.4 PPO ALGORITHM

For the specific hyperparameter settings of the PPO algorithm, we follow the Stable-Baselines3 (Raf-
fin et al., 2021)5 implementation for Crafter, and follow the official in Craftax benchmark (Matthews
et al., 2024)6 implementation for Craftax-Classic. Since SGRL, ELLM, and AdaRefiner are all im-
plemented based on PPO, we use the same core PPO hyperparameters, as shown in Table 3.

5Available at https://github.com/DLR-RM/stable-baselines3
6Available at https://github.com/MichaelTMatthews/Craftax

18

https://github.com/DLR-RM/stable-baselines3
https://github.com/MichaelTMatthews/Craftax

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Parameter Value (Crafter) Value (Craftax-Classic)
Training Steps {1M, 5M} {5M, 10M}
Learning Rate 7e-4 7e-4
Optimizer Adam AdamW
Batch Size 128 512
Number of Envs 1 256
Update Epochs 16 4
Clip Ratio 0.2 0.2
Discount Factor γ 0.97 0.97
Entropy Coefficient 0.01 0.01
Value Function Coefficient 0.5 0.5
Activation Function ReLU ReLU

Table 3: Hyperparameters for PPO

C ADDITIONAL PRELIMINARY RESULTS

Figures 8-10 present more detailed results of the preliminary study experiments on Craftax-Classic.

D ADDITIONAL MAIN RESULTS

Table 4 presents performance of SGRL and baseline methods on Crafter at 5M steps. Figures 11-17
present more detailed results of the main experiments on Crafter and Craftax-Classic. It is worth
noting that:

• In the experiments on Craftax-Classic, ELLM and AdaRefiner require frequent online calls
to the LLM (DeepSeek-V3) during training, incurring substantial computational costs
and training time. Therefore, we only reproduce the results within 5M steps.

• Since the Crafter environment does not adopt the JAX framework and runs extremely
slowly, we report the original results of ELLM and AdaRefiner from their papers in Ta-
ble 4, rather than reproducing their experiments.

Note: Since ELLM and AdaRefiner require frequent online calls to the LLM (DeepSeek-V3)
during training, they incur substantial computational costs and training time. Therefore, we only
reproduce the results within 5M steps.

E ADDITIONAL ABLATION EXPERIMENTS

E.1 PERFORMANCE OF ABLATION ALGORITHM

Table 5 and Figures 18- 20 present more detailed results of the ablation experiments on Craftax-
Classic.

E.2 HEATMAP OF GOAL WITH PRIORITY WEIGHTS

Figure 21 show the heatmap of the goals with priority weights generated by the structured goal
planner on Craftax-Classic within 10M steps. The vertical axis on the left shows goals ranked from
low to high, while the right axis (ranging from 0 to 0.8) indicates the corresponding weights.

From Figure 21, we can observe the following key phenomena:

• SGRL w/o Priority only sets collect diamond as an exploration goal after 9M steps, which
likely accounts for its significantly low exploration efficiency.

• SGRL, SGRL w/ Static Pruning, and SGRL w/o Pruning—methods that assign priority
weights to goals—consistently treat long-horizon, high-impact achievements (e.g., Collect
stone for stone pickaxe, Collect iron) as important objectives and assign them larger priority
weights.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
0

50

100

Su
cc

es
s R

at
e

(%
)

(a)

Eat Cow (1)

0 1 2 3 4 5
0

50

(b)

Collect Drink (1)

0 1 2 3 4 5
0

50

100

(c)

Wake Up (1)

0 1 2 3 4 5
0

50

100

(d)

Collect Sapling (1)

0 1 2 3 4 5
0

50

100

(e)

Collect Wood (1)

0 1 2 3 4 5
0

50

100

(f)

Defeat Zombie (1)

0 1 2 3 4 5
0

20

(g)

Defeat Skeleton (1)

0 1 2 3 4 5
0

50

100

(h)

Place Plant (2)

0 1 2 3 4 5
0

50

100

Su
cc

es
s R

at
e

(%
)

(i)

Place Table (2)

0 1 2 3 4 5
0.0

0.5

(j)

Eat Plant (3)

0 1 2 3 4 5
0

50

100

(k)

Make Wood Sword (3)

0 1 2 3 4 5
0

50

100

(l)

Make Wood Pickaxe (3)

0 1 2 3 4 5
0

25

50

(m)

Collect Coal (4)

0 1 2 3 4 5
0

50

100

(n)

Collect Stone (4)

0 1 2 3 4 5
0

50

(o)

Place Stone (5)

0 1 2 3 4 5
0

50

(p)

Place Furnace (5)

0 1 2 3 4 5
0

50

Su
cc

es
s R

at
e

(%
)

Steps (M)
(q)

Make Stone Sword (5)

0 1 2 3 4 5
0

50

Steps (M)
(r)

Make Stone Pickaxe (5)

0 1 2 3 4 5
0

10

Steps (M)
(s)

Collect Iron (6)

0 1 2 3 4 5
0.0

0.5

Steps (M)
(t)

Make Iron Sword (7)

0 1 2 3 4 5
0.00

0.25

0.50

Steps (M)
(u)

Make Iron Pickaxe (7)

0 1 2 3 4 5
0.00

0.02

0.04

Steps (M)
(v)

Collect Diamond (8)

CodeGoal
AdaRefiner
ELLM
PPO

Figure 8: Preliminary Results. Success rate curves for all achievements on Craftax-Classic within
5M steps. We rank the achievements based on their depth and the importance of unlocking them for
subsequent tasks. Achievements ranked later have greater depth and exert a stronger influence on
subsequent achievements. A more intuitive version is shown in Figure 10.

eat
 co

w

co
lle

ct
dri

nk

wak
e u

p

co
lle

ct
sap

lin
g

co
lle

ct
woo

d

de
fea

t z
om

bie

de
fea

t sk
ele

ton

pla
ce

pla
nt

pla
ce

tab
le

eat
 pl

an
t

mak
e w

oo
d s

word

mak
e w

oo
d p

ick
ax

e

co
lle

ct
co

al

co
lle

ct
sto

ne

pla
ce

sto
ne

pla
ce

fur
na

ce

mak
e s

ton
e s

word

mak
e s

ton
e p

ick
ax

e

co
lle

ct
iro

n

mak
e i

ron
 sw

ord

mak
e i

ron
 pi

ck
ax

e

co
lle

ct
dia

mon
d

0.01

0.1

1

10

100

Su
cc

es
s R

at
e

(%
)

CodeGoal AdaRefiner ELLM PPO

Figure 9: Preliminary Results. Success rates across all Craftax-Classic achievements at 5M steps.

• In contrast to SGRL w/ Static Pruning and SGRL w/o Pruning, SGRL consistently assigns
relatively small priority weights to more forward-looking goals (e.g., Collect diamond; see
the red dashed lines in the figure), which encourages the agent to begin exploring these
challenging achievements earlier. We hypothesize that this adaptive prioritization strategy
is the primary driver behind SGRL’s superior performance.

F ADDITIONAL PRUNER ANNEALING STRATEGIES AND IMPLEMENTATION

F.1 PRUNER ANNEALING STRATEGIES

To dynamically adjust the agent’s reliance on constraints during training, we implement several
annealing strategies for ξ. These strategies smoothly modulate ξ over training steps. These anneal-
ing schedules aim to balance the agent’s adherence to the action pruner and the freedom of policy
exploration.

• Linear Annealing. This strategy linearly anneals ξ from 0 to 1, gradually reducing the
influence of the pruner.

ξ(t) =
t

T
, (7)

where t is current training step, T is total training steps.
• Exponential Annealing. This strategy uses exponential decay to increase ξ rapidly from 0

toward 1, then asymptotically approach full freedom.

ξ(t) = 1− exp

(
− t
τ

)
, (8)

where τ is the time constant of the exponential decay.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 2 4
0

50

100

1

Eat Cow

0 2 4
25

50

75

100
Collect Sapling

0 2 4

60

80

100
Wake Up

0 2 4
25

50

75

100
Collect Wood

0 2 4
0

50

100

2

Defeat Zombie

0 2 4

25

50

75

100
Place Plant

0 2 4
0

10

20

30
Defeat Skeleton

0 2 4
0

50

100
Place Table

0 2 4
0

25

50

75

3

Collect Drink

0 2 4
0.00

0.25

0.50

0.75

Eat Plant

0 2 4
0

50

100
Make Wood Sword

0 2 4
0

50

100
Make Wood Pickaxe

4

0 2 4
0

20

40

60

Collect Coal

0 2 4
0

50

100
Collect Stone

0 2 4
0

505

Place Stone

0 2 4
0

25

50

75

Make Stone Sword

0 2 4
0

50

Place Furnace

0 2 4
0

20

40

60

Make Stone Pickaxe

6

0 2 4
0

5

10

15

Collect Iron

7

0 2 4
0.0

0.2

0.4

0.6

Make Iron Sword

0 2 4
0.0

0.2

0.4

0.6

Make Iron Pickaxe

8

0 2 4
0.00

0.02

0.04

Collect Diamond

CodeGoal
AdaRefiner
ELLM
PPO

Figure 10: Preliminary Study. Success rate curves for all achievements on Craftax-Classic within
5M steps. Solid and dashed arrows indicate direct and cross-depth dependencies, respectively. The
bottom-left panel visualizes the full achievement dependency graph, with achievement depth en-
coded by color (depth 1-8 from top to bottom).

• Three-Stage Linear Annealing. This strategy consists of three phases and is defined by the
piecewise function:

ξ(t) =


1− t

0.4T
, t < 0.4T

t

0.4T
− 1, 0.4T ≤ t < 0.8T

1, t ≥ 0.8T

. (9)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• Three-Stage Cosine Annealing. This strategy uses a smooth cosine function for the first
two stages:

ξ(t) =


1
2

(
1 + cos

(
t

0.4T · π
))
, 0 ≤ t < 0.4T

1
2

(
1− cos

(
t−0.4T
0.4T · π

))
, 0.4T ≤ t < 0.8T

1.0, t ≥ 0.8T

. (10)

In our experiments, the following naming convention is used to denote different annealing strategies
applied to the SGRL: (1) SGRL w/ Linear Ann: SGRL equipped with linear annealing schedule
(see Equation (7)); (2) SGRL w/ Exp Ann: SGRL with exponential annealing (see Equation (8)); (3)
SGRL w/ 3-Stage Linear: SGRL with piecewise linear three-phase annealing (see Equation (9)); and
(4) SGRL w/ 3-Stage Cos: SGRL with cosine-based three-phase annealing (see Equation (10)).

F.2 EXPERIMENTAL RESULTS

Figures 22-24 present detailed results with different mask mechanism on Craftax-Classic.

As shown in Figures 22-24, the performance of SGRL with four different ξ annealing strategies on
Craftax-Classic is presented:

• Figure 22 displays the success rate curves across 22 achievements on Craftax-Classic,
comparing four mask annealing strategies. Notably, SGRL w/ 3-Stage Cos achieves dia-
mond collection at 3.7M steps and maintains superior performance on the most challenging
achievements (Make Iron Pickaxe and Collect Diamond), as shown in Figures 22 (b)-(c).
This suggests that the Three-Stage Cosine Annealing strategy enables SGRL to more ef-
fectively prioritize high-value, long-horizon objectives by adaptively balancing exploration
and exploitation. In contrast, SGRL w/ Linear Ann demonstrates stronger early-stage per-
formance, unlocking depth-7 achievements faster (see Figure 22 (a)). However, its success
rate plateaus in later training phases (see Figures 22 (b)-(c)), likely due to the rigid lin-
ear decay of ξ, which prematurely restricts exploration and hinders adaptation to complex
tasks. A success rate plot that intuitively reflects achievement depth is shown in Figure 24.

• Figure 23 presents the success rates across all 22 achievements on Craftax-Classic at dif-
ferent training steps. From Figure 23, we can observe that while SGRL w/ 3-Stage Linear
and SGRL w/ 3-Stage Cos exhibit similar performance early on (Figure 23 (a)), the lat-
ter significantly outperforms the former in late-stage deep achievements (see Figures 23
(b)-(c)). We hypothesize that the piecewise linear transitions in 3-Stage Linear Annealing
introduce abrupt changes in exploration pressure, whereas the smooth cosine modulation in
3-Stage Cosine Annealing facilitates more stable learning. Interestingly, SGRL w/ Exp Ann
is the only variant failing to unlock Collect Diamond by 10M steps. This indicates that the
rapid decay of ξ in exponential annealing diminishes goal guidance too early, impairing the
agent’s ability to align goals with agents’ actions and hindering the acquisition of complex,
multi-step behaviors.

Overall, these results highlight the critical role of the annealing schedule in modulating the trade-off
between goal-driven exploration and policy autonomy. The three-stage cosine strategy achieves the
most effective balance, enabling sustained guidance during critical phases of skill acquisition while
allowing gradual transition to policy-based control.

G USE OF LARGE LANGUAGE MODELS

In this work, in addition to employing Large Language Models (LLMs) as auxiliary tools for lan-
guage polishing, grammar correction, and minor stylistic adjustments of the manuscript, we also uti-
lized LLMs to generate reusable, structured goal-generation functions, adjust goal priority weights,
and establish goal-conditioned policy constraints. These operations are both essential and common-
place in LLM-enhanced RL research Notably, LLMs were not involved in research ideation, exper-
imental design, implementation, data analysis, or result interpretation. All scientific contributions
and intellectual content are solely attributable to the authors.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
0

50

Su
cc

es
s R

at
e

(%
)

(a)

Eat Cow (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

25

50

(b)

Collect Drink (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(c)

Wake Up (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(d)

Collect Sapling (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(e)

Collect Wood (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(f)

Defeat Zombie (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

10

(g)

Defeat Skeleton (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(h)

Place Plant (2)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

Su
cc

es
s R

at
e

(%
)

(i)

Place Table (2)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

(j)

Eat Plant (3)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(k)

Make Wood Sword (3)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(l)

Make Wood Pickaxe (3)

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

(m)

Collect Coal (4)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(n)

Collect Stone (4)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(o)

Place Stone (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(p)

Place Furnace (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

20

Su
cc

es
s R

at
e

(%
)

Steps (M)
(q)

Make Stone Sword (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

20

Steps (M)
(r)

Make Stone Pickaxe (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

Steps (M)
(s)

Collect Iron (6)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

Steps (M)
(t)

Make Iron Sword (7)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

Steps (M)
(u)

Make Iron Pickaxe (7)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

Steps (M)
(v)

Collect Diamond (8)

SGRL
AdaRefiner
ELLM
PPO

(a) 1M Steps

0 1 2 3 4 5
0

50

100

Su
cc

es
s R

at
e

(%
)

(a)

Eat Cow (1)

0 1 2 3 4 5
0

50

(b)

Collect Drink (1)

0 1 2 3 4 5
0

50

100

(c)

Wake Up (1)

0 1 2 3 4 5
0

50

100

(d)

Collect Sapling (1)

0 1 2 3 4 5
0

50

100

(e)

Collect Wood (1)

0 1 2 3 4 5
0

50

100

(f)

Defeat Zombie (1)

0 1 2 3 4 5
0

20

(g)

Defeat Skeleton (1)

0 1 2 3 4 5
0

50

100

(h)

Place Plant (2)

0 1 2 3 4 5
0

50

100

Su
cc

es
s R

at
e

(%
)

(i)

Place Table (2)

0 1 2 3 4 5
0.0

0.5

(j)

Eat Plant (3)

0 1 2 3 4 5
0

50

100

(k)

Make Wood Sword (3)

0 1 2 3 4 5
0

50

100

(l)

Make Wood Pickaxe (3)

0 1 2 3 4 5
0

25

50

(m)

Collect Coal (4)

0 1 2 3 4 5
0

50

100

(n)

Collect Stone (4)

0 1 2 3 4 5
0

50

(o)

Place Stone (5)

0 1 2 3 4 5
0

50

(p)

Place Furnace (5)

0 1 2 3 4 5
0

50

Su
cc

es
s R

at
e

(%
)

Steps (M)
(q)

Make Stone Sword (5)

0 1 2 3 4 5
0

50

Steps (M)
(r)

Make Stone Pickaxe (5)

0 1 2 3 4 5
0

20

Steps (M)
(s)

Collect Iron (6)

0 1 2 3 4 5
0.0

0.5

Steps (M)
(t)

Make Iron Sword (7)

0 1 2 3 4 5
0

2

4

Steps (M)
(u)

Make Iron Pickaxe (7)

0 1 2 3 4 5
0.00

0.25

0.50

Steps (M)
(v)

Collect Diamond (8)

SGRL
AdaRefiner
ELLM
PPO

(b) 5M Steps

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Su
cc

es
s R

at
e

(%
)

(a)

Eat Cow (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

(b)

Collect Drink (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(c)

Wake Up (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(d)

Collect Sapling (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(e)

Collect Wood (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(f)

Defeat Zombie (1)

0 1 2 3 4 5 6 7 8 9 10
0

20

40

(g)

Defeat Skeleton (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(h)

Place Plant (2)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Su
cc

es
s R

at
e

(%
)

(i)

Place Table (2)

0 1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

(j)

Eat Plant (3)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(k)

Make Wood Sword (3)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(l)

Make Wood Pickaxe (3)

0 1 2 3 4 5 6 7 8 9 10
0

50

(m)

Collect Coal (4)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(n)

Collect Stone (4)

0 1 2 3 4 5 6 7 8 9 10
0

50

(o)

Place Stone (5)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(p)

Place Furnace (5)

0 1 2 3 4 5 6 7 8 9 10
0

50

Su
cc

es
s R

at
e

(%
)

Steps (M)
(q)

Make Stone Sword (5)

0 1 2 3 4 5 6 7 8 9 10
0

50

Steps (M)
(r)

Make Stone Pickaxe (5)

0 1 2 3 4 5 6 7 8 9 10
0

25

50

Steps (M)
(s)

Collect Iron (6)

0 1 2 3 4 5 6 7 8 9 10
0

10

Steps (M)
(t)

Make Iron Sword (7)

0 1 2 3 4 5 6 7 8 9 10
0

20

Steps (M)
(u)

Make Iron Pickaxe (7)

0 1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

Steps (M)
(v)

Collect Diamond (8)

SGRL
PPO

(c) 10M Steps

Figure 11: Main Results. Success rate curves for all achievements on Craftax-Classic within differ-
ent training steps. We rank the achievements based on their depth and the importance of unlocking
them for subsequent tasks. Achievements ranked later have greater depth and exert a stronger influ-
ence on subsequent achievements. A more intuitive version is shown in Figure 13.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

eat
 co

w

co
lle

ct
dri

nk

wak
e u

p

co
lle

ct
sap

lin
g

co
lle

ct
woo

d

de
fea

t z
om

bie

de
fea

t sk
ele

ton

pla
ce

pla
nt

pla
ce

tab
le

eat
 pl

an
t

mak
e w

oo
d s

word

mak
e w

oo
d p

ick
ax

e

co
lle

ct
co

al

co
lle

ct
sto

ne

pla
ce

sto
ne

pla
ce

fur
na

ce

mak
e s

ton
e s

word

mak
e s

ton
e p

ick
ax

e

co
lle

ct
iro

n

mak
e i

ron
 sw

ord

mak
e i

ron
 pi

ck
ax

e

co
lle

ct
dia

mon
d

0.01

0.1

1

10

100

Su
cc

es
s R

at
e

(%
)

SGRL AdaRefiner ELLM PPO

(a) 1M Steps

eat
 co

w

co
lle

ct
dri

nk

wak
e u

p

co
lle

ct
sap

lin
g

co
lle

ct
woo

d

de
fea

t z
om

bie

de
fea

t sk
ele

ton

pla
ce

pla
nt

pla
ce

tab
le

eat
 pl

an
t

mak
e w

oo
d s

word

mak
e w

oo
d p

ick
ax

e

co
lle

ct
co

al

co
lle

ct
sto

ne

pla
ce

sto
ne

pla
ce

fur
na

ce

mak
e s

ton
e s

word

mak
e s

ton
e p

ick
ax

e

co
lle

ct
iro

n

mak
e i

ron
 sw

ord

mak
e i

ron
 pi

ck
ax

e

co
lle

ct
dia

mon
d

0.01

0.1

1

10

100

Su
cc

es
s R

at
e

(%
)

SGRL AdaRefiner ELLM PPO

(b) 5M Steps

eat
 co

w

co
lle

ct
dri

nk

wak
e u

p

co
lle

ct
sap

lin
g

co
lle

ct
woo

d

de
fea

t z
om

bie

de
fea

t sk
ele

ton

pla
ce

pla
nt

pla
ce

tab
le

eat
 pl

an
t

mak
e w

oo
d s

word

mak
e w

oo
d p

ick
ax

e

co
lle

ct
co

al

co
lle

ct
sto

ne

pla
ce

sto
ne

pla
ce

fur
na

ce

mak
e s

ton
e s

word

mak
e s

ton
e p

ick
ax

e

co
lle

ct
iro

n

mak
e i

ron
 sw

ord

mak
e i

ron
 pi

ck
ax

e

co
lle

ct
dia

mon
d

0.01

0.1

1

10

100

Su
cc

es
s R

at
e

(%
)

SGRL PPO

(c) 10M Steps

Figure 12: Main Results. Success rates across all achievements on Craftax-Classic at different
training steps. Note: Since ELLM and AdaRefiner require frequent online calls to the LLM
(DeepSeek-V3) during training, they incur substantial computational costs and training time.
Therefore, we only reproduce the results within 5M steps.

Method Score(%) Reward Achievement Depth SPS (×102)
Human 50.5 ± 6.8 14.3 ± 2.3 8 -
SGRL 30.5 ± 1.2 12.7 ± 0.4 8 1.0
AdaRefiner 28.2 ± 1.8 12.9 ± 1.2 7 -
ELLM - 6.0 ± 0.4 - -
PPO 18.5 ± 6.1 10.1 ± 1.3 6 1.2

Table 4: Main Results. Performance of SGRL and baseline methods on Crafter at 5M steps.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 2 4
0

50

100

1

Eat Cow

0 2 4
25

50

75

100
Collect Sapling

0 2 4
40

60

80

100
Wake Up

0 2 4
25

50

75

100
Collect Wood

0 2 4
0

50

100

2

Defeat Zombie

0 2 4

25

50

75

100
Place Plant

0 2 4
0

10

20

30

Defeat Skeleton

0 2 4
0

50

100
Place Table

0 2 4
0

25

50

75

3

Collect Drink

0 2 4
0.00

0.25

0.50

0.75

Eat Plant

0 2 4
0

50

100
Make Wood Sword

0 2 4
0

50

100
Make Wood Pickaxe

4

0 2 4
0

20

40

60

Collect Coal

0 2 4
0

50

100
Collect Stone

0 2 4
0

505

Place Stone

0 2 4
0

25

50

75

Make Stone Sword

0 2 4
0

50

Place Furnace

0 2 4
0

25

50

75

Make Stone Pickaxe

6

0 2 4
0

10

20

30

Collect Iron

7

0 2 4
0.00

0.25

0.50

0.75

Make Iron Sword

0 2 4
0

2

4

Make Iron Pickaxe

8

0 2 4
0.0

0.2

0.4

0.6
Collect Diamond

SGRL
AdaRefiner
ELLM
PPO

Figure 13: Main Results. Success rate curves for all achievements on Craftax-Classic within 5M
steps. Solid and dashed arrows indicate direct and cross-depth dependencies, respectively. The
bottom-left panel visualizes the full achievement dependency graph, with achievement depth en-
coded by color (depth 1-8 from top to bottom).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0.0 2.5 5.0 7.5 10.0
0

50

100

1

Eat Cow

0.0 2.5 5.0 7.5 10.0

60

80

100
Collect Sapling

0.0 2.5 5.0 7.5 10.0
40

60

80

100
Wake Up

0.0 2.5 5.0 7.5 10.0
40

60

80

100
Collect Wood

0.0 2.5 5.0 7.5 10.0
0

50

100

2

Defeat Zombie

0.0 2.5 5.0 7.5 10.0
40

60

80

100
Place Plant

0.0 2.5 5.0 7.5 10.0
0

20

40

Defeat Skeleton

0.0 2.5 5.0 7.5 10.0
0

50

100
Place Table

0.0 2.5 5.0 7.5 10.0

25

50

75

3

Collect Drink

0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

Eat Plant

0.0 2.5 5.0 7.5 10.0
0

50

100
Make Wood Sword

0.0 2.5 5.0 7.5 10.0
0

50

100
Make Wood Pickaxe

4

0.0 2.5 5.0 7.5 10.0
0

25

50

75

Collect Coal

0.0 2.5 5.0 7.5 10.0
0

50

100
Collect Stone

0.0 2.5 5.0 7.5 10.0
0

505

Place Stone

0.0 2.5 5.0 7.5 10.0
0

50

Make Stone Sword

0.0 2.5 5.0 7.5 10.0
0

50

100
Place Furnace

0.0 2.5 5.0 7.5 10.0
0

25

50

75

Make Stone Pickaxe

6

0.0 2.5 5.0 7.5 10.0
0

20

40

60

Collect Iron

7

0.0 2.5 5.0 7.5 10.0
0

5

10

15
Make Iron Sword

0.0 2.5 5.0 7.5 10.0
0

10

20

30

Make Iron Pickaxe

8

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0
Collect Diamond

SGRL
PPO

Figure 14: Main Results. Success rate curves for all achievements on Craftax-Classic within 10M
steps. Solid and dashed arrows indicate direct and cross-depth dependencies, respectively. The
bottom-left panel visualizes the full achievement dependency graph, with achievement depth en-
coded by color (depth 1-8 from top to bottom).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
0

50

Su
cc

es
s R

at
e

(%
)

(a)

Eat Cow (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

25

50

(b)

Collect Drink (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(c)

Wake Up (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(d)

Collect Sapling (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(e)

Collect Wood (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(f)

Defeat Zombie (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

10

(g)

Defeat Skeleton (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(h)

Place Plant (2)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

Su
cc

es
s R

at
e

(%
)

(i)

Place Table (2)

0.0 0.2 0.4 0.6 0.8 1.0
0

2

(j)

Eat Plant (3)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(k)

Make Wood Sword (3)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(l)

Make Wood Pickaxe (3)

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

(m)

Collect Coal (4)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(n)

Collect Stone (4)

0.0 0.2 0.4 0.6 0.8 1.0
0

25

50

(o)

Place Stone (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

25

50

(p)

Place Furnace (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

20

Su
cc

es
s R

at
e

(%
)

Steps (M)
(q)

Make Stone Sword (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

Steps (M)
(r)

Make Stone Pickaxe (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

Steps (M)
(s)

Collect Iron (6)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

Steps (M)
(t)

Make Iron Sword (7)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

Steps (M)
(u)

Make Iron Pickaxe (7)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

Steps (M)
(v)

Collect Diamond (8)

SGRL
PPO

(a) 1M Steps

0 1 2 3 4 5
0

50

100

Su
cc

es
s R

at
e

(%
)

(a)

Eat Cow (1)

0 1 2 3 4 5
0

50

(b)

Collect Drink (1)

0 1 2 3 4 5
0

50

100

(c)

Wake Up (1)

0 1 2 3 4 5
0

50

100

(d)

Collect Sapling (1)

0 1 2 3 4 5
0

50

100

(e)

Collect Wood (1)

0 1 2 3 4 5
0

50

100

(f)

Defeat Zombie (1)

0 1 2 3 4 5
0

20

(g)

Defeat Skeleton (1)

0 1 2 3 4 5
0

50

100

(h)

Place Plant (2)

0 1 2 3 4 5
0

50

100

Su
cc

es
s R

at
e

(%
)

(i)

Place Table (2)

0 1 2 3 4 5
0.0

0.5

(j)

Eat Plant (3)

0 1 2 3 4 5
0

50

100

(k)

Make Wood Sword (3)

0 1 2 3 4 5
0

50

100

(l)

Make Wood Pickaxe (3)

0 1 2 3 4 5
0

25

50

(m)

Collect Coal (4)

0 1 2 3 4 5
0

50

100

(n)

Collect Stone (4)

0 1 2 3 4 5
0

50

(o)

Place Stone (5)

0 1 2 3 4 5
0

50

(p)

Place Furnace (5)

0 1 2 3 4 5
0

50

Su
cc

es
s R

at
e

(%
)

Steps (M)
(q)

Make Stone Sword (5)

0 1 2 3 4 5
0

50

Steps (M)
(r)

Make Stone Pickaxe (5)

0 1 2 3 4 5
0

10

20

Steps (M)
(s)

Collect Iron (6)

0 1 2 3 4 5
0.0

0.5

1.0

Steps (M)
(t)

Make Iron Sword (7)

0 1 2 3 4 5
0

2

Steps (M)
(u)

Make Iron Pickaxe (7)

0 1 2 3 4 5
0.0

0.2

Steps (M)
(v)

Collect Diamond (8)

SGRL
PPO

(b) 5M Steps

Figure 15: Main Results. Success rate curves for all achievements on Crafter within different train-
ing steps. We rank the achievements based on their depth and the importance of unlocking them for
subsequent tasks. Achievements ranked later have greater depth and exert a stronger influence on
subsequent achievements. A more intuitive version is shown in Figure 17.

eat
 co

w

co
lle

ct
dri

nk

wak
e u

p

co
lle

ct
sap

lin
g

co
lle

ct
woo

d

de
fea

t z
om

bie

de
fea

t sk
ele

ton

pla
ce

pla
nt

pla
ce

tab
le

eat
 pl

an
t

mak
e w

oo
d s

word

mak
e w

oo
d p

ick
ax

e

co
lle

ct
co

al

co
lle

ct
sto

ne

pla
ce

sto
ne

pla
ce

fur
na

ce

mak
e s

ton
e s

word

mak
e s

ton
e p

ick
ax

e

co
lle

ct
iro

n

mak
e i

ron
 sw

ord

mak
e i

ron
 pi

ck
ax

e

co
lle

ct
dia

mon
d

0.01

0.1

1

10

100

Su
cc

es
s R

at
e

(%
)

SGRL PPO

(a) 1M Steps

eat
 co

w

co
lle

ct
dri

nk

wak
e u

p

co
lle

ct
sap

lin
g

co
lle

ct
woo

d

de
fea

t z
om

bie

de
fea

t sk
ele

ton

pla
ce

pla
nt

pla
ce

tab
le

eat
 pl

an
t

mak
e w

oo
d s

word

mak
e w

oo
d p

ick
ax

e

co
lle

ct
co

al

co
lle

ct
sto

ne

pla
ce

sto
ne

pla
ce

fur
na

ce

mak
e s

ton
e s

word

mak
e s

ton
e p

ick
ax

e

co
lle

ct
iro

n

mak
e i

ron
 sw

ord

mak
e i

ron
 pi

ck
ax

e

co
lle

ct
dia

mon
d

0.01

0.1

1

10

100

Su
cc

es
s R

at
e

(%
)

SGRL PPO

(b) 5M Steps

Figure 16: Main Results. Success rates across all achievements on Crafter at different training steps.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 2 4
0

50

100

1

Eat Cow

0 2 4

25

50

75

100
Collect Sapling

0 2 4
0

50

100
Wake Up

0 2 4
25

50

75

100
Collect Wood

0 2 4
0

50

100

2

Defeat Zombie

0 2 4

25

50

75

100
Place Plant

0 2 4
0

20

Defeat Skeleton

0 2 4
0

50

100
Place Table

0 2 4

25

50

75

3

Collect Drink

0 2 4
0.00

0.25

0.50

0.75

Eat Plant

0 2 4
0

50

100
Make Wood Sword

0 2 4
0

50

100
Make Wood Pickaxe

4

0 2 4
0

20

40

60

Collect Coal

0 2 4
0

50

100
Collect Stone

0 2 4
0

25

50

75

5

Place Stone

0 2 4
0

25

50

75

Make Stone Sword

0 2 4
0

25

50

75

Place Furnace

0 2 4
0

25

50

75
Make Stone Pickaxe

6

0 2 4
0

10

20

Collect Iron

7

0 2 4
0.0

0.5

1.0

Make Iron Sword

0 2 4
0

1

2

3
Make Iron Pickaxe

8

0 2 4
0.0

0.1

0.2

0.3

Collect Diamond

SGRL
PPO

Figure 17: Main Results. Success rate curves for all achievements on Crafter within 5M steps. Solid
and dashed arrows indicate direct and cross-depth dependencies, respectively. The bottom-left panel
visualizes the full achievement dependency graph, with achievement depth encoded by color (depth
1-8 from top to bottom).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
0

50

Su
cc

es
s R

at
e

(%
)

(a)

Eat Cow (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

25

50

(b)

Collect Drink (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(c)

Wake Up (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(d)

Collect Sapling (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(e)

Collect Wood (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(f)

Defeat Zombie (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

10

(g)

Defeat Skeleton (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(h)

Place Plant (2)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

Su
cc

es
s R

at
e

(%
)

(i)

Place Table (2)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

(j)

Eat Plant (3)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(k)

Make Wood Sword (3)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(l)

Make Wood Pickaxe (3)

0.0 0.2 0.4 0.6 0.8 1.0
0

20

(m)

Collect Coal (4)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(n)

Collect Stone (4)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(o)

Place Stone (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(p)

Place Furnace (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

20

Su
cc

es
s R

at
e

(%
)

Steps (M)
(q)

Make Stone Sword (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

Steps (M)
(r)

Make Stone Pickaxe (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

Steps (M)
(s)

Collect Iron (6)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

Steps (M)
(t)

Make Iron Sword (7)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

Steps (M)
(u)

Make Iron Pickaxe (7)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

Steps (M)
(v)

Collect Diamond (8)

SGRL
SGRL w/ Static-Prun
SGRL w/o Prun
SGRL w/o Priority

(a) 1M Steps

0 1 2 3 4 5
0

50

100

Su
cc

es
s R

at
e

(%
)

(a)

Eat Cow (1)

0 1 2 3 4 5
0

50

(b)

Collect Drink (1)

0 1 2 3 4 5
0

50

100

(c)

Wake Up (1)

0 1 2 3 4 5
0

50

100

(d)

Collect Sapling (1)

0 1 2 3 4 5
0

50

100

(e)

Collect Wood (1)

0 1 2 3 4 5
0

50

100

(f)

Defeat Zombie (1)

0 1 2 3 4 5
0

20

40

(g)

Defeat Skeleton (1)

0 1 2 3 4 5
0

50

100

(h)

Place Plant (2)

0 1 2 3 4 5
0

50

100

Su
cc

es
s R

at
e

(%
)

(i)

Place Table (2)

0 1 2 3 4 5
0.0

0.5

(j)

Eat Plant (3)

0 1 2 3 4 5
0

50

100

(k)

Make Wood Sword (3)

0 1 2 3 4 5
0

50

100

(l)

Make Wood Pickaxe (3)

0 1 2 3 4 5
0

50

(m)

Collect Coal (4)

0 1 2 3 4 5
0

50

100

(n)

Collect Stone (4)

0 1 2 3 4 5
0

50

(o)

Place Stone (5)

0 1 2 3 4 5
0

50

(p)

Place Furnace (5)

0 1 2 3 4 5
0

50

Su
cc

es
s R

at
e

(%
)

Steps (M)
(q)

Make Stone Sword (5)

0 1 2 3 4 5
0

50

Steps (M)
(r)

Make Stone Pickaxe (5)

0 1 2 3 4 5
0

20

40

Steps (M)
(s)

Collect Iron (6)

0 1 2 3 4 5
0.0

0.5

Steps (M)
(t)

Make Iron Sword (7)

0 1 2 3 4 5
0

2

4

Steps (M)
(u)

Make Iron Pickaxe (7)

0 1 2 3 4 5
0.00

0.25

0.50

Steps (M)
(v)

Collect Diamond (8)

SGRL
SGRL w/ Static-Prun
SGRL w/o Prun
SGRL w/o Priority

(b) 5M Steps

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Su
cc

es
s R

at
e

(%
)

(a)

Eat Cow (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

(b)

Collect Drink (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(c)

Wake Up (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(d)

Collect Sapling (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(e)

Collect Wood (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(f)

Defeat Zombie (1)

0 1 2 3 4 5 6 7 8 9 10
0

20

40

(g)

Defeat Skeleton (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(h)

Place Plant (2)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Su
cc

es
s R

at
e

(%
)

(i)

Place Table (2)

0 1 2 3 4 5 6 7 8 9 10
0.0

0.5

(j)

Eat Plant (3)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(k)

Make Wood Sword (3)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(l)

Make Wood Pickaxe (3)

0 1 2 3 4 5 6 7 8 9 10
0

50

(m)

Collect Coal (4)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(n)

Collect Stone (4)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(o)

Place Stone (5)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(p)

Place Furnace (5)

0 1 2 3 4 5 6 7 8 9 10
0

50

Su
cc

es
s R

at
e

(%
)

Steps (M)
(q)

Make Stone Sword (5)

0 1 2 3 4 5 6 7 8 9 10
0

50

Steps (M)
(r)

Make Stone Pickaxe (5)

0 1 2 3 4 5 6 7 8 9 10
0

25

50

Steps (M)
(s)

Collect Iron (6)

0 1 2 3 4 5 6 7 8 9 10
0

10

Steps (M)
(t)

Make Iron Sword (7)

0 1 2 3 4 5 6 7 8 9 10
0

20

Steps (M)
(u)

Make Iron Pickaxe (7)

0 1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

Steps (M)
(v)

Collect Diamond (8)

SGRL
SGRL w/ Static-Prun
SGRL w/o Prun
SGRL w/o Priority

(c) 10M Steps

Figure 18: Ablation Studies. Success rate curves for all achievements on Craftax-Classic within
different training steps. We rank the achievements based on their depth and the importance of
unlocking them for subsequent tasks. Achievements ranked later have greater depth and exert a
stronger influence on subsequent achievements. A more intuitive version is shown in Figure 20.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

eat
 co

w

co
lle

ct
dri

nk

wak
e u

p

co
lle

ct
sap

lin
g

co
lle

ct
woo

d

de
fea

t z
om

bie

de
fea

t sk
ele

ton

pla
ce

pla
nt

pla
ce

tab
le

eat
 pl

an
t

mak
e w

oo
d s

word

mak
e w

oo
d p

ick
ax

e

co
lle

ct
co

al

co
lle

ct
sto

ne

pla
ce

sto
ne

pla
ce

fur
na

ce

mak
e s

ton
e s

word

mak
e s

ton
e p

ick
ax

e

co
lle

ct
iro

n

mak
e i

ron
 sw

ord

mak
e i

ron
 pi

ck
ax

e

co
lle

ct
dia

mon
d

0.01

0.1

1

10

100

Su
cc

es
s R

at
e

(%
)

SGRL SGRL w/ Static-Prun SGRL w/o Prun SGRL w/o Priority

(a) 1M Steps

eat
 co

w

co
lle

ct
dri

nk

wak
e u

p

co
lle

ct
sap

lin
g

co
lle

ct
woo

d

de
fea

t z
om

bie

de
fea

t sk
ele

ton

pla
ce

pla
nt

pla
ce

tab
le

eat
 pl

an
t

mak
e w

oo
d s

word

mak
e w

oo
d p

ick
ax

e

co
lle

ct
co

al

co
lle

ct
sto

ne

pla
ce

sto
ne

pla
ce

fur
na

ce

mak
e s

ton
e s

word

mak
e s

ton
e p

ick
ax

e

co
lle

ct
iro

n

mak
e i

ron
 sw

ord

mak
e i

ron
 pi

ck
ax

e

co
lle

ct
dia

mon
d

0.01

0.1

1

10

100

Su
cc

es
s R

at
e

(%
)

SGRL SGRL w/ Static-Prun SGRL w/o Prun SGRL w/o Priority

(b) 5M Steps

eat
 co

w

co
lle

ct
dri

nk

wak
e u

p

co
lle

ct
sap

lin
g

co
lle

ct
woo

d

de
fea

t z
om

bie

de
fea

t sk
ele

ton

pla
ce

pla
nt

pla
ce

tab
le

eat
 pl

an
t

mak
e w

oo
d s

word

mak
e w

oo
d p

ick
ax

e

co
lle

ct
co

al

co
lle

ct
sto

ne

pla
ce

sto
ne

pla
ce

fur
na

ce

mak
e s

ton
e s

word

mak
e s

ton
e p

ick
ax

e

co
lle

ct
iro

n

mak
e i

ron
 sw

ord

mak
e i

ron
 pi

ck
ax

e

co
lle

ct
dia

mon
d

0.01

0.1

1

10

100

Su
cc

es
s R

at
e

(%
)

SGRL SGRL w/ Static-Prun SGRL w/o Prun SGRL w/o Priority

(c) 10M Steps

Figure 19: Ablation Studies. Success rates across all achievements on Craftax-Classic at different
training steps.

Method Score(%) Reward Achievement Depth

SGRL 33.8± 1.5 13.0± 0.3 8
SGRL w/ Static-Prun 34.2± 1.7 12.9± 0.4 8
SGRL w/o Prun 30.9± 1.3 12.7± 0.2 7
SGRL w/o Priority 30.4± 0.9 12.3± 0.5 7

Table 5: Ablation Studies. Performance of SGRL and ablation methods on Craftax-Classic at 5M
steps.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0.0 2.5 5.0 7.5 10.0
0

50

100

1

Eat Cow

0.0 2.5 5.0 7.5 10.0
40

60

80

100
Collect Sapling

0.0 2.5 5.0 7.5 10.0

25

50

75

100
Wake Up

0.0 2.5 5.0 7.5 10.0
40

60

80

100
Collect Wood

0.0 2.5 5.0 7.5 10.0
0

50

100

2

Defeat Zombie

0.0 2.5 5.0 7.5 10.0
40

60

80

100
Place Plant

0.0 2.5 5.0 7.5 10.0
0

20

40

Defeat Skeleton

0.0 2.5 5.0 7.5 10.0
0

50

100
Place Table

0.0 2.5 5.0 7.5 10.0

25

50

75

3

Collect Drink

0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

Eat Plant

0.0 2.5 5.0 7.5 10.0
0

50

100
Make Wood Sword

0.0 2.5 5.0 7.5 10.0
0

50

100
Make Wood Pickaxe

4

0.0 2.5 5.0 7.5 10.0
0

25

50

75

Collect Coal

0.0 2.5 5.0 7.5 10.0
0

50

100
Collect Stone

0.0 2.5 5.0 7.5 10.0
0

50

100

5

Place Stone

0.0 2.5 5.0 7.5 10.0
0

50

Make Stone Sword

0.0 2.5 5.0 7.5 10.0
0

50

100
Place Furnace

0.0 2.5 5.0 7.5 10.0
0

25

50

75

Make Stone Pickaxe

6

0.0 2.5 5.0 7.5 10.0
0

20

40

60

Collect Iron

7

0.0 2.5 5.0 7.5 10.0
0

5

10

15
Make Iron Sword

0.0 2.5 5.0 7.5 10.0
0

10

20

30

Make Iron Pickaxe

8

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0
Collect Diamond

SGRL
SGRL w/ Static-Prun
SGRL w/o Prun
SGRL w/o Priority

Figure 20: Ablation Studies. Success rate curves for all achievements on Craftax-Classic within
5M steps. Solid and dashed arrows indicate direct and cross-depth dependencies, respectively. The
bottom-left panel visualizes the full achievement dependency graph, with achievement depth en-
coded by color (depth 1-8 from top to bottom).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10
Explore the environment

Find food sources
Drink water

Collect water
Sleep

Collect sapling for placing plant
Collect wood

Collect wood for table
Place crafting table

Harvest ripe plant for food
Collect wood for wood pickaxe

Collect wood for wood sword
Avoid zombie until better armed

Defeat zombie
Avoid enemies to recover health

Place plant
Craft wood sword

Craft wood pickaxe
Collect coal
Place stone

Collect wood for stone sword
Collect stone for stone sword

Collect wood for stone pickaxe
Collect stone

Collect stone for furnace
Place furnace

Collect stone for stone pickaxe
Craft stone sword

Craft stone pickaxe
Collect wood for iron pickaxe
Collect stone for iron pickaxe

Collect coal for iron pickaxe
Collect iron

Collect wood for iron sword
Collect stone for iron sword

Collect coal for iron sword
Collect iron for iron sword

Collect iron for iron pickaxe
Craft iron sword

Craft iron pickaxe
Collect diamond

Go
al

SGRL

0 1 2 3 4 5 6 7 8 9 10
Explore the environment

Find food sources
Drink water

Collect water
Sleep

Collect sapling for placing plant
Collect wood

Collect wood for table
Place crafting table

Harvest ripe plant for food
Collect wood for wood pickaxe

Collect wood for wood sword
Avoid zombie until better armed

Defeat zombie
Avoid enemies to recover health

Place plant
Craft wood sword

Craft wood pickaxe
Collect coal
Place stone

Collect wood for stone sword
Collect stone for stone sword

Collect wood for stone pickaxe
Collect stone

Collect stone for furnace
Place furnace

Collect stone for stone pickaxe
Craft stone sword

Craft stone pickaxe
Collect wood for iron pickaxe
Collect stone for iron pickaxe

Collect coal for iron pickaxe
Collect iron

Collect wood for iron sword
Collect stone for iron sword

Collect coal for iron sword
Collect iron for iron sword

Collect iron for iron pickaxe
Craft iron sword

Craft iron pickaxe
Collect diamond

Go
al

SGRL w/o Prun

0 1 2 3 4 5 6 7 8 9 10
Explore the environment

Find food sources
Drink water

Collect water
Sleep

Collect sapling for placing plant
Collect wood

Collect wood for table
Place crafting table

Harvest ripe plant for food
Collect wood for wood pickaxe

Collect wood for wood sword
Avoid zombie until better armed

Defeat zombie
Avoid enemies to recover health

Place plant
Craft wood sword

Craft wood pickaxe
Collect coal
Place stone

Collect wood for stone sword
Collect stone for stone sword

Collect wood for stone pickaxe
Collect stone

Collect stone for furnace
Place furnace

Collect stone for stone pickaxe
Craft stone sword

Craft stone pickaxe
Collect wood for iron pickaxe
Collect stone for iron pickaxe

Collect coal for iron pickaxe
Collect iron

Collect wood for iron sword
Collect stone for iron sword

Collect coal for iron sword
Collect iron for iron sword

Collect iron for iron pickaxe
Craft iron sword

Craft iron pickaxe
Collect diamond

Go
al

SGRL w/ Static-Prun

0 1 2 3 4 5 6 7 8 9 10
Steps (M)

Explore the environment
Find food sources

Drink water
Collect water

Sleep
Collect sapling for placing plant

Collect wood
Collect wood for table

Place crafting table
Harvest ripe plant for food

Collect wood for wood pickaxe
Collect wood for wood sword

Avoid zombie until better armed
Defeat zombie

Avoid enemies to recover health
Place plant

Craft wood sword
Craft wood pickaxe

Collect coal
Place stone

Collect wood for stone sword
Collect stone for stone sword

Collect wood for stone pickaxe
Collect stone

Collect stone for furnace
Place furnace

Collect stone for stone pickaxe
Craft stone sword

Craft stone pickaxe
Collect wood for iron pickaxe
Collect stone for iron pickaxe

Collect coal for iron pickaxe
Collect iron

Collect wood for iron sword
Collect stone for iron sword

Collect coal for iron sword
Collect iron for iron sword

Collect iron for iron pickaxe
Craft iron sword

Craft iron pickaxe
Collect diamond

Go
al

SGRL w/o Priority

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 21: Ablation Studies. Heatmap of the goals with priority weights generated by the structured
goal planner on Craftax-Classic within 10M steps. The vertical axis on the left shows goals ranked
from low to high, while the right axis (ranging from 0 to 0.8) indicates the corresponding weights.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
0

50

Su
cc

es
s R

at
e

(%
)

(a)

Eat Cow (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

25

50

(b)

Collect Drink (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(c)

Wake Up (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(d)

Collect Sapling (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(e)

Collect Wood (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(f)

Defeat Zombie (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

10

(g)

Defeat Skeleton (1)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(h)

Place Plant (2)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

Su
cc

es
s R

at
e

(%
)

(i)

Place Table (2)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

(j)

Eat Plant (3)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(k)

Make Wood Sword (3)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

(l)

Make Wood Pickaxe (3)

0.0 0.2 0.4 0.6 0.8 1.0
0

20

(m)

Collect Coal (4)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(n)

Collect Stone (4)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(o)

Place Stone (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

(p)

Place Furnace (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

20

Su
cc

es
s R

at
e

(%
)

Steps (M)
(q)

Make Stone Sword (5)

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

Steps (M)
(r)

Make Stone Pickaxe (5)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.5

5.0

Steps (M)
(s)

Collect Iron (6)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

Steps (M)
(t)

Make Iron Sword (7)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

Steps (M)
(u)

Make Iron Pickaxe (7)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

Steps (M)
(v)

Collect Diamond (8)

SGRL w/ 3-Stage Cos
SGRL w/ 3-Stage Linear
SGRL w/ Linear Ann
SGRL w/ Exp Ann

(a) 1M Steps

0 1 2 3 4 5
0

50

100

Su
cc

es
s R

at
e

(%
)

(a)

Eat Cow (1)

0 1 2 3 4 5
0

50

(b)

Collect Drink (1)

0 1 2 3 4 5
0

50

100

(c)

Wake Up (1)

0 1 2 3 4 5
0

50

100

(d)

Collect Sapling (1)

0 1 2 3 4 5
0

50

100

(e)

Collect Wood (1)

0 1 2 3 4 5
0

50

100

(f)

Defeat Zombie (1)

0 1 2 3 4 5
0

20

(g)

Defeat Skeleton (1)

0 1 2 3 4 5
0

50

100

(h)

Place Plant (2)

0 1 2 3 4 5
0

50

100

Su
cc

es
s R

at
e

(%
)

(i)

Place Table (2)

0 1 2 3 4 5
0.0

0.5

(j)

Eat Plant (3)

0 1 2 3 4 5
0

50

100

(k)

Make Wood Sword (3)

0 1 2 3 4 5
0

50

100

(l)

Make Wood Pickaxe (3)

0 1 2 3 4 5
0

25

50

(m)

Collect Coal (4)

0 1 2 3 4 5
0

50

100

(n)

Collect Stone (4)

0 1 2 3 4 5
0

50

(o)

Place Stone (5)

0 1 2 3 4 5
0

50

(p)

Place Furnace (5)

0 1 2 3 4 5
0

50

Su
cc

es
s R

at
e

(%
)

Steps (M)
(q)

Make Stone Sword (5)

0 1 2 3 4 5
0

50

Steps (M)
(r)

Make Stone Pickaxe (5)

0 1 2 3 4 5
0

20

Steps (M)
(s)

Collect Iron (6)

0 1 2 3 4 5
0.0

0.5

1.0

Steps (M)
(t)

Make Iron Sword (7)

0 1 2 3 4 5
0

2

4

Steps (M)
(u)

Make Iron Pickaxe (7)

0 1 2 3 4 5
0.00

0.25

0.50

Steps (M)
(v)

Collect Diamond (8)

SGRL w/ 3-Stage Cos
SGRL w/ 3-Stage Linear
SGRL w/ Linear Ann
SGRL w/ Exp Ann

(b) 5M Steps

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Su
cc

es
s R

at
e

(%
)

(a)

Eat Cow (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

(b)

Collect Drink (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(c)

Wake Up (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(d)

Collect Sapling (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(e)

Collect Wood (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(f)

Defeat Zombie (1)

0 1 2 3 4 5 6 7 8 9 10
0

25

50

(g)

Defeat Skeleton (1)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(h)

Place Plant (2)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Su
cc

es
s R

at
e

(%
)

(i)

Place Table (2)

0 1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

(j)

Eat Plant (3)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(k)

Make Wood Sword (3)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(l)

Make Wood Pickaxe (3)

0 1 2 3 4 5 6 7 8 9 10
0

50

(m)

Collect Coal (4)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(n)

Collect Stone (4)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(o)

Place Stone (5)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

(p)

Place Furnace (5)

0 1 2 3 4 5 6 7 8 9 10
0

50

Su
cc

es
s R

at
e

(%
)

Steps (M)
(q)

Make Stone Sword (5)

0 1 2 3 4 5 6 7 8 9 10
0

50

Steps (M)
(r)

Make Stone Pickaxe (5)

0 1 2 3 4 5 6 7 8 9 10
0

25

50

Steps (M)
(s)

Collect Iron (6)

0 1 2 3 4 5 6 7 8 9 10
0

10

20

Steps (M)
(t)

Make Iron Sword (7)

0 1 2 3 4 5 6 7 8 9 10
0

20

Steps (M)
(u)

Make Iron Pickaxe (7)

0 1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

Steps (M)
(v)

Collect Diamond (8)

SGRL w/ 3-Stage Cos
SGRL w/ 3-Stage Linear
SGRL w/ Linear Ann
SGRL w/ Exp Ann

(c) 10M Steps

Figure 22: Mask Comparison. Success rate curves for all achievements on Craftax-Classic within
different training steps. We rank the achievements based on their depth and the importance of
unlocking them for subsequent tasks. Achievements ranked later have greater depth and exert a
stronger influence on subsequent achievements. A more intuitive version is shown in Figure 24.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

eat
 co

w

co
lle

ct
dri

nk

wak
e u

p

co
lle

ct
sap

lin
g

co
lle

ct
woo

d

de
fea

t z
om

bie

de
fea

t sk
ele

ton

pla
ce

pla
nt

pla
ce

tab
le

eat
 pl

an
t

mak
e w

oo
d s

word

mak
e w

oo
d p

ick
ax

e

co
lle

ct
co

al

co
lle

ct
sto

ne

pla
ce

sto
ne

pla
ce

fur
na

ce

mak
e s

ton
e s

word

mak
e s

ton
e p

ick
ax

e

co
lle

ct
iro

n

mak
e i

ron
 sw

ord

mak
e i

ron
 pi

ck
ax

e

co
lle

ct
dia

mon
d

0.01

0.1

1

10

100

Su
cc

es
s R

at
e

(%
)

SGRL w/ 3-Stage Cos SGRL w/ 3-Stage Linear SGRL w/ Linear Ann SGRL w/ Exp Ann

(a) 1M Steps

eat
 co

w

co
lle

ct
dri

nk

wak
e u

p

co
lle

ct
sap

lin
g

co
lle

ct
woo

d

de
fea

t z
om

bie

de
fea

t sk
ele

ton

pla
ce

pla
nt

pla
ce

tab
le

eat
 pl

an
t

mak
e w

oo
d s

word

mak
e w

oo
d p

ick
ax

e

co
lle

ct
co

al

co
lle

ct
sto

ne

pla
ce

sto
ne

pla
ce

fur
na

ce

mak
e s

ton
e s

word

mak
e s

ton
e p

ick
ax

e

co
lle

ct
iro

n

mak
e i

ron
 sw

ord

mak
e i

ron
 pi

ck
ax

e

co
lle

ct
dia

mon
d

0.01

0.1

1

10

100

Su
cc

es
s R

at
e

(%
)

SGRL w/ 3-Stage Cos SGRL w/ 3-Stage Linear SGRL w/ Linear Ann SGRL w/ Exp Ann

(b) 5M Steps

eat
 co

w

co
lle

ct
dri

nk

wak
e u

p

co
lle

ct
sap

lin
g

co
lle

ct
woo

d

de
fea

t z
om

bie

de
fea

t sk
ele

ton

pla
ce

pla
nt

pla
ce

tab
le

eat
 pl

an
t

mak
e w

oo
d s

word

mak
e w

oo
d p

ick
ax

e

co
lle

ct
co

al

co
lle

ct
sto

ne

pla
ce

sto
ne

pla
ce

fur
na

ce

mak
e s

ton
e s

word

mak
e s

ton
e p

ick
ax

e

co
lle

ct
iro

n

mak
e i

ron
 sw

ord

mak
e i

ron
 pi

ck
ax

e

co
lle

ct
dia

mon
d

0.01

0.1

1

10

100

Su
cc

es
s R

at
e

(%
)

SGRL w/ 3-Stage Cos SGRL w/ 3-Stage Linear SGRL w/ Linear Ann SGRL w/ Exp Ann

(c) 10M Steps

Figure 23: Mask Comparison. Success rates across all achievements on Craftax-Classic at different
training steps.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

0.0 2.5 5.0 7.5 10.0
0

50

100

1

Eat Cow

0.0 2.5 5.0 7.5 10.0
40

60

80

100
Collect Sapling

0.0 2.5 5.0 7.5 10.0

25

50

75

100
Wake Up

0.0 2.5 5.0 7.5 10.0
40

60

80

100
Collect Wood

0.0 2.5 5.0 7.5 10.0
0

50

100

2

Defeat Zombie

0.0 2.5 5.0 7.5 10.0
40

60

80

100
Place Plant

0.0 2.5 5.0 7.5 10.0
0

20

40

60
Defeat Skeleton

0.0 2.5 5.0 7.5 10.0
0

50

100
Place Table

0.0 2.5 5.0 7.5 10.0

25

50

75

3

Collect Drink

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0
Eat Plant

0.0 2.5 5.0 7.5 10.0
0

50

100
Make Wood Sword

0.0 2.5 5.0 7.5 10.0
0

50

100
Make Wood Pickaxe

4

0.0 2.5 5.0 7.5 10.0
0

25

50

75

Collect Coal

0.0 2.5 5.0 7.5 10.0
0

50

100
Collect Stone

0.0 2.5 5.0 7.5 10.0
0

50

100

5

Place Stone

0.0 2.5 5.0 7.5 10.0
0

50

Make Stone Sword

0.0 2.5 5.0 7.5 10.0
0

50

100
Place Furnace

0.0 2.5 5.0 7.5 10.0
0

25

50

75

Make Stone Pickaxe

6

0.0 2.5 5.0 7.5 10.0
0

20

40

60

Collect Iron

7

0.0 2.5 5.0 7.5 10.0
0

10

20

Make Iron Sword

0.0 2.5 5.0 7.5 10.0
0

10

20

30

Make Iron Pickaxe

8

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0
Collect Diamond

SGRL w/ 3-Stage Cos
SGRL w/ 3-Stage Linear
SGRL w/ Linear Ann
SGRL w/ Exp Ann

Figure 24: Mask Comparison. Success rate curves for all achievements on Craftax-Classic within
5M steps. Solid and dashed arrows indicate direct and cross-depth dependencies, respectively. The
bottom-left panel visualizes the full achievement dependency graph, with achievement depth en-
coded by color (depth 1-8 from top to bottom).

35

	Introduction
	Preliminary
	Goal-Conditioned Reinforcement Learning
	LLM as Goal Planner

	Method
	Structured Goal Planner
	Goal-Conditioned Action Pruner
	RL Agent

	Related Works
	Open-World Environments
	LLM-Enhanced RL

	Experiments
	Experimental Setup and Evaluation Metrics
	Environment
	Compute Resources

	Main Results
	Ablation Study
	Ablation Variants
	Ablation Analysis

	Conclusion
	Environments and Evaluation Metrics
	Environments
	Evaluation Metrics

	Implementation Details
	LLM
	Text Embedding
	Prompt Design
	Prompt Design for Structured Goal Planner
	Prompt Design for Goal-Conditioned Action Pruner

	PPO Algorithm

	Additional Preliminary Results
	Additional Main Results
	Additional Ablation Experiments
	Performance of Ablation Algorithm
	Heatmap of Goal with Priority Weights

	Additional Pruner Annealing Strategies and Implementation
	Pruner Annealing Strategies
	Experimental Results

	Use of Large Language Models

