Under review as a conference paper at ICLR 2026

GOAL-GUIDED EFFICIENT EXPLORATION VIA LARGE
LLANGUAGE MODEL IN REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world decision-making tasks typically occur in complex and open environ-
ments, posing significant challenges to reinforcement learning (RL) agents’ explo-
ration efficiency and long-horizon planning capabilities. A promising approach is
LLM-enhanced RL, which leverages the rich prior knowledge and strong plan-
ning capabilities of LLMs to guide RL agents in efficient exploration. How-
ever, existing methods mostly rely on frequent and costly LLM invocations and
suffer from limited performance due to the semantic mismatch. In this paper,
we introduce a Structured Goal-guided Reinforcement Learning (SGRL) method
that integrates a structured goal planner and a goal-conditioned action pruner to
guide RL agents toward efficient exploration. Specifically, the structured goal
planner utilizes LLMs to generate a reusable, structured function for goal genera-
tion, in which goals are prioritized. Furthermore, by utilizing LLMs to determine
goals’ priority weights, it dynamically generates forward-looking goals to guide
the agent’s policy toward more promising decision-making trajectories. The goal-
conditioned action pruner employs an action masking mechanism that filters out
actions misaligned with the current goal, thereby constraining the RL agent to
select goal-consistent policies. We evaluate the proposed method on Crafter and
Craftax-Classic, and experimental results demonstrate that SGRL achieves supe-
rior performance compared to existing state-of-the-art methods.

1 INTRODUCTION

Reinforcement learning (RL) has achieved impressive success in addressing challenging decision-
making tasks across a wide range of domains, such as Atari games (Hessel et al.,[2018;|Vinyals et al.,
2019)), robotics (Brunke et al.| 2022; Haarnoja et al.,2024)), and natural language processing (Pad-
makumar & Mooney, 2021; Ouyang et al.,|2022). However, these remarkable successes have mostly
occurred in environments characterized by closed, predefined tasks with clear goals and immediate
feedback, which fail to capture the complexity and dynamics of the real world (Team et al., 2021}
Cai et al., [2023). In recent years, increasing attention has been devoted to decision-making in open-
world environments such as Minecraft (Fan et al.| 2022; [Lin et al.l [2022) and Crafter (Hafner, [2022}
Moon et al., 2023)), which pose significant challenges in generalization, deep exploration, long-term
decision-making, and reasoning. Consequently, solving decision-making problems in open-world
environments is widely recognized as a pressing and significant challenge.

Recently, LLM-enhanced RL has been regarded as a promising direction for addressing decision-
making challenges in open-world environments (Liu et al., 2023} [Zhou et al.,|2024; He et al., 2024;
Schoepp et al.l [2025) due to the remarkable capabilities of LLMs in various decision-making and
reasoning tasks. A variety of methods, such as using LLMs as decision-makers (Shinn et al., [2023
Carta et al., 2023} |(Gaven et al.l [2024) or as skill planners (Ichter et al. 2022} Zhang et al., 2023
Lin et al,, |2023; [Yang et al.l 2025)), have emerged and significantly improved sample efficiency
and generalization, thereby enhancing performance. However, these methods still struggle to fully
unlock and leverage the planning capabilities of LLMs, as they either force the models to perform
fine-grained planning (an area where they are not particularly adept) or fail to effectively coordinate
the relationship between the LLM and RL agent components. In order to harness the capabilities
of LLMs, recent studies have explored a more direct and effective approach that uses an LLM to
generate high-level goals for guiding exploration in the RL agent (Du et al., [2023; Zheng et al.,
2024; Shukla et al.,|2024; |[Zhang & Lul|[2024). To mention a few, ELLM (Du et al.,|2023)) leverages
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Figure 1: Success rate curves for 8 main achievements on Craftax-Classic, ordered from left to right
by achievement depth from 1 to 8. A complete and more intuitive version is shown in Figure [I0] of
the Appendix [C}

a pre-trained LLM to generate potential exploration goals, guiding the RL agent to explore towards
potentially useful targets. AdaRefiner (Zhang & Lul 2024)) iteratively refines task understanding
through feedback from the RL agent, thereby improving the quality of LLM-generated goals and
fostering more effective collaboration between LLM and RL agent. However, due to the reliance on
frequent and intensive LLM invocations, these methods suffer from low practical utility and poor
computational efficiency.

Inspired by Ma et al.| (2024); [Xie et al.| (2024), in which LLMs generate reward-shaping code to
provide immediate feedback to RL agents and achieve strong performance on several benchmarks,
we hypothesize that structured, goal-specifying code can also serve as a stable and executable inter-
face between LLMs and RL agents, thereby enabling effective long-horizon exploration. Thus, we
conducted preliminary experiments based on the simple idea of leveraging LLM-generated code to
guide the exploration of RL agents, which we term CodeGoal. Figure |l| presents the success rate of
CodeGoal in comparison with PPO, as well as ELLM (Du et al., 2023%pand AdaRefiner (Zhang &
Lu, 2024ﬂ on the Crafter-Classic benchmark. From Figure |1} we can observe that compared with
ELLM (Du et al.; 2023)), AdaRefiner (Zhang & Lu,2024)), and PPO, CodeGoal achieves competitive
success rates when unlocking key achievements, demonstrating that using code-generated goals to
guide RL agents is a viable approach.

It is worth noting that the experimental results in Figure [T also reveal two key limitations: (1) the
agent fails to quickly unlock deeper achievements such as Collect Diamond; (2) integrating textual
goals into the RL agent’s decision-making process yields limited immediate benefits, evidenced
by the apparent ineffectiveness of goal guidance within the first 2M steps. This motivates us to
propose a novel LLM-based goal-conditioned RL approach, which first leverages LLMs to generate
a parameterized, well-structured, and reusable goal-generation function, and then utilizes the LLMs
to optimize both the parameters of this function and the goal-conditioned policy constraints, thereby
encouraging RL agents to explore effectively in open-world environments.

The main contributions are summarized as follows:

* We propose Structured Goal-guided Reinforcement Learning (SGRL), an LLM-enhanced
RL method that constructs a structured goal-generation function and dynamically adjusts
both goal priority weights and goal-conditioned action constraints, thereby significantly im-
proving the RL agent’s exploration efficiency and overall performance, while maintaining
low LLM invocation frequency and minimal input token consumption per call.

* We develop a structured goal planner that leverages the LLM to construct a reusable, struc-
tured goal-generating function that selects forward-looking goals and dynamically adjusts
their priority weights during training. Furthermore, a goal-conditioned action pruner is de-
signed to filter out actions misaligned with the goal, thereby constraining agents to select
goal-consistent policies.

» Extensive experimental results in the challenging open-world environments Crafter and
Craftax-Classic demonstrate that SGRL consistently outperforms or matches existing
LLM-enhanced RL methods across multiple metrics, including success rate, total score,
cumulative reward, and achievement depth.

lusing DeepSeek-V3 model as goal generator, queried every 200 steps under training time and cost con-
straints.

2using DeepSeek-V3 model as both adapter and decision LLM, queried every 200 steps under training time
and cost constraints.
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Figure 2: (a) Structured Goal Planner: generates goals with priority weights based on environment
states and distilled task knowledge; (b) Goal-Conditioned Action Pruner: filters invalid or irrelevant
actions based on current goals; (c) The overall framework of SGRL.

2 PRELIMINARY

2.1 GOAL-CONDITIONED REINFORCEMENT LEARNING

A goal-conditioned reinforcement learning (GCRL) (Liu et al., [2022)) problem can be formulated
as a goal-augmented MDP, denoted as a tuple < S,.A,G,py, ¢, P, 1, po,y >, where S, A and G
denote the state space, action space and goal space, respectively; p, and pg denote the desired goal
distribution and initial state distribution, respectively; ¢ : S — G is a mapping function that maps
the state to a specific goal; P : S x.A — S represents the state transition function; r : SxAxG — R
is the reward function; and = is the discount factor.

At each timestep ¢, given the state s; and the desired goal g, the agent takes an action a; according
to its policy m(a; | st,g) to interact with the environment and then receives the next state s;y1
and reward ;1. The agent’s goal is to maximize the expected sum of discounted rewards over the
state-goal distribution:

J(m) = Eg~pg.50~po,

ag~m(-|st,g)

> At (s g.an)| - )
t

2.2 LLM AS GOAL PLANNER

Formally, given a natural language task description w € §2, a sequence of goals is generated by
an LLM-based goal planner. At each planning step h, the LLM takes the state-goal history 7, =
{s1,91,---,8h—1,9n—1, Sn} as input and generates the next goal:

gn ~ WLLM(' | Thaw)7

where the goal gj, is expressed in natural language and belongs to the language space £, which con-
tains possible linguistic expressions such as sentences or phrases describing actionable intentions.
For practical purposes, a task-specific subset G C £ is often considered to restrict the goal space to
valid and executable instructions. Subsequently, the agent choose a policy 7 conditioned on both
the current environment state s, € S and the goal gj,:

ap ~ ’/T(' | Shagh)a

where a;, € A denotes the agent’s action at time step h.
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3 METHOD

This section develops a novel LLM-enhanced RL method called Structured Goal-guided Reinforce-
ment Learning (SGRL). Figure [2] (c) shows an overview of the SGRL framework, which consists
of three key components: (1) a structured goal planner, which receives textual observations from
the environment and provides forward-looking goals; (2) a goal-conditioned action pruner, which
takes the goal from the structured goal planner as input and generates an action mask; and (3) an RL
agent, which executes actions according to a policy conditioned on the current environmental state,
goal and most recent reward. The details are introduced in the next subsections.

3.1 STRUCTURED GOAL PLANNER

The core task of the structured goal planner is to generate the goal function and optimize the goal
priority weights by LLMs through task-specific prompting, as illustrated in Figure[2](a). Specifically,
given a basic task introduction, its rules, and a few code examples, the LLM generates an executable,
structured function for goal generation according to task-specific and environmental state-related
prompting. Then, in just a few iterations and optimizations, we can obtain a reusable, structured
goal generation function with priority weights, which can provide forward-looking goals to guide
RL agent exploration efficiency. Furthermore, in actual execution, the structured goal planner adjusts
the weights of goals based on the agent’s unlocked achievements at different training stages.

Formally, at each timestep ¢, the structured goal planner constructs a function { (g, wi)}r_, ~ ¢(s;),
which maps the current state s, € S to a set of k candidate goals g; with priority weights w,. Here,
gl € G denotes the i-th goal from the goal space G, and w! € [0,1] is the normalized priority
value for that goal, satisfying Zle w,; = 1. These priority values serve to rank candidate goals to
guide the agent’s exploration toward the most relevant and achievable objectives. The goal planning
function ¢(s) is constructed directly by LLM with task-specific and current state-related prompts,
unlike the method in which the LLM as a goal planner that generates goals g; ~ mrom(- | 7¢,w)
without explicitly defining a reusable goal-generating function. It is worth noting that the structured
goal generation method can provide semantically forward-looking goals to improve the RL agent’s
exploration efficiency, while maintaining a low LLM invocation frequency and minimal input token
consumption per call.

3.2 GOAL-CONDITIONED ACTION PRUNER

The core task of the goal-conditioned action pruner is to constrain the agent to select goal-consistent
policies, as shown in Figure 2] (b). Specifically, we first leverage the LLM with rich prior knowledge
to filter from the candidate action set those actions aligned with the current goal. This filtering is
implemented via a goal-action masking mechanism. In practice, we construct a goal-action mask
bank to store goal-mask pairs, eliminating redundant LLM queries when the same goal reappears.

Formally, at each timestep ¢, the action pruner produces a binary mask m(g;) € 0, 141 base on
the candidate goals {g}, ..., gF}, which are obtained from the LLM or the goal-action mask bank.
Each element of m(g; ) indicates whether the action is relevant to the goal g¢. Then, the action pruner
extracts actions relevant to any given goal g; in an element-wise fashion as follows:

—1,..x m(g}). )

However, it is worth noting that strictly adhering to goal guidance at all times is not always op-
timal, especially when using a general-purpose LLM without fine-tuning or domain-specific ex-
pertise. Therefore, we introduce a masking coefficient that grants the RL agent some autonomy
in decision-making. Specifically, we design a three-phase cosine annealing schedule for the ex-
ploration coefficient £ € [0, 1], which gradually adjusts the strength of action masking throughout
training. Specifically:

5 (L4cos(gig-m), 0<t<04T
§(t) =4 1(1—cos(5%4L 7)), 04T <t<08T . 3)
1.0, t>0.8T
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Then, the coefficient ¢ is used to stochastically relax the mask via a Bernoulli sampling mechanism:
M’ = max (M7, Bernoulli(¢ - (1 — M7))), (4)

where MY is the the j —th element of M, j = 1,...,|.A|. Equation (4) allows masked-out actions to
be sampled with a small probability, thereby mitigating policy rigidity caused by inaccurate masks or
shifts in environmental dynamics. Notably, we provide the performance comparison of algorithms
with different masking strategies in Appendix [F]

3.3 RL AGENT

In this subsection, we introduce how the RL agent makes decisions based on its current state, as well
as goals and action mask constraints.

First, the goal set with priority weights {(g¢,w?)}%_; is encoded into a goal embedding vector g™

via the encoder network. The embedding vector ¢gé™ is concatenated with the state s; to form an

augmented state [s;; g™], which serves as the input to the policy network 7y (- | s¢, gs™). Then,
based on the action mask M, the raw logits output can be obtained to enforce action feasibility:

logits = actor_logits @ M + (1 — M) - (=C), )
where ® denotes element-wise multiplication, and C' > 0 is a sufficiently large constant (e.g., 10%)
that suppresses the logits of invalid actions to near negative infinity.

In practice, the policy g (a; | s¢, g™) of the RL agent is updated using the PPO algorithm (Schul-
man et al., 2017) with state augmentation by optimizing the following objective:

emb emb
Lr=F , jwp |mn(0lo0d™) 5 o (<'9> a1+ ) i
ot i Tola(at | s¢, g5™) Tola(at | s¢, g5™)

as~Toa(+]st,97
st+1~P(|s¢,a¢)

(6)
where A is the estimated advantage function, € is the clipping parameter, and D denotes the replay
buffer or on-policy rollout distribution. The mask M affects both the behavior policy myq and the
updated policy 7y, ensuring consistency between sampling and optimization.

4 RELATED WORKS

4.1 OPEN-WORLD ENVIRONMENTS

Open-world environments (Team et al., [2021}; |Cai et al., [2023) are inherently challenging due to
requirements for generalization, exploration, multi-objective optimization, and long-horizon plan-
ning and reasoning (Hafner| 2022; |Wang et al., [2023). There are three main approaches for ap-
plying RL in open-world environments in the existing literature. One approach is hierarchical re-
inforcement learning (Hutsebaut-Buysse et al., 2022)), which simplifies complex decision-making
processes by constructing a multi-level subtask structure. However, due to the inherent limitations
of reinforcement learning algorithms in planning and reasoning, the generalization and long-term
decision-making capabilities of these methods are still constrained. Another approach is model-
based RL (Moerland et al.| 2023} (Walker et al., [2023)), which learns an explicit environment dy-
namics model to enable more sample efficient through simulated rollouts. However, these methods
require learning an accurate world model, which results in significantly higher computational over-
head, particularly in open-world environments with high-dimensional observations. With the rapid
development of LLMs, recent studies have explored integrating LLMs into RL pipelines (Zhou et al.,
2024; Schoepp et al.,[2025)). Leveraging their extensive prior knowledge, reasoning capabilities, and
strong generalization, LLMs have been employed to provide high-level planning for RL agents (Du
et al.,2023; Zhang & Lul 2024; Prakash et al.,[2023} |Yan et al., 2025)), which are discussed in detail
in the following subsection.

4.2 LLM-ENHANCED RL

LLM-enhanced RL (Zhou et al., 2024} |Schoepp et al., [2025), in which LLMs are employed as goal
generators or policy selectors, with the core idea being to exploit their extensive prior knowledge for
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more effective task decomposition and decision-making. To mention a few, SayCan (Ichter et al.,
2022), BOSS (Zhang et al., [2023) and When2Ask (Hu et al.} 2024) utilize LL.Ms as skill planner to
construct high-level plans or feasible skill sequences base on natural language instructions or task
descriptions. However, these methods rely on assumed access to pretrained skills, and the generated
plans lack structured representations, limiting their scalability and adaptability. Furthermore, some
works (Hu & Sadighl 2023} |Prakash et al., 2023; |Yan et al.| [2025) take a more direct straightfor-
ward approach, utilizing LLMs as policy teacher. Due to the fact that these methods either rely
on a library of pretrained skills for high-level decision-making or depend on the LLMs’ reasoning
and language-to-action capabilities for low-level guidance, they typically require significant com-
putational resources or extensive pretraining infrastructure. In addition, ELLM (Du et al., 2023)),
AdaRefiner (Zhang & Lu, 2024), LLMV-AgE (Chi et al.l 2025) and [Ruiz-Gonzalez et al.| (2024)
employ LLMs as goal generators to produce semantic subgoals that guide exploration. Unfortu-
nately, due to their reliance on frequent and intensive LLM invocations, these methods suffer from
low practical utility and poor computational efficiency.

5 EXPERIMENTS

In this section, experiments are conducted on two open-world RL benchmarks: Crafter (Hafner,
2022) and Craftax-Classic (Matthews et al.| [2024). The experiments aim to answer the following
questions: 1) How does the exploration efficiency of SGRL compare with existing LLM-enhanced
RL methods? 2) How do goal-conditioned policy constraints contribute to the performance of
SGRL?

To answer these questions, we compare SGRL against the following algorithms: ELLM (Du et al.,
2023)), which generates goals to guide agent exploration through online queries of an LLM; AdaRe-
finer (Zhang & Lul 2024), which enhances the quality of the LLM-generated goals by refining the
prompts; and PPO (Schulman et al., 2017), which is a pure RL algorithm that does not involve
an LLM. Notably, for the specific hyperparameter settings of the PPO algorithm, we follow the
Stable-Baselines3 (Raffin et al.,[2021 implementation for Crafter, and follow the official in Craftax
benchmark (Matthews et al., 2024implementation for Craftax-Classic. In addition, human expert
performance (Hafner, 2022) is included as a reference.

5.1 EXPERIMENTAL SETUP AND EVALUATION METRICS

5.1.1 ENVIRONMENT

Crafter is a widely used benchmark for open-world environments, evaluating agents on generaliza-
tion, exploration, and long-term reasoning through 22 diverse achievements. The Craftax-Classic
environment re-implements Crafter in JAX. Both benchmarks feature sparse rewards, complex goal
hierarchies, and open-world exploration, making them ideal for evaluating our framework’s ability
to provide structured semantic guidance. Further details of the environmental setup are provided in

Appendix

The evaluation metrics from Matthews et al.| (2024), including success rate, score, return, and
achievement depth, to comprehensively assess the performance of SGRL compared to the base-
line algorithms. In addition, the training speed is reported in steps per second (SPS), presented in
the tables as SPS (x10?) for readability. Further details can be found in Appendix

5.1.2 COMPUTE RESOURCES

Experiments on Crafter were conducted using a single A100 GPU with 40 GB of VRAM. Exper-
iments on Craftax-Classic were performed on a system equipped with an NVIDIA GeForce RTX
4090 (24 GB) and an Intel(R) Core(TM) 19-14900K CPU. Results for both our algorithm and base-
line methods are based on the same configurations. All reported results are averaged over five
random seeds and learning curves are smoothed over time.

3available at https://github.com/DLR-RM/stable-baselines3
4available at https: //github.com/MichaelTMatthews/Craftax
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Figure 3: Success rate curves for all achievements on Craftax-Classic. Achievements are ranked
based on their depth and the importance of unlocking them for subsequent tasks. Achievements
ranked later have greater depth and exert a stronger influence on subsequent achievements. A more
intuitive version is shown in Figure[I3]in Appendix D]
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Figure 4: Success rates across all achievements on Craftax-Classic at SM steps.

5.2 MAIN RESULTS

Figure [3] shows the success rate curves for all 22 achievements on Craftax-Classic. From Figure 3]
we can observe that SGRL consistently achieves higher success rates than the baselines when reach-
ing the final few achievements (see Figure [3|(q)-(v)). However, for achievements like Wake Up (see
Figure [3] (¢c)) and Place Plant (see Figure [3] (h)), which do not facilitate later exploration, SGRL’s
performance plateaus once high success rates are reached. This phenomenon demonstrates that our
goal-generation method produces farsighted objectives, enabling SGRL to transcend short-term re-
wards and maintain a stable and coherent policy in long-horizon decision-making tasks. Moreover,
as shown in Figure [3] (v), SGRL successfully unlocks the Collect Diamond achievement shortly
after 3.7M steps, whereas AdaRefiner, ELLM, and PPO fail to achieve it even by 5M steps, demon-
strating SGRL’s effectiveness in enhancing exploration efficiency. Figure [ provides a more direct
visualization, which clearly highlights SGRL’s advantage in unlocking late-stage achievements, con-
firming its capability for effective long-horizon planning. More experimental results can be found
in Appendix

Method Score(%) Reward Achievement Depth SPS (x102%)

Human 50.5+ 6.8 143+23 8 -
SGRL 338+ 1.5 13.0+03 8 18.5
AdaRefiner 28.5 +2.3 12.34+0.9 7 0.3
ELLM 284 +25 122+1.0 6 0.9
PPO 248 £57 11.9+1.1 6 135.3

Table 1: Performance of SGRL and baseline methods on Craftax-Classic at SM steps.
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Figure 5: Ablation Studies. Success rate curves for all achievements on Craftax-Classic. Achieve-
ments are ranked based on their depth and the importance of unlocking them for subsequent tasks.
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Figure 6: Ablation Studies. Success rates across all achievements on Craftax-Classic at 10M steps.

Table [I| summarizes the overall performance of SGRL and baseline methods on Craftax-Classic at
5M steps. As demonstrated in Table[I] SGRL outperforms AdaRefiner, ELLM, and PPO in terms of
overall score and achievement depth on Craftax-Classic. In addition, SGRL maintains a high reward
level, yet does not exhibit a significant advantage in this regard. We attribute this to the misalign-
ment between reward magnitude and exploration depth in the environment, which forces a trade-off
between completing simple, reliably rewarded achievements and pursuing more challenging but po-
tentially high-impact ones. This is evidenced by human performance: experts achieve very high
scores without a corresponding increase in total reward. Further, SGRL requires only minimal LLM
invocation, resulting in faster training speed. Moreover, to better illustrate the performance of the
proposed method, we provide results for various algorithms in the Crafter environment, which can
be found in Appendix [D]

5.3 ABLATION STUDY
5.3.1 ABLATION VARIANTS

To evaluate the contributions of each component of SGRL, we conducted ablation studies using
three variants of SGRL on Craftax-Classic as follows: (1) SGRL w/ Static-Prun: This variant re-
tains the action pruning mechanism but replaces the adaptive pruning coefficient with a static mask-
ing scheme; (2)SGRL w/o Prun: This variant removes the goal-conditioned action pruner entirely;
(3)SGRL w/o Priority: This variant removes the priority assignment for goals.

5.3.2 ABLATION ANALYSIS

Figure [3] shows the success rate curves of SGRL and its ablation variants for all 22 achievements
on Crafter. From Figure [5] we can observe that SGRL significantly outperforms all variants on
most of the deeper achievements after approximately 8M steps, indicating that both components of
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our algorithm contribute substantially to its performance. Moreover, it is noteworthy that SGRL w/
Static-Prun, a variant of SGRL with strict action masking, exhibits strong early performance but is
ultimately outperformed by SGRL in later stages, suggesting that over-reliance on the LLM may
lead the agent to converge to suboptimal policies (see Figure[5](c), (0), (p) and (q)).

Figure [6] and Table [2] present

the success rates, scores, re- Methd Score (%)  Reward Adl[l)?;ftl::em
wards, and achievement depth SGRL 439+26 149+04 S
across all 22 achievements in SGRL w/ Static-Prun  38.54+1.9 14.240.4 8
the Crafter environment at 10M SGRL w/o Prun 40.0+2.1 14.7+0.2 8
Steps. The results demonstrate SGRL w/o Priority 35.3+1.6 13.9+0.6 7

that SGRL achieves clear advan-
tages on long-horizon tasks such
as Make Iron Pickaxe and Col-
lect Diamond, which require sequential planning and tool construction. Notably, the design of goal
prioritization plays a critical role in enabling SGRL to rapidly unlock deep achievements like Col-
lect Diamond by guiding the agent to focus on high-value, forward-looking goals during exploration.

Table 2: Ablation results on Craftax-Classic at 10M steps.

More experimental results are in Appendix

Furthermore, for an in-depth
analysis of SGRL’s superiority,
Figure [/| presents the goals with
priority weights on Craftax-
Classic. For clarity, a higher-
level goal is visualized only
from the point at which it is as-
signed a non-zero weight. The
figure shows that SGRL consis-
tently assigns a small priority
weight to more forward-looking
goals compared to the abla-
tion algorithms at earlier stage,
which motivates its agent to be-
gin exploring more challenging
achievements sooner. We hy-
pothesize that this is the primary
driving force behind SGRL’s

Collect diamond
Craft iron pickaxe
Collect iron for iron pickaxe
Collect iron for iron sword
Collect coal for iron sword
Collect wood for iron sword
Collect iron
Collect coal for iron pickaxe 1
Collect stone for iron pickaxe
Collect wood for iron pickaxe |
Craft stone pickaxe
Craft stone sword
5 Collect stone for stone pickaxe g
Collect stone for furnace
Collect stone
Collect wood for stone pickaxe 52>
Collect stone for stone sword K 72
Collect coal { A0
Craft wood sword
Collect wood for wood sword sk
Collect wood for wood pickaxe )
Collect wood for table
Sleep
Collect water A0

Drink water

—— SGRL
SGRL w/o Prun
SGRL w/ Static-Prun

SGRL wo Priority

rapid attainment of superior per-
formance. For more detailed
results, refer to Appendix [E.2]
where we present the heatmap of
goals with priority weights and
provide a detailed analysis.

0 2 4 6 8 10
Steps (M)

Figure 7: Ablation Studies. Goals with priority weights on
Craftax-Classic, where a higher-level goal is visualized only from
the point it is assigned a non-zero weight.

In summary, all ablation results collectively indicate that both the goal priority weights and action
mask in our proposed SGRL play distinct roles. Specifically, assigning priorities to goals within the
structured goal planner is crucial for generating reasonable and effective goals. The goal-conditioned
action pruner effectively enhances the agent’s exploration capability in long-horizon tasks.

6 CONCLUSION

This paper proposes a novel LLM-enhanced RL method called SGRL that leverages LLMs to im-
prove RL agents’ exploration efficiency and long-horizon planning capabilities in open-world envi-
ronments. Specifically, we develop a structured goal planner that leverages the LLM to construct
reusable goal-generating functions that select forward-looking goals and dynamically adjust their
priority weights. Then, a goal-conditioned action pruner is designed to filter out actions misaligned
with the goal, thereby guiding RL agents to select goal-consistent policies. Finally, extensive exper-
imental results demonstrate that SGRL achieves superior performance compared to existing LLM-
enhanced RL baselines in terms of long-horizon planning and exploration efficiency.
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ETHICS STATEMENT

This work focuses on developing an LLM-enhanced RL method and does not involve human sub-
jects, personal data, or sensitive information. The experiments are conducted on publicly available
benchmark datasets and simulated environments. We believe our research raises no direct ethical
concerns and may contribute positively by improving the exploration efficiency and long-horizon
planning capabilities of RL methods.

REPRODUCIBILITY STATEMENT

All implementation details, including source code, hyperparameters, prompts and outputs of LLM
and scripts, are provided in the appendix and supplementary material to enable full reproducibility
of our results.
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A ENVIRONMENTS AND EVALUATION METRICS

A.1 ENVIRONMENTS

Crafter (Hafner|2022)) is a widely adopted benchmark for open-world RL, designed to assess agents’
generalization, exploration, and long-term reasoning capabilities through 22 diverse achievements.
These achievements are organized in a hierarchical dependency structure of up to 8 depth levels,
where early-stage skills (e.g., collect wood, place table) unlock preconditions for increasingly com-
plex tasks. The deepest and most challenging achievement (i.e., Collect Diamond) requires agents to
master long sequences of dependencies, from crafting stone tools to mining iron and finally access-
ing diamonds deep underground. Crafter’s procedurally generated environments further exacerbate
challenges in sparse rewards, efficient exploration, and hierarchical planning, making it a strong
testbed for evaluating structured goal-guided learning.

Craftax-Classic (Matthews et al., |2024) is a high-performance, JAX-based reimplementation of
Crafter that achieves a 250x simulation speedup via vectorization and parallelization. It faithfully
reproduces Crafter’s core task structure, environmental dynamics, and evaluation metrics, while en-
abling large-scale experimentation at 1B+ environment steps within practical compute budgets.

A.2 EVALUATION METRICS
To demonstrate the effectiveness of our algorithm, we introduce the evaluation metrics as follows:

* Achievement Success Rate. This metric reflects the agent’s learning capability and explo-
ration depth by measuring the probability that each predefined achievement is successfully
unlocked.

* Geometric Mean Score. This metric reflects the balance between both easy and difficult
goals. Following the official Crafter evaluation protocol (Hafner, [2022), it is defined as:

N
1
score = exp <N Zlog(l + Qi)) -1,
i=1

where ¢; € [0,100] denotes the success rate of the i-th achievement, and N is the total
number of predefined achievements.

* Achievement Depth. This metric measures the agent’s exploration depth based on the fur-
thest achievement it unlocks.

* Episode Return. This metric reports the cumulative reward received per episode.

* Steps Per Second (SPS): This metric measures the number of environment steps processed
per second, indicating the computational efficiency and speed of learning for each method.

B IMPLEMENTATION DETAILS

B.1 LLM

We utilize DeepSeek—R1 (Guo et al.,|2025) model to generate structured goal-generating planner
code. Additionally, we use DeepSeek—-V3 (Liu et al.,|2024) model for selecting actions related to
the defined goals. For all LLM queries, we follow the implementation of AdaRefiner (Zhang & Lu,
2024) to set the decoding parameters: a temperature of 0.5, top-p of 1.0, and a maximum token limit
of 100. DeepSeek—-V3 model is employed to replicate the results of ELLM and AdaRefiner.

B.2 TEXT EMBEDDING

For text embedding, we use paraphrase-MiniIM-L6-v2 (Reimers & Gurevych, 2019) model
as the encoder.
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B.3 PROMPT DESIGN

B.3.1 PROMPT DESIGN FOR STRUCTURED GOAL PLANNER

In the Structured Goal Planner, the large model is employed to generate goal-generation code and
to update the priorities of goals. To enable the LLM to produce high-quality code, we adopt a
multi-stage prompting process:

* Design Stage. At this stage, the model is asked to first design the class structure and key
functional modules according to the task requirements.

* Implementation Stage. After the design, the model is prompted to output detailed, com-
plete Python code that follows PEPS standards with clear logic and sufficient comments.

* Reflection and Revision Stage. Finally, the model is prompted to reflect on the generated
code, identify potential issues, and provide corrections or optimizations.

To guide the model in updating goal priorities, the prompt additionally specifies that every 2 million
steps the LLM should update the priority values of goals within the generated code. This ensures
that goal selection remains dynamic and aligned with the agent’s current objectives.

Prompt Template for Structured Goal Planner Design

Crafter is a 2D open-world survival game with visual input; its world is procedurally gen-
erated. Players must search for food and water, find shelter to sleep, defend against mon-
sters, gather materials, and craft tools. Crafter’s objective is to evaluate an agent’s capabili-
ties through a series of semantically meaningful achievements that can be unlocked in each
playthrough—for example, discovering resources and crafting tools. Consistently unlocking
all achievements requires strong generalization, deep exploration, and long-term reasoning.
You are an experienced Python developer. The task is to create a key functional module of
an advanced goal-generation system that can dynamically produce prioritized goals based
on textual environment observations. The system must include functions for survival-need
assessment, a tool-crafting tree, resource-collection configuration, and achievement tracking.
You should primarily design the OptimizedGoalGenerator class structure and its key
functional modules. The Agent will call the determine_goal function to obtain goals:

def determine_goal (self, text_obs):
return top_three_goal

Each goal is a dictionary of the form:

{"goal’: ,
"priority’: o b

The state of environmental text is represented by text _obs:

Example 1:

You see: plant, zombie, tree, grass, sand, path, stone

Inventory: wood: 1

Status: health: 11%, Fullness: 0%, Hydration: 0%, Wakefulness: 88%
Sky brightness level: 68% Example 2:

You see: plant, tree, grass, path, stone

Inventory:

Status: health: 99%, Fullness: 77%, Hydration: 66%, Wakefulness: 77%
Sky brightness level: 99%

Now please provide the OptimizedGoalGenerator class structure and its key func-
tional modules.

class OptimizedGoalGenerator:
def _ init_ (self):

def determine_goal (self, text_obs):
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Prompt Template for Structured Goal Planner Implementation

Crafter is a 2D open-world survival game with visual input, where the world is procedu-
rally generated. Players need to find food and water, locate a place to sleep, defend against
monsters, gather materials, and craft tools. The objective of Crafter is to evaluate an agent’s
capabilities through a series of semantically meaningful achievements, which can be un-
locked in each game session, such as discovering resources and crafting tools. Continuously
unlocking all achievements requires strong generalization, deep exploration, and long-term
reasoning.

As a Python expert, your task is to create an advanced goal generation system that dynami-
cally generates prioritized goals based on environmental observation text. The system should
include survival needs assessment, a crafting dependency tree, resource collection configu-
ration, and achievement tracking.

Environment Details:

Items: sapling, wood, stone, coal, iron, diamond, wood_pickaxe, stone_pickaxe,
iron_pickaxe, wood_sword, stone_sword, iron_sword (all with max: 9, initial: 0)
Collectable resources: tree, stone, coal, iron, diamond, water, grass (with required tools,
output, and leaves defined)

Placable objects: stone, table, furnace, plant (with usage, location, and type defined)
Craftable tools: wood_pickaxe, stone_pickaxe, iron_pickaxe, wood_sword, stone_sword,
iron_sword (with required materials, nearby crafting stations, and output quantity)
Achievements: collect_coal, collect_.diamond, collect_drink, collect_.iron, col-
lect_sapling, collect_stone, collect_-wood, defeat_skeleton, defeat_.zombie, eat_cow,
eat_plant, make_iron_pickaxe, make_iron_sword, make_stone_pickaxe, make_stone_sword,
make_wood_pickaxe, make wood_sword, place_furnace, place_plant, place_stone,
place_table, wake_up

Environment Text Rendering Function:

def render_craftax_text_describ_2(self, view_arr, index):

(map_view, mob_map, inventory_values, status_values) = view_arr
mob_id_to_name = ["zombie", "cows", "skeletons", "arrows"]
block_id_to_name = ["invalid", "out of bounds", "grass",

"water", "stone", "tree", "wood", "path",
"coal", "iron", "diamond", "crafting
table", "furnace", "sand", "lava",
"plant", "ripe plant"]

text_view_values = set ()
block_names = np.vectorize (lambda x:
block_id_to_name[x]) (map_view|[index])

text_view_values.update (block_names.flatten())

mob_ids = np.argmax (mob_map[index], axis=-1)

mob_names = np.vectorize (lambda x: mob_id_to_name[x]) (mob_ids)

mob_mask = mob_map[index] .max (axis=-1) > 0.5

text_view_values.update (mob_names[mob_mask].flatten())

text_view = ", ".join(text_view_values)

inv_names = ["wood", "stone", "coal", "iron", "diamond",
"sapling",

"wood pickaxe", "stone pickaxe", "iron pickaxe",
"wood sword", "stone sword", "iron sword"]
text_obs_inv = ", ".join([f"{name}: {value}"
for name, value in zip (inv_names,
inventory_values[index])
if value > 0])

status_names = ["Health", "Fullness", "Hydration",
"Wakefulness", "Sky brightness level"]

15



Under review as a conference paper at ICLR 2026

Prompt Template for Structured Goal Planner Implementation (continued)

status = ", ".join([f"{name}: {int (value / 0.09) }%"
for name, value in zip(status_names,
status_values[index])])

text_obs = "You see: " + text_view + "\nInventory: " +
text_obs_inv + "\nStatus: " + status
return text_obs

Example Environmental Text Observations:

Example 1:

You see: plant, zombie, tree, grass, sand, path, stone

Inventory: wood: 1

Status: health: 11%, Fullness: 0%, Hydration: 0%, Wakefulness: 88%, Sky brightness level:
68%

Example 2:

You see: plant, tree, grass, path, stone

Inventory:

Status: health: 99%, Fullness: 77%, Hydration: 66%, Wakefulness: 77%, Sky brightness
level: 99%

You have already designed the code architecture. Your goal is to complete this code and
create an advanced goal generation system capable of dynamically generating prioritized
goals based on environmental observation text.

The code architecture:

{last_llm_response }

Prompt Template for Structured Goal Planner Reflection and Revision

You are an expert Python developer and code reviewer for Crafter’s goal generation sys-
tem. Your task is to critically analyze the previously designed goal planner and provide an
evaluation. For each submitted code version:

« If the code is complete, correct, and efficiently implements all required functionali-
ties (survival needs assessment, resource collection, crafting, achievement tracking,
threat handling, and goal prioritization), label it as good.

* If there are issues, missing features, or opportunities for optimization, label it as
bad, and provide a clear explanation of the problems.

After evaluation, if the code is labeled bad, generate a fully optimized and corrected version
of the code that addresses all identified issues. The optimized code should:

* Correctly handle all environmental observations and edge cases.
* Properly assess and prioritize survival needs.

* Integrate resource collection, crafting, and achievement goals with correct depen-
dencies.

* Handle threats and defensive behaviors appropriately.
* Be modular, readable, and maintainable, following Python best practices.

Please review the following Structured Goal Planner code. Evaluate its quality: provide the
label good if it is fully correct and functional, or bad if improvements are needed. For bad
code, explain the deficiencies clearly and provide a complete, optimized version of the code
that fixes all issues while preserving the intended functionality.

The goal-generated code: {last_Ilm_response}
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Prompt Template for Updating Goal Priority Values

You are the Goal Priority Analyst for Crafter games. Your task is to update the priority
weights of goals in the goal generation code, based on the current state and action trajectory
of the intelligent agent. You act as a specialized assistant whose only responsibility is to
adjust priority values to improve goal selection; do not change any code logic or structure.
Inputs provided to you:

¢ Goal generation code: A Python code module that defines goals, their attributes,
and initial priority weights. ({goal_code.py})

* Agent state and trajectory: A structured representation of the current state of the
intelligent agent, including completed goals, actions taken, and environment status.
({agent_state.json})

Your instructions:
* Read the goal generation code and the agent state/trajectory.

» Update the numeric priority weights in the code to reflect the current importance
of each goal.

* Do not change any function definitions, logic, or class structures. Only modify
numeric values associated with goal priorities.

* Ensure the updated code is fully executable and maintains its original structure.
» Keep all interfaces unchanged so that the planner can call the updated code directly.
Example Workflow:
1. Load the goal generation code and parse the goals.
2. Analyze the agent’s current state and past actions.
3. Determine new priority weights for each goal.
4. Replace only the priority numbers in the code with the updated values.
5. Output the complete updated Python code.
Output Format:
* Return the entire Python code as a single code block.
* Ensure all class and function definitions remain intact.

* Only the numeric priority values are changed.

B.3.2 PROMPT DESIGN FOR GOAL-CONDITIONED ACTION PRUNER

In the Goal-Conditioned Action Pruner, the large model selects actions that are directly relevant to
a given goal through the use of prompts, thereby enabling goal-driven behavior. To guide the model
in generating goal-consistent actions, the prompt explicitly defines the meaning of each action in the
action space and provides examples illustrating which actions should be chosen for specific goals.
In this way, the model can effectively filter actions that align with the goal, ensuring that the agent
maintains coherent and goal-directed behavior during execution.

Prompt Template for Goal-Conditioned Action Pruner Implementation

You are the goal analyst for Crafter games, and a goal planner provides goal guidance for
game characters. The agent needs to perform one or more steps to achieve this goal, and you
help the agent choose the appropriate actions to accomplish it.
Tips:
* The goal is something that the intelligent agent is currently capable of executing
under certain conditions.

* The intelligent agent may need to move to a certain location to trigger the execution
condition.
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Prompt Template for Goal-Conditioned Action Pruner Implementation (continued)

* The action space consists of the following 17 actions:
1. noop # do nothing

move_left

move_right

move_up

move_down

do

sleep

place_stone

place_table

place_furnace

. place_plant

. make_wood_pickaxe

. make_stone_pickaxe

. make_iron_pickaxe

. make_wood_sword

VXN kW

—_— e = = = =

. make_stone_sword
17. make_iron_sword

* Among them, the action noop means do nothing.

* The action do means it can complete the following: eat plant, attack zombie, attack
skeleton, attack cow, chop tree for wood, mine stone, mine coal, mine iron, mine
diamond, drink water, chop grass for sapling.

Examples:

* Goal: {Mine Iron}
Related actions: {move_left, move_right, move_up, move_down, do}

* Goal: {make stone pickaxe}
Related  actions: {move_left, move._right, move_up, move_down,
make_stone_pickaxe}

* Goal: {sleep}
Related actions: {sleep}

* Goal: {attack cow}
Related actions: {move_left, move_right, move_up, move_down, do}

For each given goal, generate a set of feasible actions from the action space. Include any
movements or execution actions that can reasonably help achieve the goal. Focus on feasi-
bility rather than strict optimality.

The current goal is: goal.

Please select actions that are relevant to the goal.

B.4 PPO ALGORITHM

For the specific hyperparameter settings of the PPO algorithm, we follow the Stable-Baselines3 (Raf-
fin et al., 2021 f]implementation for Crafter, and follow the official in Craftax benchmark (Matthews
et al., 2024ﬂimplementation for Craftax-Classic. Since SGRL, ELLM, and AdaRefiner are all im-
plemented based on PPO, we use the same core PPO hyperparameters, as shown in Table 3]

SAvailable at https://github.com/DLR-RM/stable-baselines3
8 Available at https: //github.com/MichaelTMatthews/Craftax
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Parameter Value (Crafter) Value (Craftax-Classic)
Training Steps {IM, 5M} {5M, 10M}
Learning Rate Te-4 Te-4
Optimizer Adam AdamW
Batch Size 128 512
Number of Envs 1 256
Update Epochs 16 4

Clip Ratio 0.2 0.2
Discount Factor ~ 0.97 0.97
Entropy Coefficient 0.01 0.01
Value Function Coefficient 0.5 0.5
Activation Function ReLU ReLU

Table 3: Hyperparameters for PPO

C ADDITIONAL PRELIMINARY RESULTS

Figures [8{10] present more detailed results of the preliminary study experiments on Craftax-Classic.

D ADDITIONAL MAIN RESULTS

Table ] presents performance of SGRL and baseline methods on Crafter at SM steps. Figures[TT}{I7]
present more detailed results of the main experiments on Crafter and Craftax-Classic. It is worth
noting that:

* In the experiments on Craftax-Classic, ELLM and AdaRefiner require frequent online calls
to the LLM (DeepSeek-V3) during training, incurring substantial computational costs
and training time. Therefore, we only reproduce the results within SM steps.

* Since the Crafter environment does not adopt the JAX framework and runs extremely
slowly, we report the original results of ELLM and AdaRefiner from their papers in Ta-
ble ] rather than reproducing their experiments.

Note: Since ELLM and AdaRefiner require frequent online calls to the LLM (DeepSeek-V3)
during training, they incur substantial computational costs and training time. Therefore, we only
reproduce the results within SM steps.

E ADDITIONAL ABLATION EXPERIMENTS

E.1 PERFORMANCE OF ABLATION ALGORITHM

Table [5] and Figures [I8} [20] present more detailed results of the ablation experiments on Craftax-
Classic.

E.2 HEATMAP OF GOAL WITH PRIORITY WEIGHTS

Figure show the heatmap of the goals with priority weights generated by the structured goal
planner on Craftax-Classic within 10M steps. The vertical axis on the left shows goals ranked from
low to high, while the right axis (ranging from O to 0.8) indicates the corresponding weights.

From Figure 21} we can observe the following key phenomena:

* SGRL w/o Priority only sets collect diamond as an exploration goal after 9M steps, which
likely accounts for its significantly low exploration efficiency.

* SGRL, SGRL w/ Static Pruning, and SGRL w/o Pruning—methods that assign priority
weights to goals—consistently treat long-horizon, high-impact achievements (e.g., Collect
stone for stone pickaxe, Collect iron) as important objectives and assign them larger priority
weights.
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Figure 8: Preliminary Results. Success rate curves for all achievements on Craftax-Classic within
5M steps. We rank the achievements based on their depth and the importance of unlocking them for
subsequent tasks. Achievements ranked later have greater depth and exert a stronger influence on
subsequent achievements. A more intuitive version is shown in Figure@
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Figure 9: Preliminary Results. Success rates across all Craftax-Classic achievements at SM steps.

* In contrast to SGRL w/ Static Pruning and SGRL w/o Pruning, SGRL consistently assigns
relatively small priority weights to more forward-looking goals (e.g., Collect diamond; see
the red dashed lines in the figure), which encourages the agent to begin exploring these
challenging achievements earlier. We hypothesize that this adaptive prioritization strategy
is the primary driver behind SGRL’s superior performance.

F ADDITIONAL PRUNER ANNEALING STRATEGIES AND IMPLEMENTATION

F.1 PRUNER ANNEALING STRATEGIES

To dynamically adjust the agent’s reliance on constraints during training, we implement several
annealing strategies for . These strategies smoothly modulate & over training steps. These anneal-
ing schedules aim to balance the agent’s adherence to the action pruner and the freedom of policy
exploration.

* Linear Annealing. This strategy linearly anneals £ from O to 1, gradually reducing the
influence of the pruner.

£(t) = = M
where ¢ is current training step, 7' is total training steps.

» Exponential Annealing. This strategy uses exponential decay to increase ¢ rapidly from 0
toward 1, then asymptotically approach full freedom.

0 =1-ew (-1). ®)

where T is the time constant of the exponential decay.
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Figure 10: Preliminary Study. Success rate curves for all achievements on Craftax-Classic within
5M steps. Solid and dashed arrows indicate direct and cross-depth dependencies, respectively. The
bottom-left panel visualizes the full achievement dependency graph, with achievement depth en-
coded by color (depth 1-8 from top to bottom).

* Three-Stage Linear Annealing. This strategy consists of three phases and is defined by the
piecewise function:

t
_— AT
£(t) T’ "= ©
t) = . )
— -1 AT < 8T
oap L 04T <t<08
1, t > 0.8T
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* Three-Stage Cosine Annealing. This strategy uses a smooth cosine function for the first

two stages:
3 (14cos(ghr 7)), 0<t<04T
) =19 3 (1—cos(5%E -m)), 04T <t<08T . (10)
1.0, t>0.8T

In our experiments, the following naming convention is used to denote different annealing strategies
applied to the SGRL: (1) SGRL w/ Linear Ann: SGRL equipped with linear annealing schedule
(see Equation (7)); (2) SGRL w/ Exp Ann: SGRL with exponential annealing (see Equation (8)); (3)
SGRL w/ 3-Stage Linear: SGRL with piecewise linear three-phase annealing (see Equation (9)); and
(4) SGRL w/ 3-Stage Cos: SGRL with cosine-based three-phase annealing (see Equation (10)).

F.2 EXPERIMENTAL RESULTS

Figures [22}24] present detailed results with different mask mechanism on Craftax-Classic.

As shown in Figures 22}24] the performance of SGRL with four different £ annealing strategies on
Craftax-Classic is presented:

* Figure 27] displays the success rate curves across 22 achievements on Craftax-Classic,
comparing four mask annealing strategies. Notably, SGRL w/ 3-Stage Cos achieves dia-
mond collection at 3.7M steps and maintains superior performance on the most challenging
achievements (Make Iron Pickaxe and Collect Diamond), as shown in Figures [22] (b)-(c).
This suggests that the Three-Stage Cosine Annealing strategy enables SGRL to more ef-
fectively prioritize high-value, long-horizon objectives by adaptively balancing exploration
and exploitation. In contrast, SGRL w/ Linear Ann demonstrates stronger early-stage per-
formance, unlocking depth-7 achievements faster (see Figure[22](a)). However, its success
rate plateaus in later training phases (see Figures (b)-(c)), likely due to the rigid lin-
ear decay of &, which prematurely restricts exploration and hinders adaptation to complex
tasks. A success rate plot that intuitively reflects achievement depth is shown in Figure 24]

* Figure 23] presents the success rates across all 22 achievements on Craftax-Classic at dif-
ferent training steps. From Figure we can observe that while SGRL w/ 3-Stage Linear
and SGRL w/ 3-Stage Cos exhibit similar performance early on (Figure 23| (a)), the lat-
ter significantly outperforms the former in late-stage deep achievements (see Figures 23]
(b)-(c)). We hypothesize that the piecewise linear transitions in 3-Stage Linear Annealing
introduce abrupt changes in exploration pressure, whereas the smooth cosine modulation in
3-Stage Cosine Annealing facilitates more stable learning. Interestingly, SGRL w/ Exp Ann
is the only variant failing to unlock Collect Diamond by 10M steps. This indicates that the
rapid decay of ¢ in exponential annealing diminishes goal guidance too early, impairing the
agent’s ability to align goals with agents’ actions and hindering the acquisition of complex,
multi-step behaviors.

Overall, these results highlight the critical role of the annealing schedule in modulating the trade-off
between goal-driven exploration and policy autonomy. The three-stage cosine strategy achieves the
most effective balance, enabling sustained guidance during critical phases of skill acquisition while
allowing gradual transition to policy-based control.

G USE OF LARGE LANGUAGE MODELS

In this work, in addition to employing Large Language Models (LLMs) as auxiliary tools for lan-
guage polishing, grammar correction, and minor stylistic adjustments of the manuscript, we also uti-
lized LLMs to generate reusable, structured goal-generation functions, adjust goal priority weights,
and establish goal-conditioned policy constraints. These operations are both essential and common-
place in LLM-enhanced RL research Notably, LLMs were not involved in research ideation, exper-
imental design, implementation, data analysis, or result interpretation. All scientific contributions
and intellectual content are solely attributable to the authors.
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Figure 11: Main Results. Success rate curves for all achievements on Craftax-Classic within differ-
ent training steps. We rank the achievements based on their depth and the importance of unlocking
them for subsequent tasks. Achievements ranked later have greater depth and exert a stronger influ-
ence on subsequent achievements. A more intuitive version is shown in Figure@
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1286

1287 Human 505+68 143+23 8 -

. SGRL 305+12 127+04 8 1.0
AdaRefiner 282+ 1.8 129+ 1.2 7 -

1289 ELLM - 6.0+ 0.4 - -

Lo PPO 18.5+6.1 10.1+1.3 6 1.2

1291

1292 Table 4: Main Results. Performance of SGRL and baseline methods on Crafter at SM steps.
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Figure 22: Mask Comparison. Success rate curves for all achievements on Craftax-Classic within
different training steps. We rank the achievements based on their depth and the importance of
unlocking them for subsequent tasks. Achievements ranked later have greater depth and exert a
stronger influence on subsequent achievements. A more intuitive version is shown in Figure@
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5M steps. Solid and dashed arrows indicate direct and cross-depth dependencies, respectively. The
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