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Abstract

We focus on the task of creating a rein-001
forcement learning agent that is inherently002
explainable—with the ability to produce im-003
mediate local explanations by thinking out004
loud while performing a task and analyzing005
entire trajectories post-hoc to produce tem-006
porally extended explanations. This Hier-007
archically Explainable Reinforcement Learn-008
ing agent (HEX-RL), operates in Interactive009
Fictions, text-based game environments in010
which an agent perceives and acts upon the011
world using textual natural language. These012
games are usually structured as puzzles or013
quests with long-term dependencies in which014
an agent must complete a sequence of actions015
to succeed—providing ideal environments in016
which to test an agent’s ability to explain017
its actions. Our agent is designed to treat018
explainability as a first-class citizen, using019
an extracted symbolic knowledge graph-based020
state representation coupled with a Hierarchi-021
cal Graph Attention mechanism that points to022
the facts in the internal graph representation023
that most influenced the choice of actions. Ex-024
periments show that this agent provides signifi-025
cantly improved explanations over strong base-026
lines, as rated by human participants generally027
unfamiliar with the environment, while also028
matching state-of-the-art task performance.029

1 Introduction030

Explainable AI refers to artificial intelligence031

methods and techniques that provide human-032

understandable insights into how and why an AI033

system chooses actions or makes predictions. Such034

explanations are critical for ensuring reliability and035

improving trustworthiness by increasing user un-036

derstanding of the underlying model. In this work037

we specifically focus on creating deep reinforce-038

ment learning (RL) agents that can explain their039

actions in sequential decision making environments040

through natural language.041

Observation:  Up a tree   
Beside you on the branch is a small birds nest 
In the birds nest is a large egg encrusted with 
precious jewels, scavenged by a childless songbird...

  

✵ Explanation:
I am in the Forest Path now.
trees are intereactable
✪ Agent needs this action to:
take egg at Up a tree 

Action: go up              Game Score: 0 

Observation: Forest Path
The path heads northsouth here.  
One particularly large tree with some low 
branches stands at the edge of the path...

Action: take egg          Game Score: 5 
✵ Explanation:
egg is interactable

 
Observation: Up a tree
Taken.

Figure 1: Excerpt from zork1 and immediate step-by-
step explanations extracted from knowledge graph rep-
resented by and temporally extended explanations
represented by . The different colors represent differ-
ent categories of knowledge graph facts they are drawn
from, as seen in Fig. 2.

In contrast to the majority of contemporary work 042

in the area which focuses on supervised machine 043

learning problems requiring singular instance level 044

local explanations (You et al., 2016; Xu et al., 2015; 045

Wang et al., 2017; Wiegreffe and Marasovic, 2021), 046

such environments—in which agents need to rea- 047

son causally about actions over a long series of 048

steps—require an agent to take into account both 049

environmentally grounded context as well as goals 050

when producing explanations. Agents implicitly 051

contain beliefs regarding the downstream effects— 052

the changes to the world—that actions taken at the 053

current timestep will have. This requires explana- 054

tions in these environments to contain an additional 055

temporally extended component taking the full tra- 056

jectory’s context into account—complementary to 057

the immediate step-by-step explanations. 058
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Interactive Fiction (IF) games (Fig. 1) are par-059

tially observable environments where an agent per-060

ceives and acts upon a world using potentially061

incomplete textual natural language descriptions.062

They are structured as long puzzles and quests063

that require agents to reason about thousands of064

locations, characters, and objects over hundreds065

of steps, creating chains of dependencies that an066

agent must fulfill to complete the overall task. They067

provide ideal experimental test-beds for creating068

agents that can both reason in text and explain it.069

We introduce an approach to game playing070

agents—Hierarchically Explainable Reinforce-071

ment Learning (HEX-RL)—that is designed to072

be inherently explainable, in the sense that its in-073

ternal state representation—i.e. belief state about074

the world—takes the form of a symbolic, human-075

interpretable knowledge graph (KG) that is built as076

the agent explores the world. The graph is encoded077

by a Graph Attention network (GAT) (Veličković078

et al., 2017) extended to contain a hierarchical079

graph attention mechanism that focuses on different080

sub-graphs in the overall KG representation. Each081

of these sub-graphs contains different information082

such as attributes of objects, objects the player has,083

objects in the room, current location, etc. Using084

these encoding networks in conjunction with the085

underlying world KG, the agent is able to create086

immediate explanations akin to a running commen-087

tary that points to the facts within this knowledge088

graph that most influence its current choice of ac-089

tions when attempting to achieve the tasks in the090

game on a step-by-step basis.091

While graph attention can tell us which elements092

in the KG are attended to when maximizing ex-093

pected reward from the current state, it cannot ex-094

plain the intermediate, unrewarded dependencies095

that need to be satisfied to meet the long term task096

goals. For example, in the game zork1, the agent097

needs to pick up a lamp early on in the game—098

an unrewarded action—but the lamp is only used099

much later on to progress through a location with-100

out light. Thus, our agent additionally analyzes an101

overall episode trajectory—a sequence of knowl-102

edge graph states and actions from when the agent103

first starts in a world to either task completion or104

agent death—to find the intermediate set of states105

that are most important for completing the overall106

task. This information is used to generate a tem-107

porally extended explanation that condenses the108

immediate step-by-step explanations to only the109

most important steps required to fulfill dependen- 110

cies for the task. 111

Our contributions are as twofold: (1) we cre- 112

ate an inherently explainable agent that uses an 113

ever-updating knowledge-graph based state repre- 114

sentation to generate step-by-step immediate ex- 115

planations for executed actions as well as perform- 116

ing a post-hoc analysis to create temporal expla- 117

nations; and (2) a thorough experimental study 118

against strong baselines that shows that our agent 119

generates significantly improved explanations for 120

its actions when rated by human participants unfa- 121

miliar with the domain while not losing any per- 122

formance compared to the current state-of-the-art 123

knowledge graph-based agents. 124

2 Background and Related Work 125

Interactive Fiction (IF) games are simulations fea- 126

turing language-based state and action spaces. In 127

this paper, we use IF games as our test-bed because 128

they provide an ideal platform for collecting data, 129

linking game states and actions to the correspond- 130

ing natural language explanations. We use the defi- 131

nition of text-adventure games as seen in Côté et al. 132

(2018) and Hausknecht et al. (2020). A text game 133

can be defined as a partially-observable Markov 134

Decision Process: G = 〈S, P,A,O,Ω, R, γ〉, rep- 135

resenting the set of environment states, conditional 136

transition probabilities between states, the vocabu- 137

lary or words used to compose text commands, 138

observations, observation conditional probabili- 139

ties, reward function, and discount factor, respec- 140

tively. The reinforcement learning agent is trained 141

to learned a policy πG(o)→ a. 142

Knowledge Graphs for Text Games. Am- 143

manabrolu et al. (2020) proposed Q*BERT, a rein- 144

forcement learning agent that learns a KG of the 145

world by answering questions. Xu et al. (2020) 146

used a stacked Hierarchical Graph Attention mech- 147

anism to construct an explicit representation of the 148

reasoning process by exploiting the structure of 149

the KG. Adhikari et al. (2020) present the Graph- 150

Aided Transformer Agent (GATA) which learns 151

to construct a KG during game play and improves 152

zero-shot generalization on procedurally generated 153

TextWorld games. Other works such as Muruge- 154

san et al. (2020) explore how to use KGs to en- 155

dow agents with commonsense. While these works 156

showcase the effectiveness of KGs on task perfor- 157

mance, they do not generate explanations. 158

Explainable Deep RL. Contemporary work on 159
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Figure 2: One-step knowledge graph extraction and hierarchically explainable reinforcement learning agent (HEX-
RL) architecture at time step t.

explaining deep reinforcement learning policies160

can be broadly categorized based on: (1) how the161

information is extracted, either via intrinsic moti-162

vation during training (Shu et al., 2017; Hein et al.,163

2017; Verma et al., 2018) or through post-hoc anal-164

ysis (Rusu et al., 2015; Hayes and Shah, 2017;165

Juozapaitis et al., 2019; Madumal et al., 2020); and166

(2) the scope—either global (Zahavy et al., 2016;167

Hein et al., 2017; Verma et al., 2018; Liu et al.,168

2018) or local (Shu et al., 2017; Liu et al., 2018;169

Madumal et al., 2020; Guo et al., 2021). In our170

work, we create an agent that spans more than one171

of these categories providing immediately local ex-172

planations through extracted knowledge graph rep-173

resentations and post-hoc temporal explanations.174

Inspired by Madumal et al. (2020), we learn a175

graphical causal model which focuses on using rela-176

tions between steps in a puzzle to generate temporal177

explanations instead of generating counterfactuals.178

3 Hierarchically Explainable RL179

Our work aims to generate (1) immediate step-by-180

step explanations of an agent’s policy by capturing181

the importance of the current game state observa-182

tion and (2) temporally extended explanations that183

take into context an entire trajectory via a post-hoc184

analysis. Formally, let X = {st,at}t=1:T be the185

set of game steps that compose a trajectory. Each186

game state st consists of a knowledge graph Gt187

representing all the information learned since the188

start of the game. This graph is further split into189

four sub-knowledge graphs Gatr
t , Ginv

t , Gobj
t , Gloc

t190

each containing different, semantically related rela-191

tionship types. This section first describes a graph192

attention based architecture that uses these sub- 193

graphs to produce immediate explanations. We 194

then describe how to filter the game states in a tra- 195

jectory into a condensed set of the most important 196

ones X′ ⊂ X that best capture the underlying de- 197

pendencies that need to be fulfilled to complete 198

the task—enabling us to produce temporal expla- 199

nations. 200

Knowledge Graph State Representation. 201

Building on Ammanabrolu et al. (2020), construct- 202

ing the knowledge graph is treated as a question- 203

answering task. KGs in these games take the form 204

of RDF triples of 〈subject, relation, object〉— 205

extracted from text observations and update as 206

the agent explores the world. The agent answers 207

questions about the environment such as, “What 208

am I carrying?” or “What objects are around 209

me?”. A specially constructed dataset for question 210

answering in text games—JerichoQA—is used to 211

fine-tune ALBERT (Lan et al., 2019) to answer 212

these questions. The answers are form a set of 213

candidate graph vertices Vt for the current step 214

and questions form the set of relations Rt. Both 215

Vt and Rt are then combined with the graph at the 216

previous step Gt−1 to update the agent’s belief 217

about the world state into Gt. The left side of 218

Figure 2 showcases this. 219

In an attempt to enable more fine grained expla- 220

nation generation and inspired by Xu et al. (2020), 221

we divide the knowledge graph G into multiple 222

sub-graphs Gatr, Ginv, Gobj , Gloc, each represent- 223

ing (1) attributes of objects, (2) objects the player 224

has, (3) objects in the room, and (4) other informa- 225
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tion such as location (see right side of Fig. 2) based226

on the corresponding relationship types extracted227

by the ALBERT-QA module. The union of all sub-228

graphs is equivalent of Vt and Rt extracted from229

the current game state. The full knowledge graph230

Gt captures the overall game state since the start231

of the game. The sub-graphs easily reflect different232

relationships of the current game state.233

Template Action Space. Agents output a lan-234

guage string into the game to describe the ac-235

tions that they want to perform. To ensure236

tractability, this action space can be simplified237

down into templates. Templates consist of inter-238

changeable verbs phrases (V P ), optionally fol-239

lowed by prepositional phrases (V P PP ), e.g.240

([carry/take] ) and ([throw/discard/put]241

[against/on/down] ), where the verbs and242

prepositions within [.] are aliases. Actions are con-243

structed from templates by filling in the template’s244

blanks using words in the game’s vocabulary.245

3.1 Immediate Explanations246

Our immediate explanations consist of find-247

ing the subset of triplets in sub-graphs248

Gatr, Ginv, Gobj , Gloc that most influence249

the action decision made at the current step. We250

introduce a deep RL architecture capable of this.251

Hierarchical Knowledge Graph Attention Ar-252

chitecture. At each step, a total score Rt and253

an observation ot is received—consisting of254 (
otdesc , otgame , otinv , at−1

)
corresponding to the room255

description, game feedback, inventory, and previ-256

ous action. These components are processed using257

a GRU based encoder, utilizing the hidden state258

from the previous step and combined as a single259

observation embedding ot (bottom of Fig. 2).260

The full knowledge graph Gt is processed via261

Graph Attention Networks (GATs) (Veličković262

et al., 2017) followed by a linear layer to get the263

graph representation gt (middle of Fig. 2). Then264

compute the LSTM attention between ot and gt by:265

αLSTM = softmax (W lhLSTM + bl) (1)266

hLSTM = tanh (W ggt ⊕ (W oot + bo)) (2)267

where⊕ denotes the addition of a matrix and a vec-268

tor. W l,W g,W o are weights and bl, bo are biases.269

The overall representation vector is updated,270

qt = gt +

c∑
i

αLSTM,i � ot,i (3)271

where � denotes dot-product, c is the number of 272

ot’s components. 273

Sub-graphs are also encoded by GATs to get the 274

graph representation g′t. The Hierarchical Graph 275

Attention between qt and g′t is calculated by: 276

αHierarchical = softmax (W HhH + bH) (4) 277

hH = tanh
(
W g′g

′
t ⊕ (W qqt + bq)

)
(5) 278

whereWH,W g′ ,W q are weights and bH, bq are 279

biases. Then we get state representation, consisting 280

of the textual observations full knowledge graph 281

and sub-knowledge graph. 282

vt = qt +
s∑
i

αHierarchical,i � g′t,i (6) 283

where s is the number of sun-graphs (4 in our pa- 284

per). The full architecture can be found in Figure 2. 285

The agent is trained via the Advantage Actor 286

Critic (A2C) (Mnih et al., 2016) method to maxi- 287

mize long term expected reward in the game in a 288

manner otherwise unchanged from Ammanabrolu 289

et al. (2020) (See Appendix A.1). These attention 290

values thus reflect the portions of the knowledge 291

graphs that the agent must focus on to best achieve 292

this goal of maximizing reward. 293

Hierarchical Graph Attention Explanation. 294

The graph attention αHierarchical is used to cap- 295

ture the relative importance of game state ob- 296

servations and KG entities in influencing action 297

choice. For each sub-graph, the graph attention, 298

αHierarchical,i ∈ Rnnodes×m is summed over all the 299

channels m to obtain α′Hierarchical,i ∈ Rnnodes×1, 300

showing the importance of the KG nodes in the 301

ith sub-graph. The top-k valid entities (and corre- 302

sponding edges) with highest absolute value of its 303

attention form the set of knowledge graph triplets 304

that best locally explain the action at. 305

In order to make the explanation more readable 306

for a human reader, we further transform knowl- 307

edge graph triplets to natural language by template 308

filling. We create templates for each type of sub- 309

graphs Gatr, Ginv, Gobj , Gloc, 310

• 〈object, is, attribute〉 is converted to “Object is 311

attribute”. 312

• 〈player, has, object〉 is converted to “I have ob- 313

ject”. 314

• 〈object, in, location〉 is converted to “Object is 315

in location”. 316

• 〈location_1, direction, location_2〉 is con- 317

verted to “location_1 is in the direction of 318
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Up a Tree
Take egg
Up a Tree

   5

Forest Path
Go up

Up a tree

P(A|Bi) > p

CALM

Behind House
Go north

North of House
A

Behind House
Go west
Kitchen

     
 10

Semantic Filter

BAYES

Game Trajectories 
(Table 1) Forest PathAll game states    All game states    

Bi

Key
Input
Used for Training
 

Location after Action
 Game score

Location before Action
 Action
 

Figure 3: Pipeline for creating a temporal explanation
of why the agent chose the action—"go north" at "be-
hind house".

STEP: 16

Text Observation:
Up a Tree
Beside you on the branch is a small birds nest.
In the birds nest is a large egg encrusted with jewels...
Knowledge graph:
〈tree, in, forest〉, 〈egg, is, interactable〉...

Action: take egg
Immediate explanation: egg is interactable

Game Score:5
Critic Value: 5.7457

Table 1: Example state saved during game play as part
of a trajectory.

location_2”, e.g. 〈forest, north, house〉 is319

converted to “Forest is in the north of house”.320

More examples can be found in Appendix A.2.321

3.2 Temporally Extended Explanations322

Graph attention tells us which entities in the KG323

are attended to when making a decision, but is not324

enough alone for explaining “why” actions are the325

right ones in the context of fulfilling dependencies326

that may potentially be unrewarded by the game—327

especially given the fact that there are potentially328

multiple ways of achieving the overall task. HEX-329

RL thus saves trajectories for hundreds of test time330

rollouts of the games, performed once a policy has331

been trained (Table 1). The game trajectories con-332

sist of all the game states, actions taken, predicted333

critic values, game scores, the knowledge graphs,334

and the immediate step level explanations gener-335

ated as previously described. HEX-RL produces 336

a temporal explanation by performing a post-hoc 337

analysis on these game trajectories. The agent then 338

analyzes and filters these trajectories in an attempt 339

to find the subset of states that are most crucial 340

to achieving the task as summarized in Figure 3— 341

then using that subset of states to generate temporal 342

trajectory level explanations. 343

Bayesian State Filter. We first train a Bayesian 344

model to predict the conditional probability P(A | 345

Bi) of a game step (A) given any other possible 346

game step (Bi) in the game trajectories. The key 347

intuition here being that state, action pairs that ap- 348

pear in a certain ordering in multiple trajectories 349

are more likely to dependant on each other. The set 350

of game steps with the highest P(A | Bi) is used 351

to explain taking the action associated with game 352

state A. For example, “take egg” (A) is required to 353

“open egg” (B), and P(A | B) = 1, hence “open 354

egg” is used as a reason why action “take egg” must 355

be taken first. The initial set of game states X is 356

filtered into X1 by working backwards from the 357

final goal state by finding the set of states that form 358

the most likely chain of causal dependencies that 359

lead to it. Details can be found in Appendix A.3. 360

Language Model Action Filter. Following this, 361

we apply a GPT-2 (Radford et al., 2019) language 362

model trained to generate actions based on tran- 363

scripts of text games from human play-throughs to 364

further filter out important states—known as the 365

Contextual Action Language Model (CALM) (Yao 366

et al., 2020). As this language model is trained on 367

human transcripts, we hypothesize that it is able 368

to further filter down the set of important states 369

by finding the states that have corresponding ac- 370

tions that a human player would be more likely 371

to perform—thus potentially leading to more nat- 372

ural explanations. CALM takes into observation 373

ot, action at and the following observation ot+1, 374

and predicts next valid actions at+1. In our work, 375

we use CALM as a filter to look for the relations 376

between a game step A and the explanation candi- 377

dates Bi ∈ X1. We feed CALM with the prompt 378

oA, aA, oBi to get an action candidate set. When 379

the two game steps A and Bi are highly correlated, 380

given oA, aA and oBi , CALM should successfully 381

predict aBi with high probability. The game steps 382

Bi, whose associated action aBi is in this generated 383

action candidates set, are saved as the next set of 384

filtered important candidate game states (X2). 385

Semantic State-Action Filter. To better ac- 386
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Experiment LSTM-A2C KG-A2C SHA-KG Q*BERT HEX-RL HEX-RL Max
Game Only Game_and_IM

Metric Eps. Max Eps. Max Eps. Max Eps. Max Eps. Max Eps. Max -
zork1 27 31.2 34 35 33.6 34.5 35 35 29.8 40 30.2 40 350
library 8.2 10 14.3 19 10.0 15.8 18 18 15.94 19 13.8 21 30
detective 141 188 207.9 214 246.1 308 274 310 276.65 330 276.93 330 360
balances 10 10 10 10 9.8 10 10 10 9.95 10 10 10 51
pentari 50.4 55 50.7 56 48.2 51.3 50 56 34.61 55 44.7 60 70
ztuu 5 5 5 5 5 25 5 5 5 5 5.08 9 100
ludicorp 14.4 18 17.8 19 17.6 17.8 18 19 14.0 18 17.6 18 150
deephome 1 1 1 1 1 1 1 1 1 1 1 1 300
temple 8 8 7.6 8 7.9 6.9 8 8 8 8 7.58 8 35
% compl. 22.6 25.9 27.3 30.8 27.2 33.1 30.8 34.9 27.2 33.9 28.2 35.8 100

Table 2: Asymptotic scores on games by different methods across 5 independent runs. Eps. indicates scores
averaged across the final 100 episodes and Max indicates the maximum score seen by the agent over the same
period. We present results on two training rewards, game only and game_and_IM.

count for the irregularities of the puzzle like en-387

vironment, we adopt a semantic filter to obtain388

the final important state set X3. Here, given389

A,Bi ∈ X2, states are further filtered on the basis390

of whether one of these scenarios occurs: (1) aA391

and aBi contain the same entities, e.g. “take egg”392

and “open egg”. (2) GA and GBi share the same393

entities, e.g. “lamp” occurs in both observations.394

(3) A and Bi occur in the same location, e.g. after395

taking action aA, the player enters “kitchen” and396

B occurs in “kitchen”. (4) The state has a non-zero397

reward or a high absolute critic value, indicating398

that it is either a state important for achieving the399

goals of the game or it is a state to be avoided. The400

final set of important game states X3 is used to syn-401

thesize post-hoc temporal explanations for why an402

action was performed in a particular state—as seen403

in Figure 1—taking into account the overall con-404

text of the dependencies required to be satisfied and405

building on the immediate step level explanations406

for each given state in X3.407

4 Evaluation408

Our evaluation consists of three phases: (1) We409

show that HEX-RL has the comparable perfor-410

mance to state-of-art reinforcement learning agents411

on text games in Section 4.1. (2) Then in Sec-412

tion 4.2, we evaluate our immediate attention ex-413

planation model by comparing the explanations414

generated by HEX-RL and agents that do not use415

knowledge graphs (See Fig. 2 and Section 3.1). (3)416

In Section 4.3 we compare immediate to temporal417

explanations, focusing on the effects that including418

trajectory level context when evaluating explana-419

tions in the context of agent goals.420

4.1 Task Performance Evaluation 421

We compare HEX-RL with four strong state-of-art 422

reinforcement learning agents—focusing on con- 423

temporary agents that use knowledge graphs—on 424

an established test set of 9 games from the Jericho 425

benchmark (Hausknecht et al., 2020). 426

• LSTM-A2C is a baseline that only uses natural 427

language observations as state representation that 428

is encoded with an LSTM-based policy network. 429

• KG-A2C. Instead of training a question- 430

answering system like Q*BERT to build knowl- 431

edge graph state representation, KG-A2C (Am- 432

manabrolu and Hausknecht, 2020) extracts 433

knowledge graph triplets from the text observa- 434

tions using a rules based approach built on Ope- 435

nIE (Angeli et al., 2015). 436

• SHA-KG is adapted from Xu et al. (2020) and 437

uses a rules-based approach to construct a knowl- 438

edge graph for the agent which is then fed into 439

a Hierarchical Graph Attention network as in 440

HEX-RL. This agent separates the sub-graphs 441

out using a rules-based approach and makes no 442

use of any graph edge relationship information. 443

• Q*BERT. (Ammanabrolu et al., 2020) uses a 444

similar method of creating the knowledge graph 445

through question answering but does not use 446

the hierarchical graph attention architecture com- 447

bined with the sub-graphs. 448

These baselines are all trained via the Advantage 449

Actor Critic (A2C) (Mnih et al., 2016) method— 450

further comparisons to other contemporary agents 451

can be found in Appendix A.4. It is also worth not- 452

ing that most contemporary state of the art deep RL 453

agents for text games use recurrent neural policy 454

networks as opposed to transformer networks due 455

to their improved performance in this domain. 456

HEX-RL Training. We trained HEX-RL on 457

6



Figure 4: Human evaluation results showing the pro-
portion of participants that prefer Hierarchical Graph
Attention vs. LSTM Attention explanations, ∗∗ indi-
cates p < 0.01, † indicates κ > 0.2 or fair agreement.
‡ indicates κ > 0.4 or moderate agreement. Evaluation
results on each game are shown in Appendix A.9.

two reward types: (a)game only, which indicates458

that we only use score obtained from the game as re-459

ward. (2)game with intrinsic motivation (game and460

IM), which contains an additional intrinsic motiva-461

tion reward based on knowledge graph expansion462

as seen in Ammanabrolu et al. (2020)—where the463

agent is additionally rewarded for learning more464

about the world by finding new facts for knowledge465

graph. Further details are found in Appendix A.5.466

Table 2 shows the performance of HEX-RL and467

the other four baselines. We can see that design-468

ing the HEX-RL agent to be inherently explainable469

through the use of Hierarchical Graph Attention470

and the sub-graphs improves the overall maximum471

score seen during training when compared to any472

of the other agents. In terms of the average score473

seen during the final 100 episodes, HEX-RL wth474

intrinsic motivation outperforms all baselines with475

the exception of Q*BERT—there HEX-RL signifi-476

cantly outperforms Q*BERT on one game, is out-477

performed on two games, and comparable on the478

remaining six games. HEX-RL thus performs com-479

parably to other state-of-the-art baselines in terms480

of overall task performance while also boasting the481

additional ability to explain its actions.482

4.2 Immediate Explanation Evaluation483

Having established that HEX-RL’s performance484

while playing text games is comparable to other485

state-of-the-art agents, we attempt to answer the486

question of exactly how useful the knowledge487

graph based architecture is when generating im-488

mediate step-by-step explanations by comparing489

HEX-RL to a baseline that doesn’t use knowledge 490

graphs in a human participant study. The two mod- 491

els being compared are where step-by-step expla- 492

nations are generated by: 493

• LSTM Attention explanations. Extracts the 494

most important substring in the observations 495

through LSTM attention αLSTM and then uses 496

those words to create an explanation. 497

• Hierarchical Graph Attention explanations. 498

Extracts KG triplets most influenced the choice 499

of actions by Hierarchical Attention αHierarchical 500

and then transforming them into readable lan- 501

guage explanations through templates. 502

Human participants first read explanation pairs 503

generated by Hierarchical Graph Attention and 504

LSTM attention explanation on three games in 505

the Jericho benchmark: zork1, library, and bal- 506

ances. Then they are given the following metrics 507

and asked to choose which explanation they prefer 508

with respect to that metric: 509

• Confidence: This explanation makes you more 510

confident that the agent made the right choice. 511

• Human-likeness: This explanation expresses 512

more human-like thinking on the action choice. 513

• Understandability: This explanation makes you 514

understand why the agent made the choice. 515

Variations of these questions have been used to eval- 516

uate other explainable AI systems (eg. Ehsan et al. 517

(2019)). More details are shown in Appendix B.1. 518

Figure 4 shows the result of the human evalua- 519

tion of attention explanations. Hierarchical graph 520

attention explanation is preferred over LSTM at- 521

tention explanation in all three dimensions. These 522

results are statistically significant (p < 0.05) with 523

fair inter-rater reliabilities. We also observe that 524

these three dimensions are highly, positively corre- 525

lated using Spearman’s Rank Order Correlation.1 526

A slightly higher proportion of participants pre- 527

ferred the LSTM Attention explanations in the 528

human-likeness dimension compared to the other 529

two. When this small proportions was asked to jus- 530

tify their choice in under 50 words, the participants 531

preferring LSTM Attention explanation stated that 532

they found it intuitive and found the Hierarchical 533

Graph Attention explanations to be more robotic. 534

On the other hand, whenever participants did 535

not prefer the LSTM Attention, they justified it by 536

stating that the explanation was relatively incoher- 537

1rs = 0.70, p < 0.01, between “confidence” and “un-
derstandability”; rs = 0.67, p < 0.01, between “confidence”
and “human-likeness”;rs = 0.89, p < 0.01, between “human-
likeness” and “understandability”
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Figure 5: Human judgment5 results on immediate and
temporal explanation, ∗ indicates p < 0.05. A con-
fidence level of 95% over all the explanations is also
presented.

ent, which indicates that the LSTM Attention based538

explanation—constructed directly to be a substring539

of the human-written observation—presents a more540

human-like explanation for the actions than the541

templated Hierarchical Graph Attention explana-542

tions but only when it is coherent enough to be543

understood. The KG sacrifices a small amount of544

human-likeness in return for much greater overall545

understandability. Overall, we conclude that on546

a step-by-step level using knowledge graphs with547

Hierarchical Graph Attention networks gives us548

explanations that are more easily understood and549

inspire greater confidence in the agent’s decisions.550

4.3 Immediate vs. Temporal Explanations551

Having proved the effectiveness of the knowledge552

graph at the immediate step-by-step explanation553

level, we evaluate our method of producing tem-554

poral explanations and how they compare to the555

immediate explanations. We assess whether the556

temporal explanation condensing a trajectory into557

important steps (1) is able to maintain the coher-558

ence like the immediate explanations do; and (2) in-559

forms better about the agent’s actions when taken560

in the context of the goals of the agent. Pair-wise561

ablation studies to pinpoint the relative contribu-562

tions of the different filters (Section 3.2) can be563

found in Appendix C.564

Participants first read the full trajectory of the565

game combined with step-by-step immediate ex-566

planations, along with the game goal, and indicate567

how much they agree with the five statements on a568

Likert scale2. For this study, we take all the metrics569

21: Strong Disagree; 2: Disagree; 3: Undecided; 4: Agree;
5: Strong Agree

from the previous study and add two more: 570

• Goal context: You are able to understand why 571

the agent takes this particular sequence of actions 572

given what you know about the goal. 573

• Readability: This explanation is easy to read. 574

Participants then read the temporal explanation of 575

the same trajectory and rate it again along the same 576

five statements (See Appendix B.2). 577

Figure 5 shows the average scores for each ques- 578

tion for the immediate and temporal explanations. 579

The temporal explanations achieve comparable per- 580

formance to the immediate explanations on all met- 581

rics except for the the metric relating to goal con- 582

text. On the goal context metric, the temporal ex- 583

planation significantly out-performs the immediate 584

explanations. These results indicate that HEX-RL 585

can successfully identify the most important states 586

in a trajectory and use them to create temporal 587

explanations that are on par with immediate ex- 588

planations in terms of coherence but provide sig- 589

nificantly more context in terms of explaining an 590

agent’s actions with respect to its task-based goals. 591

We further note that when the participants were 592

asked to justify these choices, a majority stated 593

that a condensed temporal explanation based on 594

important steps made the goals of the agent easier 595

to understand than reading through an explanation 596

for every single step the agent took. 597

5 Conclusions 598

Explaining deep RL policies for sequential decision 599

making problems in natural language is a sparsely 600

studied problem despite a steadily growing need. 601

An oft given reason for this phenomenon is that 602

deep RL methods perform better without the addi- 603

tional burden of being explainable. In an attempt 604

to encourage work in this area, we create the Hi- 605

erarchically Explainable Reinforcement Learning 606

(HEX-RL) agent which treats explainability as a 607

first-class citizen in its design by using a readily 608

interpretable knowledge graph state representation 609

coupled with a Hierarchical Graph Attention net- 610

work. This agent is able to produce step-by-step 611

commentary-like immediate explanations and also 612

a condensed temporal trajectory level explanation 613

via a post-hoc analysis. We show that with care- 614

ful design, it is possible to create inherently ex- 615

plainable RL agents that do not lose performance 616

when compared to contemporary state-of-the-art 617

agents and simultaneously are able to generate sig- 618

nificantly higher quality explanations of actions. 619

8



6 Broader Impacts620

The ability to explain the reinforcement learning621

actions in text games has downstream applications622

beyond understanding how to play text games. We623

regard text games as simplified analogues for sys-624

tems capable of long-term dialogue with humans,625

such as in assistance with planning complex tasks,626

and also discrete planning domains such as logis-627

tics. Our work is applicable to provide understand-628

ing of domains where change in the world is af-629

fected via language. As our system relies on graph630

hierarchical graph attention to generate immediate631

explanations, we are limited to provide explana-632

tions on systems affected by natural language. Sys-633

tems prone to error, both in performing a given task634

as well as in explaining them, should not be relied635

upon in more critical applications.636
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A Implementation Details787

A.1 A2C Architecture788

Further details of what is found in Figure 2. The789

sequential action decoder consists two GRUs that790

are linked together as seen in Ammanabrolu and791

Hausknecht (2020). The first GRU decodes an792

action template and the second decodes objects793

that can be filled into the template. These objects794

are constrained by a graph mask, i.e. the decoder795

is only allowed to select entities that are already796

present in the knowledge graph.797

A.2 Templates of Immediate Explanation798

We consider four types of sub-graphs799

Gatr, Ginv, Gobj , Gloc, each representing (1) at-800

tributes of objects, (2) objects the player has,801

(3) objects in the room, and (4) other information802

such as location (see right side of Figure 2). Hence,803

we create one template for each sub-graph,804

• 〈object, is, attribute〉 is converted to “Ob-805

ject is attribute”.806

• 〈player, has, object〉 is converted to “I have807

object”.808

• 〈object, in, location〉 is converted to “Object809

is in location”.810

• 〈location_1, direction, location_2〉 is con-811

verted to “location_1 is in the direction of812

location_2”.813

A.3 Bayesian State Filter Detail814

We first train a Bayesian model to predict the con-815

ditional probability P(A | Bi) of a game step (A)816

given any other possible game step (Bi) in the game817

trajectories. More specifically, current game step818

(A) is composed of 3 elements, game state ot, ac-819

tion at and knowledge graph Gt. We count the820

occurrence of A (C(A)), and all the game steps oc-821

curred in the game logs (C(Bi)), and also count the822

co-occurrence of A and Bi, C(A∩Bi) in the same823

trajectory. X = {A,B1, ..., Bi}. The conditional824

probability P(A | Bi) is calculated by,825

P(A | Bi) =
P(Bi | A)C(A)

C(Bi)
(7)826

where C(A) and C(Bi) stand for the raw count of827

game step A and Bi in the collected trajectories.828

The key intuition here being that state, action pairs829

that appear in a certain ordering in multiple trajec-830

tories are more likely to dependant on each other.831

Higher P(A | Bi) indicates the necessity ofA toB.832

The set of game steps with the highest P(A | Bi)833

is used to explain taking the action associated with 834

game state A. For example, “take egg” (A) is re- 835

quired to “open egg” (B), and P(A | B) = 1, 836

hence “open egg” is used as a reason why action 837

“take egg” must be taken first. The initial set of 838

game states X is filtered into X1 by working back- 839

wards from the final goal state by finding the set 840

of states that form the most likely chain of causal 841

dependencies that lead to it. As shown in Figure 3, 842

we obtain the explanation candidate game steps 843

X1 by filtering all the possible game steps follow- 844

ing current game step A in the game logs with 845

P(A | Bi) > p, where p is the threshold. 846

A.4 Raw scores across Jericho supported 847

games 848

Exp. TDQN DRRN HEX-RL Max
Game_and_IM

Metric Eps. Eps. Eps. Max -
zork1 9.9 24.6 30.2 40 350
library 6.3 17 13.8 21 30
detective 169 197.8 276.93 330 360
balances 4.8 10 10 10 51
pentari 17.4 27.2 44.7 60 70
ztuu 4.9 21.6 5.08 9 100
ludicorp 6 13.8 17.6 18 150
deephome 1 1 1 1 300
temple 7.9 7.4 7.58 8 35
% compl. 15.2 25.5 28.2 35.8 100

Table 3: Raw scores across Jericho supported games.
Eps. indicates scores averaged across the final 100
episodes and Max indicates the maximum score seen
by the agent over the same period. We present results
on game and IM reward.

A.5 Reward types 849

To alleviate the issue that rewards are sparse and 850

often delayed, Ammanabrolu et al. defined an in- 851

trinsic motivation for the agent that leverages the 852

knowledge graph being built during exploration. 853

The motivation is for the agent to learn more infor- 854

mation regarding the world and expand the size 855

of its knowledge graph. They formally define 856

game_and_IM reward in terms of new informa- 857

tion learned. 858

rIMt = ∆(KGglobal −KGt) (8) 859

where KGglobal =
t−1⋃
i=1
KGi Here KGglobal is the 860

set of all edges that the agent has ever had in its 861

knowledge graph and the subtraction operator is a 862

set difference. 863
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A.6 Knowledge Graph Representation QA864

Model865

The question answering network based on AL-866

BERT (Lan et al., 2019) has the following hyperpa-867

rameters, taken from the original paper and known868

to work well on the SQuAD 2.0 (Rajpurkar et al.,869

2018) dataset. No further hyperparameter tuning870

was conducted.871

Parameters Value
batch size 8
learning rate 3e-5
max seq len 512
doc stride 128
warmup steps 814
max steps 8144
gradient accumulation steps 24

872

A.7 HEX-RL873

The additional hyperparamters used for training874

HEX-RL are detailed below, same with Am-875

manabrolu et al.(2020). graph dropout and mask876

dropout are used for encouraging graph network to877

actually learn a sparse representation.878

Parameters Value
buffer size 40
batch size 16
graph dropout 0.2
mask dropout 0.1

879

A.8 Task Performance880

We plot the training reward curve for 9 games in881

Figure 6 and Figure 7.882
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(a) zorkI (b) library (c) balances

(d) detective (e) ludicorp (f) ztuu

(g) pentari (h) deephome (i) temple

Figure 6: Eps. initial reward curves for the exploration strategies—Game only Reward
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(a) zorkI (b) library (c) balances

(d) detective (e) ludicorp (f) ztuu

(g) pentari (h) deephome (i) temple

Figure 7: Eps. initial reward curves for the exploration strategies—Game and IM Reward
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A.9 Immediate Explanation Evaluation883

We plot the immediate explanation evaluation result884

per game in Figure 8.885

(a) ZorkI

(b) library

(c) balances

Figure 8: Human evaluation results comparing Hierar-
chical Graph Attention vs. LSTM Attention, ∗ indi-
cates p < 0.05, ∗∗ indicates p < 0.01, † indicates κ >
0.2 or fair agreement. ‡ indicates κ > 0.4 or moderate
agreement.
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B Human Evaluation Details886

B.1 Immediate Explanation Evaluation887

We recruited 40 participants—generally unfamiliar888

with the environment at hand—on a crowd sourc-889

ing platform. Each participant reads a randomly890

selected subset of 10 explanation pairs (drawn ran-891

domly from a pool totaling 60 explanation pairs),892

generated by Hierarchical Graph Attention and893

LSTM attention explanation on three games in the894

Jericho benchmark: zork1, library, and balances.895

We firstly ask participants to read an interactive896

game description and then ask them to answer a897

set of questions about this game to make sure they898

are qualified. They will also play a demo of an899

interactive text game and answer a question based900

on the game they played. The details can be found901

in Figure 9 and Figure 10. These questions are de-902

signed to improve the quality of human evaluation.903

At least 5 participants give their preference for each904

explanation pair.905

Each participant reads a randomly selected sub-906

set of 10 explanation pairs (drawn randomly from907

a pool totaling 60 explanation pairs), generated by908

Hierarchical Graph Attention and LSTM attention909

explanation on three games in the Jericho bench-910

mark, zork1, library, and balances. The following911

three questions are asked,912

• Which explanation makes you more confident913

that the agent made the right choice?914

• Which explanation expresses more human-915

like thinking on the action choice?916

• Which explanation makes you understand917

why the agent made the choice?918

Figure 9: Screenshot of the human study instruction—
game description.
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Figure 10: Screenshot of the human study instruction—
task description.
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Figure 11: Screenshot of the human study instruction.
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B.2 Immediate vs. Temporal Explanation919

Evaluation920

Participants first read the full trajectory of the game921

(Figure 12) combined with step-by-step immediate922

explanations, along with summary of the game923

goal, and indicate how much they agree with the924

five statements on a Likert scale (Figure 13). The925

following five statements are used in human study.926

• I am confident that I can get the same score as927

the agent when following this explanation.928

• This explanation look like it was made by929

human.930

• This explanation is easy to understand.931

• I am able to understand why the agent takes932

this particular sequence of actions given what933

I know about the goal.934

• This explanation is easy to read.935

At least 5 crowd workers rated each explanation.936

Figure 12: Screenshot of Immediate vs. Causal Expla-
nation Evaluation —Text Summary.

Figure 13: Screenshot of Immediate vs. Causal Expla-
nation Evaluation—Likert Scale.
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C Temporal Explanation Ablation Study937

Having established the overall effectiveness of the938

filters in HEX-RL that create the temporal expla-939

nations, we perform pair-wise ablation studies to940

pinpoint the relative contributions of the different941

filters seen in Fig. 3. We first compare explanations942

generated using a set of important states filtered943

from the trajectory using the Bayes model com-944

pared to Bayes+CALM explanation. This how ap-945

plying the language model action filter affects the946

quality of the temporal explanations. As before, we947

recruited 30 participants on a crowd sourcing plat-948

form. Each participant reads a randomly selected949

subset of explanation pairs, comprised of temporal950

explanations filtered by Bayes and Bayes+CALM951

models. Figure 14a shows that after applying the952

CALM model to filter explanation candidates, gen-953

erated explanations are significantly preferred on954

the “Confidence” and “Understandability” dimen-955

sions.956

Similarly, we then conducted another ablation957

study to validate the contribution of semantic filter958

by comparing the Bayes+CALM filtering method959

to the full HEX-RL using Bayes+CALM+Semantic960

filters. The experiment setup is the same as the961

previous ablation study. Figure 14b shows that962

Bayes+CALM+Semantic performs significantly963

better than Bayes+CALM on all three dimensions.964

We additionally observe that these three metrics965

are highly, positively correlated using Spearman’s966

Rank Order Correlation in both of these ablation967

studies3. When asked to justify their choices, par-968

ticipants indicated that the full HEX-RL system969

with Bayes+CALM+Semantic filters provided tem-970

poral explanations that they felt was more under-971

standable than alternatives. These results indicate972

that all three steps of the filtering process to identify973

important states are necessary for creating coher-974

ent temporal explanations that effectively take into975

account the context of the agent’s goals.976

3rs = 0.86, p < 0.01, between “confidence” and “un-
derstandability”; rs = 0.79, p < 0.01, between “confidence”
and “human-likeness”;rs = 0.90, p < 0.01, between “human-
likeness” and “understandability”
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(a) Bayes vs. Bayes+CALM explanation (b) Bayes+CALM vs. Bayes+CALM+Semantic explanation

Figure 14: Human evaluation results on ablation study, ∗ indicates p < 0.05, † indicates κ > 0.2 or fair agreement.
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We also plot the causal explanation ablation977

study result per game in Figure 15 and Figure 16.978

(a) ZorkI

(b) library

(c) balances

Figure 15: Human evaluation results on ablation study,
∗ indicates p < 0.05, † indicates κ > 0.2 or fair agree-
ment.

(a) ZorkI

(b) library

(c) balances

Figure 16: Human evaluation results on ablation study,
∗ indicates p < 0.05, † indicates κ > 0.2 or fair agree-
ment.
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