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Abstract

We focus on the task of creating a rein-
forcement learning agent that is inherently
explainable—with the ability to produce im-
mediate local explanations by thinking out
loud while performing a task and analyzing
entire trajectories post-hoc to produce tem-
porally extended explanations. This Hier-
archically Explainable Reinforcement Learn-
ing agent (HEX-RL), operates in Interactive
Fictions, text-based game environments in
which an agent perceives and acts upon the
world using textual natural language. These
games are usually structured as puzzles or
quests with long-term dependencies in which
an agent must complete a sequence of actions
to succeed—providing ideal environments in
which to test an agent’s ability to explain
its actions. Our agent is designed to treat
explainability as a first-class citizen, using
an extracted symbolic knowledge graph-based
state representation coupled with a Hierarchi-
cal Graph Attention mechanism that points to
the facts in the internal graph representation
that most influenced the choice of actions. Ex-
periments show that this agent provides signifi-
cantly improved explanations over strong base-
lines, as rated by human participants generally
unfamiliar with the environment, while also
matching state-of-the-art task performance.

1 Introduction

Explainable AI refers to artificial intelligence
methods and techniques that provide human-
understandable insights into how and why an Al
system chooses actions or makes predictions. Such
explanations are critical for ensuring reliability and
improving trustworthiness by increasing user un-
derstanding of the underlying model. In this work
we specifically focus on creating deep reinforce-
ment learning (RL) agents that can explain their
actions in sequential decision making environments
through natural language.
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Figure 1: Excerpt from zorkl and immediate step-by-
step explanations extracted from knowledge graph rep-
resented by - and temporally extended explanations
represented by = . The different colors represent differ-
ent categories of knowledge graph facts they are drawn
from, as seen in Fig. 2.

In contrast to the majority of contemporary work
in the area which focuses on supervised machine
learning problems requiring singular instance level
local explanations (You et al., 2016; Xu et al., 2015;
Wang et al., 2017; Wiegreffe and Marasovic, 2021),
such environments—in which agents need to rea-
son causally about actions over a long series of
steps—require an agent to take into account both
environmentally grounded context as well as goals
when producing explanations. Agents implicitly
contain beliefs regarding the downstream effects—
the changes to the world—that actions taken at the
current timestep will have. This requires explana-
tions in these environments to contain an additional
temporally extended component taking the full tra-
jectory’s context into account—complementary to
the immediate step-by-step explanations.



Interactive Fiction (IF) games (Fig. 1) are par-
tially observable environments where an agent per-
ceives and acts upon a world using potentially
incomplete textual natural language descriptions.
They are structured as long puzzles and quests
that require agents to reason about thousands of
locations, characters, and objects over hundreds
of steps, creating chains of dependencies that an
agent must fulfill to complete the overall task. They
provide ideal experimental test-beds for creating
agents that can both reason in text and explain it.

We introduce an approach to game playing
agents—Hierarchically Explainable Reinforce-
ment Learning (HEX-RL)—that is designed to
be inherently explainable, in the sense that its in-
ternal state representation—i.e. belief state about
the world—takes the form of a symbolic, human-
interpretable knowledge graph (KG) that is built as
the agent explores the world. The graph is encoded
by a Graph Attention network (GAT) (Velickovi¢
et al., 2017) extended to contain a hierarchical
graph attention mechanism that focuses on different
sub-graphs in the overall KG representation. Each
of these sub-graphs contains different information
such as attributes of objects, objects the player has,
objects in the room, current location, etc. Using
these encoding networks in conjunction with the
underlying world KG, the agent is able to create
immediate explanations akin to a running commen-
tary that points to the facts within this knowledge
graph that most influence its current choice of ac-
tions when attempting to achieve the tasks in the
game on a step-by-step basis.

While graph attention can tell us which elements
in the KG are attended to when maximizing ex-
pected reward from the current state, it cannot ex-
plain the intermediate, unrewarded dependencies
that need to be satisfied to meet the long term task
goals. For example, in the game zorkl, the agent
needs to pick up a lamp early on in the game—
an unrewarded action—but the lamp is only used
much later on to progress through a location with-
out light. Thus, our agent additionally analyzes an
overall episode trajectory—a sequence of knowl-
edge graph states and actions from when the agent
first starts in a world to either task completion or
agent death—to find the intermediate set of states
that are most important for completing the overall
task. This information is used to generate a tem-
porally extended explanation that condenses the
immediate step-by-step explanations to only the

most important steps required to fulfill dependen-
cies for the task.

Our contributions are as twofold: (1) we cre-
ate an inherently explainable agent that uses an
ever-updating knowledge-graph based state repre-
sentation to generate step-by-step immediate ex-
planations for executed actions as well as perform-
ing a post-hoc analysis to create temporal expla-
nations; and (2) a thorough experimental study
against strong baselines that shows that our agent
generates significantly improved explanations for
its actions when rated by human participants unfa-
miliar with the domain while not losing any per-
formance compared to the current state-of-the-art
knowledge graph-based agents.

2 Background and Related Work

Interactive Fiction (IF) games are simulations fea-
turing language-based state and action spaces. In
this paper, we use IF games as our test-bed because
they provide an ideal platform for collecting data,
linking game states and actions to the correspond-
ing natural language explanations. We use the defi-
nition of text-adventure games as seen in Coté et al.
(2018) and Hausknecht et al. (2020). A text game
can be defined as a partially-observable Markov
Decision Process: G = (S, P, A, 0,Q, R,~), rep-
resenting the set of environment states, conditional
transition probabilities between states, the vocabu-
lary or words used to compose text commands,
observations, observation conditional probabili-
ties, reward function, and discount factor, respec-
tively. The reinforcement learning agent is trained
to learned a policy 7 (0) — a.

Knowledge Graphs for Text Games. Am-
manabrolu et al. (2020) proposed Q*BERT, a rein-
forcement learning agent that learns a KG of the
world by answering questions. Xu et al. (2020)
used a stacked Hierarchical Graph Attention mech-
anism to construct an explicit representation of the
reasoning process by exploiting the structure of
the KG. Adhikari et al. (2020) present the Graph-
Aided Transformer Agent (GATA) which learns
to construct a KG during game play and improves
zero-shot generalization on procedurally generated
TextWorld games. Other works such as Muruge-
san et al. (2020) explore how to use KGs to en-
dow agents with commonsense. While these works
showcase the effectiveness of KGs on task perfor-
mance, they do not generate explanations.

Explainable Deep RL. Contemporary work on
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Figure 2: One-step knowledge graph extraction and hierarchically explainable reinforcement learning agent (HEX-

RL) architecture at time step ¢.

explaining deep reinforcement learning policies
can be broadly categorized based on: (1) how the
information is extracted, either via intrinsic moti-
vation during training (Shu et al., 2017; Hein et al.,
2017; Verma et al., 2018) or through post-hoc anal-
ysis (Rusu et al., 2015; Hayes and Shah, 2017,
Juozapaitis et al., 2019; Madumal et al., 2020); and
(2) the scope—either global (Zahavy et al., 2016;
Hein et al., 2017; Verma et al., 2018; Liu et al.,
2018) or local (Shu et al., 2017; Liu et al., 2018;
Madumal et al., 2020; Guo et al., 2021). In our
work, we create an agent that spans more than one
of these categories providing immediately local ex-
planations through extracted knowledge graph rep-
resentations and post-hoc temporal explanations.
Inspired by Madumal et al. (2020), we learn a
graphical causal model which focuses on using rela-
tions between steps in a puzzle to generate temporal
explanations instead of generating counterfactuals.

3 Hierarchically Explainable RL

Our work aims to generate (1) immediate step-by-
step explanations of an agent’s policy by capturing
the importance of the current game state observa-
tion and (2) temporally extended explanations that
take into context an entire trajectory via a post-hoc
analysis. Formally, let X = {s;, a;},_,. be the
set of game steps that compose a trajectory. Each
game state s; consists of a knowledge graph G,
representing all the information learned since the
start of the game. This graph is further split into
four sub-knowledge graphs G¢", G, GtOb] , Gloe
each containing different, semantically related rela-
tionship types. This section first describes a graph

attention based architecture that uses these sub-
graphs to produce immediate explanations. We
then describe how to filter the game states in a tra-
jectory into a condensed set of the most important
ones X’ C X that best capture the underlying de-
pendencies that need to be fulfilled to complete
the task—enabling us to produce temporal expla-
nations.

Knowledge Graph State Representation.
Building on Ammanabrolu et al. (2020), construct-
ing the knowledge graph is treated as a question-
answering task. KGs in these games take the form
of RDF triples of (subject,relation,object)—
extracted from text observations and update as
the agent explores the world. The agent answers
questions about the environment such as, “What
am [ carrying?”’ or “What objects are around
me?”. A specially constructed dataset for question
answering in text games—JerichoQA—is used to
fine-tune ALBERT (Lan et al., 2019) to answer
these questions. The answers are form a set of
candidate graph vertices V; for the current step
and questions form the set of relations ;. Both
Vi and R; are then combined with the graph at the
previous step G:_1 to update the agent’s belief
about the world state into G;. The left side of
Figure 2 showcases this.

In an attempt to enable more fine grained expla-
nation generation and inspired by Xu et al. (2020),
we divide the knowledge graph G into multiple
sub-graphs G, G G°% G'°¢, each represent-
ing (1) attributes of objects, (2) objects the player
has, (3) objects in the room, and (4) other informa-



tion such as location (see right side of Fig. 2) based
on the corresponding relationship types extracted
by the ALBERT-QA module. The union of all sub-
graphs is equivalent of V; and R; extracted from
the current game state. The full knowledge graph
G captures the overall game state since the start
of the game. The sub-graphs easily reflect different
relationships of the current game state.

Template Action Space. Agents output a lan-
guage string into the game to describe the ac-
tions that they want to perform. To ensure
tractability, this action space can be simplified
down into templates. Templates consist of inter-
changeable verbs phrases (V P), optionally fol-
lowed by prepositional phrases (VP PP), e.g.
([carry/take] _) and ([throw/discard/put] __
l[against/on/down] _), where the verbs and
prepositions within [.] are aliases. Actions are con-
structed from templates by filling in the template’s
blanks using words in the game’s vocabulary.

3.1 Immediate Explanations

Our immediate explanations consist of find-
ing the subset of triplets in sub-graphs
Gt G GO G'e¢  that most influence
the action decision made at the current step. We
introduce a deep RL architecture capable of this.

Hierarchical Knowledge Graph Attention Ar-
chitecture. At each step, a total score R; and
an observation o; is received—consisting of
(Otgesc  Otgame > Otiny » A—1) corresponding to the room
description, game feedback, inventory, and previ-
ous action. These components are processed using
a GRU based encoder, utilizing the hidden state
from the previous step and combined as a single
observation embedding o; (bottom of Fig. 2).

The full knowledge graph G is processed via
Graph Attention Networks (GATs) (Velickovic¢
et al., 2017) followed by a linear layer to get the
graph representation g (middle of Fig. 2). Then
compute the LSTM attention between o; and gy, by:

apstM = softmax (WthSTM + bl) (nH
histm = tanh (ngt D (Woot + bo)) 2)
where @ denotes the addition of a matrix and a vec-

tor. Wy, W, W, are weights and by, b, are biases.
The overall representation vector is updated,

Cc
qt = gt + Z QLSTM,i © Ot 3)

7

where © denotes dot-product, c is the number of
o¢’s components.

Sub-graphs are also encoded by GATs to get the
graph representation g}. The Hierarchical Graph
Attention between q; and g is calculated by:

OHicrarchical = softmax (Wyhy + buy) — (4)
hy = tanh (Wygi ® (Waq, +bg))  (5)

where Wy, W, W are weights and by, b are
biases. Then we get state representation, consisting
of the textual observations full knowledge graph
and sub-knowledge graph.

s
Vi =q¢ + Z QtHicrarchical,i © gfg,i (6)

7

where s is the number of sun-graphs (4 in our pa-
per). The full architecture can be found in Figure 2.

The agent is trained via the Advantage Actor
Critic (A2C) (Mnih et al., 2016) method to maxi-
mize long term expected reward in the game in a
manner otherwise unchanged from Ammanabrolu
et al. (2020) (See Appendix A.1). These attention
values thus reflect the portions of the knowledge
graphs that the agent must focus on to best achieve
this goal of maximizing reward.

Hierarchical Graph Attention Explanation.
The graph attention Qpjerarchical 1S Used to cap-
ture the relative importance of game state ob-
servations and KG entities in influencing action
choice. For each sub-graph, the graph attention,
QHierarchicali € R™0des™™™ is summed over all the
channels m to obtain fy;qarepicar; € R4,
showing the importance of the KG nodes in the
ith sub-graph. The top-k valid entities (and corre-
sponding edges) with highest absolute value of its
attention form the set of knowledge graph triplets
that best locally explain the action ay.

In order to make the explanation more readable
for a human reader, we further transform knowl-
edge graph triplets to natural language by template
filling. We create templates for each type of sub-
graphs Gratr7 Ginv’ Gobj’ Gloc’

* (object,is, attribute) is converted to “Object is
attribute”.

* (player, has, object) is converted to “I have ob-
ject”.

* (object,in,location) is converted to “Object is
in location”.

* (location_1, direction, location_2) is con-
verted to “location_1 is in the direction of
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(Table 1)
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Figure 3: Pipeline for creating a temporal explanation
of why the agent chose the action—"go north" at "be-
hind house".

STEP: 16

Text Observation:

Up a Tree

Beside you on the branch is a small birds nest.

In the birds nest is a large egg encrusted with jewels...
Knowledge graph:

(tree,in, forest), (egg,is, interactable)...

Action: take egg
Immediate explanation: egg is interactable

Game Score:5
Critic Value: 5.7457

Table 1: Example state saved during game play as part
of a trajectory.

location_2”, e.g. (forest,north,house) is
converted to “Forest is in the north of house”.
More examples can be found in Appendix A.2.

3.2 Temporally Extended Explanations

Graph attention tells us which entities in the KG
are attended to when making a decision, but is not
enough alone for explaining “why” actions are the
right ones in the context of fulfilling dependencies
that may potentially be unrewarded by the game—
especially given the fact that there are potentially
multiple ways of achieving the overall task. HEX-
RL thus saves trajectories for hundreds of test time
rollouts of the games, performed once a policy has
been trained (Table 1). The game trajectories con-
sist of all the game states, actions taken, predicted
critic values, game scores, the knowledge graphs,
and the immediate step level explanations gener-

ated as previously described. HEX-RL produces
a temporal explanation by performing a post-hoc
analysis on these game trajectories. The agent then
analyzes and filters these trajectories in an attempt
to find the subset of states that are most crucial
to achieving the task as summarized in Figure 3—
then using that subset of states to generate temporal
trajectory level explanations.

Bayesian State Filter. We first train a Bayesian
model to predict the conditional probability P(A |
B;) of a game step (A) given any other possible
game step (B;) in the game trajectories. The key
intuition here being that state, action pairs that ap-
pear in a certain ordering in multiple trajectories
are more likely to dependant on each other. The set
of game steps with the highest P(A | B;) is used
to explain taking the action associated with game
state A. For example, “take egg” (A) is required to
“open egg” (B), and P(A | B) = 1, hence “open
egg” is used as a reason why action “take egg” must
be taken first. The initial set of game states X is
filtered into X; by working backwards from the
final goal state by finding the set of states that form
the most likely chain of causal dependencies that
lead to it. Details can be found in Appendix A.3.

Language Model Action Filter. Following this,
we apply a GPT-2 (Radford et al., 2019) language
model trained to generate actions based on tran-
scripts of text games from human play-throughs to
further filter out important states—known as the
Contextual Action Language Model (CALM) (Yao
et al., 2020). As this language model is trained on
human transcripts, we hypothesize that it is able
to further filter down the set of important states
by finding the states that have corresponding ac-
tions that a human player would be more likely
to perform—thus potentially leading to more nat-
ural explanations. CALM takes into observation
o0, action a; and the following observation 0441,
and predicts next valid actions a;41. In our work,
we use CALM as a filter to look for the relations
between a game step A and the explanation candi-
dates B; € X;. We feed CALM with the prompt
04,a4,0p, to get an action candidate set. When
the two game steps A and B; are highly correlated,
given 04, a4 and op,, CALM should successfully
predict ap, with high probability. The game steps
B;, whose associated action a g, is in this generated
action candidates set, are saved as the next set of
filtered important candidate game states (Xs).

Semantic State-Action Filter. To better ac-



Experiment || LSTM-A2C KG-A2C SHA-KG Q*BERT HEX-RL HEX-RL Max
Game Only Game_and_IM
Metric Eps. | Max | Eps. | Max | Eps. | Max | Eps. | Max Eps. | Max | Eps. Max -
zorkl 27 | 31.2 34 35| 33.6 | 345 35 35 29.8 40 30.2 40 | 350
library 8.2 10 | 143 19| 10.0 | 158 18 18 15.94 19 13.8 21 30
detective 141 188 | 207.9 | 214 | 246.1 | 308 | 274 | 310 || 276.65 | 330 | 276.93 330 | 360
balances 10 10 10 10 9.8 10 10 10 9.95 10 10 10 51
pentari 50.4 55| 50.7 56 | 482 | 513 50 56 34.61 55 44.7 60 70
ztuu 5 5 5 5 5 25 5 5 5 5 5.08 9| 100
ludicorp 14.4 18 17.8 19| 17.6 | 17.8 18 19 14.0 18 17.6 18 | 150
deephome 1 1 1 1 1 1 1 1 1 1 1 1] 300
temple 8 8 7.6 8 7.9 6.9 8 8 8 8 7.58 8 35
% compl. 226 | 259 | 273 | 308 | 27.2 | 33.1 | 30.8 | 349 272 | 339 282 | 358 | 100

Table 2: Asymptotic scores on games by different methods across 5 independent runs. Eps. indicates scores
averaged across the final 100 episodes and Max indicates the maximum score seen by the agent over the same
period. We present results on two training rewards, game only and game_and_IM.

count for the irregularities of the puzzle like en-
vironment, we adopt a semantic filter to obtain
the final important state set X3. Here, given
A, B; € X, states are further filtered on the basis
of whether one of these scenarios occurs: (1) ag
and ap, contain the same entities, e.g. “fake egg”
and “open egg”. (2) G 4 and G p, share the same
entities, e.g. “lamp” occurs in both observations.
(3) A and B; occur in the same location, e.g. after
taking action a 4, the player enters “kitchen” and
B occurs in “kitchen”. (4) The state has a non-zero
reward or a high absolute critic value, indicating
that it is either a state important for achieving the
goals of the game or it is a state to be avoided. The
final set of important game states X3 is used to syn-
thesize post-hoc temporal explanations for why an
action was performed in a particular state—as seen
in Figure 1—taking into account the overall con-
text of the dependencies required to be satisfied and
building on the immediate step level explanations
for each given state in Xs.

4 Evaluation

Our evaluation consists of three phases: (1) We
show that HEX-RL has the comparable perfor-
mance to state-of-art reinforcement learning agents
on text games in Section 4.1. (2) Then in Sec-
tion 4.2, we evaluate our immediate attention ex-
planation model by comparing the explanations
generated by HEX-RL and agents that do not use
knowledge graphs (See Fig. 2 and Section 3.1). (3)
In Section 4.3 we compare immediate to temporal
explanations, focusing on the effects that including
trajectory level context when evaluating explana-
tions in the context of agent goals.

4.1 Task Performance Evaluation

We compare HEX-RL with four strong state-of-art
reinforcement learning agents—focusing on con-
temporary agents that use knowledge graphs—on
an established test set of 9 games from the Jericho
benchmark (Hausknecht et al., 2020).

* LSTM-A2C is a baseline that only uses natural
language observations as state representation that
is encoded with an LSTM-based policy network.

* KG-A2C. Instead of training a question-
answering system like Q*BERT to build knowl-
edge graph state representation, KG-A2C (Am-
manabrolu and Hausknecht, 2020) extracts
knowledge graph triplets from the text observa-
tions using a rules based approach built on Ope-
nlE (Angeli et al., 2015).

* SHA-KG is adapted from Xu et al. (2020) and
uses a rules-based approach to construct a knowl-
edge graph for the agent which is then fed into
a Hierarchical Graph Attention network as in
HEX-RL. This agent separates the sub-graphs
out using a rules-based approach and makes no
use of any graph edge relationship information.

¢ Q*BERT. (Ammanabrolu et al., 2020) uses a
similar method of creating the knowledge graph
through question answering but does not use
the hierarchical graph attention architecture com-
bined with the sub-graphs.

These baselines are all trained via the Advantage

Actor Critic (A2C) (Mnih et al., 2016) method—

further comparisons to other contemporary agents

can be found in Appendix A.4. It is also worth not-
ing that most contemporary state of the art deep RL
agents for text games use recurrent neural policy
networks as opposed to transformer networks due
to their improved performance in this domain.
HEX-RL Training. We trained HEX-RL on
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Figure 4: Human evaluation results showing the pro-
portion of participants that prefer Hierarchical Graph
Attention vs. LSTM Attention explanations, s*x* indi-
cates p < 0.01, { indicates x > 0.2 or fair agreement.
I indicates x > 0.4 or moderate agreement. Evaluation
results on each game are shown in Appendix A.9.

two reward types: (a)game only, which indicates
that we only use score obtained from the game as re-
ward. (2)game with intrinsic motivation (game and
IM), which contains an additional intrinsic motiva-
tion reward based on knowledge graph expansion
as seen in Ammanabrolu et al. (2020)—where the
agent is additionally rewarded for learning more
about the world by finding new facts for knowledge
graph. Further details are found in Appendix A.5.

Table 2 shows the performance of HEX-RL and
the other four baselines. We can see that design-
ing the HEX-RL agent to be inherently explainable
through the use of Hierarchical Graph Attention
and the sub-graphs improves the overall maximum
score seen during training when compared to any
of the other agents. In terms of the average score
seen during the final 100 episodes, HEX-RL wth
intrinsic motivation outperforms all baselines with
the exception of Q*BERT—there HEX-RL signifi-
cantly outperforms Q*BERT on one game, is out-
performed on two games, and comparable on the
remaining six games. HEX-RL thus performs com-
parably to other state-of-the-art baselines in terms
of overall task performance while also boasting the
additional ability to explain its actions.

4.2 Immediate Explanation Evaluation

Having established that HEX-RL’s performance
while playing text games is comparable to other
state-of-the-art agents, we attempt to answer the
question of exactly how useful the knowledge
graph based architecture is when generating im-
mediate step-by-step explanations by comparing

HEX-RL to a baseline that doesn’t use knowledge
graphs in a human participant study. The two mod-
els being compared are where step-by-step expla-
nations are generated by:

« LSTM Attention explanations. Extracts the
most important substring in the observations
through LSTM attention oy, g7 and then uses
those words to create an explanation.

e Hierarchical Graph Attention explanations.
Extracts KG triplets most influenced the choice
of actions by Hierarchical Attention afierarchical
and then transforming them into readable lan-
guage explanations through templates.

Human participants first read explanation pairs
generated by Hierarchical Graph Attention and
LSTM attention explanation on three games in
the Jericho benchmark: zorkl, library, and bal-
ances. Then they are given the following metrics
and asked to choose which explanation they prefer
with respect to that metric:

* Confidence: This explanation makes you more
confident that the agent made the right choice.

* Human-likeness: This explanation expresses
more human-like thinking on the action choice.

» Understandability: This explanation makes you
understand why the agent made the choice.

Variations of these questions have been used to eval-

uate other explainable Al systems (eg. Ehsan et al.

(2019)). More details are shown in Appendix B.1.
Figure 4 shows the result of the human evalua-

tion of attention explanations. Hierarchical graph
attention explanation is preferred over LSTM at-
tention explanation in all three dimensions. These
results are statistically significant (p < 0.05) with
fair inter-rater reliabilities. We also observe that
these three dimensions are highly, positively corre-
lated using Spearman’s Rank Order Correlation. !

A slightly higher proportion of participants pre-
ferred the LSTM Attention explanations in the
human-likeness dimension compared to the other
two. When this small proportions was asked to jus-
tify their choice in under 50 words, the participants
preferring LSTM Attention explanation stated that
they found it intuitive and found the Hierarchical
Graph Attention explanations to be more robotic.

On the other hand, whenever participants did
not prefer the LSTM Attention, they justified it by
stating that the explanation was relatively incoher-

'ry = 0.70, p < 0.01, between “confidence” and “un-
derstandability”; rs = 0.67, p < 0.01, between “confidence”
and “human-likeness”;rs = 0.89, p < 0.01, between “human-
likeness” and “understandability”
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fidence level of 95% over all the explanations is also
presented.

ent, which indicates that the LSTM Attention based
explanation—constructed directly to be a substring
of the human-written observation—presents a more
human-like explanation for the actions than the
templated Hierarchical Graph Attention explana-
tions but only when it is coherent enough to be
understood. The KG sacrifices a small amount of
human-likeness in return for much greater overall
understandability. Overall, we conclude that on
a step-by-step level using knowledge graphs with
Hierarchical Graph Attention networks gives us
explanations that are more easily understood and
inspire greater confidence in the agent’s decisions.

4.3 Immediate vs. Temporal Explanations

Having proved the effectiveness of the knowledge
graph at the immediate step-by-step explanation
level, we evaluate our method of producing tem-
poral explanations and how they compare to the
immediate explanations. We assess whether the
temporal explanation condensing a trajectory into
important steps (1) is able to maintain the coher-
ence like the immediate explanations do; and (2) in-
forms better about the agent’s actions when taken
in the context of the goals of the agent. Pair-wise
ablation studies to pinpoint the relative contribu-
tions of the different filters (Section 3.2) can be
found in Appendix C.

Participants first read the full trajectory of the
game combined with step-by-step immediate ex-
planations, along with the game goal, and indicate
how much they agree with the five statements on a
Likert scale®. For this study, we take all the metrics

21: Strong Disagree; 2: Disagree; 3: Undecided; 4: Agree;
5: Strong Agree

from the previous study and add two more:

* Goal context: You are able to understand why
the agent takes this particular sequence of actions
given what you know about the goal.

* Readability: This explanation is easy to read.

Participants then read the temporal explanation of

the same trajectory and rate it again along the same

five statements (See Appendix B.2).

Figure 5 shows the average scores for each ques-
tion for the immediate and temporal explanations.
The temporal explanations achieve comparable per-
formance to the immediate explanations on all met-
rics except for the the metric relating to goal con-
text. On the goal context metric, the temporal ex-
planation significantly out-performs the immediate
explanations. These results indicate that HEX-RL
can successfully identify the most important states
in a trajectory and use them to create temporal
explanations that are on par with immediate ex-
planations in terms of coherence but provide sig-
nificantly more context in terms of explaining an
agent’s actions with respect to its task-based goals.
We further note that when the participants were
asked to justify these choices, a majority stated
that a condensed temporal explanation based on
important steps made the goals of the agent easier
to understand than reading through an explanation
for every single step the agent took.

5 Conclusions

Explaining deep RL policies for sequential decision
making problems in natural language is a sparsely
studied problem despite a steadily growing need.
An oft given reason for this phenomenon is that
deep RL methods perform better without the addi-
tional burden of being explainable. In an attempt
to encourage work in this area, we create the Hi-
erarchically Explainable Reinforcement Learning
(HEX-RL) agent which treats explainability as a
first-class citizen in its design by using a readily
interpretable knowledge graph state representation
coupled with a Hierarchical Graph Attention net-
work. This agent is able to produce step-by-step
commentary-like immediate explanations and also
a condensed temporal trajectory level explanation
via a post-hoc analysis. We show that with care-
ful design, it is possible to create inherently ex-
plainable RL agents that do not lose performance
when compared to contemporary state-of-the-art
agents and simultaneously are able to generate sig-
nificantly higher quality explanations of actions.



6 Broader Impacts

The ability to explain the reinforcement learning
actions in text games has downstream applications
beyond understanding how to play text games. We
regard text games as simplified analogues for sys-
tems capable of long-term dialogue with humans,
such as in assistance with planning complex tasks,
and also discrete planning domains such as logis-
tics. Our work is applicable to provide understand-
ing of domains where change in the world is af-
fected via language. As our system relies on graph
hierarchical graph attention to generate immediate
explanations, we are limited to provide explana-
tions on systems affected by natural language. Sys-
tems prone to error, both in performing a given task
as well as in explaining them, should not be relied
upon in more critical applications.
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A Implementation Details

A.1 A2C Architecture

Further details of what is found in Figure 2. The
sequential action decoder consists two GRUs that
are linked together as seen in Ammanabrolu and
Hausknecht (2020). The first GRU decodes an
action template and the second decodes objects
that can be filled into the template. These objects
are constrained by a graph mask, i.e. the decoder
is only allowed to select entities that are already
present in the knowledge graph.

A.2 Templates of Immediate Explanation

We consider four types of sub-graphs
G G GO G, each representing (1) at-
tributes of objects, (2) objects the player has,
(3) objects in the room, and (4) other information
such as location (see right side of Figure 2). Hence,
we create one template for each sub-graph,
* (object,is, attribute) is converted to “Ob-
ject is attribute”.
* (player, has, object) is converted to “I have
object”.
* (object,in,location) is converted to “Object
is in location”.
* (location_1, direction,location_2) is con-
verted to “location_1 is in the direction of
location_2".

A.3 Bayesian State Filter Detail

We first train a Bayesian model to predict the con-
ditional probability P(A | B;) of a game step (A)
given any other possible game step (B;) in the game
trajectories. More specifically, current game step
(A) is composed of 3 elements, game state o, ac-
tion a; and knowledge graph G;. We count the
occurrence of A (C(A)), and all the game steps oc-
curred in the game logs (C(B;)), and also count the
co-occurrence of A and B;, C(AN B;) in the same
trajectory. X = {A, By, ..., B;}. The conditional
probability P(A | B;) is calculated by,

P(B; | A)C(A)

(7
where C(A) and C(B;) stand for the raw count of
game step A and B; in the collected trajectories.
The key intuition here being that state, action pairs
that appear in a certain ordering in multiple trajec-
tories are more likely to dependant on each other.
Higher P(A | B;) indicates the necessity of A to B.
The set of game steps with the highest P(A | B;)
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is used to explain taking the action associated with
game state A. For example, “take egg” (A) is re-
quired to “open egg” (B), and P(A | B) =

hence “open egg” is used as a reason why action

“take egg” must be taken first. The initial set of

game states X is filtered into X by working back-
wards from the final goal state by finding the set
of states that form the most likely chain of causal
dependencies that lead to it. As shown in Figure 3,
we obtain the explanation candidate game steps
X by filtering all the possible game steps follow-
ing current game step A in the game logs with
P(A | B;) > p, where p is the threshold.

A.4 Raw scores across Jericho supported

games
Exp. TDQN | DRRN HEX-RL Max
Game_and_IM
Metric Eps. Eps. Eps. | Max -
zorkl 9.9 24.6 30.2 40 | 350
library 6.3 17 13.8 21 30
detective 169 197.8 || 276.93 330 | 360
balances 4.8 10 10 10 51
pentari 17.4 27.2 44.7 60 70
ztuu 4.9 21.6 5.08 9| 100
ludicorp 6 13.8 17.6 18 | 150
deephome 1 1 1 1 300
temple 7.9 7.4 7.58 8 35
% compl. 15.2 25.5 282 | 358 | 100

Table 3: Raw scores across Jericho supported games.
Eps. indicates scores averaged across the final 100
episodes and Max indicates the maximum score seen
by the agent over the same period. We present results
on game and IM reward.

A.5 Reward types

To alleviate the issue that rewards are sparse and
often delayed, Ammanabrolu et al. defined an in-
trinsic motivation for the agent that leverages the
knowledge graph being built during exploration.
The motivation is for the agent to learn more infor-
mation regarding the world and expand the size
of its knowledge graph. They formally define
game_and_I M reward in terms of new informa-
tion learned.

A(Kf‘gglobal - K:gt) (8)

rm, =

t—1
where KGgiobat = U KG; Here KGgiopal is the

set of all edges that the agent has ever had in its
knowledge graph and the subtraction operator is a
set difference.



A.6 Knowledge Graph Representation QA
Model

The question answering network based on AL-
BERT (Lan et al., 2019) has the following hyperpa-
rameters, taken from the original paper and known
to work well on the SQuAD 2.0 (Rajpurkar et al.,
2018) dataset. No further hyperparameter tuning
was conducted.

Parameters Value
batch size 8
learning rate 3e-5
max seq len 512
doc stride 128
warmup steps 814
max steps 8144
gradient accumulation steps 24
A.7 HEX-RL

The additional hyperparamters used for training
HEX-RL are detailed below, same with Am-
manabrolu et al.(2020). graph dropout and mask
dropout are used for encouraging graph network to
actually learn a sparse representation.

Parameters ‘ Value
buffer size 40
batch size 16
graph dropout | 0.2
mask dropout 0.1

A.8 Task Performance

We plot the training reward curve for 9 games in
Figure 6 and Figure 7.
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A.9 Immediate Explanation Evaluation

We plot the immediate explanation evaluation result
per game in Figure 8.
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Figure 8: Human evaluation results comparing Hierar-
chical Graph Attention vs. LSTM Attention, * indi-
cates p < 0.05, #x indicates p < 0.01, { indicates k >
0.2 or fair agreement. | indicates x > 0.4 or moderate
agreement.



B Human Evaluation Details

B.1 Immediate Explanation Evaluation

We recruited 40 participants—generally unfamiliar
with the environment at hand—on a crowd sourc-
ing platform. Each participant reads a randomly
selected subset of 10 explanation pairs (drawn ran-
domly from a pool totaling 60 explanation pairs),
generated by Hierarchical Graph Attention and
LSTM attention explanation on three games in the
Jericho benchmark: zorkl, library, and balances.

We firstly ask participants to read an interactive
game description and then ask them to answer a
set of questions about this game to make sure they
are qualified. They will also play a demo of an
interactive text game and answer a question based
on the game they played. The details can be found
in Figure 9 and Figure 10. These questions are de-
signed to improve the quality of human evaluation.
At least 5 participants give their preference for each
explanation pair.

Each participant reads a randomly selected sub-
set of 10 explanation pairs (drawn randomly from
a pool totaling 60 explanation pairs), generated by
Hierarchical Graph Attention and LSTM attention
explanation on three games in the Jericho bench-
mark, zorkl, library, and balances. The following
three questions are asked,

* Which explanation makes you more confident

that the agent made the right choice?

* Which explanation expresses more human-

like thinking on the action choice?

* Which explanation makes you understand

why the agent made the choice?
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You will be asked to read a game trajectory of an interactive fiction
game and then evaluate the explanations of choices in the game.

Please read this interactive narrative game description carefully!

Balances is the game in this study.

Description:

Balances is a relatively short, old-fashioned puzzle game set in the
world of the Enchanter series and riffing on Spellbreaker in particular:
the player must find scrolls, learn their spells, and cast them in order to
collect white cubes. It shares a number of design characteristics with
those games: rooms represent fairly large open spaces, there are more
animal NPCs than humans to interact with, and a loose, playful
approach to world-building means that the various areas don't have a
great deal to do with one another.

>> We trained an Al agent to play the game and also automatically
generate explanations for its choices. Your job is to read these stories
and evaluate the automatic explanations by answering 3 questions.

You will first read one game step: a description and an action.
Description is to describe the room or location which the Al agent was
in, and action is the agent's choice based on the descriptions.

Then you will read two explanations of the above action. 3 questions
will be asked for PAIRWISE COMPARISON:

1. Which explanation makes you more confident that the agent made
the right choice?

2. Which explanation expresses more human-like thinking on the action
choice?

3. Which explanation makes you understand why the agent made the
choice?

What will you do in Balances?
(Multiple choices, select all that apply)

[] Get treasure
[ Find scrolls
[ Find murderers

[] Learn spells

Figure 9: Screenshot of the human study instruction—
game description.



What is the goal of this survey?

Single Choice

Never played an interactive fiction game? You can play a brief tutorial
game here and learn more about Interactive Fiction @Wikipedia.

After the tutorial, please answer:

What is the room that the suitcase is in?

Single Choice

Living Room
Bedroom
Chamber
Wooden house

Figure 10: Screenshot of the human study instruction—
task description.
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For each question, please rate which explanation best fits.

Description before the action:

Ramshackle Hut Until quite recently, someone lived here, you feel sure. Now the furniture is matchwood and the windows are glassless. Outside, it is a warm, sunny
day, and grasslands extend to the low hills on the horizon.

You are carrying a spell book a silver coin a magic burin

My Spell Book gnusto spell copy a scroll into your spell book. frotz spell cause an object to give off light. yomin spell mind probe. rezrov spell open even locked or

enchanted objects.

Two possible explanations of why the agent chose the action: examine furniture are as follows:

1. Which explanation makes you more confident that
the agent made the right choice?

2. Which explanation expresses more human-like
thinking on the action choice?

3. Which explanation makes you understand why the
agent made the choice?

This is the automatically generated explanation by the agent for why it

this action.

furniture is matchwood
silver coin
frotz spell

This is the

this action.

I'am in the Ramshackle Hut now.
I have fumniture
furniture is interactable

Figure 11: Screenshot of the human study instruction.
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by the agent for why it performed



B.2 Immediate vs. Temporal Explanation
Evaluation

Participants first read the full trajectory of the game
(Figure 12) combined with step-by-step immediate
explanations, along with summary of the game
goal, and indicate how much they agree with the
five statements on a Likert scale (Figure 13). The

following five statements are used in human study.

* I am confident that I can get the same score as
the agent when following this explanation.

* This explanation look like it was made by
human.

* This explanation is easy to understand.

* [ am able to understand why the agent takes
this particular sequence of actions given what
I know about the goal.

* This explanation is easy to read.

At least 5 crowd workers rated each explanation.

Please read this transcript of a player playing Library:
Goal: Take the book

Description:

Second Floor Stacks

This cavernous room is filled with shelves as far as the eye can see. A
doorway to the east is labelled "Computer Room", and the stairwell lies
to the north. The door is unlocked but shut.

Action: undo door

Description:
You open the rare books door.

Action: south

Description after taking the above action:

Rare Books Room The shelves are nearly bare, although there is a
complete set of the "New ork Times", a box labeled "Avalon", and
several biographies of various computer game authors. The door out is
to the north You can see a biography of Graham Nelson here.

Description:

Rare Books Room

The shelves are nearly bare, although there is a complete set of the
"New ork Times", a box labeled "Avalon", and several biographies of
various computer game authors. The door out is to the north You can
see a biography of Graham Nelson here.

Action: take all

Description after taking the above action:
biography of Graham Nelson Taken. Your score has just gone up by five
points.

Can you summarize what is happening in this transcript in less than
100 words?

Figure 12: Screenshot of Immediate vs. Causal Expla-
nation Evaluation —Text Summary.

Please answer the following questions about the game transcript given
what you know about the goals of the game.

Strongly Strongly
Agree Agree Undecided Disagree Disagree
1.1am confident that | can
get the same score as the
Sgent whan folawing this O O O O O
explanation
2. This explanation look like
itwas g by homan. ) ) ¢ ) ¢
3. This explanation is easy
io undsraiend ) ©) ¢ ) @)
4.1am able to understand
why the agent takes this
particular sequence of @] O O O O
actions given what | know
about the goal
5. This explanation is easy
 read @) O O @) O

Figure 13: Screenshot of Immediate vs. Causal Expla-
nation Evaluation—Likert Scale.



C Temporal Explanation Ablation Study

Having established the overall effectiveness of the
filters in HEX-RL that create the temporal expla-
nations, we perform pair-wise ablation studies to
pinpoint the relative contributions of the different
filters seen in Fig. 3. We first compare explanations
generated using a set of important states filtered
from the trajectory using the Bayes model com-
pared to Bayes+CALM explanation. This how ap-
plying the language model action filter affects the
quality of the temporal explanations. As before, we
recruited 30 participants on a crowd sourcing plat-
form. Each participant reads a randomly selected
subset of explanation pairs, comprised of temporal
explanations filtered by Bayes and Bayes+CALM
models. Figure 14a shows that after applying the
CALM model to filter explanation candidates, gen-
erated explanations are significantly preferred on
the “Confidence” and “Understandability” dimen-
sions.

Similarly, we then conducted another ablation
study to validate the contribution of semantic filter
by comparing the Bayes+CALM filtering method
to the full HEX-RL using Bayes+CALM+Semantic
filters. The experiment setup is the same as the
previous ablation study. Figure 14b shows that
Bayes+CALM-+Semantic performs significantly
better than Bayes+CALM on all three dimensions.

We additionally observe that these three metrics
are highly, positively correlated using Spearman’s
Rank Order Correlation in both of these ablation
studies®. When asked to justify their choices, par-
ticipants indicated that the full HEX-RL system
with Bayes+CALM+Semantic filters provided tem-
poral explanations that they felt was more under-
standable than alternatives. These results indicate
that all three steps of the filtering process to identify
important states are necessary for creating coher-
ent temporal explanations that effectively take into
account the context of the agent’s goals.

3re = 0.86, p < 0.01, between “confidence” and “‘un-

derstandability”’; rs = 0.79, p < 0.01, between “confidence”
and “human-likeness”;rs = 0.90, p < 0.01, between “human-
likeness™ and “understandability”
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Bayes + CALM vs. Bayes Bayes + CALM + Semantic vs. Bayes + CALM

Preference (%)
Preference (%)

mmm Bayes + CALM mmm Bayes + CALM + Semantic

mmm Bayes mmm Bayes + CALM
Confidence * Human-likeness Understandability * t Confidence * H like * 0 ility * +
Category Category
(a) Bayes vs. Bayes+CALM explanation (b) Bayes+CALM vs. Bayes+CALM+Semantic explanation

Figure 14: Human evaluation results on ablation study, * indicates p < 0.05, t indicates x > 0.2 or fair agreement.
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977 We also plot the causal explanation ablation
978 study result per game in Figure 15 and Figure 16.
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Figure 15: Human evaluation results on ablation study, Category
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ment.

Figure 16: Human evaluation results on ablation study,
x indicates p < 0.05, T indicates « > 0.2 or fair agree-
ment.
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