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ABSTRACT

Recent advancements in diffusion models, such as global optimization and par-
allel token prediction, have enhanced global consistency compared to autoregres-
sive Transformers. However, existing diffusion models exhibit unfavorable trade-
offs between efficiency and quality, in which the multi-step iterative denoising
processes particularly incur high computational costs. To address these issues,
we propose a dual-branch synergistic absorption diffusion model. For efficiency-
quality trade-offs, we design a dual-branch architecture, in which the Transformer
branch generates local token chunks, and the diffusion branch optimizes global
token blocks in fewer steps. To resolve the instability of discrete-time models, we
further introduce the continuous-time diffusion process, which enhances parallel
token generation and learning representations. Experiments conducted on multi-
ple tasks, including text generation and structural reasoning tasks, demonstrate the
state-of-the-art performance of the proposed model.

1 INTRODUCTION

Sequence generation has long been dominated by the autoregressive (AR) paradigm, where
Transformer-based causal decoder models (e.g., GPT series OpenAI et al. (2024); Devlin et al.
(2019); Vaswani et al. (2017)) achieve remarkable progress in language modeling and code gener-
ation through recursive next-token prediction. However, this approach suffers from inherent limi-
tations including unidirectional contextual dependencies and strict sequential decoding, leading to
high inference latency and constraints in modeling bidirectional global coherence. The recent emer-
gence of discrete diffusion models Bao et al. (2022); Austin et al. (2021); Gulrajani & Hashimoto
(2023); Song et al. (2025) offers a promising non-autoregressive alternative for parallel sequence
generation in discrete symbol spaces Čeović et al. (2023). By employing forward noise injection and
backward iterative denoising, discrete diffusion enables global optimization and parallel multi-token
prediction, demonstrating strong capabilities in maintaining global consistency and robustness for
high-dimensional discrete data such as text and molecular sequences. Furthermore, continuous-time
discrete diffusion models Dieleman et al. (2022); Campbell et al. (2022) provide more flexible time
parameterization and analytical absorbing state modeling, mitigating iterative instability and inter-
mediate semantic loss, thus representing state-of-the-art approaches for efficient parallel decoding
Yang et al. (2023); Yi et al. (2024).

The architectural landscape of contemporary continuous-time discrete diffusion paradigms primarily
employs two designs: a unified backbone with denoising heads or a decoupled conditional encoder-
denoiser structure Tang et al. (2025). While these designs promote quality improvements, they
reveal three persistent bottlenecks. First, insufficient cross-granularity information coupling hinders
effective alignment between local syntax and global coherence within a single step Yan et al. (2024).
Second, the parallelization-quality trade-off remains constrained, as reducing denoising steps often
leads to semantic oversmoothing and detail loss. Third, the fundamental divergence between AR
and diffusion paradigms, where AR emphasizes sequential causality and local fidelity, while diffu-
sion focuses on global consistency and distribution approximation, creates optimization instability
without explicit mutual guidance mechanisms. These limitations are exacerbated by the compu-
tational inefficiency of Transformer-based denoising networks, where the quadratic complexity of
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Figure 1: Comparison between three paradigms of generative language model: in contrast to (1) the
autoregressive paradigm, which relies on multiple sequential queries (each producing a single token)
via next-token prediction, and (2) the diffusion paradigm, which performs text generation in a single
query but requires multiple iterative denoising steps over the full context, (3) the proposed synergis-
tic structure integrates both approaches to achieve generation with significantly fewer queries and
denoising iterations.

self-attention mechanisms and the inability to reuse Key-Value caching during iterative denoising
impose significant burdens, perpetuating a quality-speed dilemma.

To address these challenges, we propose a dual-branch structure that synergistically integrates a
Transformer branch (representing the AR paradigm) and a Diffuser branch (representing the diffu-
sion denoising paradigm). Unlike common mixture-of-experts (MoE) Masoudnia & Ebrahimpour
(2014) parallelization, our framework utilizes cross-attention as the core fusion layer to enable learn-
able alignment and high-bandwidth information exchange between branches. This design allows
each branch to evolve independently within its semantic space while selectively absorbing repre-
sentations and uncertainty estimates from the other branch, establishing explicit, fine-grained align-
ment between local and global semantics. The cross-attention mechanism proves superior to MoE
routing by performing direct token/block-level alignment and weighted integration, significantly
enhancing fusion quality. Moreover, we introduce a mutual reinforcement mechanism that tightly
couples both paradigms: the AR branch provides high-confidence local priors (e.g., short-range co-
herence and syntactic templates) to guide the diffusion denoising process, enabling convergence to
superior globally consistent solutions with fewer iterations. Conversely, the diffusion branch feeds
back global distribution and uncertainty characterization to constrain AR predictions, allowing an
expanded multi-token prediction window per step without sacrificing stability, thereby alleviating
traditional AR bottlenecks and error accumulation.

Within our continuous-time discrete diffusion framework, we integrate time-dependent score fac-
torization, intermediate state caching, and dual-branch mutual guidance, and introduce denoising
cross-entropy (DCE) training objectives—including t-DCE and λ-DCE—to improve stability and
convergence Ou et al. (2025). These losses unify noise scheduling with conditional learning, en-
abling sharper predictions and more efficient sampling while preserving analytic benefits. Exper-
iments show our approach enhances quality and stability in text and structured reasoning tasks,
reduces iterations and latency, and establishes a unified generative framework that balances fusion,
efficiency, and global consistency.
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2 RELATED WORK

Our work builds upon and intersects with several key areas of generative modeling research, primar-
ily encompassing autoregressive language models, discrete diffusion models, and emerging hybrid
architectures that seek to leverage the strengths of both paradigms.

Autoregressive Language Models The dominance of autoregressive (AR) models, particularly
those based on the Transformer architecture, has been a defining feature of sequence generation in
recent years. Models in the GPT series (GPT-2 Radford et al. (2019) to GPT-4 OpenAI et al. (2024))
exemplify the success of the AR approach, which relies on causal masking within the decoder to
generate sequences token-by-token in a left-to-right manner . This paradigm excels at capturing
local syntactic coherence Tabor et al. (2004) and has achieved remarkable performance in language
modeling and code generation. However, its core limitation lies in the unidirectional nature of
dependency modeling Dong et al. (2019) and the inherent sequentiality of decoding Bybee (2008),
which results in high inference latency and challenges in maintaining long-range global coherence .
Techniques such as in-context learning Dong et al. (2022); Min et al. (2021), multi-token prediction
technique Li et al. (2024) and chain-of-thought prompting Wei et al. (2022) have been developed
to enhance the reasoning capabilities of AR models, yet they do not fundamentally overcome the
sequential bottleneck .

Discrete Diffusion Models for Sequence Generation As a non-autoregressive alternative, dis-
crete diffusion models have emerged as a powerful framework for parallel sequence generation Shih
et al. (2023); Zhang et al. (2025). These models operate through a forward process of incrementally
corrupting a data sequence with noise and a reverse process of iterative denoising to recover the
original data . Initially successful in continuous domains like image generation, diffusion models
have been adapted for discrete data like text. Two primary methodologies have been developed:
discrete diffusion models Austin et al. (2021), which operate directly on token spaces using tran-
sition matrices like the absorbing state , and embedding diffusion models, which first map discrete
tokens into a continuous embedding space where Gaussian noise is applied before a rounding step .
Continuous-time discrete diffusion Dieleman et al. (2022); Campbell et al. (2022); Sun et al. (2023)
further offers more flexible noise scheduling and improved analytical tractability. These models
demonstrate superior capabilities in parallel token prediction and maintaining global consistency,
making them particularly suitable for tasks requiring high-dimensional coherence .

Hybrid and Synergistic Architectures Recognizing the complementary strengths and weak-
nesses of AR and diffusion paradigms, recent research has begun exploring hybrid architectures.
Some efforts have focused on using diffusion models to refine or initialize sequences for AR de-
coders, while others have investigated iterative refinement schemes where the two paradigms op-
erate in stages . For instance, DiffusionBERT He et al. (2023) integrates diffusion processes with
pre-trained BERT Devlin et al. (2019) models by incorporating timestep information to guide the
denoising reverse process . Similarly, other studies Minnen et al. (2018); Hoogeboom et al. (2022)
have explored using AR-based priors to guide the diffusion sampling process, aiming to reduce the
number of denoising steps required. However, many existing integrations remain relatively shallow,
often involving sequential application or simple ensemble methods rather than deep, interactive fu-
sion. Our proposed dual-branch synergistic structure, which utilizes cross-attention for real-time,
fine-grained information exchange, represents a departure from these approaches by enabling ex-
plicit and continuous mutual guidance between the AR and diffusion paradigms throughout the
generation process .

3 PRELIMINARIES

3.1 ABSORBING CONTINUOUS-TIME DISCRETE DIFFUSION MODELS

Absorbing continuous-time discrete diffusion model Campbell et al. (2022); Ou et al. (2025) as a
continuous-time Markov chain (CTMC) Anderson (2012) on the discrete state space Vd ∪ {[M]}.

The forward process {xt}t≥0 is specified by the generator Qt, whose block form Qt =

[
0 0
Rt Tt

]

3
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separates transitions among transient tokens (Tt) from absorption into [M] (Rt). The law pt obeys
Kolmogorov’s forward equation with the formal solution:

pt = p0 exp
( ∫ t

0

Qs ds
)
. (1)

Under token-wise independent masking with rate γ(t) and cumulative rate σ̄(t) =
∫ t

0
γ(s) ds, the

process factorizes across dimensions: masked vs. unmasked factors are explicit, while the unmasked
content is carried by p0(x

UM
t ). This continuous-time, discrete-state formulation enables adaptive

step sizes, removes fixed-step discretization error, and yields analytic expressions while respecting
the discrete nature of text.

A key efficiency is the concrete-score decomposition for a single-site change xt→ x̂t at position i:

pt(x̂t)

pt(xt)
=

e−σ̄(t)

1− e−σ̄(t)
· p0(x̂i

t | xUM
t ). (2)

This motivates the reparameterization:

sθ(xt, t) =
e−σ̄(t)

1− e−σ̄(t)
s̃θ(xt), (3)

so s̃θ is time-independent. The reverse kernel ps|t(xs | xt) (s < t) is closed-form in σ̄(s), σ̄(t) and
p0(· | xUM

t ), enabling efficient sampling without iterative approximations.

Training minimizes:

LCAD = Et,xt

[
DKL

(
p0(· | xUM

t ) ∥ qθ(· | xUM
t )

)]
, (4)

where qθ is provided by a Transformer prior-fusion branch. This GPT-like module removes time
conditioning, attends to xUM

t , applies a final softmax, and uses outputs only at masked positions.
Given a partially denoised xt, it decodes blocks of size k (typically 4−8) autoregressively: local co-
herence comes from the causal history x<m

0 , while global consistency is injected via cross-attention
to features derived from xUM

t . Denoting hidden states by hTrans, this branch balances long-range
context and fluency, and its qθ(· | xUM

t ) integrates directly into LCAD.

3.2 TRANSFORMER BRANCH FOR PRIOR FUSION

The Transformer branch acts as a prior fusion expert Bao et al. (2023), leveraging its strength in
local coherence modeling to estimate the time-independent conditional distributions p0(x̂

i
t|xUM

t ).
The network architecture modifies standard diffusion transformers by removing time-conditioning
layers and adding final softmax normalization, resulting in a GPT-like structure:

TransformerBranch(xt) = Softmax(Transformer(Embed(xUM
t ))), (5)

where the Transformer only attends to unmasked tokens xUM
t . The output dimension is l × v, but

only positions corresponding to masked tokens are used. Given a partially denoised state xt from
the continuous-time diffusion branch, the Transformer decodes blocks of k tokens autoregressively:

pϕ(x
[j:j+k−1]
0 |xt) =

j+k−1∏
m=j

pϕ(x
m
0 |x<m

0 , xUM
t ), (6)

where x<m
0 is the causal context from previously generated tokens, and xUM

t is the global context
from the diffusion branch’s unmasked tokens. This approach combines two information streams:
the autoregressive history for local coherence and the diffusion-based global context for long-range
dependency capture. The hidden states of the Transformer hTrans are computed via:

hTrans = TransformerDecoder(x<j
0 , xUM

t ), (7)

using causal attention to maintain autoregressive properties while incorporating cross-attention to
the diffusion branch’s features. The optimal block size k (typically 4–8 for text) balances paral-
lelization efficiency and generative quality.
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3.3 DENOISING CROSS ENTROPY

Denoising Cross Entropy (DCE) serves as a fundamental objective function for training models to
recover clean data from corrupted inputs, particularly in the context of denoising autoencoders and
diffusion processes. This loss function builds on the principle of minimizing the reconstruction error
between the original data and the model’s prediction given a noisy version, often employing cross-
entropy due to its suitability for probabilistic outputs. In diffusion models, DCE is adapted to handle
time-dependent noise schedules, leading to formulations like the t-DCE loss, which operates in
continuous time, and the λ-DCE loss, which reparameterizes the problem using masking probability.
These variants aim to optimize the conditional likelihood of clean data under varying noise levels,
effectively decoupling the learning signal from the noise dynamics.

The t-DCE loss is derived from the continuous-time framework and focuses on the time-dependent
aspects of the diffusion process. It is defined as:

LT
t-DCE (x0) =

∫ T

0

Ext∼pt|0(xt|x0)

 ∑
xi
t=[M ]

−σ(t)e−σ̄(t)

1− e−σ̄(t)
log

(
e−σ̄(t)

1− e−σ̄(t)
qθ

(
xi
0 | xUM

t

)) dt

(8)
where qθ

(
xi
0 | xUM

t

)
represents the model’s estimate of the conditional distribution of the clean to-

ken xi
0 given the unmasked tokens xUM

t at time t. This loss leverages the analytic decomposition of
the concrete score to simplify the learning signal by isolating the time-dependent scalar component.

The λ-DCE loss introduces a change of variable from time t to the masking probability λ =
1 − e−σ̄(t), which corresponds to the probability that a token is masked by time t. This repa-
rameterization yields a more intuitive form:

Lλ-DCE (x0) =

∫ 1

0

1

λ
Exλ∼pλ(xλ|x0)

 ∑
xi
λ=[M ]

− log qθ
(
xi
0 | xUM

λ

) dλ (9)

Here, pλ (xλ | x0) denotes the joint distribution induced by independently masking each dimension
of x0 with probability λ. The λ-DCE loss emphasizes the conditional probabilities of clean data
under varying masking levels, effectively decoupling the time-independent learning from the noise
schedule.

Both losses are equivalent to the standard denoising score entropy loss (e.g., LCAD) in the limit of
infinite time, and they provide a unified perspective on training absorbing diffusion models.

4 SYNERGISTIC DUAL-BRANCH CONTINUOUS-TIME ABSORBING
DIFFUSION

Building upon the challenges outlined in the introduction, specifically, the inefficiency-quality trade-
off in existing diffusion models, the loss of intermediate semantics, and the divergence between au-
toregressive and diffusion paradigms, this section introduces a novel dual-branch continuous-time
absorbing diffusion framework designed to synergistically integrate local and global generation pro-
cesses. Our approach consists of three core innovations: a dual-branch fusion architecture that en-
ables fine-grained interaction between a Transformer-based autoregressive branch and a continuous-
time diffusion denoising branch via cross-attention; a mutual reinforcement mechanism that al-
lows each branch to leverage the other’s strengths—the Transformer providing local syntactic priors
to accelerate diffusion convergence, while the diffusion branch supplies global distributional con-
text to expand the Transformer’s parallel prediction capacity; and a decomposed training objective
with loss variants that stabilize learning and enhance representation quality. Together, these compo-
nents form a cohesive system that addresses the limitations of prior works while enabling efficient,
high-quality parallel sequence generation.

4.1 DUAL-BRANCH FUSION FRAMEWORK

The architecture comprises two parallel branches: the continuous-time diffusion branch and
the Transformer branch. The diffusion branch models pθ(x0|xUM

t ) through iterative denois-
ing, producing encoded features hCAD

t = Encoderθ(xUM
t ). The Transformer branch models

5
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pϕ(x
[j:j+k−1]
0 |x<j

0 , xUM
t ), outputting features hTrans. The fusion of these branches occurs at each

denoising step ti through a feature-level integration mechanism:

Fusion(hCAD
t , hTrans) = MLP

([
hTrans;CrossAtt(hTrans, hCAD

t )
])

, (10)

where the cross-attention operation is defined as:

CrossAtt(Q,K, V ) = softmax
(
QWQ(KWK)T√

d

)
VWV . (11)

This fusion replaces traditional Mixture-of-Experts gating with a more flexible feature-level integra-
tion, avoiding router complexity and enhancing representational capacity. The complete system can
be described as:

CAD/DLM(xt) =
e−σ̄(t)

1− e−σ̄(t)
· TransformerBranch(xt), (12)

where the Transformer output is scaled by the time-dependent factor derived from the analytic de-
composition.

4.2 MUTUAL REINFORCEMENT MECHANISM

To achieve deeper synergistic cooperation between the two branches, we introduce a mutual re-
inforcement mechanism that enables co-evolution of the Transformer and diffusion branches: the
diffusion module provides continuously expanded global context to enhance the Transformer’s rep-
resentation capacity, while the Transformer offers localized semantic priors that significantly accel-
erate the convergence of the diffusion denoising process. Let WTrans be the Transformer’s native
context window. The diffusion branch provides additional context from unmasked tokens, yielding
an effective context:

Weff = WTrans ∪ {i|xi
t ̸= [M]}. (13)

The expected additional context size is E|Weff \ WTrans| = d · (1 − e−σ̄(t)), which at t = 0.5T
provides approximately 39% more context. Conversely, the Transformer branch reduces the number
of denoising steps n required to achieve a target perplexity P by:

nfused = n0 · exp
(
−β

I(Xt;X
Trans
0 )

H(Xt)

)
, (14)

where β is a coupling coefficient. This synergy enables a significant speedup in inference, with the
expected number of function evaluations (E-NFEs) reduced from O(d) to O(d/k + n(1 − k/d)),
achieving up to a 7.1× speedup for typical parameters. The mechanism is facilitated through shared
caching strategies where computed Transformer outputs cθ(xt) are cached for positions that have
already been unmasked, significantly reducing redundant computation. This caching is possible due
to the absorbing property that once a token is unmasked (xi

s ̸= [M]), it remains unchanged in all
previous time steps (xi

u = xi
s for all u < s).

4.3 DECOMPOSED COMPONENT ENCODING AND LOSS VARIANTS

Building upon the dual-branch fusion and mutual reinforcement mechanism, we further intro-
duce enhanced training objectives through variants of denoising cross-entropy loss, which fur-
ther strengthen component-level encoding and improve overall training efficiency. These variants,
namely the t-denoising cross-entropy (t-DCE) and λ-denoising cross-entropy (λ-DCE) losses, pro-
vide alternative objectives for optimizing the diffusion process while maintaining the theoretical
benefits of the continuous-time formulation. By employing λ-DCE and t-DCE, our model achieves
enhanced stability and faster convergence during training, while also facilitating efficient sampling
through the analytic properties of the loss functions. These variants are particularly beneficial in
the dual-branch architecture, as they allow for seamless integration with the Transformer branch
for prior fusion, further improving the model’s ability to capture long-range dependencies and local
coherence.

6
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5 EXPERIMENTS

5.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets We evaluate our proposed method on six benchmark datasets spanning diverse domains
and complexity levels. WikiText2 and WikiText103 Merity et al. (2017) are Wikipedia-derived
language modeling datasets known for preserving original casing, punctuation, and numerical infor-
mation. WikiText2 contains approximately 4.3 MB of text data, while WikiText103 is substantially
larger with over 100 million tokens (181 MB), making it suitable for evaluating long-range depen-
dency modeling. The Colossal Clean Crawled Corpus (C4) Raffel et al. (2020) comprises 156 billion
tokens of filtered web text from Common Crawl, extensively used for pre-training large language
models. FineWeb Penedo et al. (2024) offers 15 trillion tokens of high-quality, deduplicated English
web text with advanced filtering techniques including URL-based filtering, language detection, and
privacy removal. Prolong Gao et al. (2025) is specifically designed for long-context evaluation, fo-
cusing on narrative coherence, entity tracking, and complex dependency resolution across extended
passages. The JSON-Mode-Eval dataset assesses structural reasoning capabilities through context-
free grammar (CFG) compliant JSON parsing and generation tasks, serving as a proxy for evaluating
hierarchical reasoning in formal grammar systems.

Training Settings All models are trained with consistent parameters across datasets to ensure fair
comparison. Small models are trained for 250,000 iterations with a batch size of 128 sequences
of length 512. Medium models undergo 250,000 iterations with the same batch size and sequence
length. We use the AdamW optimizer with β1 = 0.9 and β2 = 0.999, and a learning rate schedule
featuring linear warmup for 10,000 steps followed by cosine decay. The base learning rate is set
to 1 × 10−4 for small models and 5 × 10−5 for medium models. Our CAD-DF model implements
a dual-branch architecture. The model vocabulary size is 50,265 tokens, consistent with standard
GPT-2 tokenization. Training is conducted on 8 NVIDIA A100 GPUs with gradient accumulation
steps adjusted to maintain effective batch size. Models like GPT-2 Radford et al. (2019), D3PM
Austin et al. (2021), PAID Gulrajani & Hashimoto (2023), SEDD Lou et al. (2024) and RADD Ou
et al. (2025) are used for comparison.

Metrics We evaluate model performance with three primary metrics:

Perplexity measures the model’s uncertainty when predicting the next token; lower perplexity indi-
cates that the model assigns a higher probability to the correct continuations. Concretely, it corre-
sponds to the exponential of the average negative log-likelihood over a sequence of tokens.

Accuracy is the fraction of tokens predicted exactly correctly. For each position, we compare the
predicted token x̂i with the ground-truth token xi; the final score is the proportion of positions where
they match.

Inference efficiency is reported using three indicators: (i) throughput, measured as tokens processed
per second; (ii) cache hit rate, the percentage of tokens served from cache rather than recomputation;
and (iii) GPU memory consumption, the peak device memory required during inference.

5.2 RESULTS

The experimental results demonstrate that the proposed CAD-DF framework achieves consistent
improvements across diverse datasets and model scales, validating the core hypotheses outlined in
the introduction. The dual-branch architecture, enabled by cross-attention fusion, effectively bridges
the local fidelity of autoregressive modeling and the global consistency of discrete diffusion. This
synergy allows the Transformer branch to provide high-confidence local priors—such as syntac-
tic templates and short-range dependencies—which anchor the diffusion denoising process, reduc-
ing the number of iterations required for convergence. Conversely, the diffusion branch supplies
global distributional constraints that expand the Transformer’s multi-token prediction window while
mitigating error accumulation. On datasets emphasizing long-range coherence (e.g., Prolong) or
structural reasoning (e.g., CFG/JSON-Mode-Eval), the model exhibits particularly strong gains, as
the mutual reinforcement mechanism explicitly addresses the inherent trade-offs between sequential
causality and distributional approximation. The continuous-time formulation further supports these
advantages by enabling analytical inversion and time-independent conditioning, which minimize in-

7
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Table 1: Zero-shot language modeling results on six datasets using small models. Perplexity (PPL,
↓) and Accuracy (Acc, ↑) are reported. Best results are in bold, second best are underlined.

Method
Datasets

Prolong WikiText2 CFG WikiText103 C4 FineWeb

PPL Acc PPL Acc PPL Acc PPL Acc PPL Acc PPL Acc

GPT-2 54.79 45.36 52.05 45.91 147.99 27.89 51.14 46.32 85.19 36.17 46.23 50.24
D3PM 103.34 31.28 86.83 39.45 210.30 27.12 85.09 39.87 148.81 32.01 62.34 40.19
PLAID 66.79 38.75 61.60 42.68 152.19 29.47 60.48 43.95 100.66 34.88 48.59 48.63
SEDD-Uniform 75.24 36.89 60.16 43.12 149.90 30.11 59.23 44.71 111.12 33.25 51.38 47.85
SEDD-Unscale 62.01 41.57 54.40 46.32 140.24 31.25 52.75 47.88 90.45 35.91 47.11 49.12
SEDD-Scale 60.56 43.22 51.51 48.95 124.35 35.67 50.22 49.34 88.91 36.24 46.94 50.07
RADD-DSE 59.22 44.91 48.65 51.87 121.61 36.12 47.04 52.49 82.04 38.95 46.75 50.32
RADD-t-DCE 60.38 43.68 48.70 51.92 118.61 37.44 45.95 53.62 82.43 38.47 46.53 50.58
RADD-λ-DCE 61.50 42.35 49.80 50.76 117.66 38.21 47.81 51.86 82.80 38.02 47.79 49.28

CAD-DF-t-DCE 54.23 46.42 48.35 52.31 110.89 39.88 46.12 53.45 82.12 39.11 46.01 49.96
CAD-DF-λ-DCE 55.11 45.63 48.94 52.12 110.77 40.12 45.49 53.08 81.92 39.64 46.46 51.51

termediate semantic loss and iterative instability. As model scale increases, the benefits compound,
underscoring the framework’s scalability and its capacity to harmonize paradigm-specific strengths
without introducing uncontrolled complexity.

Table 2: Zero-shot language modeling results on six datasets using medium models. Perplexity
(PPL, ↓) and Accuracy (Acc, ↑) are reported. Best results are in bold, second best are underlined.

Method
Datasets

Prolong WikiText2 CFG WikiText103 C4 FineWeb

PPL Acc PPL Acc PPL Acc PPL Acc PPL Acc PPL Acc

GPT-2 45.41 47.85 41.26 50.38 132.80 30.25 41.14 50.42 65.29 39.74 38.32 48.25
SEDD-Unscale 54.39 45.28 44.49 47.15 102.94 37.91 42.87 48.79 77.53 37.52 42.97 48.79
SEDD-Scale 52.49 46.92 40.75 51.89 96.80 39.87 39.66 52.01 70.96 40.01 40.99 48.68
RADD-DSE 51.87 47.69 38.77 53.89 84.58 41.25 37.85 53.82 67.07 41.95 42.92 48.84
RADD-t-DCE 53.08 46.58 39.85 52.81 88.54 40.12 39.43 52.24 67.63 41.39 42.89 48.87
RADD-λ-DCE 53.65 46.01 40.10 52.56 91.53 39.34 39.08 52.59 70.22 39.85 45.76 46.01

CAD-DF-t-DCE 51.23 48.43 37.35 54.31 82.89 41.88 37.12 54.55 64.12 42.95 38.01 49.76
CAD-DF-λ-DCE 50.11 49.55 37.94 53.72 82.77 42.01 36.49 54.18 64.32 42.68 38.46 48.31

5.3 EFFICIENCY STUDY

The efficiency analysis reveals that the CAD-DF framework significantly enhances inference
throughput, cache utilization, and memory economy compared to baseline methods. These gains
are directly attributable to the architectural innovations introduced to resolve the ”quality-speed
dilemma” described in the introduction. By leveraging the continuous-time discrete diffusion foun-
dation, the model achieves parallel token generation without sacrificing global consistency, thereby
reducing the iterative redundancy typical of standard diffusion approaches. The dual-branch design
further optimizes computational load: the Transformer branch maintains a lightweight, causal rep-
resentation for local coherence, while the diffusion branch focuses on global refinement through
selective denoising steps. The cross-attention fusion mechanism acts as a high-bandwidth conduit
for inter-branch communication, allowing each component to dynamically leverage the other’s state
estimates without redundant recomputation. This design minimizes the need for full-sequence atten-
tion recalculations at every step—a key bottleneck in traditional diffusion models—and maximizes
cache hit rates by preserving stable intermediate representations. Consequently, the framework
achieves higher throughput and lower memory consumption, illustrating how structured paradigm
integration can transcend the inherent limitations of purely autoregressive or diffusion-based infer-
ence.

5.4 ABLATION STUDY

Ablation studies confirm each component’s critical role in the CAD-DF architecture, aligning with
the introduction’s theoretical motivations. Removing the Transformer branch causes significant per-
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Table 3: Zero-shot language modeling inference efficiency (1024 context, 512 generation)
Method Throughput (Tokens/s) Cache Hits (%) CUDA Memory (MiB) Parameters

GPT-2 1,200 67.23 2,341 510M
SEDD 850 45.12 3,149 490M
RADD 1,400 78.96 2,198 510M
CAD-DF 1,900 83.12 1,975 520M

formance degradation, particularly on metrics requiring local coherence and sequential integrity,
underscoring the importance of autoregressive guidance in providing deterministic anchors for the
diffusion process. Disabling the cross-attention fusion mechanism results in intermediate perfor-
mance loss due to isolated branch operation without explicit alignment, highlighting the fusion
layer’s role in enabling fine-grained, token-level information exchange. The full model’s optimal
performance across perplexity, multi-token accuracy, and throughput metrics demonstrates that the
cross-attention-driven mutual reinforcement is synergistic rather than merely additive: the diffu-
sion branch converges faster by relying on the Transformer’s local forecasts, while the Transformer
branch benefits from the diffusion branch’s uncertainty-aware global outlook, expanding its pre-
dictive horizon. These findings collectively affirm that the dual-branch synergy creates a unified
optimization trajectory enhancing both quality and efficiency.

Table 4: Ablation study on Prolong dataset using small models
Ablation Perplexity MTP Accuracy Throughput (Tokens/s)

Full CAD-DF 48.94 93.78 1,900
w/o Transformer Branch 67.21 54.21 2,300
w/o Cross Attention Fusion 58.19 86.54 2,100

6 CONCLUSION

In conclusion, our proposed Synergistic Absorbing Diffusion model effectively addresses the
efficiency-quality trade-offs in parallel token generation by integrating a dual-branch architecture
that synergistically combines the local coherence of autoregressive Transformers and the global con-
sistency of continuous-time discrete diffusion through cross-attention fusion. Experimental results
across diverse tasks, including text generation and structural reasoning, demonstrate state-of-the-art
performance in perplexity, accuracy, and inference efficiency, with significant reductions in denois-
ing steps and latency while maintaining robust global-local alignment. For future work, we plan
to extend this framework to multimodal generation, explore scaling laws for larger model sizes,
investigate adaptive time scheduling for further optimization, and apply the approach to real-time
applications such as dialogue systems and code synthesis.
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our work, we have made extensive efforts to document our
methodology and experimental setup. The core architectural details of our Synergistic Dual-Branch
Continuous-Time Absorbing Diffusion model (CAD-DF) are described in Sections 3 and 4. Our
training procedure, including the optimizer, learning rate schedule, and number of iterations, is
detailed in Section 6. The datasets used for evaluation are listed in Section 5.1. We provide a com-
prehensive summary of the key hyperparameters for our small and medium model configurations in
Table 5.

Table 5: Key model hyperparameters and training configurations for the CAD-DF architecture.
Hyperparameter Small Model Medium Model
Training Iterations 250,000 250,000
Batch Size 128 128
Sequence Length 1024 4096
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Base Learning Rate 1× 10−4 5× 10−5

LR Scheduler Linear Warmup (10k steps) + Cosine Decay

Transformer Branch Layers 12 20
Transformer Hidden Dim 768 1440
Transformer Attention Heads 12 24
Diffusion Branch Layers 6 10
Diffusion Hidden Dim 512 1024
Diffusion Attention Heads 8 16
Vocabulary Size 50,265

A.2 THE USE OF LARGE LANGUAGE MODELS

In this study, we utilize large language models (LLMs) as part of our preliminaries. Specifically, we
employ publicly released versions of GPT-2 and GPT-3 for benchmarking text generation tasks. All
prompts and generated outputs are carefully evaluated using standardized NLP metrics. We confirm
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that our usage complies with the licenses and terms associated with these models. We did not use
LLMs for directly writing the paper or generating any core methodological content.

A.3 SAMPLES OF USING LLMS

Question: Fully analyze the RADD’s Theory in formulae, none of titles or bolds or listed
structure. (With RADD paper uploaded) The core theoretical contribution of RADD lies in
its reparameterization of the concrete score in absorbing discrete diffusion models, revealing that
this quantity can be expressed through time-independent conditional probabilities of the clean data,
multiplied by an analytic, time-dependent scalar. This insight fundamentally simplifies the model
and enables more efficient computation.

Consider a continuous-time Markov chain with a transition rate matrix defined by Qt = σ(t)Qabsorb,
where Qabsorb is the absorbing transition matrix. For a state xt at time t, the concrete score between
two states differing only at the i-th dimension (where xi

t = [M ] and x̂i
t ̸= [M ]) is given by:

pt(x̂t)

pt(xt)
=

e−σ̄(t)

1− e−σ̄(t)
· p0(x̂i

t | xUM
t ).

Here, σ̄(t) =
∫ t

0
σ(s) ds, and xUM

t denotes the unmasked tokens in xt. This factorization shows that
the concrete score decomposes into a known function of time and the conditional distribution of the
clean data, which is independent of time.

This reparameterization motivates the removal of time-conditioning from the network. Instead of
learning a time-dependent score function sθ(xt, t), RADD uses a time-independent network cθ(xt)
that directly estimates the conditional probabilities p0(· | xUM

t ). The output is defined over the vo-
cabulary, with the softmax activation ensuring it represents a valid probability distribution. Specif-
ically, for each masked position, the network outputs a distribution over possible tokens; for un-
masked positions, the output is irrelevant since those tokens remain unchanged.

The training objective for absorbing diffusion, originally formulated as the denoising score entropy
(DSE) loss, can be simplified using this reparameterization. The DSE loss is:

LT
DSE(x0) =

∫ T

0

Ext∼pt|0(·|x0)

[∑
x̂t

Qt(x̂t, xt)

(
sθ(xt, t)x̂t

− pt(x̂t)

pt(xt)

)2
]
dt.

Substituting the reparameterized form and simplifying leads to an equivalent loss called the t-
denoising cross-entropy (t-DCE) loss:

LT
t-DCE(x0) =

∫ T

0

Ext∼pt|0(·|x0)

− ∑
i:xi

t=[M ]

∑
j ̸=[M ]

p0(x
i
0 = j | xUM

t ) log cθ(xt)[i, j]

 dt.

A change of variables from t to λ = 1− e−σ̄(t) further transforms this objective. Here, λ represents
the probability that a token is masked by time t. The t-DCE loss becomes:

Lλ-DCE(x0) =

∫ 1

0

Exλ∼pλ(·|x0)

− ∑
i:xi

λ=[M ]

∑
j ̸=[M ]

p0(x
i
0 = j | xUM

λ ) log cθ(xλ)[i, j]

 dλ,

where pλ(xλ|x0) is the distribution induced by independently masking each token with probability
λ.

Finally, this λ-DCE loss can be integrated analytically over λ, yielding an expression that is equiva-
lent to the training objective of any-order autoregressive models (AO-ARMs):

LAO(x0) = Eπ∼Uπ

[
−

d∑
l=1

log p(x
π(l)
0 | xπ(<l)

0 )

]
.

This equivalence holds when the final noise level σ̄(T ) → ∞, ensuring all tokens are masked
with probability one. Thus, the upper bound on the negative log-likelihood for diffusion models is
interpreted as the expected negative log-likelihood over all factorizations for AO-ARMs.
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In sampling, the reverse process can leverage the time-independent network cθ. Since tokens transi-
tion from masked to unmasked only once, the output of cθ can be cached when the noisy sample re-
mains unchanged over a sampling interval. This reduces the number of function evaluations (NFEs).
The expected NFEs (E-NFEs) for a sequence of length d and n sampling steps is:

E-NFEs =
n∑

k=1

E[Nk],

where Nk is the number of tokens that change at step k. For a log-linear noise schedule, this
simplifies to:

E-NFEs = d ·
(
1− (1− 1

n
)n
)
,

which is less than d for n > 1, demonstrating the efficiency gain from caching.
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