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Abstract

Since its 2009 genesis block, the Bitcoin network has processed >1.08 billion
(B) transactions representing >8.72B BTC, offering rich potential for machine
learning (ML); yet, its pseudonymity and obscured flow of funds inherent in its
UTxO-based design, have rendered this data largely inaccessible for ML research.
Addressing this gap, we present an ML-compatible graph modeling the Bitcoin’s
economic topology by reconstructing the flow of funds. This temporal, hetero-
geneous graph encompasses complete transaction history up to block 863 000,
consisting of >2.4B nodes and >39.72B edges. Additionally, we provide custom
sampling methods yielding node and edge feature vectors of sampled communities,
tools to load and analyze the Bitcoin graph data within specialized graph databases,
and ready-to-use database snapshots. This comprehensive dataset and toolkit em-
power the ML community to tackle Bitcoin’s intricate ecosystem at scale, driving
progress in applications such as anomaly detection, address classification, market
analysis, and large-scale graph ML benchmarking. Dataset and code available at
github.com/b1aab/eba

1 Introduction

The advent of Bitcoin introduced a decentralized public ledger where cryptographic rules govern
issuance, secure ownership, prevent double-spending, and enable value transfer. Since its 2009
inception, as of block 863 000, its ledger publicly records >1.08B transactions involving >1.32B
unique addresses and representing >8.72B BTC in cumulative transferred value. Spanning >16
years of real-world economic activity, its ledger is a unique resource for machine learning research. It
enables diverse applications (surveyed in [1]), including: network security analysis such as anomaly
detection and fraud prevention; entity analysis like de-anonymization (identifying exchanges, miners,
gambling sites) and linking pseudonymous addresses via behavioral patterns; economic modeling
such as market prediction and value flow analysis; multimodal studies connecting on-chain activity to
real-world events for socio-economic insights; and benchmarking for ML methods on large graph
datasets.

Despite this rich potential, Bitcoin’s design, particularly its Unspent Transaction Output (UTxO)
model and pseudonymity (i.e., identified by a cryptographic identity, such as a public key, instead of
a real-world identity or complete anonymization), poses significant challenges for ML applications.
The UTxO model represents funds as values associated with atomic transaction outputs that only
an intended recipient can spend. Consequently, unlike account-based systems, there is no readily
accessible state (e.g., account balance, transaction count, or counterparties) for an entity (e.g.,
an individual, organization, or service). Reconstructing this entity’s state requires tracing and
aggregating numerous UTxOs across different blocks. Pseudonymity compounds this: transactions
link to cryptographic addresses, and single entities often control numerous addresses. Mapping
these addresses to entities, which is essential for building reliable entity-level features, requires
sophisticated heuristics or external data [2–4]. Common privacy practices, like using new addresses
per transaction or techniques like CoinJoin [5], deliberately further complicate efforts to resolve
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Figure 1: EBA interfaces with the Bitcoin Mainnet via Bitcoin Core to fetch and unpack block,
transaction, and script information. EBA models the extracted data as a single directed temporal
heterogeneous graph composed of multiple node and edge types, aiming for completeness and ease
of use in machine learning applications. The graph is serialized into TSV files and, for efficient
querying, imported into specialized graph databases. Additionally, EBA implements configurable
sampling algorithms, including an adaptation of the Forest Fire model [6, 7] (section A.2.1), to
sample communities, which are subsequently represented as node and edge feature vectors.

entities’ state. Effectively applying ML to Bitcoin’s ledger therefore demands specialized feature
engineering.

We model Bitcoin’s transactions as a heterogeneous temporal graph representing the flow of funds and
the topology of transactions (i.e., various inputs and outputs of a transaction and the set of transactions
in a block). The graph consists of four node types interconnected by six types of directed edges
timestamped by block height, which model coin issuance, fund transfers, and topology of transactions,
hence capturing the state of entities. Cycles can emerge within this representation, reflecting closed
loops of economic exchange. Section 2 details longitudinal blockchain statistics, providing insights
to guide the effective interpretation and application of the graph model. Subsequent sections detail
graph construction methodology (section 3), its characteristics (section 4), and methods for sampling
communities and subgraphs (section A.2). An overview of the methodology is presented in Fig. 1.
All analyses presented herein are based on the blockchain data up to block height 863 000.

2 Statistical profiling of Bitcoin’s on-chain metrics

Bitcoin maintains chronological order through a linked sequence of blocks, each encapsulating
transactions and secured by a cryptographic hash computed from both its contained transactions and
the hash of the preceding block; thus, forming a blockchain. The Bitcoin protocol enforces rules
ensuring that blocks are generated at regular intervals by adjusting the mining difficulty (Figs. 2
and A.7). Each block records a Median Time-Past (t), calculated as the median of the last 11
blocks [8]. The difference between the t of consecutive blocks indicates that blocks are generated at
regular intervals of every ≈10min (µ = 9.59± 13.45, Fig. A.8 for the distribution; throughout the
manuscript, we adopt the notation µ = x± y, where x and y denote the mean and standard deviation,
respectively).

Figure 2: Chronology of Bitcoin’s block generation dynamics: mining difficulty is adjusted (A,
Fig. A.7) to regulate block generation to roughly every 10min (B, Fig. A.8), and the mining reward
includes transaction fees and newly minted coins (C, Fig. A.6).
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New coins are generated with each new block and awarded as incentives to the first miner (or mining
pool) who successfully computes the cryptographic hash of the new block that meets the difficulty
threshold (mining). Initially, 50 BTC were minted per block, halving every 210 000 blocks, totalling
≈19.76M BTC minted (Figs. 2, A.6 and A.19). The miner can claim both the minted coins and
associated transaction fees; any rewards left unclaimed by miners become permanently unspendable.
A total of 40.55 BTC in mining rewards went unclaimed across 116 067 blocks (entirely in block
501 726); including 21.82 minted BTC in 185 of these blocks (table A.5 and Fig. A.14).

Miners claim the newly generated coins by cryptographically locking them, typically using their
own private-public key pairs, through a unique transaction present in every block called the coinbase
transaction. To circulate these coins, miners must first unlock them, then re-lock them under new
cryptographic conditions. Thus, transferring funds involves unlocking coins controlled by the sender
and re-locking them such that only the intended recipient can unlock them. Consequently, each
block encapsulates multiple transactions (Tx), each consisting of inputs (TxIn) that unlock previously
secured coins (UTxO), and outputs (TxOut) that lock these coins under new cryptographic conditions.
Accordingly, coins are values associated with atomic TxOut, each of which can be spent exactly once.

The >19.76 million minted coins were traded across >1.08B Txs, cumulatively amounting to >8.72B
BTC exchanged. Coinbase transactions are the initial distribution point for these coins (Fig. A.21) and
predominantly feature a single TxOut (93.2%). While 1.6% have ≥10 TxOut (typically associated
with mining pools directly distributing rewards through coinbase Tx), this practice has a declining
trend, reflected in the average number of coinbase TxOut dropping from µ = 4.07± 23.87 before
block 500K to µ = 1.13 ± 0.0 afterward (Fig. 3). Beyond the coinbase Tx, each block contains
µ = 1258.9±1 285.6 transfer Txs (Fig. 3). While the total number of TxIn (µ = 3161.21±2 837.0)
and TxOut (µ = 3373.2 ± 3 448.9) summed per block exhibit a positive correlation (Pearson
ρ = 0.77), the average number of TxIn (µ = 2.9± 18.2) and TxOut per Tx (µ = 2.5± 3.0) across
blocks show negligible linear correlation (Pearson ρ = 0.02, Fig. A.12). Despite a general increase
in Txs per block with Bitcoin’s adoption, “empty” blocks (that contain only the coinbase Tx and
generated when a miner succeeds mining a block before including any Tx from the transaction pool)
still occur, accounting for 10.4% (89 714) of all blocks (Fig. 3).

Spending patterns for the >8.72B BTC total transferred value have evolved significantly (Fig. 3).
For instance, the total BTC transferred per block increased dramatically from µ = 0.59± 4.6 in the
first 300k blocks to µ = 5746.7± 6 054.8 in the latest 300k blocks (Fig. A.13). Complementing the
volume, the age of spent TxOut provides insights into holding behavior. Let δµ be the average age
of spent TxOut in a block, defined as the difference between the block heights at which a TxOut is
spent and created, where δµ = 0 means the TxOut is spent in the same block in which it is created.
Minted coins have specific spending constraints: they must mature for at least 100 blocks before
being spent. On average, spent minted coins have an age of µ = 25k± 65k blocks, with each block
spending µ = 64.8± 305.7 such coins (Fig. A.18). Of the >19.76M minted coins, >1.76M remain
unspent; the >17.98M that have entered circulation contribute to the >8.72B BTC total exchange
volume (Figs. 4 and A.19). Unlike newly minted coins, regular TxOut can be spent within the same
block they are created. In 703 940 non-empty blocks, at least one TxOut was spent in the same block
where it was created. Excluding empty blocks, the mean δµ over the most recent 200k blocks is
µ = 5298.0 ± 10 739.4. Considering δµ in two consecutive blocks (lag 1) reveals three distinct
spending patterns (Fig. 4C): (a) In 8.02% of blocks, δµ = 0 in two consecutive blocks; (b) In 2.3%
of blocks, δµ = 0 with δµ > 0 in a proceeding block; and, (c) In 40.6% of blocks, δµ across two
consecutive blocks falls within the 1k to 10k range.

Bitcoin utilizes a Forth-like scripting system as its [un]locking mechanism to define spending
conditions [9]; TxOut contain the locking script, and TxIn provide the unlocking script or data. The
scripts, in most cases, are referred to by their user-friendly representations, known as addresses.
≈1.32B unique addresses have been created, with each block referencing µ = 3373.5 ± 3 445.5
addresses, including µ = 1538.8 ± 1 618.3 newly generated ones (Figs. 3, A.11 and A.15). The
shifting popularity among the nine common script types—from early dominance by public keys
(P2PK) towards Pay-to-Public-Key-Hash (P2PKH) and, more recently, increased adoption of Pay-
to-Witness-Public-Key-Hash (P2WPKH) [10]—highlights evolving preferences regarding privacy,
security, and transaction efficiency (Figs. 3 and A.10). Nevertheless, P2PKH remains predominant
over the entire blockchain, accounting for 44.9% of all TxIn and TxOut.
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Figure 3: Longitudinal trends in Bitcoin Txs. Tx counts per block have increased (A) despite 10.4%
empty blocks, involving numerous new and reused addresses (B, Figs. A.11, A.12 and A.15). These
addresses reference underlying scripts, and while their type usage has evolved (G, Fig. A.10), P2PKH
remains the predominant type overall (H). Patterns of distributing minted coins have been evolving
(C); similarly, while the transfer TxOut count per Tx evolves, it remains low across most Txs (D,
Fig. A.12). Panel E shows per-Tx BTC volume trends: the max remains relatively stable, while
average and minimum values decrease (more pronounced in the minimum, potentially reflecting
exchange rates, Fig. A.13) Complementing panel E, F shows total BTC transferred and total mining
rewards, revealing discrepancies where unclaimed TxIn value becomes lost funds (Fig. A.14). Rolling
means in panels B, E, and F use a window of 5K blocks.

The byte size of each block is limited, initially 1MB, and increased to 4MB with Segregated Witness
(SegWit [10], Fig. A.9). Consequently, only a subset of transactions from the transaction pool
(mempool) can be confirmed in each block, which limits overall network throughput and influences
the inclusion of transactions with large or complex scripts.

While metrics like script type usage reflect evolving technical preferences, other on-chain metrics,
such as TxOut spending patterns (coin dormancy), offer valuable insights into Bitcoin’s economic
behavior. For instance, low dormancy might suggest long-term holding, while high dormancy (or
velocity) could indicate liquidation pressure. On-chain valuation metrics are invaluable barometers
for various economic factors; although a deep dive into these economic indicators is beyond this
paper’s scope, we provide detailed statistics: Fig. 4 gives an overview of TxOut spending, with further
details in Figs. A.16 to A.18.

3 Blockchain to graph

Blockchain technologies like Bitcoin implement a TxOut-centric model for on-chain data, which
prioritizes immutability and double-spending prevention (fundamental requirements for distributed
ledger technologies (DLT)) over explicitly modeling wallet-level activities. Consequently, performing
wallet-level queries, such as identifying deposits/withdrawals within specific timeframes or analyzing
longitudinal patterns of inter-wallet interaction, requires computationally intensive reconstruction
from granular Tx/TxOut data, as wallet abstractions are not explicit on-chain. (While some Directed
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Figure 4: Bitcoin spending dynamics and coin age (dormancy). (A) Of >19.74M minted coins,
>1.76M remain unspent, while the >17.98M spent minted coins constitute the circulating funds
(unspent non-coinbase TxOut, Fig. A.19), which are spent with varying holding periods: Panel (B)
illustrates how the distribution of average spent TxOut age (δµ) varies across block height; Panel (C)
compares consecutive δµ values.

Acyclic Graph (DAG)-based DLTs offer on-chain wallet data, this research focuses on Bitcoin.) To
facilitate richer analysis of fund circulation and economic behaviors within Bitcoin, we transform the
TxOut-centric model into a wallet-centric graph model.

We construct this graph by including the transactional information and block metadata from the
Bitcoin blockchain, while omitting purely cryptographic validation details. The graph is inherently
heterogeneous, directed, temporal, and potentially cyclic. (See Fig. 5 for an overview; section A.1
details the encoding methodology, and node and edge encoding and their properties summarized
in tables A.1 to A.4). The graph incorporates four node types: a single Coinbase node (minting
origin), Script nodes (representing blockchain addresses, with incoming edges for received TxOut
and outgoing edges for spent TxIn), Tx and Block nodes (providing context). Directed edges, stamped
with block height, model blockchain relationships (e.g., value transfers, script-to-script) and structural
links (e.g., confirmations, block-to-Tx, see Fig. 5). Critically, the Tx and Block nodes contextualize
script interactions and serve as hypernodes, enabling the modeling of long-range dependencies or
clustering among scripts, thereby supporting more sophisticated ML applications.

Unlike account-based systems, UTxO transactions consume a set of input UTxOs (controlled by
potentially multiple scripts) and create a set of new output UTxOs (assigned to potentially multiple
scripts), without explicitly linking individual sender to receiver scripts. To represent these flows more
directly, our graph model introduces explicit script-to-script Transfers edges. Within each transaction,
these edges form a complete bipartite graph connecting every input Script node to every output Script
node involved (see table A.4 for details and examples in Figs. A.2 and A.3).

Our model distinguishes the two mining reward components: transaction fees and newly minted
coins. While the Bitcoin protocol bundles both in the coinbase TxOut, our graph separates them to
distinctly model value creation (minted coins) versus transfers of existing value (fees). Newly minted
coins are modeled via Mints edges originating from the Coinbase node. In contrast, transaction fees
are modeled using explicit script-to-script Fee edges connecting spender Script nodes to the miner’s
Script node (see table A.2 for details and examples in Figs. A.2 and A.3). These Fee edges exclusively

Figure 5: Schema of the graph. The process for creating the graph is detailed in section A.1, with
nodes described in table A.1, and the mapping from blockchain properties to the graph provided in
tables A.2 to A.4.
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model the on-chain transaction fees paid to miners and do not account for off-chain service fees, such
as those an exchange might charge its users.

Block nodes provide temporal context, connecting to Tx nodes (Redeems, Confirms edges) and
Script nodes (Redeems, Credits edges, Fig. 5). These directed edges enable efficient traversal of
transaction histories along the block sequence: Redeems edges allow tracing funds in the spending
direction, while Credits or Confirms edges allow tracing in the receiving direction. This structure
serves two key purposes. First, it enables graph sampling methods to explore temporally co-occurring
transactions (e.g., tracing funds received by a script and then sampling other transactions confirmed in
the same block as that receiving event). Second, these Block nodes serve as crucial temporal anchors
and structural elements for Graph Neural Networks (GNNs), enabling models to effectively learn
time-dependent patterns and long-range dependencies or incorporate temporal encodings.

Overall, the graph is constructed with high fidelity to the Bitcoin blockchain. The extract, transform,
load (ETL) pipeline parses blocks using Bitcoin Core (see Fig. 1), the protocol’s reference imple-
mentation, which ensures that blocks are parsed accurately with respect to Bitcoin’s long history of
incremental protocol updates. The initial release of the graph is constructed from all transactions
recorded in all blocks up to block 863 000, but it intentionally excludes: (a) cryptographic proofs
(e.g., signatures), as their utility for ML tasks is unclear; (b) zero-value transactions; and (c) transac-
tions with both >20 inputs and >20 outputs, as such transactions create extremely large bipartite
graphs. Additionally, to preserve fidelity to the blockchain, the graph maps blockchain entities
(blocks, transactions, scripts) to nodes and avoids aggregating distinct interactions; for instance,
multiple transfers between the same entities within a block are preserved individually rather than
summed. Self-transfers (change outputs) are also explicitly retained for completeness, even though
they primarily serve a Bitcoin protocol requirement (see section A.1 for details).

The graph is provided in two formats: (a) nodes and edges in TSV files for broad compatibility, and
(b) loaded into a specialized graph database for efficient querying. To facilitate common machine
learning workflows, we provide tools for subgraph or community sampling using various algorithms,
including an adaptation of the Forest Fire sampling method (section A.2.1). These tools also encode
the sampled subgraphs into feature vectors (node and edge vectors) ready for input into ML models.

The graph, containing the complete history of Bitcoin transactions up to block 863 000, presents
two challenges for users: the need for specialized computational resources due to its scale, and
the requirement for regular updates given the volume of transactions added to the ledger on a
daily basis. In its initial release, the compressed TSV files for the graph are >1.17TB in size,
expanding to >3TB once imported into a specialized graph database. To make the dataset broadly
accessible despite its scale, we have taken two steps. First, we provide several data access options for
different use cases; for instance, we offer general-purpose sampled communities (200 k subgraphs,
size <1.5GB) for exploratory applications that can be used without hosting a full graph database,
and a database snapshot (>700GB) that facilitates starting a graph database instance without the
computationally intensive import process. Second, to lower the memory requirements for large-scale
graph analysis, the methods we provide are designed to run on systems with limited memory by
relying on on-disk operations. Additionally, for regular updates, we provide methods to incrementally
add transactions from new blocks after 863 000 to both the TSV files and the graph database, avoiding
the need for frequent, full dataset rebuilds. Documentation for these resources is available on
github.com/B1AAB/EBA.

4 Structural properties of the graph

The graph encodes Bitcoin’s transaction history using >2.4B nodes and >39.72B block-height-
annotated edges (Fig. 6). Over 1.3B Script nodes enable the script-level tracking of value transfer,
with distinct edge types distinguishing between different categories of financial flows. Over 2.4M
Mints edges connect Script nodes (belonging to miners or pools) to the single Coinbase node,
modeling the initial reception of newly minted coins (Fig. A.21). Over 6.3B Transfers edges between
the Script nodes model the circulation of existing funds. Among these, 20.3% are self-transfers,
representing the mechanism of returning the transaction remainder to the spender. Additionally,
>3.3B Fee edges model transaction fees paid to miners. These differ from Transfers edges as Fee
edges represent payments to miners typically unrelated to the transaction parties, whereas Transfers
are between potentially related sender/recipient entities.
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Figure 6: Statistical properties of the Bitcoin graph. (A) Total node and edge counts. Node (B) and

(C) Edge type distribution. (D) Edge counts by relationship pattern: Source
Edge Type−−−−−→ Target.

Providing an aggregated perspective complementary to the script-level view, >1.08B Tx nodes
represent individual transactions. Similar to the Script nodes, these Tx nodes are associated with
distinct categories of financial flows, captured by three edge types: 863 000 Mints edges, >2.52B
Transfers edges, and >1.07B Fee edges.

863 000 Block nodes anchor the graph’s temporal dimension by connecting to Tx nodes via >3.6B
Redeems and >3.6B Confirms edges, and to Script nodes via >9.6B Redeems and >9.6B Credits
edges (Fig. 5). These Block nodes serve as crucial temporal reference points for modeling and
sampling tasks (section 3).

Regarding degree distributions (din: indegree, dout: outdegree), Script and Tx nodes exhibit similarities
at lower degrees (Fig. 7). For Script nodes, 97.49% have din ≤ 10 and 92.56% have dout ≤ 10, while
2.11% have 10 < din ≤ 100 and 6.01% have 10 < dout ≤ 100. Similarly, for Tx nodes, 98.95%
have din ≤ 10 and 98.06% have dout ≤ 10, with only 0.83% (din) and 1.69% ( dout) falling between
10 and 100. However, the distributions diverge significantly in the tail (Fig. 7, Panel D). Script nodes
show a pronounced long tail: 0.40% have din > 100 (max din ≈ 282M) and 1.43% have dout > 100
(max dout ≈ 37M). In contrast, 0.21% (din) and 0.26% (dout) of Tx nodes exceed a degree of 100,
with maximums reaching only din ≈ 8K and dout ≈ 14K. This difference is expected: Script nodes
can be reused across multiple transactions throughout the blockchain’s history, while each Tx node
represents a unique transaction event confined to a single block. Despite this fundamental difference
in lifespan and reusability, the total counts of Script nodes (1.31B) and Tx nodes (1.08B) remain
relatively comparable. This is partly explained by the long degree tail for Script nodes, indicating
that while many scripts adhere to privacy-preserving practices (infrequent reuse), a subset, often
associated with exchanges or mining pools, are reused very frequently.

This temporal graph chronicles over a decade of Bitcoin’s economic evolution. The discussed
properties provide a foundation, but the detailed structure enables focused investigations into specific
dynamics (e.g., longitudinal evolution of n-hop neighborhoods around degree-rich script nodes).
While the dataset enables countless such targeted analyses, they are outside this paper’s scope.

5 Applications and modeling considerations

The Bitcoin graph is a large-scale, real-world directed temporal graph modeling over 16 years of
economic transactions. Its structure enables multi-scale analysis of on-chain economic activity, from
modeling an entity’s evolving trading patterns based on its multi-hop temporal neighborhood (node-
level), to identifying communities of related (e.g., co-ownership) or coordinated activity (e.g., shared
intent, subgraph-level). These characteristics make it a unique resource for applications in three key
facets; first benchmarking graph algorithms and machine learning models. Computing metrics like
eigenvector centrality, the longest path, or rich-club coefficient can provide significant insights into
a real-world graph, particularly the Bitcoin ecosystem; however, performing these algorithms on a
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Figure 7: Bivariate degree distributions of the graph nodes, with degrees computed over all edge
types and aggregated into bins of size 10 (lower bound). (A) The script nodes have low density
(5.57× 10−9) and variability (normalized Shannon entropy, Hn = 0.24, see table A.7), which aligns
with many scripts being used a few times, alongside few high-degree scripts. (B) Tx nodes also have
low density (3.05× 10−9) and variability (Hn = 0.21), since they model unique transactions; their
in-(µ = 3.31± 52.4) and out-(µ = 6.61± 23.6) degrees represent the input and output scripts per
Tx. In contrast, Block nodes (C), fewer in number but acting as hypernodes, have higher density
(0.018) and variability (Hn = 0.87). Panel D provides a comparison of these degree distributions.

graph of this size is a significant challenge for most data science libraries, as they often rely on in-
memory projections. This lack of scalability necessitates aggressive down-sampling or restriction to
narrow temporal windows, which can compromise the relevance of the results. Similarly, this dataset
can benchmark the scalability of graph ML pipelines; for instance, many neighborhood sampling
implementations do not scale effectively, where sampling neighbors a few hops away for a given root
node may require considerable computational resources. Beyond benchmarking for scalability, the
generalization of ML methods across temporal windows can be tested against the Bitcoin graph’s
rapidly evolving nature, where network characteristics differ significantly across different temporal
windows. Hence, the Bitcoin graph provides a benchmark for both the scalability of algorithms and
ML models, and their robustness to temporal distribution shifts common in real-world networks.

Second, the Bitcoin graph bridges the gap between the cryptocurrency and ML communities. Its
structure, scale, and temporal span make it ideal for training a base model for the Bitcoin ecosystem
that learns on-chain trading patterns and the economic behavior of entities. In addition, the graph can
be used for tasks such as node classification, edge prediction, community detection and classification,
and subgraph matching. These tasks can introduce novel capabilities to cryptocurrencies, such
as on-chain reputation systems, which could generate trust scores for wallets in applications like
Decentralized Finance (DeFi) lending or, more proactively, enable fraud prevention through real-time
risk assessments for wallets and transactions before they are submitted to the network. Finally, the
graph can power AI agents for personalized cryptocurrency assistance, which could provide financial
guidance by generating investment strategies that align a user’s specified investment profile (e.g., risk
tolerance) with on-chain dynamics.

Third, the Bitcoin graph can be extended to interdisciplinary applications when augmented with off-
chain complementary data sources. For instance, a base model pre-trained on the Bitcoin graph can
be fine-tuned for smart contract platforms to enable impactful DeFi applications, such as improving
privacy-preserving credit reputation assessments to reduce risk in under-collateralized DeFi lending
(i.e., users can borrow more funds than their deposited collateral). Additionally, the graph’s temporal
nature allows for synchronization with other temporal modalities; for example, combining on-chain
activity with market indicators like Open-High-Low-Close (OHLC) can improve the predictive
power of market forecasting models. Furthermore, analyses can correlate on-chain transactions with
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off-chain events (e.g., major policy announcements or sentiment shifts) to quantify their impact on
the cryptocurrency ecosystem, which enables the study of the interplay between external events and
economic behavior within decentralized systems.

Enabling these applications often requires modeling the true economic activity of entities as it is
recorded on-chain through pseudonymous identities. Stemming from pseudonymity and the fact that a
single entity can control many scripts, a foundational concept in cryptocurrency analysis is identifying
script co-ownership using heuristics like address clustering, co-spending patterns, or change address
identification. These heuristics are then used to model trading patterns for applications like anomaly
detection. However, this analysis is confounded by privacy-enhancing techniques (e.g., CoinJoin) and
heuristics of exchange services that may execute user trades from their own addresses to optimize on-
chain activity. This “proxying” adds an additional layer of obfuscation; consequently, any application
modeling an entity’s trading patterns based on script co-ownership must also effectively account
for these behaviors. Despite numerous research efforts [11, 2, 12] and proprietary solutions, entity
resolution remains an active research area. The Bitcoin graph we present facilitates this research by
enabling deep neighborhood analysis (many hops away) and augmentation with off-chain annotations,
leveraging its detailed, temporal modeling of blocks, transactions, and scripts that closely mirrors
the ledger’s structure and preserves its temporal and economic context. We provide examples of
building ML models on the Bitcoin graph, and augmenting the analysis with off-chain annotations
at github.com/B1AAB/GraphStudio.

6 Limitations and future direction

While this research focuses on Bitcoin’s transactional data, a natural extension is to include other
DLTs and expand beyond transactional data (e.g., smart contracts) that expands the breadth of
applications, including predictive or classification tasks on smart contracts. Additionally, the current
graph is scoped to information explicitly available on-chain; including off-chain annotations such
as entity type classification (e.g., exchange, miner, merchant), transaction intent (e.g., purchase,
investment, mixing), or the distinction between illicit and non-illicit activity would significantly
improve classification accuracy. Such annotations are provided by resources such as law enforcement
agencies and cybersecurity reports; however, they generally cover a fraction of entities and are
biased towards only actively investigated entities. Incorporating comprehensive off-chain annotations
remains a key direction for future enhancements. Finally, the graph we presented here enables
longitudinal study of the Bitcoin ecosystem (e.g., evolving or recurrent patterns, or periodically active
communities, or negligible but consistent flow of funds inter- and intra-entities/communities); an
in-depth analysis of the graph and application-specific ML solutions merit independent follow-up
studies.

7 Ethical considerations

We build the graph exclusively using Bitcoin’s on-chain data, which is publicly accessible and
does not contain personally identifiable information or geographical locations, where entities are
represented using cryptographic public keys with no direct association with real-world identities. We
do not conduct de-anonymization or predictive modeling, or include off-chain annotations such as de-
anonymized addresses. Since the graph encodes a ledger of high-volume real-world financial activities
in its entirety, its analysis with sophisticated behavioral models combined with external annotations
could be used to de-anonymize pseudonymous addresses and predict community behaviors. The
outcome of such analysis can be used in fraud prevention or to identify illicit activities, or in other
activities that could raise privacy concerns, result in discriminatory outcomes, or have broader socio-
economic implications. We urge users to employ this dataset responsibly and adhere to the latest
ethical best practices in all downstream studies.

8 Conclusion

We have introduced a graph encoding of Bitcoin’s ledger, modeling the flow of funds from minting
through all transactions, while omitting cryptographic validations. This temporal and heterogeneous
graph comprises >2.4B nodes (four distinct types) and >39.72B edges (six distinct types), and
preserves the chronological sequence of transactions by annotating all edges with block height. The
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graph models both the direct flow of funds between entities (represented by Script nodes), various
input and output scripts in a transaction (Tx nodes), and the set of transactions in a block (Block nodes).
Notably, Block nodes and Tx nodes function as contextual hubs or hypernodes that enable ML models
to learn long-range dependencies, integrate temporal context, and identify co-occurring patterns. The
defined edge types support diverse graph traversal strategies, such as tracing the spending of minted
coin (e.g., Figs. A.5 and A.21), traversing neighborhoods of high-degree Script (often entities like
exchanges), or analyzing the neighborhoods of Script nodes linked by common blocks (“temporal
neighbors”) or by common transactions (suggesting co-ownership or relatedness) to identify related
activity.

Our in-depth statistical profiling of the Bitcoin blockchain provides context on its characteristics and
evolving dynamics for effective interpretation and utilization of the graph. The graph is available as
TSV files for broad compatibility and as a ready-to-use snapshot of a specialized graph database for
enabling efficient querying and analytical tasks. Since a common practice for training ML models on
a single large graph is training on various sampled subgraphs of the larger graph, we provide a suite
of customizable sampling algorithms for sampling application-specific communities. Additionally,
pre-sampled communities are provided to facilitate initial exploration and rapid prototyping.

Encoding the complete transaction history of the Bitcoin blockchain up to block 863 000 (spanning
over 16 years of economic activity), this graph empowers the ML community to develop models for
nuanced economic analysis, cryptocurrency-related applications, and provides a substantial real-world
benchmark dataset for advancing large-scale graph machine learning research. Additionally, when
integrated with other external temporal data sources (e.g., market data, or macroeconomic indicators),
this graph enables interdisciplinary research, such as building models to explore and potentially
predict broader socio-economic behaviors and trends influenced by or reflected in cryptocurrency
activities.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly define the paper’s scope, the proposed
graph modeling methodology, the characteristics of the resulting dataset, and its potential
application areas, all of which accurately reflect the contributions and scope detailed in the
manuscript.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the paper dedicates a section to "Limitations and Future Directions,"
which discusses the current focus on Bitcoin’s transactional data, the scope of on-chain
information versus the potential for richer off-chain annotations, and areas for future work
such as extending to other blockchains and longitudinal topological studies.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper primarily presents a dataset and its construction methodology; it
does not introduce theoretical results that would require formal proofs. Any formulas in-
cluded, such as those in the appendix, are descriptive (e.g., detailing edge value calculations)
and are supported by their accompanying explanations.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the paper provides extensive discussion on the methods for data collection,
graph construction, preprocessing, and sampling. Given the dataset’s scale, we also provide
raw, intermediary, and processed data (including ready-to-use database snapshots and ’quick
start’ sampled graphs), in addition to the complete source code for all methodologies.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

13



(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, the paper provides links to a publicly accessible repository containing
the database snapshots and intermediary data (approximately 2TB), the source code, a
dedicated documentation website, and "hello world" sampled graphs available via Kaggle.
Additionally, quick-start notebooks are provided to demonstrate using the sampled graphs
with an off-the-shelf graph neural network model.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This paper primarily introduces a dataset and its construction methodology,
not a novel model or a model benchmarking.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The paper predominantly presents descriptive statistics and exact parameters
derived from the dataset (e.g., total counts of nodes, edges, or specific transaction types),
which are definitive for the given data scope. In instances where aggregated measures such
as means are reported (e.g., average transactions per block, average age of spent outputs),
standard deviations are consistently provided to indicate the variability or dispersion of these
measures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: This paper presents a dataset and its generation, not ML model benchmarks
that require detailed compute resource reporting. However, recognizing the data’s scale,
the documentation outlines the substantial computational resources necessary for achieving
reproducibility of the dataset and provides alternatives, such as intermediary data and
solutions tailored for running the methods on systems with limited computational resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The dataset is derived solely from Bitcoin’s public blockchain, which is
pseudonymous by design and does not contain direct personally identifiable informa-
tion. This paper focuses on providing the graph dataset and tools, not on conducting
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de-anonymization or predictive modeling that could compromise privacy or lead to discrim-
inatory outcomes. The paper includes a dedicated "Ethical Considerations" section that
discusses responsible use and potential implications.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, the paper includes a dedicated "Ethical Considerations" section that
discusses responsible use and potential implications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The dataset is derived from publicly accessible Bitcoin blockchain data, and we
do not provide pre-trained models or applications with inherent high-risk misuse potential.
Ethical considerations for downstream use are discussed separately.

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The primary data source is the Bitcoin blockchain, which is public and
open. Software used in the data processing pipeline, such as Bitcoin Core (the reference
implementation), are appropriately cited in the manuscript.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, we have developed a dedicated documentation website outlining all the
details of the steps for reproducing the dataset, using the provided tools, and working with
the graph. This documentation is included with the submission.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The graph is constructed from the Bitcoin blockchain, which records transac-
tions submitted by users. However, this research involves fetching data directly from the
Bitcoin network and does not include any direct interaction with the users of the protocol,
nor does it involve any crowdsourcing for data collection or annotation.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: As stated previously, this dataset is constructed from publicly available
blockchain data and does not involve direct interaction with human subjects or partici-
pants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in the study design, method implementation, or data
processing for this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Materials
A.1 Blockchain to Graph

We model Bitcoin’s blockchain as a single, directed temporal graph comprising nodes that represent
scripts, transactions, and blocks, and block-height annotated (temporal) directed edges that aim for a
complete representation of transactional data while also providing structural information that enhances
machine learning tasks, such as modeling long-range dependencies and community structures, partly
by leveraging block and transaction nodes as contextual hubs. This design intentionally replicates the
blockchain data with high fidelity, which allows downstream analyses to either model the data with
precision or, for simplicity, aggregate certain interactions (e.g., self-transfers or multiple transfers
between the same scripts within a single transaction or block). Fig. A.1 provides a schematic of this
modeling process, and the following sections outline the steps in detail.

Block 2 817 serves as an illustrative example; this block is notable as the first to include a transaction
fee and also contains numerous self-transfers, making it an exemplary case for demonstrating our
node and edge design decisions.
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Figure A.1: Illustrative schematic of the graph model, constructed from Bitcoin’s blocks, transactions,
and scripts.

A.1.1 Interfacing with the Bitcoin Network

To retrieve data, use the API endpoint of Bitcoin Core (widely recognized as the reference implemen-
tation). First, set the following in the Bitcoin Core configuration file, then start the node:

1 rpcbind=127.0.0.1
2 server=1
3 rest=1
4

5 # Creates an index of transactions in the blockchain.
6 txindex=1
7

8 # Increases the work queue depth so the client can
9 # respond to more concurrent API requests (default is 64).

10 rpcworkqueue=128

A.1.2 Retrieving Block Data

Bitcoin Core retrieves block data given a block hash. Therefore, to obtain a block at a specific height,
a two-step API process is necessary: first, an API request retrieves the block hash for the given height;
second, this hash is used to fetch the actual block data. The API requests for this process are as
follows:
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1. Get block hash.

1 GET rest/blockhashbyheight/2817.hex HTTP/1.1
2 Host: localhost:8332
3 Content-Type: text/plain
4

5 00000000d50a3cd05e451166e5f618c76cc3273104608fe424835ae5c0d47db9

2. Get block data. In the following examples, API responses from the Bitcoin Core client are
presented in JSON format for intuitive readability. While block data is generally processed
and communicated as byte arrays by client applications within the network (often displayed
in its raw hexadecimal-encoded form), interpreting these raw byte arrays directly requires
significant domain knowledge to map specific byte sequences to their corresponding at-
tributes due to its schema-less serialization. We therefore use the JSON representation, as its
key-value pair structure is self-describing and avoids the need for such manual annotation
of raw hexadecimal data. For brevity in the examples, some key-value pairs are replaced
with "*":"*", and long strings are truncated, with omitted parts marked by an asterisk (∗).
Each block contains multiple Txs, with the count specified by the nTx key and the list of
transactions under the tx key. Every transaction comprises three main attribute groups:

(a) Metadata, such as txid or hash;
(b) A list of inputs (TxIn, denoted vin); and
(c) A list of outputs (TxOut, denoted vout).

1 GET /rest/block/00000000d5*db9.json HTTP/1.1
2 Host: localhost:8332
3 Content-Type: application/json
4

5 {
6 "hash": "00000000d5*db9",
7 "height": 2817,
8 "*": "*",
9 "nTx": 4,

10 "tx": [
11 {
12 "*": "*",
13 "in": [{"coinbase": "*", "sequence": 4294967295}],
14 "vout": [
15 {"value": 52.01, "n": 0, "scriptPubKey": {"*": "*"}}],
16 },
17 {
18 "*": "*",
19 "vin": [
20 {
21 "txid": "a87*",
22 "vout": 1,
23 "prevout": {"height": 2813, "value": 34.93, "*": "*"},
24 "*": "*"
25 }],
26 "vout": [
27 {"value": 1.0, "n": 0, "scriptPubKey": {"*", "*"}},
28 {"value": 32.93, "n": 1, "scriptPubKey": {"*", "*"}}],
29 "fee": 1.00000000,
30 "hex": "0100000001db*"
31 },
32 "*" : "*"
33 ]
34 }

A.1.3 Deriving Addresses from Scripts

The inputs (TxIn) and outputs (TxOut) of a Bitcoin transaction (Tx) are defined by a Forth-like
stack of OP CODEs, known as Bitcoin Script (en.bitcoin.it/wiki/Script), which specifies the conditions
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required to spend funds. A Bitcoin Tx is considered confirmed if its script evaluates to true (i.e., upon
execution, the combined locking script from an TxOut and unlocking script from an TxIn evaluates
to true, or non-zero). There are several standard transaction script types, such as Pay-to-PubkeyHash
(P2PKH), Pay-to-Script-Hash (P2SH), and Pay-to-Taproot (P2TR, Fig. A.10). An address is a
user-friendly way of referencing a script, typically representing the hash of a specific part of standard
scripts; however, not all scripts have an associated address.

Bitcoin Core extracts and returns addresses for most standard scripts (see the following exam-
ple). For scripts where Bitcoin Core does not return an address, we use the NBitcoin library
(github.com/MetacoSA/NBitcoin), which can derive an address for an extended set of scripts based
on their type.

1 "scriptPubKey": {
2 "asm": "OP_DUP OP_HASH160 6934efcef36903b5b45ebd1e5f862d1b63a99fa5 OP_EQUALVERIFY

OP_CHECKSIG",↪→
3 "desc": "addr(1AbHNFdKJeVL8FRZyRZoiTzG9VCmzLrtvm)#64qpwnsw",
4 "hex": "76a9146934efcef36903b5b45ebd1e5f862d1b63a99fa588ac",
5 "address": "1AbHNFdKJeVL8FRZyRZoiTzG9VCmzLrtvm",
6 "type": "pubkeyhash"
7 }

We reference a script using its address as a unique identifier if the address can be determined;
otherwise, we reference it using a compound identifier composed of the following:

1 [Output Index in the Transaction]-[Transaction ID]

A.1.4 Graph Components

We model the Bitcoin blockchain as a single directed temporal heterogeneous graph, where the block
height is the temporal attribute. table A.1 summarizes the nodes in the graph, and the different types
of edges between these nodes are discussed in the following sections.

A.1.5 Coinbase Transaction to Graph

Each block begins with a unique coinbase transaction, created by the miner(s) of that block. This
transaction is distinct as its input does not reference any previous TxOut; consequently, it is the only
transaction that introduces new coins (minted coins) into circulation, as all other transactions merely
transfer previously existing coins. The value of the coinbase Tx represents the total mining incentive
for that block, comprising both the protocol-defined newly minted coins and the sum of all transaction
fees paid by other transactions included in the block. While this total value represents the maximum
the miner can claim (and distribute to any number of TxOut), miners have occasionally claimed
less, resulting in the unclaimed portion becoming permanently lost (see table A.5 and Fig. A.14 for
details). The TxOut scripts of the coinbase Tx are determined by the miner(s), typically directing
funds to their own wallets.

To model the input of the coinbase Tx, we define a unique Coinbase—the only such node in the
entire graph. This node has no incoming edges, and its outgoing edges connect exclusively to nodes
representing the mining process (Fig. A.21).

In the Bitcoin blockchain, the output values of a coinbase Tx represent the sum of the mining reward
(newly minted coins) and the total fees from other transactions within the block (circulating coins).
However, our model treats minted and circulating coins separately. Accordingly, the graph includes
distinct edges for minted coins and fees, as detailed in table A.2. Fig. A.2 provides an example of the
graph modeling the coinbase Tx of the block at height 2 817.

A.1.6 Non-Coinbase Transactions to Graph

We refer to every Tx in a block other than the first one (i.e., the coinbase Tx) as a non-coinbase
transaction. Although non-coinbase transactions share several similarities with coinbase Tx, they
have key differences:
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1 "tx": [
2 {
3 "txid": "e95",
4 "vin": [{"coinbase": "..."],
5 "vout": [{"value": 52.01}]
6 },
7 {
8 "txid": "f8b"
9 "vin": [{"txid": "a87", "vout": 1, "prevout": {"value": 34.93}}],

10 "fee": 1.0,
11 },
12 {
13 "txid": "65f"
14 "vin": [
15 {"txid": "f8b", "vout": 0, "prevout": {"value": 1.0},
16 {"txid": "f8b", "vout": 1, "prevout": {"value": 32.93}
17 ],
18 "fee": 1.0,
19 },
20 {
21 "txid": "5b6"
22 "vin": [
23 {"txid": "65f", "vout": 0, "prevout": {"value": 1.0},
24 {"txid": "65f", "vout": 1, "prevout": {"value": 31.93}
25 ],
26 "fee": 0.01,
27 }
28 ]

(a) A simplified JSON object representing the block at height 2 817, including minimal transactional information
about fees and mining.

(b) The graph modeling the fee and mining Txs of the block at height 2 817.

Figure A.2: An example of modeling the coinbase Tx as a graph, which pays the mining reward to
the miners, where the reward is the sum of the minted coins (generated) and fee (circulating coins).
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Table A.1: The nodes of the graph.
Node Label Description Properties
Coinbase A unique node with a single instance in the entire

graph used to model the coinbase Tx section A.1.5.
This node has no incoming edges, and its outgoing
edges connect to other nodes representing mining.

None

Script Node Models a script that is uniquely identified with its
address (see section A.1.3). TxIn and TxOut of
Txs are scripts, hence a script node models the
TxIn and TxOut of Txs.

Address
(string), Script
type (categori-
cal)

Transaction (Tx)
Node

“Transfers” in the blockchain are organized in Txs,
highlighting the relatedness and shared activity of
inputs and outputs in a Tx. Hence, a transaction
node aims to facilitate learning of such patterns and
relationships between scripts. Additionally, the Tx
node, together with other nodes and edges in the
graph, ensures that the graph fully encapsulates the
transactional information of the blockchain.

TxId (string),
Size (int),
VSize (int),
Weight (int),
Version (string),
LockTime (int)

Block Node Every edge has the block height attribute as its
temporal attribute; hence, the graph provides the
chronological information of transactions, even
without a dedicated block node. However, a block
node serves the role of temporal anchor or super
node, enabling the models to capture long-range
temporal dependencies and dynamics. Depending
on the models and applications, block nodes (and
their connected edges) can be omitted without com-
promising the graph’s completeness.

Height (int),
MedianTime
(int), Confir-
mations (int),
Difficulty
(float), Trans-
actions Count
(int), Size (int),
Stripped Size
(int), Weight
(int)

• Each block contains exactly one coinbase Tx, whereas it can include an arbitrary number of
non-coinbase Txs.

• The coinbase Tx generates new BTC, while non-coinbase Txs only circulate existing BTC.
• The input in the coinbase Tx is coinbase, a special input that does not reference any prior

output, whereas the inputs of a non-coinbase Tx reference TxOut from other Txs.
• A coinbase Tx has exactly one input, while a non-coinbase Tx can have one or more inputs.

We model non-coinbase Txs similarly to coinbase Txs, with adjustments to account for these
differences. In general, the process involves creating a node for each Tx, with an edge connecting it to
the Tx that produced each referenced TxIn. Additionally, for each Tx, we create a complete bipartite
graph between the TxIn and TxOut scripts, where the value property of each edge represents the
proportion of an input’s value that is “transferred” to the corresponding output. Table A.4 provides
the list of edges used to model a non-coinbase Tx, and Fig. A.3 provides an example of modeling
non-coinbase Txs, extending the example given in Fig. A.2 for modeling a coinbase Tx.

A.1.7 Modeling scripts by their addresses yields greater insight than unique Tx in/out IDs

We model transaction inputs and outputs using the addresses derived from the scripts (see sec-
tion A.1.3). This approach uses a single node to represent input and output scripts with the same
address; its key advantage is providing a more informative modeling of the flow of funds.

An alternative approach would be to represent each input and output script separately using a unique
identifier, such as [Output index]-[Tx ID]. Although this method more closely mirrors the
transactions, it is less informative since transfers associated with a single script (e.g., a wallet)
would be modeled as incoming and outgoing edges to separate nodes, making it difficult to infer
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Table A.2: Nodes and edges modeling the transfer of mining rewards and fees to the miner(s). All
edges share a common set of properties, including value (in BTC) and block height. Additionally,
each edge has a corresponding edge connecting to a Block node, as detailed in table A.3.

Edge Type Description

Coinbase Mints−−−→ Script

This edge models only the minted or generated coins (the
mining reward is the total sum of minted coins and the col-
lected fees). An edge of this type is created between the
unique Coinbase node and every script node (see table A.1)
representing each output in the coinbase transaction. The
value of this edge is proportional to the output script’s share
of the mining reward.

Minted coins = Mining reward− Total fee

Value = Minted coins ∗ BTC paid to the script
Mining reward

Coinbase Mints−−−→ Tx

This edge models the minted or generated coins only and is
created between the unique Coinbase node and the transac-
tion node (see table A.1) representing the coinbase transac-
tion. Hence, there is only one such edge per block. The value
of this edge equals the amount of minted coins in the block.

Scriptu
Fee−−→ Scriptv

An edge of type fee that models the fee paid in a transaction.
The source node represents an input script in the fee-paying
transaction, and the target node represents an output script
in the mining transaction. A complete bipartite graph is
created between the input scripts of a fee-paying transaction
and output scripts of the mining transaction. The value of
this edge is determined as follows.

ufee share = Tx fee ∗
(

uvalue

max(Total Tx input, 1)

)
e = round

(
ufee share ∗

vvalue

Total paid to miner

)
where e is the amount of BTC of the edge connecting the
source node u and target node v. The rounding method is
“round half away from zero” to match the method used in
Bitcoin Core.

Txu
Fee−−→ Txv

This edge models the fee-paying transaction by connecting
the node representing the fee-paying transaction (Txu, see
table A.1) to the node representing the mining transaction
(Txv). The value of this edge equals the total reward paid in
the transaction.
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1 "tx": [
2 {
3 "txid": "e95",
4 "vin": [{"coinbase": "..."],
5 "vout": [{"value": 52.01}]
6 },
7 {
8 "txid": "f8b"
9 "vin": [{"txid": "a87", "vout": 1, "prevout": {"value": 34.93}}],

10 "vout": [{"n": 0, "value": 1.0}, {"n": 1, "value": 32.93}]
11 "fee": 1.0,
12 },
13 {
14 "txid": "65f"
15 "vin": [
16 {"txid": "f8b", "vout": 0, "prevout": {"value": 1.0},
17 {"txid": "f8b", "vout": 1, "prevout": {"value": 32.93}
18 ],
19 "vout": [{"n": 0, "value": 1.0}, {"n": 1, "value": 31.93}]
20 "fee": 1.0,
21 },
22 {
23 "txid": "5b6"
24 "vin": [
25 {"txid": "65f", "vout": 0, "prevout": {"value": 1.0},
26 {"txid": "65f", "vout": 1, "prevout": {"value": 31.93}
27 ],
28 "vout": [{"n": 0, "value": 0.01}, {"n": 1, "value": 32.91}]
29 "fee": 0.01,
30 }
31 ]

(a) A simplified JSON object representing the block at height 2 817, including minimal transactional information
about the flow of circulating funds.

(b) The graph modeling all the transactions of the block at height 2817.

Figure A.3: An example of modeling the flow of generated and circulating funds in a block (height
2 817). This example extends on the example provided in Fig. A.2, which included only the flow of
funds collected by the miner by incorporating the edges that model the transfer of funds between
non-miner scripts.
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Table A.3: For every incoming or outgoing edge of a Script or Tx node, a corresponding edge is
defined between that node and the Block node. For instance, for every incoming edge of type Fee to a
node v, an edge of type Credits is created between the Block node and v. Similarly, an edge of type
Redeems is created for every outgoing edge of type Fee or Transfers from a Script or Tx node. The
value of a Redeems edge equals the value of its corresponding Fee or Transfers edge. All edges share
a common set of properties, including value (in BTC) and block height,

Edge Type Orientation Corresponding Edge

Scriptu
Fee−−→ Scriptv

Scriptu
Transfers−−−−−→ Scriptv

Outgoing Scriptu
Redeems−−−−→ Block

Txu
Fee−−→ Txv

Txu
Transfers−−−−−→ Txv

Outgoing Txu
Redeems−−−−→ Block

Txu
Fee−−→ Txv

Txu
Transfers−−−−−→ Txv

Incoming Block Confirms−−−−−→ Txv

Scriptu
Fee−−→ Scriptv

Scriptu
Transfers−−−−−→ Scriptv

Incoming Block Credits−−−→ Scriptv

that the funds are transferred in and out of the same wallet. Fig. A.4 illustrates these differences.
The advantage of our script modeling approach is particularly pronounced in graph-based machine
learning applications, as it enables capture patterns, communities, and flow of funds more accurately.

A.1.8 Persisting and Querying the Graph

We model and serialize each block as an independent graph. We persist the nodes and edges of
these graphs in character-delimited files, grouping them by node and edge types and storing them
in independent batches of user-defined size. This organization makes it easier to study and extract
subsets of the graph; for example, studying the nodes and edges representing transactions from blocks
with heights ranging from 400 000 to 600 000.

While storing the graph in plain text files simplifies using it and supports a wide range of applications;
however, running in-depth analyses can be challenging or even infeasible using plain text. For
instance, finding all neighbor addresses at a distance of h hops from a given address, or finding nodes
with a given in-degree and retrieving their communities within h hops, are both difficult tasks to
perform efficiently on plain text files. Graph-based modeling enables the study of highly insightful
aspects of blockchain data; however, the limited capacity of plain text serialization to support such
analyses efficiently, hinders us from capturing the most compelling patterns, communities, and flows
of funds.

To address these limitations, we leverage specialized graph database solutions designed for such
queries. Numerous graph database options are available, ranging from managed cloud-based services
like Amazon Neptune to self-hosted alternatives. We use Neo4j (neo4j.com) since it offers a self-
hosted, free community edition. We provide (1) Solutions that format the nodes and edges into a
format compatible with Neo4j; (2) Solutions for importing data, both in bulk and transactionally, into
a Neo4j database; (3) Cypher queries (a graph-specific query language) to derive statistical insights
from the graph; and (4) An automated method for sampling communities from the graph.
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Figure A.4: This figure illustrates the same transaction as that modeled in panel (b) of Fig. A.3
(the block node and its related edges are omitted here to simplify the illustration). The graph in
this figure uses unique IDs for transaction input and output scripts (see section A.1.7), whereas the
graph in panel (b) of Fig. A.3 uses addresses derived from those scripts. The benefit of our modeling
choice (i.e., the latter) becomes evident when comparing the two figures: the latter shows that funds
are transferred into and out of a single script, while the former shows that funds are transferred
between seven separate nodes/scripts. Our script modeling choice is particularly advantageous in
graph-based machine learning applications, as it enables more accurate capturing and modeling
patterns, communities, and, particularly, the flow of funds.
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Table A.4: Nodes and edges modeling the circulation of funds. All edges share a common set of prop-
erties, including value (in BTC) and block height, and each edge is associated with a corresponding
edge connecting to a block node, as given in table A.3.

Edge Type Description

Scriptu
Transfers−−−−−→ Scriptv

This edge models the transfer of funds between two Script
nodes (see table A.1). The source node, u, represents the
address of an input script within a transaction, and the
target node, v, corresponds to the address of an output
script in the same transaction. Since a Tx can contain
multiple TxIn and TxOut, it is modeled as a complete
bipartite graph linking each input node to every output
node. A Tx is modeled with a complete bipartite graph of
edges of type Transfers between its input script nodes and
its output script nodes. Each edge’s value is proportional
to the fraction of the transaction’s total input (excluding
fees) provided by u and the share of the total input allo-
cated to v. In other words, the edge’s value represents
the portion of funds transferred from u to v relative to the
total funds exchanged in the transaction. Specifically, the
edge value is computed as follows.

value = Output v value ∗ Input u value
Σ(Tx inputs )− fee

Txu
Transfers−−−−−→ Txv

This edge models the transfer of funds between two Tx
nodes (see table A.1). The source node, u, represents
the transaction from which a TxOut, n, is used as a TxIn
in the current Tx, while the target node, v, represents
the transaction where the TxOut n is redeemed. The
value of this edge is equal to the value of the TxOut
n. Accordingly, we model a Tx in a block with a node
representing the transaction itself and nodes representing
the transactions referenced in its list of inputs, along with
edges from the input transactions to the transaction itself,
such that the sum of the values of all the edges equals the
total value of the inputs referenced in the transaction.
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A.2 Graph Sampling for Model Training

The Bitcoin graph is a single, large-scale graph that is both heterogeneous (in node and edge types)
and temporal (spanning over a decade). Considering its scale, training machine learning models
directly on the full graph is often infeasible due to computational constraints. Considering its
heterogeneity and temporal span, while enabling a wide range of insightful analysis and machine
learning applications, also necessitate careful data selection aligned with specific training goals,
which is crucial for isolating relevant nodes/edges and mitigating inherent confounders, such as those
arising from temporal shifts in Bitcoin transaction patterns. A common approach for training on such
graphs involves using sampled subgraphs generated specifically for the training goal.

Selecting an optimal graph sampling strategy is highly application-dependent, guided by the learning
task (e.g., link prediction, node classification, graph property prediction) and learning paradigm
(supervised, unsupervised, or self-supervised). Beyond the overall strategy, sampling parameters—
such as neighborhood size or traversal depth (hops) from root nodes—are equally application-specific.
The goal of an ideal sampling method is to generate subgraphs that retain information relevant to the
training objective without introducing overly complex or potentially confounding topologies.

These considerations are particularly critical for the Bitcoin graph, given its heterogeneity and
significant temporal evolution over more than a decade, during which network characteristics,
transaction patterns and volumes have changed. Failure to account for such temporal drift during
sampling can introduce significant confounders. For example, consider an edge prediction task
where the intended goal is to predict edges based on local network topology. If positive examples
are inadvertently sampled primarily from early periods (e.g., with typically higher BTC traded per
transaction) while negative examples are drawn mainly from more recent periods (e.g., with lower
BTC traded per transaction), a model might primarily learn to classify edges using the confounding
temporal characteristic (like transaction value) instead of the intended topological patterns.

To facilitate downstream applications and benchmarking using the Bitcoin graph, we provide config-
urable implementations of fundamental graph traversal and sampling algorithms:

• Breadth-First Search (BFS);

• Depth-First Search (DFS); and

• an adaptation of the Forest Fire algorithm (see section A.2.1).

These methods are parameterized, allowing users to generate datasets tailored to specific modeling
requirements. The parameters include:

• Traversal depth (hops);

• Whitelisted or blacklisted node and edge types;

• Termination conditions (e.g., encountering specific node/edge types); and

• constraints on subgraph size (minimum/maximum node and edge counts).

For demonstration purposes, we provide sampled subgraphs suitable for an unsupervised subgraph
property prediction task. Specifically, this task involves differentiating between fully connected
subgraphs (where a path exists between any two nodes) and those comprising potentially disconnected
components (i.e., a “forest”). The sampling script accordingly generates two sets of subgraphs
assigned binary labels: Connected Graph or Forest.

For each sampled subgraph, nodes and edges are serialized as feature vectors, yielding three files per
subgraph:

1. Node feature vectors;

2. Edge feature vectors;

3. A graph-level label: Connected Graph or Forest.

Additionally, a separate labels file provides a mapping between each generated subgraph and its
corresponding label within the overall dataset.
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A.2.1 Sampling Algorithms

Consider a node with an out-degree of 100, where each of its neighbors also has a similar out-degree.
If the goal is to sample 10 nodes from the neighborhood within 3 hops, a BFS traversal will likely
return 10 direct neighbors of the root node, and a DFS search will likely return the first neighbor
found and 9 of that neighbor’s neighbors. Therefore, neither of these methods will effectively sample
nodes up to 3 hops away, nor will the sampled subgraph be representative of the broader 3-hop
neighborhood structure.

Therefore, to sample representative neighborhoods in the Bitcoin graph, we developed a method that
randomly selects a subset of neighbors for a root node. Then, for each of those selected nodes, it
chooses a subset of their immediate neighbors, and continues this process until a termination criterion
is met. The method is detailed in algorithm 1.

This approach aims to sample representative neighborhood subgraphs from the Bitcoin graph, ad-
dressing the limitations of BFS/DFS mentioned previously. The method follows the general principles
of the Forest Fire model and is an adaptation of the Forest Fire sampling algorithm [7]. We provide
an implementation of this algorithm and example graphs sampled using this method. Fig. A.5 shows
the neighbors of the Coinbase node sampled using this method.

Figure A.5: Randomly sampled neighbors of the Coinbase node using algorithm 1 visualized using
Graphistry (www.graphistry.com). (A) Shows all sampled nodes and edges. (B) Highlights outgoing
edges originating from the Coinbase node within the 3-hop neighborhood.

A.3 Monetary Units

Throughout this paper, the standard unit BTC is used to denote monetary units associated with
transactions, which are modeled as edge values. With the increasing adoption of Bitcoin, there is a
growing need to use fractions of a single coin for microtransactions. Currently, the smallest amount
the protocol supports is 0.000 000 01 BTC.

However, rounding errors in floating-point arithmetic can be challenging. To maintain consensus
across the network among implementations in various programming languages, the Bitcoin Core
application (the reference implementation of the protocol) represents monetary units as 64-bit integers.
These integer units, commonly known as satoshis, are calculated by multiplying the BTC amount
by 100 000 000. Thus, 1 BTC = 100 000 000 satoshis. Bitcoin Core converts this internal Satoshi
representation back to BTC for reporting. To remain consistent with this practice, our method also
uses Satoshi for internal calculations.
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Algorithm 1 Neighbor sampling algorithm, which randomly selects neighbors using Breadth-First
Search (BFS) and iteratively expands the graph by applying a growth/decay factor to the number of
neighbors sampled, until the maximum hop distance from the root node is reached.

1: Input
2: vroot The root node for neighbor sampling.
3: hmax The maximum hops from vroot to sample, aka. receptive field depth.
4: n The number of neighbors sampled from vroot at the first hop.
5: δ The decay/growth factor that adjusts the number of neighbors sampled at each hop, such

that at hop h, a maximum of n− h× δ neighbors are sampled.

6: Output
7: G Sampled graph

8: V ← ∅ , E ← ∅
9: TRAVERSEHOP(vroot, 0)

10: return G := (V,E)

11: procedure TRAVERSEHOP(v, h)
12: Gv ← Get neighbors of v at 0 hop with BFS algorithm. ▷ Hop is fixed at 0 for simplicity, it

can be dynamic and adjusted using a parameter similar to δ.
13: V ′

v ← PROCESSSAMPLINGRESULTS(Gv, h)
14: if h < hmax then
15: for each v′ in V ′

v do
16: TRAVERSEHOP(v′, h+ 1)
17: end for
18: end if
19: end procedure

20: procedure PROCESSSAMPLINGRESULTS(Gv, h)
21: V ′ ← {node ∈ Gv} \ V
22: E′ ← {edge ∈ Gv} \ E
23: V ′ ← Sample(V ′, n− (h× δ)) ▷ Sample(S, n) randomly selects n items from set S.
24: V ← V ∪ V ′

25: Vnew ← ∅
26: for each e ∈ E′ do
27: if (target node of e) ∈ V ′ then
28: E ← E ∪ e
29: Vnew ← Vnew ∪ (target node of e)
30: end if
31: end for
32: return Vnew
33: end procedure
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Table A.5: The Mining Reward column indicates the number of minted coins a miner can collect as
a reward for mining. The Underclaimed Blocks column lists the block heights where the miner(s)
claimed a partial amount of the minted coins, along with the corresponding amounts. The Halving
Block column refers to the block at which the number of minted coins is halved.

Mining
Reward Underclaimed Blocks Halving

Block

50.0

(124724, 49.98999999), (162839, 49.989752), (162952, 49.91535267), (162973, 49.89494061), (162980, 49.98820406),

(162988, 49.99335613), (162992, 49.9505), (163006, 49.96649), (163017, 49.9005), (163063, 49.98649), (163075,

49.9949), (163102, 49.97499935), (163109, 49.98), (163120, 49.81844472), (163228, 49.95109255), (163240,

49.81843189), (163274, 49.98749), (163284, 49.9565), (163368, 49.91699499), (163370, 49.9571021), (163440,

49.9425), (163458, 49.96659523), (163480, 49.949), (163588, 49.9469), (163596, 49.9815), (163611, 49.982), (163615,

49.94788537), (163620, 49.8463), (163623, 49.979), (163626, 49.9957), (163628, 49.97491216), (163633, 49.8215),

(163647, 49.8875), (163656, 49.94837683), (163672, 49.9485), (163709, 49.84126551), (163710, 49.86829549), (163714,

49.995), (163719, 49.95048), (163729, 49.988), (163756, 49.98094546), (163791, 49.985), (163830, 49.87694992),

(163881, 49.9894), (163889, 49.978), (163903, 49.99599), (163915, 49.9775), (163918, 49.951), (163939, 49.9515),

(163975, 49.93509998), (163977, 49.959304), (163985, 49.68647102), (163989, 49.9844), (164003, 49.9683), (164007,

49.868), (164023, 49.973), (164024, 49.992), (164027, 49.9525), (164048, 49.9989), (164049, 49.85630504), (164056,

49.96091352), (164081, 49.9855), (164084, 49.27878274), (164095, 49.9808699), (164098, 49.9678002), (164099,

49.9869998), (164100, 49.95414873), (164105, 49.96910003), (164106, 49.9988), (164127, 49.9915), (164128, 49.9875),

(164133, 49.98499846), (164139, 49.9805), (164143, 49.959), (164147, 49.91319995), (164157, 49.96745635), (164159,

49.981), (164162, 49.9865), (164165, 49.969), (164170, 49.9954954), (164173, 49.9885), (164194, 49.9943999),

(164196, 49.9955), (164199, 49.9845), (164201, 49.98019), (164203, 49.96155947), (164211, 49.93739999), (164237,

49.97067615), (164246, 48.24219931), (164252, 49.98960918), (164253, 49.9765), (164254, 49.955), (164269, 49.9675),

(164280, 49.99296766), (164295, 49.972), (164298, 49.98699997), (164322, 49.83017189), (164334, 49.983), (164365,

49.989), (164380, 49.99204522), (164441, 49.08544057), (164467, 49.9685), (164480, 49.9244), (164528, 49.9725),

(164570, 49.88149), (164572, 49.9615), (164615, 49.96691117), (164622, 49.98909039), (164671, 49.996), (164700,

49.94), (164851, 49.84098912), (164921, 49.9209), (164967, 49.9625), (164996, 49.96533227), (165048, 49.9745),

(165062, 49.963), (165109, 49.9605), (165124, 49.928), (165177, 49.97458639), (165194, 49.97992), (165283,

49.97383857), (166250, 49.96739476), (166263, 49.895), (166486, 49.9715), (166698, 49.986), (166890, 49.99219564),

(167013, 49.938), (167035, 49.9325), (167074, 49.99716399), (167204, 49.9825), (168596, 49.9935), (169464, 49.9785),

(169670, 49.9909), (169899, 49.948), (180597, 49.991), (181603, 49.99999), (184450, 49.993), (187478, 49.9945),

(187719, 49.997), (188197, 49.994), (189003, 49.99), (189089, 49.99996), (192081, 49.998), (192814, 49.9997), (193020,

49.99949), (193207, 49.9999999), (194078, 49.9985), (195214, 49.99995), (195921, 49.999475), (197935, 49.9975),

(198085, 49.99999317), (204342, 49.9965), (204902, 49.9999), (208810, 49.999), (209310, 49.9995)

210 000

25.0 (214251, 24.995), (218683, 24.998), (233700, 24.9988), (236275, 24.9995), (249185, 24.999), (370002, 24.99999999),

(404693, 24.99752775), (407187, 24.99823924), (408962, 24.99917564), (410212, 24.99804871)
420 000

12.5

(501726, 0.0), (530371, 12.49994556), (530771, 12.49994622), (531285, 12.49994597), (533906, 12.49999928), (534297,

12.49989145), (534723, 12.49999919), (538597, 12.49999933), (541118, 12.49999931), (541608, 12.49999922),

(542549, 12.49999923), (544704, 12.4999993), (546962, 12.4999992), (549077, 12.49999926), (550226, 12.49999929),

(553396, 12.49999924), (559931, 12.49999921), (564959, 12.49999925), (619631, 12.49999927), (626205, 12.49999932)

630 000

6.25 840 000

3.125 862 993
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Figure A.6: Bitcoin miner incentives including block rewards and fees. (A) With each block,
the protocol generates new currency—starting at 50BTC and halving every 210 000 block. To
compensate miners, the protocol allows them to claim all the newly minted coins; however, in some
blocks (listed in table A.5), miners left a portion—or even all (block 501 726)—of the newly minted
coins unclaimed. (B) Additionally, miners collect all transaction fees.
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Figure A.7: Bitcoin’s decentralized and automatic mining difficulty adjustment mechanism. (A) The
Bitcoin protocol enforces rules ensuring that blocks are generated at regular intervals by adjusting the
mining difficulty at approximately every 2 016 block. Difficulty is defined as the ratio of the target
at the Genesis Block to the current target, where the target is a 256-bit number that sets the upper
bound for the hash a miner must compute [13]. (B) Each block stores the target in a compact form as
coefficient × 28×(exponent−3).

Figure A.8: Distribution of the differences between the lock-times of consecutive blocks. The Bitcoin
protocol uses the median of the timestamps of the last 11 blocks as a block’s “Median Time” or its
lock time [8].

34



Figure A.9: Bitcoin block size evolution surrounding Segregated Witness (SegWit, BIP 141 [10]),
activated at block 481 824. The protocol imposes per-block byte limits, hence, each block contains a
subset of the transactions from the network’s transaction pool at the time of mining, with restrictions
on the size of transaction data. SegWit introduced stripped size (block size excluding witness data,
effectively capped near 1MB) and a block weight limit ≤ 4 000 000 Weight Units, enabling total
block sizes >1MB (first observed: block 481 947). The first block where size and stripped size
differ is block 481 824, where size is 989 323 bytes and stripped size is 988 519 bytes. Plots compare
longitudinal block size (A) and stripped block size (B), highlighting the increase in block size after
block 481 947 and the capped nature of stripped size. Panels C and D compare the distributions of
block size and stripped size, respectively, before and after block 481 947. Stripped size for blocks
prior to SegWit is reported as equal to block size by the Bitcoin Core application; hence, we include
it here for completeness. table A.6 summarizes the key statistical moments.

Table A.6: Block size summary statistics; see Fig. A.9.
Before 481 947 After 481 947

Min Max Avg Std Sum Min Max Avg Std Sum

Size (MB) 0.0 1.0 0.2 0.3 130 778 0.0 3.9 1.2 0.4 472 860
Stripped Size (MB) 0.0 1.0 0.2 0.3 130 777 0.0 0.9 0.7 0.2 287 079
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Figure A.10: Longitudinal distribution of script type usage, illustrating the percentage of scripts per
block for common types and null data (see Fig. 3(G-H) for further detail). The plot shows an early
dominance of Pay-to-Public-Key (P2PK), later shifting to Pay-to-Public-Key-Hash (P2PKH), and
more recently, an increasing adoption of Pay-to-Witness-Public-Key-Hash (P2WPKH). “Null Data”
refers to scripts primarily used to encode arbitrary data on the blockchain, typically by embedding a
small amount of data in exchange for a transaction fee.

Figure A.11: Panel A plots per-block address counts, differentiating total addresses referenced, unique
addresses, and new addresses (observed for the first time in that block). Panel B plots the cumulative
sum of new addresses over time. Address counts are smoothed using a 5 000-block moving average.
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Figure A.12: Per-block statistics on the count of TxIn and TxOut per Tx. Panels (A, C, E, G) detail,
for each block, the minimum, maximum, and average number of TxIn per transaction, alongside the
total number of TxIn in that block. Similarly, panels (B, D, F, H) show corresponding statistics for
the number of TxOut per Tx and the total number of TxOut in that block. See Fig. A.13 for related
BTC value statistics per block.
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Figure A.13: Per-block BTC value statistics for transaction TxIn and TxOut. Panels (A, C, E, G)
detail the minimum, maximum, average, and sum of BTC values for TxIn within each block, while
panels (B, D, F, H) show the corresponding statistics for TxOut. The corresponding distributions are
similar because, under Bitcoin’s protocol, any TxIn value not explicitly directed to recipient TxOut
or designated as transaction fees becomes permanently unspendable (Fig. A.14). The TxOut values
plotted here represent only amounts paid to recipients, excluding transaction fees (see also Fig. A.14).
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Figure A.14: Theoretically, the total value of spent inputs (unlocked previous outputs, Σin) in a
transaction should equal the sum of its output values (Σout) plus the transaction fee paid to the miner
(f ). However, in 116, 067 blocks, Σin − Σout − f > 0, non-zero residual, summing to 40.554 05
BTC across these instances. This residual represents value not accounted for by outputs or fees,
effectively lost within these transactions. Panels A, B, and C respectively plot the total value of Σin,
Σout, f over the blockchain. Panel D highlights the blocks containing transactions with non-zero
residuals, and Panel E plots the distribution of these residual values. The counts for different ranges
of residual value x are: 92, 536 instances where 0 < x ≤ 1× 10−8 BTC, 23, 528 instances where
1× 10−8 < x ≤ 1 BTC, and 3 instances where 1 < x BTC.
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Figure A.15: Per-block Tx and address count statistics. Panels (A, C, E, G) longitudinally plot
per-block counts, while panels (B, D, F, H) present their corresponding distributions, annotated with
minimum, maximum, mean, median, and standard deviation. Blocks with only one transaction are
“empty blocks”, containing only the coinbase Tx (generated when a miner succeeds in mining a
block before including transactions from the mempool). Notably, block 501 726 is the only one with
zero addresses, as its entire reward was unclaimed (i.e., TxOut value was 0) and it contained only a
single non-standard script output. The plots illustrate the expected significant correlation between
Tx count and address counts per block: Tx count vs. total addresses per block (Pearson correlation
ρ = 0.873 9, panels A and C), Tx count vs. unique addresses per block (ρ = 0.770 5, panels A and
E), Tx count vs. new addresses per block (ρ = 0.794 2, panels A and G), total addresses per block
vs. unique addresses per block (ρ = 0.952 4, panels C and E), and total addresses per block vs. new
addresses per block (ρ = 0.889 6, panels C and G). See Fig. A.11 for cumulative and rolling mean
plots of address counts per block.
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Figure A.16: Age (coin dormancy) of spent transaction outputs (TxOut). Panels (A, C, E, G)
longitudinally plot the per-block average, median, minimum, and maximum age for TxOut spent in
that block (i.e., used as TxIn). Panels (B, D, F, H) illustrate the relationship between the age of spent
TxOut and their corresponding lag-1 age values. Age is defined as the difference in block height
between TxOut creation and spending.
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Figure A.17: Plots illustrate longitudinal details of UTxOs up to block 863 000, indicating the block
height at which each UTxO was created. Panels A-C plot BTC values, while panels D-F plot their
corresponding counts. Panel A shows the longitudinal BTC value of all UTxOs created per block,
including both coinbase and non-coinbase TxOut. Panels B and C provide a breakdown of panel
A: panel B plots the value of coinbase UTxOs created per block, and panel C plots the value of
non-coinbase UTxOs created per block. Correspondingly, panels D, E, and F plot the longitudinal
counts of these UTxOs created per block and remaining unspent: panel D for all UTxOs, panel E for
coinbase UTxOs, and panel F for non-coinbase UTxOs.
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Figure A.18: Spending patterns of previously minted coins. Panel A provides a longitudinal plot of
the total BTC amount from minted coins spent per block, excluding any fees that might have been
part of prior coinbase Tx TxOut. Panel B shows the distribution of these per-block spent BTC values.
Panel C provides a longitudinal plot of the age of these spent minted coins at the time of spending,
defined as the difference in block height between their creation (minting) and expenditure. Panel D
presents the distribution of these ages.

Figure A.19: Cumulative sum of traded BTC, defined in terms of the spent transaction outputs.
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Figure A.20: The figure shows the binned in- and out-degrees of nodes, with a bin size of 10. Panels
A, C, and E plot the count of degree pairs in each bin, and panels B, D, and F plot the support of each
bin (where the count is 1 if a bin contains at least one value, and 0 otherwise). The degree counts
include all types of incoming and outgoing relationships for a node.
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Figure A.21: Degree characteristics within the k-hop neighborhood (k = 1 to 4) of the Coinbase
node, considering only script nodes and script-to-script edges. Degrees reflect script-to-script edges
originating from nodes at the specified hop distance, and no restriction on target node’s distance
from the Coinbase node. Node degrees are binned using a window size of 10. (A) Number of
unique script nodes at each hop distance; Hop 1 nodes (276 557) typically represent script addresses
receiving newly minted coins (e.g., miner or mining pool scripts), while Hop 2 nodes receive funds
from Hop 1 scripts (e.g., mining pools not paying miners from the coinbase Tx). (B, C) Overall
frequency distributions of binned indegrees (B) and outdegrees (C) for all unique script nodes within
4 hops. (D-G) Joint degree density plots (binned indegree vs. outdegree) for script nodes at hops 1-4
respectively; color intensity corresponds to node count per hexbin. (H-K) Joint degree support plots
for script nodes at hops 1-4 respectively; a colored bin indicates the existence (≥ 1 node) of that
degree combination. While the density plots (D-G) show the vast majority of nodes have low degrees,
the support plots (H-K) reveal a much wider range, as the majority of nodes have significantly higher
degree (10× 102-10× 104), suggesting a significant heterogeneity in the degree distribution. Note
that these plots represent a snapshot at a fixed block height; longitudinal comparison could provide
in-depth insights about the evolving trends and predictive capacity.
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Table A.7: Entropy of block, Tx, and script nodes, where normalized Shannon entropy is defined
as Hn := H

Hmax
, with maximum entropy Hmax := log(M), H := −∑

(p ∗ ln(p)), and density is
D := E

N×(N−1) . Block nodes connect Txs and scripts, hence, despite being fewer nodes, they are
densely connected. Contrary, since Tx nodes represent unique transactions that are connected to
the script nodes they define and to the blocks where their inputs and outputs were created and used,
respectively, hence they are least densely connected. Script nodes, despite being numerous, form a
sparse network. However, the low normalized entropy for both the Tx and script nodes indicates less
diversity in the number of edges these nodes have in the network. In other words, the low entropy
values indicates a more uniform and predictable topology or a low level of disorder or uncertainty (in
terms of the number of connections) for most Tx and script nodes.

Statistic Block Nodes Tx Nodes Script Nodes
Node Count (N ) 863 000 1 082 275 341 1 311 600 327

Edge Count (E) 13 238 562 732 3 582.643 395 9 593 807 363

Density (D) 0.017 775 42 3.058× 10−9 5.576× 10−9

Indegree

Mean 15 340.165 4 3.310 2 7.314

Standard deviation 20 793.345 7 52.433 12 152.895

Distinct Values (M ) (H) 54 399 7 641 33 498

Raw Entropy (H) 9.512 978 0.998 759 1.490 987

Max Entropy (Hmax) 10.904 101 8.941 284 10.419 241

Normalized Entropy (Hn) 0.872 422 0.111 702 0.143 099

Outdegree

Mean 15 344.789 6 6.617 3 14.621 7

Standard deviation 20 802.611 3 23.582 2 530.272 8

Distinct Values (M ) (H) 54 382 2 908 22 371

Raw Entropy (H) 9.515 625 1.240 856 1.784 836

Max Entropy (Hmax) 10.903 788 7.975 221 10.015 521

Normalized Entropy (Hn) 0.872 690 0.155 589 0.178 207

Total

Mean 30 684.955 9.927 6 21.936 2

Standard deviation 41 595.954 57.438 2 12 770.357 3

Distinct Values (M ) (H) 77.819 7 833 48 065

Raw Entropy (H) 9.664 467 1.949 118 2.591 089

Max Entropy (Hmax) 11.262 141 8.966 101 10.780 310

Normalized Entropy (Hn) 0.858 138 0.217 387 0.240 354
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