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Abstract—Accurately predicting the health state of lithium-ion
batteries is essential for their safety, reliability, and longevity.
Predicting State of Health (SOH) using health indicators is
a proven and effective method. However, real-world battery
charge-discharge data is often noisy, particularly during capacity
regeneration. To achieve accurate health state predictions, we
extracted over ten health indicators and designed a hybrid
model: DAE-CNN-BiLSTM-Attention. This model integrates the
strengths of Convolutional Neural Networks (CNN) for local
feature extraction, Bidirectional Long Short-Term Memory net-
works (BiLSTM) for temporal dependency learning, the Atten-
tion mechanism for effective weight assignment, and Denoising
Autoencoders (DAE) for restoring original data, enabling the
network to better adapt to complex real-world environments. The
adaptability and stability of the proposed model were validated
using two public datasets: NASA and CALCE. Compared to
other existing methods, the proposed model demonstrated supe-
rior performance, achieving mean absolute error (MAE) and root
mean square error (RMSE) of 0.0154 and 0.0191, respectively.

Index Terms—State of Health(SOH), Lithium-ion Bat-
tery(LiB), convolution neural network(CNN), feature extraction,
long short-term memory (LSTM)

I. INTRODUCTION

To address environmental challenges and the fossil energy
crisis, there is an urgent and vigorous development of clean
energy sources such as hydro, wind, and nuclear power.
Consequently, the issue of energy storage and utilization has
become particularly critical. Lithium batteries, compared with
other types of batteries, such as NiMH batteries and lead-
acid batteries, offer higher energy density, lower self-discharge
rates, and longer charge-discharge lifespans. These advantages
have led to their widespread application, including in electric
vehicles, portable electronics, and energy storage systems
[1]. However, over time and with usage, batteries inevitably
experience aging. This results in increased internal resistance,

reduced usable capacity, and degraded performance, which can
lead to battery leakage, localized short circuits, and potential
safety hazards such as device malfunctions, shutdowns, or
even overheating and explosions. Consequently, in critical
applications, batteries are often replaced periodically to ensure
safety, which inevitably leads to resource wastage. Battery
Management Systems (BMS) are essential to ensure that
batteries function safely, reliably, and efficiently, with the
health state being a core concern. Accurately predicting the
SOH is vital for assessing battery aging, conserving resources,
and ensuring battery safety [2]- [4].

The health status of the battery (SOH) is a key indicator
of its performance deterioration, quantifying the rate of bat-
tery aging by a percentage. As batteries age, the percentage
gradually decreases, a phenomenon commonly described as
a reduction in the total available capacity of the battery and
an increase in resistance. The SOH value directly reflects the
current health of the battery; the higher the value, the better
the battery state. To accurately estimate the SOH of a battery,
researchers have developed various monitoring technologies to
monitor the voltage, current, and temperature of the battery in
real-time. In general, battery health is measured by the ratio
of the maximum available capacity to the rated capacity of the
battery [5]. This ratio can be used to predict the health of the
battery and to advise users on when to replace it. Therefore,
understanding the SOH of the battery is essential to extending
its life and ensuring safe operation. Through accurate monitor-
ing and analysis of these parameters, manufacturers can adjust
the strategy of the battery management system to maintain
optimal performance and prolong the life of the battery. This
paper also adopts this definition, with the SOH defined as
shown in Eq (1).



SOH =
Cmax

Cnorm
× 100% (1)

where Cmax and Cnorm are two key parameters, representing
the actual maximum capacity and the standard rated capacity
of the battery, respectively. In the field of battery data-driven
research, if the maximum available capacity of the battery
falls below 70% of its initial value, it is usually regarded as a
warning line, known as a failure threshold. Such a situation in
high-speed rail (HSR) and electric vehicle (EV) batteries could
indicate serious aging or health problems that require timely
attention and maintenance. According to the relevant literature
[6], the battery in this case should not be used for high-load
or long-duration applications to avoid potential safety risks.

Due to the complex operating environments of batteries,
such as temperature variations and the internal chemical re-
actions within the battery, which introduce uncertainties, the
time-varying and highly nonlinear characteristics of batteries
make accurately predicting SOH a challenging research prob-
lem [7]. Currently, these technologies can be divided into two
main categories: model-based and data-driven. Battery fault
diagnosis technology based on the model method predicts
the health of the system by extracting model parameters.
Through in-depth study and detailed analysis of the physical
and chemical properties of the battery, the equivalent circuit
model is constructed to accurately simulate the behavior of the
battery [8]- [9] or electrochemical models [10]. Typically, state
observers are used to describe the degradation mechanisms
between battery cycles [11], such as Kalman filters [12]- [13]
and particle filters [15]. Although electrochemical models have
relatively high accuracy, they rely on precise electrochemical
impedance spectroscopy. On the other hand, equivalent circuit
models are less satisfactory because they fail to capture the
aging characteristics of the battery. Model-based approaches
often involve ideal or empirical models that do not account
for internal chemical reactions and aging mechanisms, making
accuracy increasingly difficult to maintain over time [1].
Additionally, the physical and chemical parameter models of
batteries are very complex, which imposes severe limitations
due to measurement difficulties, robustness, dynamic accuracy,
and poor adaptability.

In contrast to the model-based approach, the data-driven
approach does not require consideration of complex physical
and chemical parameters. Instead, it directly extracts and
analyzes historical charge and discharge data from the battery.
By using machine learning or deep learning techniques to
delve into the rich information hidden in the data, the relevance
of these characteristics to the state of health (SOH) is revealed.
Examples include Support Vector Machines (SVM) [17],
Backpropagation (BP) neural networks [16], Relevance Vector
Machines (RVM) [18], and Bayesian networks [19]. However,
considering the time dependency of battery degradation data,
recurrent neural networks (RNNs) have shown superior predic-
tive performance. Literature [11] has already suggested using
RNNs for battery SOH prediction. LSTM, as an upgraded
version of RNNs [20], prevents issues like gradient explosion

and performs exceptionally well in sequence prediction. To
connect the degradation data over time, some studies have
used bidirectional LSTM networks [21].In order to overcome
the limitations of single network models, many researchers use
hybrid network technology to improve prediction performance.
For example, in [22], the LSTM network is used to predict
battery life using the empirical mode decomposition (EMD)
method. This decomposition method can capture the complex
dependencies between different states within the battery, thus
providing a more accurate model for battery life prediction.
The article [23] demonstrates how to combine a gated recurrent
unit (GRU) with a convolutional neural network (CNN) to
predict the state of health (SOH) of lithium-ion batteries. By
combining the advantages of the two neural networks, this
study aims to gain a more comprehensive understanding of
the degradation process of battery performance and to assess
its remaining useful life (RUL). The study [24] estimates SOH
and predicts RUL by constructing a hybrid network of LSTM
and CNN (CNN-LSTM). This hybrid network combines the
ability of two neural networks to process sequence data and
image data, leveraging their respective strengths to achieve
higher prediction accuracy and efficiency.

In exploring the estimation of lithium-ion battery life
(SOH), researchers not only limited themselves to using differ-
ent algorithms but also examined a range of health indicators
(HIs). These include the constant current constant voltage
scheme [25], Open Circuit Voltage (OCV) [26], Incremental
Capacity (IC) curve peaks [27], cycle numbers [28], differen-
tial capacity [29], and differential voltage [30], all of which de-
scribe battery degradation. External characteristic parameters
such as current, voltage, and temperature are used as health
indicators [31], and the HIs closely related to attenuation are
screened through Pearson correlation analysis.

Despite achieving good prediction results, most existing
studies are based on neural network (NN) training where the
hidden layer features are weighted equally across dimensions.
However, each feature has a different effect on the SOH, and
ignoring this factor can affect prediction accuracy. Attention
mechanisms, including channel attention (dimension atten-
tion), multiple attention [11], spatial attention, and temporal
attention [32], improve the performance of the network model
by dynamically focusing on the key information related to
tasks. These mechanisms can identify data points that are of
greater importance in a particular context, thereby enhancing
the model’s ability to understand and predict complex sce-
narios. Moreover, real-world data are often noisy, especially
during the capacity regeneration process [33].

In this paper,considering the impact of more than 10 health
factors and noise on battery aging, we propose a novel
hybrid network model designed for accurate State of Health
(SOH) prediction of batteries. The proposed model combines
advanced neural network architectures with a focus on feature
extraction and sequence analysis. It follows a multi-step pro-
cess, beginning with data denoising to reduce the impact of
noise and improve the quality of the input data. Subsequently,
local features are extracted using two convolutional layers,



which effectively capture spatial patterns in the data. These
layers are crucial for identifying significant local variations
that contribute to battery aging.

The model then employs a Bidirectional Long Short-Term
Memory (BiLSTM) network to capture long-term dependen-
cies within the sequence data. This step is essential for
understanding the temporal dynamics of battery degradation,
as it allows the model to learn from both past and future states
of the sequence. To further enhance the handling of sequential
data, a temporal attention mechanism is integrated into the
model. This mechanism assigns weights to each timestep,
enabling the network to focus on the most critical moments
within the sequence, thereby improving prediction accuracy.

The primary contributions of this paper are as follows:
1. We validate the accuracy and feasibility of the pro-

posed DAE-CNN-BiLSTM-Attention model for SOH predic-
tion using two widely recognized public datasets, NASA and
CALCE. The results demonstrate that our model outperforms
existing methods in terms of Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE), confirming its effectiveness
in practical applications.

2. We consider the impact of more than ten health indicators
on battery aging, including factors such as time, temperature,
voltage, current, and internal resistance. Additionally, we
account for the influence of noise on the data. To minimize
the impact of irrelevant factors and noise, we select the top
five most relevant health indicators for each battery based on
their absolute Pearson correlation coefficients. These selected
features serve as the input to the neural network, ensuring that
the model is provided with the most informative and clean
data.

3. The model addresses the challenges posed by real-
world noise and battery capacity regeneration by incorporating
a denoising step within the code. This step enhances the
robustness of the model, making it more resilient to noisy
input data and better suited for practical deployment in various
battery management systems.

The following are the arrangements for the remainder of
this article: Section 2 describes the methods used, including
feature extraction and the proposed network model. Section
3 validates the model’s effectiveness with actual battery data,
presenting experimental results and analysis. Section 4 pro-
vides the conclusions of this study.

II. METHDOLOGY

A. Feature extraction

The data-driven health indicators are derived from the
datasets. All health indicators are sourced from NASA and
CALCE datasets. These extracted indicators and their aging
performance are shown in Table I.

These health indicators are multidimensional features, each
with varying degrees of correlation to the SOH. Including all
health indicators in the output could introduce noise from
less relevant features, thereby reducing prediction accuracy.
Therefore, we eliminate low-correlation indicators and select
high-correlation indicators for input into the network. In this

TABLE I: Details of Health Indicators (HIs)

Abbreviation Explanation Aging Behavior
CCT Constant current charging

time
Shortens as battery ages
due to increased internal
resistance causing faster
voltage rise

CVT Constant voltage charging
time

Lengthens as battery ages,
with reduced current ac-
ceptance near full charge,
lowering charging effi-
ciency

DT Discharge time Shortens as battery ages,
with increased internal
resistance causing faster
voltage drop

TT Time to reach maximum
temperature

Shortens as battery ages,
with increased internal re-
sistance generating more
heat, causing faster tem-
perature rise

R Internal resistance Increases as battery ages
CMT Time for constant voltage

charging current to drop
to 1.5A

Shortens as battery ages,
with decreased capacity
and increased internal
resistance causing faster
current drop

CVI mean Mean constant voltage
charging current

Decreases as battery ages,
with increased internal re-
sistance and current drop-
ping to a lower level until
fully charged

CVI std Standard deviation of con-
stant voltage charging cur-
rent

Increases as battery ages,
with greater fluctuation

CCV mean Mean constant current
charging voltage

Decreases due to
increased voltage drop
from higher internal
resistance

CCV std Standard deviation of
constant current charging
voltage

Increases as battery ages,
with greater fluctuation

CDV mean Mean constant current
discharging voltage

Decreases due to
increased voltage drop
from higher internal
resistance

CDV std Standard deviation of con-
stant current discharging
voltage

Increases as battery ages,
with greater fluctuation

research, we use Pearson correlation analysis to select the
indicators and choose the top five as the network input.
The Pearson correlation coefficient is commonly used in the
analysis of the relationship between SOH and health factors
[34], and its calculation principle is shown in Eq (??).

A =

∑n
i=1(ai − ā)(bi − b̄)√∑n

i=1(ai − ā)2
√∑n

i=1(bi − b̄)2
(2)

where ai and bi represent the values of the data points,
with ā and b̄ denoting their respective mean values, and n
being the total number of data points.The Pearson correlation
coefficient A is an important measure of the linear correlation
between two or more variables in statistics. If the value of the
correlation coefficient is closer to 1,the correlation between the
two variables is very strong; that is, there is a high degree of
positive correlation between the two variables. The coefficients



Fig. 1: Overall framwork of the proposed battery SOH estimation model.

provide an intuitive way to explain complex correlations in
data and help researchers and decision-makers understand the
potential relationships and impacts between the two variables.

B. DAE-CNN-BiLSTM-Attention model

The raw input data is often noisy, especially during charge
and discharge cycles. In most approaches, models input the
raw data directly into the neural network without denoising,
which significantly impacts prediction accuracy. The algorithm
first denoises the training samples and then injects them
into the deep neural network to ensure the stability and
robustness of the algorithm. In this project, we propose using a
denoising autoencoder (DAE) to reconstruct low-dimensional
data through unsupervised learning while preserving as much
information as possible [35].

In the last few years, attention mechanisms have shown
great promise in various deep learning tasks [36]. In this paper,
we calculate attention scores using an attention mechanism,
convert them into weights with the softmax function, and

then apply these weights to the outputs of the LSTM to
obtain context vectors. This approach is simple to implement,
computationally efficient, and well-suited for handling time-
series data, highlighting important temporal information within
the network.

Fig. 1. illustrates the framework of the DAE-CNN-BiLSTM-
Attention model for predicting battery SOH, including de-
noising functionality and the CNN, BiLSTM, and Attention
modules. In part A, health indicators are extracted, and the
top 5 features are selected based on their Pearson correlation
coefficients. These features are then normalized, with 70%
used as training data and 30% as validation data. Gaussian
noise is added, followed by two CNN layers to extract local
features. The BiLSTM captures long-term dependencies in
the sequential data, while the attention mechanism helps the
network focus on the most important parts for predicting SOH.
An autoencoder is employed to denoise the data by attempting
to reconstruct the original data from the noisy input, thereby
enhancing the robustness of the network.The model structures



TABLE II: Neural network structure and parameters.

Model Structure Number of Sampling Points

CNN
noisy input→ X X
Conv1D(Channel: 64/Kernel: 3)→ReLU→ 64
Conv1D(Channel: 128/Kernel: 3)→ReLU→ 128

BiLSTM Number of bidirectional layers: 1 128
Hidden size: 100 → Hidden size * 2 200

Attention
Hidden size * 2 → 20
Attention size: 20 → 200
Fc(200→1) 1

Encoder
encoder fc1: input size * sequence length 100
→ hidden size X
decoder fc2: → input size * sequence length X

TABLE III: Experimental conditions for NASA dataset.

Battery B5 B6 B7 B18

Normial capacity(Ah) 2 2 2 2
Data length 168 168 168 133

Ambient temperature(°C) 24 24 24 24

Charge
CC(A)
cut-off current(mA)
CV(V)

1.5
20
4.2

1.5
20
4.2

1.5
20
4.2

1.5
20
4.2

Discharge CD(A)
cut-off voltage(V)

2
2.7

2
2.5

2
2.2

2
2.5

are summarized in Table II. The loss function converges to
zero, and the model’s performance is quantified using RMSE
and MAE metrics.

III. EXPERIMENT RESULTS AND ANALYSIS

A. Datasets

The data from the NASA repository was collected by
the NASA Ames Prognostics Center of Excellence (PCoE)
on the NASA prognostics tested [11]. NASA batteries were
used to validate the proposed method [35].This study utilizes
batteries B0005, B0006, B0007,and B0018,abbreviations are
used in the table, as B5,B6,B7,B18 respectively,Table III
shows the experimental conditions for these batteries.Fig. 2
illustrates the capacity degradation process of the NASA
battery dataset.These batteries have a failure threshold of 1.4
Ah.

The CALCE dataset is a battery cycling test dataset from
the Center for Advanced Life Cycle Engineering (CALCE)
at the University of Maryland. CALCE batteries are widely
used in battery state estimation studies and were used to
validate the proposed method in [33]. This study uses bat-
teries CS2 35, CS2 36, CS 37,and CS2 38,abbreviations are
used in the table, as C35,C36,C37,C38 respectively,Table IV
shows the experimental conditions for these batteries.Fig. 3
illustrates the capacity degradation process of the CALCE
battery dataset.These batteries have a failure threshold of 0.77
Ah.

B. Feature Selection

The health factors from the NASA and CALCE datasets
discussed in this paper were extracted based on the capacity

Fig. 2: NASA dataset capacity degration at ambient tempera-
ture of 24°C.

TABLE IV: Experimental conditions for calce dataset

Battery C35 C36 C37 C38

Normial capacity(Ah) 1.1 1.1 1.1 1.1
Data length 882 936 969 996

Ambient temperature(°C) 1 1 1 1

Charge
CC(A)
cut-off current(mA)
CV(V)

0.5
20
4.2

0.5
20
4.2

0.5
20
4.2

0.5
20
4.2

Discharge CD(A)
cut-off voltage(V)

1
2.7

1
2.7

1
2.7

1
2.7

degradation characteristics shown in Fig. 2 and Fig. 3, as well
as Table I in Section 2A. The relationship between the health
factors and SOH was analyzed through correlation analysis
using Eq (2).

As shown in table V, The top five health factors were
highlighted in red ,and then these selected factors were used
as inputs to the model. For instance, the inputs selected for
B0005 are ’CCT’, ’DT’, ’TT’, ’CMT’,’CDV mean’. Fig. 4 ,
Fig. 5 illustrate the correlations between the various health
indicators respectively,with positive correlation in red and
negative correlation in blue.In Fig. 4(a),the mean value of
the constant current discharge voltage showed the strongest
positive correlation, with a coefficient of 0.98.In Fig. 5(a),the



Fig. 3: CALCE dataset capacity degration at ambient temper-
ature of 1°C.

mean value of the constant current discharge voltage and
discharge time exhibited the strongest positive correlation,
with a coefficient of 0.99, while internal resistance showed
the strongest negative correlation, with a coefficient of -0.97.

C. Overall performance

This study employs three commonly used metrics to quan-
tify the performance of the model in predicting battery health
status: Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE). The definitions of these metrics are as follows:

MAE =
1

n− T

n∑
t=T+1

∥x̂t − xt∥ (3)

RMSE =

√√√√ 1

n− T

n∑
t=T+1

(x̂t − xt)2 (4)

Where Cn represents the length of the sequence, and CT repre-
sents the length of the training sequence samples. MAE (Mean
Absolute Error) is a metric that calculates the average absolute
error between measured and predicted values, which measures
the average difference between them. RMSE (Root Mean
Square Error) is the mean difference between the predicted
value and actual values, providing the standard deviation of
the errors.

To thoroughly validate the performance of the proposed
DAE-CNN-BiLSTM-Attention model, we designed and con-
ducted several experiments across multiple battery datasets.
The results of these experiments are presented in Table VI,
where the best-performing results are highlighted in bold.
These results demonstrate the model’s efficacy in predicting
the State of Health (SOH) of batteries with high accuracy.

For the NASA dataset, the evaluation results show that the
B0005 battery achieved a Mean Absolute Error (MAE) of
0.5075 and a Root Mean Square Error (RMSE) of 0.7064.
The B0006 battery reported an MAE of 0.8462 and an RMSE
of 1.2405. The B0007 battery yielded an MAE of 0.4407 and

an RMSE of 0.6337, while the B0018 battery had an MAE of
0.7258 and an RMSE of 0.9738. For the CALCE dataset, the
CS2 35 battery achieved an MAE of 0.0154 and an RMSE
of 0.0191, the CS2 36 battery had an MAE of 0.0266 and
an RMSE of 0.0303, the CS2 37 battery obtained an MAE
of 0.0207 and an RMSE of 0.0335, and the CS2 38 battery
recorded an MAE of 0.0286 and an RMSE of 0.0509. Notably,
except for the RMSE of CS2 36, which is slightly lower
than the 0.0230 achieved by the CNN-BiLSTM-At model,
and the MAE of CS2 38, which is lower than the 0.0227
achieved by the CNN-BiLSTM-At model, our proposed model
outperformed other models across all other metrics, indicating
its robustness and accuracy.

To further assess the contribution of the denoising step,
we compared the results with and without the denoising
function. The comparison highlights that while the denoising
function has improved the model’s performance, there remains
potential for further enhancement. The DAE-CNN-BiLSTM-
Attention model consistently demonstrated the lowest MAE
and RMSE across the datasets, underscoring its superior
predictive performance. The best evaluation result for this
model was achieved on the CS2 35 battery, where it recorded
a Mean Absolute Error (MAE) of 0.0154 and a Root Mean
Square Error (RMSE) of 0.0191. Compared to the model
without denoising, the performance improvements in MAE
and RMSE were 55.4% and 3.14%, respectively, showcasing
the effectiveness of the denoising step in refining the model’s
predictions.

Moreover, the simplicity and efficiency of the proposed
model are worth noting. The model requires only one minute
to complete 500 training iterations, which is significantly faster
compared to the 90 minutes and 10 minutes reported in a
prior study [11]. This efficiency, coupled with the model’s
accuracy, makes it a practical solution for real-time battery
health monitoring systems.

Figures 6 and 7 provide a visual representation of the
prediction results and the associated errors for the NASA and
CALCE datasets, respectively. Figure 6 clearly shows that the
predicted SOH values for the NASA batteries closely match
the actual battery health, with all prediction errors remaining
within 5%, even at peak anomaly points. This indicates the
model’s ability to accurately track the degradation process
despite the presence of anomalies. Similarly, Figure 7 depicts
the prediction and error trends for the CALCE battery health
state. In this study, 70% of the battery data was used for
training, and the model was tasked with predicting the entire
degradation process.

The CALCE dataset presents a more challenging prediction
scenario compared to the NASA dataset due to its significantly
larger data volume and the presence of more anomalous noise.
Despite these challenges, the model’s predictions remain close
to the actual degradation curve, demonstrating its robustness
and ability to generalize across different datasets. While the
prediction error increased slightly for the CALCE dataset, this
increase is minimal, and the results still exhibit a high degree
of accuracy, further validating the model’s effectiveness in



Fig. 4: NASA Pearson Correlation Heatmap:(a)B5;(b)B6;(c)B7;(d)B18.

Fig. 5: CALCE Pearson Correlation Heatmap:(a)C35;(b)C36;(c)C37;(d)C38.



Fig. 6: NASA capacity estimation results and errors:(a)B5;(b)B6;(c)B7;(d)B18.

Fig. 7: CALCE capacity estimation results and errors:(a)C35;(b)CS36;(c)C37;(d)C38.



TABLE V: Correlation Coefficients of Health Indicators for Different Batteries.

B0005 B0006 B0007 B0018

CCT 0.862586 CCT 0.908604 CCT 0.786684 CCT 0.648654
DT 0.999947 DT 0.999915 DT 0.999725 DT 0.999773
TT 0.877558 TT 0.897890 TT 0.816621 TT 0.804534

CMT 0.881882 CMT 0.919521 CMT 0.815183 CMT 0.694932
CCV mean -0.001942 CCV mean -0.047989 CCV mean -0.004465 CCV mean -0.570699

CCV std 0.822106 CCV std 0.862932 CCV std 0.839493 CCV std 0.251537
CVI mean 0.245934 CVI mean 0.160218 CVI mean 0.471227 CVI mean -0.106422
CVI std 0.475350 CVI std -0.156089 CVI std 0.468511 CVI std -0.051191

CDV mean 0.982357 CDV mean 0.965189 CDV mean 0.961071 CDV mean 0.985401
CDV std -0.283559 CDV std -0.694572 CDV std -0.482625 CDV std -0.892615

CS2 35 CS2 36 CS2 37 CS2 38

R -0.969031 R -0.975631 R -0.968516 R -0.922052
CCT 0.967323 CCT 0.969335 CCT 0.955910 CCT 0.942224

CCV mean -0.952510 CCV mean -0.951288 CCV mean -0.922861 CCV mean -0.921456
CCV std 0.897771 CCV std 0.917804 CCV std 0.855091 CCV std 0.875672

CVT -0.626522 CVT -0.565320 CVT -0.612713 CVT -0.197397
CVI mean 0.060142 CVI mean 0.133853 CVI mean 0.081966 CVI mean 0.142492
CVI std 0.022159 CVI std 0.156692 CVI std 0.144904 CVI std 0.173008

DT 0.991876 DT 0.994180 DT 0.991499 DT 0.967231
CDV mean 0.990909 CDV mean 0.989263 CDV mean 0.988342 CDV mean 0.955991
CDV std -0.947330 CDV std -0.949600 CDV std -0.945006 CDV std -0.952266

TABLE VI: SOH estimate MAEs and RMSEs on NASA and CALCE datasets.

Datasets Metrics LSTM At-LSTM CNN-BiLSTM CNN-BiLSTM-At DAE-CNN-BiLSTM-At

B0005 MAE 1.0882 1.0880 0.8882 0.5521 0.5075
RMSE 1.5428 1.3567 1.3393 0.7334 0.7064

B0006 MAE 1.6684 1.2518 1.1133 1.2459 0.8462
RMSE 2.2141 1.7345 1.6578 1.2806 1.2405

B0007 MAE 1.1695 1.1872 0.9839 0.5992 0.4407
RMSE 1.3116 1.5503 1.4796 0.9050 0.6337

B0018 MAE 1.4277 1.2273 0.9233 0.7266 0.7258
RMSE 1.8202 1.8140 1.2973 1.1352 0.9738

CS2 35 MAE 0.0488 0.0470 0.0485 0.0478 0.0154
RMSE 0.0267 0.0294 0.0228 0.0197 0.0191

CS2 36 MAE 0.0373 0.0382 0.0341 0.0337 0.0266
RMSE 0.0391 0.0341 0.2546 0.0230 0.0303

CS2 37 MAE 0.0315 0.0226 0.0335 0.0371 0.0207
RMSE 0.0571 0.0262 0.0380 0.0364 0.0335

CS2 38 MAE 0.0384 0.0358 0.0261 0.0227 0.0286
RMSE 0.0511 0.0498 0.0522 0.0713 0.0509

real-world applications.

IV. CONCLUSION

Accurately estimating the State of Health (SOH) of batteries
is critical for effective battery management, and establishing a
reliable prediction network is key. We have proposed a data-
driven hybrid neural network for SOH prediction. Initially, we
have extracted over ten features from the batteries and selected
the top five features based on their absolute Pearson correlation
coefficients for input into the network. The Convolutional
Neural Network (CNN) has been employed to extract features
from the noisy input data, followed by the Bidirectional Long

Short-Term Memory (BiLSTM) network, which has learned
the degradation information of the battery. An Attention mech-
anism has been applied to focus on important information, and
finally, the autoencoder-decoder has restored the noisy data to
its original state, thereby enhancing the model’s adaptability
and stability. The proposed model has been validated on
different battery datasets and has demonstrated lower Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE)
compared to other models.

In the future, we plan to make improvements in the follow-
ing three directions:

1.Further enhancement of the denoising function to improve



performance.
2.Increased focus on the spatial relationships between fea-

tures.
3.A comparative analysis with more single classical models

to identify their strengths and weaknesses for improving
prediction accuracy.
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