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Abstract001

Large Language Models (LLMs) have revolu-002
tionized Natural Language Processing (NLP),003
but their success remains largely confined to004
high-resource, general-purpose domains. In005
contrast, applying LLMs to low-resource do-006
mains poses significant challenges due to lim-007
ited training data, domain drift, and strict ter-008
minology constraints. This survey provides an009
overview of the current landscape in domain-010
specific, low-resource QA with LLMs. We be-011
gin by analyzing the coverage and represen-012
tativeness of specialized-domain QA datasets013
against large-scale reference datasets what we014
refer to as ParentQA. Building on this anal-015
ysis, we survey data-centric strategies to en-016
hance input diversity, including data augmen-017
tation techniques. We further discuss evalua-018
tion metrics for specialized tasks and consider019
ethical concerns. By mapping current method-020
ologies and outlining open research questions,021
this survey aims to guide future efforts in adapt-022
ing LLMs for robust and responsible use in023
resource-constrained, domain-specific environ-024
ments.025

1 Introduction026

Over the years, large language models (LLMs)027

(OpenAI et al., 2023; Gemini et al., 2024;028

DeepSeek-AI et al., 2025) have demonstrated re-029

markable performance across a variety of natural030

language processing (NLP) tasks. However, these031

advances remain largely confined to domains for032

which massive training corpora are available (Ka-033

plan et al., 2020). In contrast, low-resource datasets034

(Ravichander et al., 2019; Möller et al., 2020) pose035

significant challenges for LLMs due to data scarcity036

and underrepresentation. The lack of sufficient037

quantity and quality of data leads to gaps in lexical038

coverage (Hangya et al., 2022), cultural knowl-039

edge (Li et al., 2024), and syntactic nuances (Lucas040

et al., 2024). Consequently, LLM performance in041

low-resource settings is markedly inferior to that042

observed with well-resourced datasets. This dis- 043

parity strongly limits AI progress in the affected 044

domains. 045

This survey article highlights the methods and 046

evaluations employed in low-resource and special- 047

ized domains. We argue that the diversity and qual- 048

ity of datasets are more important than the accu- 049

mulation of large volumes of mediocre data. This 050

perspective is supported by studies showing that 051

the quality of training data has a significant im- 052

pact on language model performance, especially in 053

low-resource environments (Micallef et al., 2022; 054

Sajith and Kathala, 2024). To mitigate data scarcity, 055

data augmentation has emerged as an effective so- 056

lution (Seo et al., 2024), allowing the generation of 057

additional examples to enhance model robustness. 058

Natural language processing (NLP) encom- 059

passes a broad range of tasks, such as text sum- 060

marization, topic modeling, and text generation 061

(Wikipedia LLMs, 2025). In this study, we focus 062

explicitly on the question answering (QA) task, as 063

it represents a particularly dynamic research area, 064

especially in low-resource contexts. In domain- 065

specific applications notably in the private sector 066

and independent research settings, QA systems and 067

chatbots (Afzal et al., 2024; Megahed et al., 2024) 068

are commonly used to facilitate user interaction 069

with datasets and to evaluate model capabilities. 070

Moreover, with the advent of large language mod- 071

els, QA systems can be adapted to perform other 072

NLP tasks through data restructuring and model 073

fine-tuning. Nonetheless, despite these advances, 074

domain-specific applications continue to face major 075

challenges in low-resource environments. 076

2 Problem Statement 077

Overview Low-resource environments for Large 078

Language Models (LLMs) are contexts in which 079

essential resources such as large and diverse cor- 080

pora, annotated datasets, domain expertise, or data 081
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availability are severely limited or entirely ab-082

sent. These constraints go well beyond the chal-083

lenges typically associated with low-resource lan-084

guages. Even in high-resource languages like En-085

glish, many specialized domains, such as certain086

branches of medicine or scientific research, suffer087

from a chronic lack of data (Seo et al., 2024). Since088

LLMs are primarily pretrained on large, generic089

corpora, they often fail to generalize to tasks that re-090

quire fine-grained and domain-specific knowledge.091

For example, in the biomedical field, although there092

is a large volume of general medical text, datasets093

focused on rare diseases or specific clinical trials094

remain scarce or even nonexistent, which leads095

to distributional shifts and reduced model perfor-096

mance (Chen et al., 2024b).097

These limitations pose major challenges for098

question-answering (QA) systems in low-resource099

domains. QA systems require not only extensive100

lexical coverage but also precise factual knowledge,101

domain-specific reasoning abilities, and the capac-102

ity to extract or infer information from context.103

When specialized corpora are scarce, QA mod-104

els struggle to learn the terminology, background105

knowledge, and inference patterns necessary to pro-106

duce accurate and relevant answers. Furthermore,107

in the absence of expert-designed annotations, it108

becomes difficult to adapt models to handle special-109

ized question types, which increases the hallucina-110

tion rate and reduces the reliability of responses.111

Although there is no universally recognized thresh-112

old to define a low-resource environment, we con-113

sider a dataset to fall into this category when it is114

not commonly used for the pretraining of large lan-115

guage models, particularly in the case of datasets116

absent from standard benchmarks.117

Research Questions We also aim to explore sev-118

eral research questions. First, it is essential to iden-119

tify effective strategies to increase the quantity and120

quality of domain-specific data using LLMs, partic-121

ularly in areas where such data is scarce. Second,122

we seek to understand which approaches can en-123

hance the adaptation of LLMs to domain-specific124

tasks. Third, it is necessary to establish robust125

evaluation frameworks and metrics to accurately126

assess model performance in these contexts. Fi-127

nally, to consider the ethical, privacy, and fairness128

implications when deploying LLMs in specialized129

domains. Accordingly, we formulate the following130

research questions:131

• Q1: How can domain-specific data be effec-132

tively expanded using LLMs? 133

• Q2: Which approaches improve the adapta- 134

tion of LLMs to domain-specific tasks? 135

• Q3: How can the performance of LLMs be 136

evaluated in low-resource settings? 137

• Q4: What ethical, privacy, and fairness con- 138

siderations must be addressed? 139

3 Related Work 140

Ding et al. (2024a) propose a domain analysis 141

along two axes data and learning. They define 142

four “data perspectives” (creation, annotation, re- 143

formulation, co-annotation) and present various 144

learning paradigms ranging from supervised fine- 145

tuning to alignment-based learning. They also il- 146

lustrate concrete applications, such as Dr. LLaMA 147

for medical question answering (where ChatGPT 148

or GPT-4 rewrite or generate new question–answer 149

pairs) and the selective masking strategy of DALE. 150

Chai et al. (2025) complement this approach with 151

a clear technical taxonomy, encompassing simple 152

methods, prompt-based techniques, information 153

retrieval based approaches, and hybrid methods. 154

However, neither of these studies offers a system- 155

atic comparison of the different paradigms applied 156

to the specific constraints of low-resource biomedi- 157

cal or legal domains, such as privacy requirements 158

or distributional shifts. 159

Our survey builds on these contributions by fo- 160

cusing specifically on data augmentation for ques- 161

tion answering in low-resource biomedical and le- 162

gal contexts. Using targeted datasets, we evalu- 163

ate how well different augmentation techniques 164

address the unique constraints of these domains. 165

Rather than proposing a new theoretical framework, 166

our contribution lies in a detailed, data-driven com- 167

parison that highlights the practical relevance of 168

each approach in sensitive settings. 169

4 Literature Review and Analysis 170

4.1 Article Identification Methodology and 171

Analysis 172

Article Identification To conduct our analysis, 173

we aim to identify under-represented dataset sub- 174

sets within their respective domains. We focus 175

specifically on datasets in the biomedical and legal 176

fields, as these two areas have been extensively 177

studied in the large language model (LLM) re- 178

search community. Although a substantial body 179
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Figure 1: Workflow for identifying relevant papers on dataset augmentation

of literature exists for these domains, it remains180

difficult to locate publicly available low-resource181

datasets, often due to privacy concerns, access re-182

strictions, or the absence of standardized reposito-183

ries. Consequently, for each domain, we restrict184

our analysis to three or four dataset types that are185

accessible and sufficiently documented to permit186

analysis.187

As illustrated in Figure 1, we implemented a188

structured workflow to identify research on dataset189

augmentation and synthetic data generation. To190

explore this issue systematically, we performed a191

literature review focusing on augmentation tech-192

niques and synthetic data generation applied to our193

selected datasets.194

Using Google Scholar, we searched for articles195

containing either the keyword augmentation or the196

keyword synthetic, written in English, then filtered197

them to retain only those related to natural language198

processing (NLP). These two keywords were cho-199

sen to broadly cover the relevant literature on data200

augmentation, and Google Scholar’s full-text index-201

ing allowed us to identify works where these terms202

appear beyond the title or abstract. This approach203

facilitated the identification of potentially relevant204

contributions. We then selected up to N research205

articles each dataset, with N ≤ 31, excluding re-206

view articles and those that mention augmentation207

techniques only in their related work sections. Re-208

view articles were excluded because, although they209

provide useful overviews, they generally do not210

present detailed methodological analyses or em-211

pirical results specific to the datasets under study.212

This filtering based on publication type enabled us213

to concentrate on the most influential and techni-214

cally substantial contributions to data augmentation215

methodologies.216

1Some datasets are recent and still have few specialized
methods.

In Table 1, we adopt a structured approach to 217

analyze each of the four research questions in the 218

biomedical and legal domains. This framework 219

enables a systematic examination of augmenta- 220

tion techniques applied to various low-resource 221

datasets. We selected three to four datasets per 222

domain. By mapping augmentation approaches to 223

different dataset types, our study offers insights 224

for researchers aiming to improve the performance 225

of large language models (LLMs) in low-resource 226

environments. 227

4.2 Embedding Model Selection 228

To analyze text distributions in embedding space, 229

we selected specialized models for each domain 230

based on the MTEB Leaderboard rankings2, limit- 231

ing our choices to models of up to 1 billion param- 232

eters to control computational costs. The selected 233

models are available in Table 2. 234

4.3 Biomedical Domain 235

4.3.1 Overview of Selected Datasets 236

The biomedical domain remains one of the most 237

critical for AI applications, given its potential to 238

transform diagnosis, treatment planning, and pa- 239

tient management. Despite these promises, this 240

field faces severe data limitations or inaccessibility 241

outside of hospital settings. Although medical data 242

can take many forms such as images, videos, and 243

other modalities. We restrict this study to textual 244

data to maintain a coherent scope. 245

Applying our methodology, we selected four 246

low-resource medical QA datasets for in-depth 247

analysis. To assess their representativeness, we 248

compared them against MedMCQA (Pal et al., 2022), 249

a large-scale dataset of 160,869 instances covering 250

various medical subdomains. We refer to this ref- 251

2https://huggingface.co/spaces/mteb/
leaderboard
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Domain Papers Citing Datasets Q1 Q2 Q3 Q4

Medical

(Möller et al., 2020), COVID-QA – ✓ ✓ –
↪→ (Reddy et al., 2020) ✓ ✓ ✓ –
↪→ (Siriwardhana et al., 2023) ✓ ✓ ✓ –
↪→ (Samuel et al., 2024) ✓ ✓ ✓ –

(Wang et al., 2024), ReDis-QA ✓ ✓ ✓ –
↪→ (Li et al., 2025) ✓ ✓ – ✓
↪→ (Wang et al., 2025a) ✓ ✓ ✓ ✓

(Arias-Duart et al., 2025), CareQA ✓ ✓ ✓ –
↪→ (Wang et al., 2025b) ✓ ✓ ✓ ✓

(Chen et al., 2024a), Medbullets – – ✓ ✓
↪→ (Kim et al., 2025) ✓ ✓ ✓ ✓
↪→ (Wang et al., 2025b) ✓ ✓ ✓ ✓
↪→ (Wang et al., 2025a) ✓ ✓ ✓ ✓

Legal

(Ravichander et al., 2019), PrivacyQA – – ✓ –
↪→ (Vold and Conrad, 2021) – ✓ ✓ –
↪→ (Parvez et al., 2023) ✓ ✓ ✓ ✓
↪→ (Nayak et al., 2024) ✓ ✓ ✓ –

(Ahmad et al., 2020), PolicyQA – – ✓ –

(Lin et al., 2022), TruthfulQA – – ✓ ✓
↪→ (Wang et al., 2023) – ✓ ✓ ✓
↪→ (Kim et al., 2023) ✓ ✓ ✓ ✓
↪→ (Ding et al., 2024b) ✓ ✓ ✓ ✓

Table 1: Overview of the intersection between each research question (Q1 to Q4) and the articles describing corpora
in the two studied domains. A check mark ✓ indicates that the question is addressed, a dash indicates that it is not,
and arrows ↪→ denote the reuse of these datasets for various data augmentation methods.

erence corpus as ParentQA. The four specialized252

datasets are:253

• COVID-QA (Möller et al., 2020): 2,019254

expert-annotated question–answer pairs on255

COVID-19, using a SQuAD-inspired anno-256

tation protocol.257

• ReDis-QA (Wang et al., 2024): 975 high-258

quality question–answer pairs covering 205259

rare diseases.260

• MedBullets (Chen et al., 2024a): 616 real261

clinical cases designed to evaluate reasoning262

and decision-making in complex clinical sce-263

narios.264

• CareQA (Arias-Duart et al., 2025): 2,769 in-265

stances annotated with both open- and closed-266

ended questions spanning medicine, nursing,267

biology, chemistry, psychology, and pharma-268

cology.269

4.3.2 Diversity Analysis270

To assess lexical and semantic diversity of the low-271

resource medical QA corpora relative to the large-272

scale ParentQA, we conducted two complementary273

analyses: (i) lexical statistics including OOV rates274

and Shannon entropy (Table 3), and (ii) semantic275

similarity and OOV overlap analysis (Figure 2).276

Lexical Statistics. Table 3 reports for each cor- 277

pus the unique vocabulary size |V|, the number of 278

vocabulary not found in ParentQA (OOV), and the 279

Shannon entropy 280

H = −
∑
w∈V

p(w) log2 p(w) , 281

computed from the empirical unigram distribution 282

p(w). Higher entropy indicates more balanced and 283

extensive vocabulary usage; lower entropy signals 284

concentration on a few frequent terms. All special- 285

ized corpora exhibit much smaller |V| and lower 286

entropy than ParentQA (13.09 bits), reflecting their 287

narrow scope and data scarcity. OOV counts range 288

from 86 in MedBullets to 763 in CareQA, with ex- 289

amples like creatininuria and endosymbionts high- 290

lighting domain-specific terminology. 291

Semantic Similarity and Implications. Fig- 292

ure 2(a) displays the distribution of cosine simi- 293

larities between sentence embeddings of each spe- 294

cialized corpus and those of ParentQA (embed- 295

dings generated by the model detailed in Table 2). 296

ParentQA peaks at 1.0 (self-similarity) and centers 297

around 0.75–0.85, indicating strong internal coher- 298

ence. In contrast, the four low-resource corpora 299

shift leftwards: COVID-QA peaks near 0.15, CareQA 300

around 0.20, ReDis-QA at 0.22, and MedBullets 301

at 0.27. Their flatter, wider curves reveal greater 302
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(a) Cosine similarity between each specialized corpus and
ParentQA

(b) Vocabulary overlap

Figure 2: Comparison of low-resource medical QA
datasets to ParentQA in terms of (a) cosine similarity
and (b) OOV vocabulary overlap.

internal heterogeneity in question phrasing. The303

large gap (0.50–0.60) relative to ParentQA high-304

lights significant domain-induced divergence, both305

terminologically and syntactically. This “semantic306

distance” arises from specialized medical jargon307

(e.g., furin, creatininuria, arrhythmiab) and ques-308

tion structures unseen in generalist corpora.309

Combined with low OOV overlap (Figure 2(b))310

and reduced entropy (Table 3), these results con-311

firm that each low-resource corpus is both lexically312

limited and semantically distant from ParentQA.313

These disparities call for domain-sensitive strate-314

gies such as targeted vocabulary augmentation,315

specialized pre-training, or robust adaptation tech-316

niques to overcome challenges in low-resource en-317

vironments.318

OOV Overlap. Figure 2(b) shows a heatmap of319

OOV term overlap between specialized corpora.320

The overlap is minimal (e.g., only 8 shared OOVs321

between COVID-QA and CareQA), indicating that322

each dataset introduces largely disjoint rare vocab- 323

ulary. This low overlap underscores the difficulty 324

of transferring lexical knowledge across special- 325

ized domains. 326

4.3.3 Positioning with Respect to the Research 327

Questions 328

Among the methods examined, Q1 (how to expand 329

domain-specific data) falls into two paradigms. On 330

one hand, few-shot generation followed by filtering 331

(e.g., round-trip consistency), as demonstrated in 332

(Samuel et al., 2024) on CovidQA, enables rapid 333

performance gains without requiring a massive pre- 334

existing corpus. On the other hand, large-scale 335

chain-of-thought pipelines combine reasoning ex- 336

traction, synthesis, and document-based revision to 337

generate hundreds of thousands or even billions of 338

medical tokens, but they require extensive access to 339

manuals, knowledge graphs, or clinical databases 340

(Kim et al., 2025; Wang et al., 2025b). 341

For Q2 (which approaches for LLM adaptation), 342

three main directions emerge. Fine-tuning on anno- 343

tated corpora (e.g., RoBERTa + COVID-QA) pro- 344

vides consistent improvements starting from just 345

a few thousand expert-labeled examples (Möller 346

et al., 2020). Chain-of-thought instruction tuning 347

improves accuracy across various medical bench- 348

marks by explicitly incorporating reasoning during 349

training (Kim et al., 2025). Finally, end-to-end or 350

multi-phase RAG architectures combine tailored re- 351

trieval with reinforcement learning stages for more 352

refined alignment with clinical criteria, but these 353

models are heavily dependent on external knowl- 354

edge and domain-specific metrics (Siriwardhana 355

et al., 2023; Wang et al., 2025b). 356

Regarding Q3 (evaluation and metrics), generic 357

close-ended indicators such as Exact Match, F1, 358

and perplexity remain foundational across all do- 359

mains (Möller et al., 2020; Samuel et al., 2024). 360

Semantic-based measures (e.g., BERTScore, 361

BLEURT) and automated judges like G-Eval (Chen 362

et al., 2024a; Arias-Duart et al., 2025) provide 363

deeper qualitative insights into generated responses, 364

while human evaluation remains essential for veri- 365

fying coherence and factual correctness in clinical 366

contexts (Wang et al., 2025a). 367

Finally, for Q4 (ethical principles), most articles 368

either omit these considerations or address them 369

only superficially, highlighting a critical gap in 370

healthcare applications, where patient safety, data 371

confidentiality, and equitable access are paramount 372

(Wang et al., 2025b,a). Given the potential risks 373
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of biased or inaccurate medical advice (Li et al.,374

2025), it is essential for future research to inte-375

grate bias analysis, privacy-preserving protocols,376

and regulatory frameworks into data augmentation377

strategies for biomedical low-resource settings.378

Overall, two families of methods can be distin-379

guished: on one hand, generic methods such as380

few-shot generation, chain-of-thought instruction381

tuning, and light fine-tuning on small annotated382

corpora, coupled with standard metrics like Exact383

Match, F1, and perplexity, offer quick implementa-384

tion and performance gains of 5–10% with just a385

few dozen examples (Möller et al., 2020; Samuel386

et al., 2024; Chen et al., 2024a). On the other387

hand, domain-specific methods require access to388

specialized resources (manuals, knowledge graphs,389

expert annotations), careful prompt engineering, ar-390

chitectural modifications, and integration into com-391

plex fine-tuning pipelines. These methods are typi-392

cally employed after applying generic techniques393

to establish a baseline and then further optimize394

performance by targeting domain-specific nuances.395

However, their increased effectiveness comes at the396

cost of reduced transferability, as they require prior397

adaptation.398

4.4 Legal Domain399

4.4.1 Overview of Selected Datasets400

As the volume of legal cases increases, artificial401

intelligence plays a crucial role in reducing work-402

loads, minimizing human errors, and accelerating403

judicial decisions while ensuring their consistency.404

By automating repetitive and time-consuming tasks405

such as document analysis and legal research, AI406

enables legal professionals to focus more on strate-407

gic decision-making and nuanced case evaluations.408

Furthermore, predictive analysis helps anticipate409

outcomes, thus promoting transparency and consis-410

tency in judicial decisions (Lai et al., 2024).411

Applying our methodology to this domain, we412

identified three relevant legal QA datasets for in-413

depth analysis. We selected a single dataset as414

the ParentQA corpus: the legal subset of MMLU415

(Hendrycks et al., 2021), which includes the cat-416

egories international law, professional law, and417

US foreign policy. These subsets, widely used418

for pretraining large language models, contain ap-419

proximately 2 000 examples. The three specialized420

datasets selected for this study are as follows:421

• PolicyQA (Ahmad et al., 2020): a read-422

ing comprehension dataset focused on web-423

site privacy policies, comprising over 17 000 424

question-passage-answer triplets aimed at con- 425

cise responses. 426

• PrivacyQA (Ravichander et al., 2019): a QA 427

dataset on privacy policies, containing 1,750 428

questions and over 3 500 expert annotations, 429

combining legal and computer science per- 430

spectives. 431

• TruthfulQA (Lin et al., 2022): a benchmark 432

consisting of 817 adversarial questions across 433

38 categories, including a subset dedicated 434

to legal questions, designed to evaluate the 435

truthfulness of language model outputs. 436

4.4.2 Diversity Analysis 437

(a) Cosine similarity between each specialized corpus and
ParentQA

(b) Vocabulary overlap

Figure 3: Comparison of legal datasets with ParentQA
in terms of cosine similarity and vocabulary overlap

To measure both vocabulary range and semantic 438

consistency across our three specialized QA sets 439

versus ParentQA, we ran two complementary anal- 440

yses: (i) lexical profiling via vocabulary size, OOV 441

rates and Shannon entropy (Table 4); and (ii) in- 442
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ternal semantic similarity distributions alongside443

OOV-overlap statistics (Figure 3).444

Lexical Statistics. As Table 4 shows, all three445

specialized corpora possess drastically smaller vo-446

cabularies and lower entropy than ParentQA (11.50447

bits). PolicyQA exhibits the smallest vocabulary448

(4 093 types) and lowest entropy (8.58 bits). Pri-449

vacyQA is richer (2 541 types, 9.11 bits), mixing450

policy-style prompts with occasional technical clar-451

ifications, while TruthfulQA despite only 2 616452

types, yields surprisingly high entropy (10.51 bits).453

OOV counts against ParentQA mirror this pattern:454

PolicyQA’s 1 385 unseen vocabulary (e.g. cache, af-455

filiate) underscore domain-specific framing; Truth-456

fulQA’s 985 new terms (e.g. cage, gasper) reflect457

idiosyncratic references; PrivacyQA’s 678 OOVs458

(e.g. behavioral, latitude) occupy a middle ground.459

Semantic Similarity and Implications. Fig-460

ure 3(a) reports histograms of all pairwise cosine461

similarities (sentence embeddings) within each cor-462

pus. ParentQA peaks sharply at ∼0.82, evidencing463

a large but internally consistent question pool. Pol-464

icyQA centers at ∼0.75 with a very narrow spread465

and the highest peak density, signifying highly466

repetitive structure across its many examples. Pri-467

vacyQA also peaks near 0.75 but with a modestly468

wider shoulder toward 0.65–0.70, indicating occa-469

sional outlier phrasings alongside core policy-style470

questions. By contrast, TruthfulQA peaks lower,471

around 0.72, and displays the broadest distribution472

(spanning 0.55–0.85), directly reflecting its adver-473

sarial design to cover diverse topics and linguistic474

traps.475

OOV Overlap. Complementing these semantics,476

Figure 3(b) shows that OOV-sets are largely dis-477

tinct: only 58 vocabulary overlap between Truth-478

fulQA and PolicyQA, 43 between TruthfulQA and479

PrivacyQA, but 364 between PolicyQA and Priva-480

cyQA highlighting their shared legal/policy jargon.481

Taken together, low entropy and high pairwise sim-482

ilarity in PolicyQA argue for template-like redun-483

dancy; TruthfulQA’s entropy and spread warn of484

semantic unpredictability; and PrivacyQA sits in485

between.486

4.4.3 Positioning with Respect to the Research487

Questions488

Among the examined methods, Q1 (how to increase489

domain-specific data) involves generation and re-490

trieval strategies: generation of semantically equiv-491

alent perturbations via paraphrasing with LLMs 492

(Ding et al., 2024b), corpus synthesis through out- 493

put comparison (Kim et al., 2023), example ex- 494

traction using multi-retrievers (Parvez et al., 2023), 495

and large-scale instruction generation from meta- 496

templates (Nayak et al., 2024). 497

Regarding Q2 (approaches for adapting LLMs), 498

the studies combine continual pretraining, fine- 499

tuning, and reinforcement learning: PolicyQA 500

fine-tunes a BERT model pretrained on a cor- 501

pus of privacy policies to adapt it specifically 502

to the task of extractive QA in this sensitive do- 503

main (Ahmad et al., 2020). Rowen activates a 504

generic "retrieve-only-when-needed" mechanism 505

(Ding et al., 2024b); ALMoST combines reward 506

modeling, synthetic demonstrations, and RL (Kim 507

et al., 2023); Citrus integrates CPT, SFT, and re- 508

flective RL for clinical tasks (Wang et al., 2025b); 509

and (Vold and Conrad, 2021) demonstrates perfor- 510

mance gains of +31% F1 and +41% MRR with 511

RoBERTa fine-tuned on PrivacyQA. 512

As for Q3 (evaluation and metrics), the studies 513

use standard metrics adapted to each task: EM and 514

F1 for extractive QA (Ahmad et al., 2020), and pre- 515

cision, recall, F1, and MRR for classification and 516

ranking (Ravichander et al., 2019). These metrics 517

are widely recognized for their robustness and abil- 518

ity to reflect performance in low-resource settings. 519

Finally, regarding Q4 (ethical principles), Truth- 520

fulQA warns against misinformation risks and the 521

erosion of user trust caused by misleading answers, 522

advocating for strong safeguards (Lin et al., 2022). 523

ALMoST relies on the HHH benchmark (helpful, 524

harmless, honest) to align models with human val- 525

ues and reduce harmful outputs (Kim et al., 2023). 526

However, most studies do not comprehensively ad- 527

dress ethical, privacy, or fairness concerns—yet 528

these dimensions are essential for ensuring user 529

trust, preventing algorithmic bias, and complying 530

with regulations. 531

Generic approaches rely on paraphrasing, re- 532

trieval, and knowledge transfer mechanisms. They 533

enable rapid prototyping and generalization across 534

low-resource domains, but are limited by the con- 535

sistency and depth of the base model (Kim et al., 536

2023; Ding et al., 2024a; Nayak et al., 2024). In 537

contrast, domain-specific solutions leverage expert- 538

curated corpora and workflows to achieve peak 539

performance, at the cost of specialized data col- 540

lection, domain expertise, and computational re- 541

sources (Vold and Conrad, 2021; Wang et al., 2023). 542

Therefore, it is advisable to start with minimal fine- 543
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tuning on a generic transformer, then progressively544

integrate architectural modules and targeted cor-545

pora to meet domain requirements and ensure ethi-546

cal adoption.547

Despite these advancements, a major challenge548

remains in the availability and structure of legal549

datasets. Many cases remain undocumented or in-550

accessible, exacerbating the inherent complexity551

of domain-specific language, frequent regulatory552

changes, and the need for high-quality annotated553

data (Abdallah et al., 2023). Furthermore, sev-554

eral legal subdomains remain largely unexplored in555

the context of LLMs including international trade556

agreements3, space law4, Antarctic Treaty law5,557

and patent law in biotechnology and genetics6,558

among others. The datasets available in these areas559

are still raw and unstructured, requiring significant560

preprocessing before they can be effectively lever-561

aged for legal research or analysis.562

5 Conclusion563

In this paper, we presented an in-depth analysis564

of data augmentation strategies in low-resource565

settings, focusing on the biomedical and legal do-566

mains. We conducted our literature review by first567

identifying articles that describe relevant datasets,568

then analyzing papers on Google Scholar that pro-569

pose data augmentation methods in relation to these570

datasets. We assessed their treatment of four key re-571

search questions: how to increase domain-specific572

data, which approaches to use for adapting LLMs,573

how to evaluate their performance, and what ethical574

implications should be considered. The review was575

supported by diversity analyses (cosine similarity576

and lexical overlap) to highlight differences be-577

tween specialized datasets and their parent corpora,578

thereby revealing significant challenges related to579

data scarcity and specificity.580

As a continuation of this work, a compara-581

tive empirical evaluation of different augmentation582

strategies applied to each dataset represents an im-583

portant next step. This initial study also paves the584

way for identifying augmentation methods suited to585

low-resource contexts, aligned with the objectives586

of my thesis. I also plan to extend this analysis to587

other languages and specialized domains, in order588

3https://datatopics.worldbank.org/dta/table.
html

4https://www.unoosa.org/oosa/en/ourwork/
spacelaw/index.html

5https://www.ats.aq
6https://www.wipo.int/wipolex/en/

to more thoroughly assess the robustness, general- 589

izability, and limitations of the approaches studied. 590

6 Limitations 591

Although this study offers insights into data aug- 592

mentation and synthetic data generation for low- 593

resource datasets, several limitations must be ac- 594

knowledged. 595

Domain specificity This analysis is limited to the 596

biomedical and legal fields. While these domains 597

present diverse and complex challenges, extending 598

the study to other sectors such as energy, finance, 599

or the sciences could reveal additional nuances and 600

enhance the broader applicability of augmentation 601

techniques. 602

Keyword-based search constraints The litera- 603

ture search relied exclusively on the keywords aug- 604

mentation and synthetic. This targeted approach 605

may have excluded relevant works that use alterna- 606

tive terminology or methodologies, thus limiting 607

the scope of our findings. 608

Parent dataset selection The parent dataset used 609

in our analysis consists of a single large-scale col- 610

lection, selected under the assumption that its di- 611

versity offers a robust reference point. However, 612

incorporating additional and more diverse parent 613

datasets would likely enhance the breadth and gen- 614

eralizability of our analysis. 615

Language bias We chose to use English- 616

language datasets due to their accessibility and 617

relative availability, which facilitated the identi- 618

fication of a broader literature base. However, this 619

choice may introduce biases: LLMs trained primar- 620

ily on English data tend to present Anglo-American 621

perspectives as universal truths, thereby overlook- 622

ing non-English viewpoints (Ramesh et al., 2023). 623

This phenomenon can lead to systematic sampling 624

bias and hinder faithful representation of the true 625

diversity of subjects and opinions. 626
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A Additional Analyses 856

Table 2 lists the embedding models we selected for the biomedical and legal domains, along with their 857

embedding dimensions and GPU memory requirements. 858

Domain Model Dim. GPU Mem. (GB)

Biomedical jasper_en_vision_language_v1 8960 3.8
Legal inf-retriever-v1-1.5b 1536 2.9

Table 2: Characteristics of the selected embedding models.

Table 3 and Table 4 report lexical statistics for the medical and legal evaluation corpora, respectively, 859

including vocabulary size, out-of-vocabulary (OOV) counts relative to ParentQA, Shannon entropy, and 860

example OOV. 861

Corpus Vocab. Size OOV Count Entropy (bits) Sample OOV

ParentQA 275 944 — 13.09 —
COVIDQA 6 062 709 11.13 furin, endosymbionts, . . .
CareQA 9 943 763 11.87 creatininuria, cathodic, . . .
ReDisQA 3 041 118 10.42 arrhythmiab, ophthalmos, . . .
MedBullets 4 280 86 9.97 escherchia, nonrebreather, . . .

Table 3: Lexical statistics of the evaluation corpora, including vocabulary size, OOV counts relative to ParentQA,
Shannon entropy, and example OOV.

Corpus Vocab. Size OOV Count Entropy (bits) Sample OOV

ParentQA 11 692 — 11.50 —
PolicyQA 4 093 1 385 8.58 cache, estimating, affiliate, . . .
TruthfulQA 2 616 985 10.51 cage, gasper, england, . . .
PrivacyQA 2 541 678 9.11 behavioral, cache, latitude, . . .

Table 4: Lexical statistics of the evaluation corpora: vocabulary size, OOV counts relative to ParentQA, Shannon
entropy, and example OOV.
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