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ABSTRACT

Conformal prediction has attracted significant attention as a distribution-free
method for uncertainty quantification in black-box models, providing prediction
sets with guaranteed coverage. However, its practical utility is often limited when
these prediction sets become excessively large, reducing its overall effectiveness.
In this paper, we introduce a novel approach to conformal prediction for classifi-
cation problems, which leverages a multi-dimensional nonconformity score. By
extending standard conformal prediction to higher dimensions, we achieve bet-
ter separation between correct and incorrect labels. Utilizing this we can focus
on regions with low concentrations of incorrect labels, leading to smaller, more
informative prediction sets. To efficiently generate the multi-dimensional score,
we employ a self-ensembling technique that trains multiple diverse classification
heads on top of a backbone model. We demonstrate the advantage of our approach
compared to baselines across different benchmarks.

1 INTRODUCTION

Deep learning models become increasingly dominant in almost every domain, ranging from com-
puter vision and natural language processing to speech recognition. However, as deep learning
models are deployed in safety-critical applications, such as healthcare Lambert et al. (2024) and au-
tonomous driving Muhammad et al. (2020), it is important to certify their reliability and safety. This
highlights the need for robust uncertainty quantification methods that can determine when models
are uncertain about their predictions and suggest alternative estimates. Conformal prediction offers a
powerful, distribution-free, and model-agnostic framework for uncertainty quantification, providing
finite-sample guarantees Vovk et al. (2015); Lei et al. (2013); Barber et al. (2021); Angelopoulos
et al. (2020). Its core principle is to transform point predictions from any model into prediction sets
or intervals that contain the true value with high probability.

Conformal prediction relies on a nonconformity score that quantifies how unusual or atypical a new
input-label pair is relative to the given data. While conformal prediction guarantees valid coverage
for any model and data distribution, its practical effectiveness is influenced by both the perfor-
mance of the model and the choice of the nonconformity score Romano et al. (2020); Angelopoulos
et al. (2020). The efficiency of the resulting prediction sets is typically measured by their size,
with smaller sets leading to more informative and precise predictions. Consequently, there is active
research aimed at developing methods that produce the most efficient and informative prediction
sets. This includes proposing new conformity scores Sadinle et al. (2019); Romano et al. (2020);
Angelopoulos et al. (2020); Huang et al. (2024); Luo & Zhou (2024a), training models using loss
functions that promote efficiency Stutz et al. (2021); Einbinder et al. (2022), and combining different
models, scores, or data augmentations Bai et al. (2021); Luo & Zhou (2024b); Lu (2023).

The common approach across existing methods is to optimize a single nonconformity score, while
the calibration process—generally involving the computation of a threshold based on a quantile of
the calibration scores—remains unchanged. In this paper, we present a novel approach by extending
the standard conformal prediction framework from a one-dimensional score to a higher-dimensional
space defined by multiple nonconformity scores. The intuition behind this is that higher-dimensional
spaces can better separate correct from incorrect labels, potentially leading to more efficient predic-
tion sets with fewer false labels. However, selecting a region in this higher-dimensional space that
guarantees exact coverage while optimizing efficiency is non-trivial, as there are infinitely many
ways to partition the space. To tackle this challenge, we propose a simple yet effective method that
splits the multi-dimensional score space into cells, with cell centers defined by the calibration sam-
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Figure 1: A demonstration of our proposed multi-score prediction for the 2-dimensional case. On
the left, our proposed self-ensemble model with 2 classification heads. We compute a nonconfomrity
score for each head. On the right, the selected regions, where circles represent scores of true labels,
and light-blue x-marks represent scores of false labels. Selected cells are colored in blue and their
centers have black edge color. We see that cells with low number of false labels are chosen.

ples, as illustrated in Fig. 1. The cells are ranked based on increasing ratios of incorrect to correct
labels they contain, and we select the top-ranked cells that meet the desired coverage. At test time,
the prediction set consists of all labels with scores falling within the selected region. Additionally,
we introduce a flexible self-ensembling technique that constructs a multi-dimensional score by com-
bining predictions from multiple diverse classification heads built on top of a single backbone model.
We provide theoretical guarantees that this high-dimensional region selection maintains valid cover-
age, and demonstrate that it offers superior efficiency compared to baseline methods across various
settings.

Our main contributions can be summarized as follows:

1. Propose a new multi-dimensional conformal prediction framework that can better identify regions
with a large amount of true labels and a small amount of false labels. Our approach is parameter-
free, requires no optimization procedures, and is not restricted to a specific coverage level.

2. Theoretically show that this high-dimensional selection procedure maintains the desired coverage
with finite-sample guarantees.

3. Present a flexible and cheap self-ensemble approach to obtain multi-dimensional nonconformity
scores by training multiple classification heads, while encouraging diversity.

4. Our experimental results demonstrate the superiority of the proposed method over competing
baselines, consistently producing smaller and more efficient prediction sets.

2 RELATED WORK

Enhanced nonconformity scores. Improving the efficiency of conformal prediction has been a
central focus of recent research. Several studies have proposed enhanced nonconfomrity scores
aimed at reducing the size of the prediction sets or improving conditional coverage (Sadinle et al.,
2019; Romano et al., 2020; Angelopoulos et al., 2020; Huang et al., 2024; Luo & Zhou, 2024a).
Another approach involves performing conformal prediction in the feature space, then mapping the
intervals from the embedding space back to the output space (Teng et al., 2022). Our approach
addresses the use of multiple nonconformity scores, as previous research has demonstrated that
combining multiple scores can be more efficient than relying on a single score (Yang et al., 2023b).
We introduce a practical method for generating multiple scores without the need for training multiple
models or performing additional inference steps. This approach can be applied to any base score
and is orthogonal to the advancements in the developing improved nonconformity scores.

Improving conoformal prediction via training. Although conformal prediction is usually
considered as a wrapper around black-box models, recent approaches suggested to directly train
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models to improve conformal prediction efficiency. Stutz et al. (2021) introduced a differentiable
conformal prediction pipeline that optimizes the size of prediction sets. In (Einbinder et al.,
2022), a regularization term was added to the training loss, encouraging the distribution of the
nonconformity scores to match a uniform distribution. Additionally, Bai et al. (2021) explored opti-
mizing conformal prediction within broader function classes. These methods rely on differentiable
approximations that may not fully align with the actual target objective, and are often designed for
a specific coverage level, requiring retraining for each new level. In contrast, our approach avoids
optimization altogether and offers greater flexibility by being independent of the coverage level and
the base nonconformity score.

Combining nonconformity scores. Several works explore conformal prediction in the context
of model fusion and combining nonconformity scores. Ensemble learning methods, which train
multiple models on different subsets of the data, have been widely applied to conformal predic-
tion (Linusson et al., 2020). Notable approaches include cross-conformal predictors (Vovk, 2015),
bootstrap conformal predictors (Vovk, 2015), and out-of-bag calibrated conformal predictors (De-
vetyarov & Nouretdinov, 2010). Other methods for combining nonconformity scores have also
been investigated. For example, Luo & Zhou (2024b) proposed using a weighted average of multi-
ple scores derived from the same output, with weights learned through optimization. Similarly, Lu
(2023) suggested combining nonconformity scores obtained via test-time augmentations of the same
image. A more recent work explored the aggregation of multiple prediction sets, assuming no direct
access to the underlying scores (Gasparin & Ramdas, 2024). In contrast to existing approaches that
focus on combining nonconformity scores via weighted aggregation or majority voting, we propose
a general framework that identifies promising regions with low concentrations of false labels in the
multi-score space.

Ensemble methods. Model ensembles have been shown to enhance various metrics for uncertainty
quantification beyond conformal prediction efficiency, such as calibration error (Hansen & Salamon,
1990; Lakshminarayanan et al., 2017). However, ensembles are often considered computationally
expensive, as they require training and deploying multiple independent models. To mitigate this,
Qendro et al. (2021) proposed an early-exit ensemble, which leverages multiple prediction heads
from intermediate layers to improve uncertainty quantification while maintaining a single model.
This approach has been shown to enhance computational efficiency (Cai et al., 2020) and improve
adversarial robustness (Qendro & Mascolo, 2022). Building on these insights, we propose a self-
ensemble model with multiple classification heads to generate a multi-dimensional nonconformity
score without significant additional costs.

3 BACKGROUND - CONFORMAL PREDICTION

Let X ∈ X represent an input, associated with a label Y ∈ Y , where Y = {1, . . . , Q}. Consider
a classifier π(x) ∈ [0, 1]Q that outputs the probability distribution over Q classes (e.g., a neural
network with a softmax layer producing probabilities for each class). The conformal prediction
framework starts by selecting a nonconformity score s : X × Y → S ⊆ R, which quantifies the
uncertainty of the classifier’s prediction for the pair (X,Y ) with respect to existing data. Given a set
of i.i.d. calibration data {(Xi, Yi)}mi=1, we can form a prediction set for a new test point Xm+1 with
a guaranteed coverage level of at least 1− α, where α ∈ (0, 1) is set by the user. The prediction set
is defined as:

Γλ(Xm+1) = {y ∈ Y : s(Xm+1, y) ≤ λ}, (1)

where λ is a threshold determined as a quantile of the calibration nonconformity scores:

λ := Quantile
(
⌈(m+ 1)(1− α)⌉

m
; {s(Xi, Yi)}mi=1

)
. (2)

This procedure ensures that the probability of the true label Ym+1 being included in the prediction
set is at least 1− α, providing a reliable uncertainty estimate based on a finite-size calibration data,
as stated in the following theorem.
Theorem 1. (Conformal calibration coverage guarantee) .Let {(Xi, Yi)}m+1

i=1 be exchangeable. For
any score function s : X × Y → S and any significance level α ∈ (0, 1), define a quantile λ by
Eq. (2) and prediction set Γλ(Xm+1) by Eq. (1). We have:

P (Ym+1 ∈ Γλ(Xm+1)) ≥ 1− α (3)
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A commonly used nonconformity score is based on the confidence of the predicted probabili-
ties, defined as sThr(x, y) = 1 − π(x)y (Sadinle et al., 2019), but can sometimes undercover
hard examples and overcover trivial ones. Hence, a popular alternative is the adaptive predic-
tion sets (APS) method (Romano et al., 2020), which is based on the cumulative probability
sAPS(x, y) :=

∑Q
q=1 π(x)q1 [π(x)q > π(x)y] + u · π(x)y where u a uniform random value that

breaks potential ties between different scores. However, the APS method often results in large pre-
diction sets, which is undesirable. To address this, regularized adaptive prediction sets (RAPS) score
was introduced (Angelopoulos et al., 2020), which encourages smaller prediction sets by penalizing
less likely labels. The RAPS score is defined as:

sRAPS(x, y) :=

Q∑
q=1

π(x)q1 [π(x)q > π(x)y] + u · π(x)y + ν ·max(o(x, y)− κ, 0), (4)

where o(x, y) denotes the rank of class y, and ν and κ are hyperparameters that control the size of
the penalty. More recently, alternative scoring methods have been proposed that rely on the relative
rank of the prediction (Huang et al., 2024; Luo & Zhou, 2024a). For example, the sorted adaptive
prediction sets (SAPS) score is defined as (Huang et al., 2024):

sSAPS(x, y) :=

{
u · πmax(x), if o(x, y) = 1,
πmax(x) + (o(x, y)− 2 + u) · ξ, otherwise, (5)

where ξ is a hyperparameter that controls the weight of the ranking information, and πmax(x) is the
maximum softmax probability.

4 PROPOSED METHOD

4.1 MULTI-SCORE CALIBRATION

We now consider a multi-dimensional nonconformity score s : X × Y → S, constructed by
concatenating n individual nonconformity scores as s(x, y) = [s1(x, y), . . . , sn(x, y)]

T , where
S := S1 × · · · × Sn ⊆ Rn. Before discussing different approaches to handling multi-dimensional
nonconformity scores and presenting our proposed method, we first introduce a toy example to
highlight the advantages of using a multi-dimensional score over a single-dimensional one.
Example 4.1 (Toy setting). Assume a binary classification problem with Y = {−1, 1} and prior
probabilities P(Y = 1) and P(Y = −1). The input X is generated from a mixture of two Gaussians,
with P(X|Y ) = N (Y, σ2

y). In this example, we can compute the posterior P(Y |X) using Bayes rule.
Let p(y|x) = P(Y = y|X = x), we consider the following three classifiers:

π0(x) = p(y|x), π1(x) :=

{
p(y|x), if x < 0,
(ϵ, 1− ϵ), if x > 0

, π2(x) :=

{
(ϵ, 1− ϵ), if x < 0,
P(y|x), if x > 0

(6)

where ϵ ∼ N (0, 1). Here, π0(x) represents the ideal classifier, while π1(x) and π2(x) are ideal
classifiers over half the range of x, but uninformative over the remaining half. Let si(x, y) denote
the nonconformity score computed over the i-th classifier, it is clear that performing conformal pre-
diction over s0(x, y) would be the most efficient, however, using either s1(x, y) or s2(x, y) will lead
to suboptimal results in the uniformative region. In this case, performing conformal prediction in
the 2-dimensional space defined by s(x, y) = [s1(x, y), s2(x, y)]

T is advantageous as the individual
scores provide complementary information for different ranges of the input x. This can be seen from
Fig. 2 (b), where taking both axes into account can help to identify regions with high density of true
points versus false points. Setting α = 0.1, we obtain the following average set sizes: 1.05 for
s0(x, y), 1.48 for s1(x, y), 1.47 for s2(x, y) and 1.24 for our proposed method. Figure 2 (c) com-
pares the set sizes per x-domain. As expected, s0(x, y) obtains sets of size 1 for the entire range,
except for x ∈ [−1.5, 1.5], where the two Gaussians overlap. In contrast, s1(x, y) and s2(x, y)
produce larger proportions of 2-element sets in the noisy regions, on the right for s1(x, y) and on
the left for s2(x, y). Our method, utilizes both s1(x, y) and s2(x, y), obtaining similar behavior to
the ideal case, provided by s0(x, y). More details are provided in Appendix A.

In Section §4.3, we discuss how such multi-dimensional scores can be constructed. In standard
conformal prediction, where n = 1, the threshold λ divides the real line into two regions: scores
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(a) (b) (c)

Figure 2: Binary classification example. (a) p(x|y) for y = {−1, 1}. (b) The 2-dimensional score
space defined by the nonconformity scores computed over π1(x) and π2(x). (c) The set-sizes ob-
tained for different domains of x based on s0(x, y), s1(x, y), s2(x, y) and our Multi-score method
using both s1(x, y) and s2(x, y).

less than or equal to λ are included in the prediction set, while scores greater than λ are excluded.
This simple thresholding approach is effective because nonconformity scores are expected to be
low for true labels, which conform to the patterns in the data, and high for false labels, which
deviate from the expected behavior, as explained in §3. When n > 1, we have a multi-dimensional
score. Intuitively, scores that are close to the minimum value in all dimensions correspond to the
most conforming labels, while increasing any component of s(x, y) leads to less conforming scores.
However, unlike the one-dimensional case, it is not immediately clear how to optimally partition the
score space S into regions that should be included or excluded from the prediction set.

A common approach for handling multiple nonconformity scores is to use a weighted sum of the
scores:

sw(x, y) =

n∑
i=1

wisi(x, y), (7)

where the weights wi are optimized to minimize the size of the prediction set while maintaining
the desired coverage level (Bai et al., 2021; Luo & Zhou, 2024b). Geometrically, this is equivalent
to splitting the score space S with a hyperplane of the form w1s1(x, y) + · · · + wnsn(x, y) = λ,
and including only those scores that lie below this hyperplane, i.e. scores satisfying
w1s1(x, y) + · · · + wnsn(x, y) ≤ λ. However, this method imposes a rigid structure on the
partitioning, which may not align with the optimal regions that yield the smallest possible pre-
diction sets. Moreover, it requires tuning the weights for a specific coverage level, making it less
flexible and potentially unsuitable for different values of α.

We propose a more flexible approach for managing the multi-dimensional score space that eliminates
the need for weight optimization. Our method begins by partitioning the calibration data into two
disjoint subsets: Dcal = Dcells∪Dre-cal, whereDcells = {(Xi, Yi)}ki=1 andDre-cal = {(Xi, Yi)}mi=k+1,
where m−k = r. The subsetDcells is used to partition the score space S into distinct regions (cells)
and to evaluate the quality of each region. Next, the subset Dre-cal is utilized for re-calibration,
ensuring that the prediction sets achieve the desired coverage level. Thus, our method consists of
three main stages: (i) partitoning, (ii) scoring and ranking, and (iii) calibration, as detailed below.

(i) Partitioning. We aim to partion the score space S into cells and later decide which cells to
include in the prediction sets. Using a uniform grid would be computationally expensive and un-
scalable as the number of dimensions n increases. Additionally, score distributions are typically
uneven, with some regions being densely populated and others sparse, making uniform partitioning
inefficient. Instead, we partition S into k cells, centered around the scores s(X1, Y1), . . . , s(Xk, Yk)
corresponding to the samples in Dcells. Specifically, each point in S is assigned to the closest center
in Dcells, formally defined as:

Ci =

{
s̃ ∈ S

∣∣∣ i = argmin
1≤j≤k

∥s̃− s(Xj , Yj)∥

}
, i ∈ {1, . . . , k}. (8)

This way, the cell resolution adapts to the density of the samples, with smaller cells in high-density
regions and larger cells in low-density areas. Note also this approach is analogous to standard confor-
mal prediction, where the calibration scores define segments of varying lengths, and the final selected
interval is the union of all segments to the left of the computed quantile (2). Thus, our cell partition-
ing method can be seen as a generalization of the standard partitioning process to higher dimensions.
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(ii) Scoring and ranking. In the next stage, we assess which cells should be included in the
prediction sets. To achieve this, we compute a ratio that reflects the balance between false labels and
true labels in each cell:

Di =

∑k
j=1

∑Q
q=1 1{s(Xj , q) ∈ Ci} · 1{Yj ̸= q}+ 1∑k

j=1 1{s(Xj , Yj) ∈ Ci}
, i ∈ {1, . . . , k}. (9)

This ratio represents the relative amount of false to true labels within each cell Ci. Here, we take
into account the possibility that several true scores may fall in the same cell (though this becomes
increasingly rare as the dimensionality n increases). Thus, in Eq. (9) we normalize by the number
of true labels in each cell, which can be greater than 1. We add 1 to the numerator to distinguish
between cells with zero false labels and varying numbers of true labels, as the pure ratio would
otherwise be zero regardless of the number of true labels.

In order to improve conformal prediction efficiency and obtain smaller set sizes at test time, we
would like to prioritize regions with a low false-to-true label ratio while avoiding regions with high
false-to-true ratio. Let k′ denote the number of unique cells, where multiple scores at the same point
are treated as a single cell. We then rank the sequence of unique cells C(1), C(2), . . . , C(k′) according
to Di, from lowest to highest, i.e., D(1) ≤ D(2) ≤ · · · ≤ D(k′).

(ii) Calibration. The final step is selecting the regions that will ensure exact coverage. In this
stage, we utilize the re-calibration set Dre-cal. We progressively add cells, starting with the lowest
amount of false labels, and continuing until the desired coverage is achieved over Dre-cal. Formally,
we define the selected region Cηin as the union of the top-ranked cells up to index η:

Cηin =

η⋃
i=1

C(i).

The required η is determined by:

η∗ = min {η ∈ {1, . . . , k′} | Yi ∈ Cηin for at least ⌈(1− α)(r + 1)⌉ samples (Xi, Yi) ∈ Dre-cal}

and Cη
∗

in is the final selected region. Note that it is crucial to use a separate set for calibration, rather
than re-using Dcells. Since the cell-wise scores are computed using Dcells, re-selecting cells based on
the same data would introduce bias, leading to undercoverage, as we confirmed empirically during
initial experiments (see Appendix A for further justification).

During test time, we receive a new test point Xm+1 associated with an unknown label Ym+1.
For each potential y ∈ Y , we compute the multi-dimensional score s(Xm+1, y) and include in
the prediction set only the labels that lie in the selected region Cη

∗

in . Accordingly, we obtain the
following prediction set:

Γη∗(Xm+1) =
{
y ∈ {1, . . . , Q} | s(Xm+1, y) ∈ Cη

∗

in

}
. (10)

Our method, Multi-score conformal prediction, is summarized in Algorithm 1. Unlike the threshold-
ing mechanism used in the single-score case (1) or the hyperplane splitting for weighted scores (7),
our approach defines an unstructured selection region in the multi-dimensional score space. This
flexible selection allows us to focus on regions with small amount of false labels, optimizing for
smaller prediction sets. It is important to highlight that our method differs from vector quantile re-
gression (VQR), which extends traditional quantile regression to multivariate settings (Carlier et al.,
2016; Feldman et al., 2023; Rosenberg et al., 2022). While VQR aims to capture the central 1 − α
portion of the output distribution, our focus is on flexible region selection that minimizes set size
while maintaining coverage.

Although our prediction set construction differs from standard conformal prediction in its form, it
still provides coverage guarantees, as stated in the following theorem.
Theorem 2. (Multi-score conformal calibration coverage guarantee). Let Dcells = {Xi, Yi}ki=1

and Dre−cal = {Xi, Yi}k+m
i=k+1 be two disjoint datasets, and {(Xi, Yi)}m+1

i=k+1 is exchangeable. For
any mulit-dimensional score function s : X × Y → S ⊆ Rn and any significance level α ∈ (0, 1),
the prediction set Γη∗(Xm+1) defined by Eq. (10) satisfies:

P (Ym+1 ∈ Γη∗(Xm+1)) ≥ 1− α (11)
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Algorithm 1 Multi-Score Conformal Prediction
Definitions: s(x, y) is a multi-dimensional score function. Dcal is the calibration data of size
m. Xm+1 is a new test sample, α is the miscoverage level, k is the number of samples for cell-
partitioning and scoring, and r = m− k is the number of samples for re-calibration.

1: function MULTI-SCORE-CP(s(x, y), Dcal, α)
2: Randomly split Dcal to Dcells = {(Xi, Yi)}ki=1 and Dre-cal = {(Xi, Yi)}mi=k+1

3: Compute the scores s(Xi, Yi), i ∈ {1, . . . ,m}
4: Segment S into cells {Ci}ki=1 centered at {(Xi, Yi)}ki=1
5: Compute Di, i = 1, . . . , k according to Eq. (9)
6: Remove duplicate cells C1, C1, . . . , Ck′

7: Rank the cells C(1), C(2), . . . , C(k′) according to D(1) ≤ D(2) ≤ . . . ≤ D(k′)

8: η∗ ← min{η ∈ {1, . . . , k′} | Yi ∈ Cηin for at least ⌈(1− α)(r + 1)⌉ samples in Dre-cal}
9: Cη

∗

in ← ∪
η∗

i=1C(i)
10: return Cη

∗

in

11: function MULTI-SCORE-EVALUATION(s(x, y), Xm+1, Cη
∗

in )
12: Compute the scores s(Xm+1, y), y ∈ {1, . . . , Q}
13: Construct the prediction set Γη∗(Xm+1) =

{
y ∈ {1, . . . , Q} | s(Xm+1, y) ∈ Cη

∗

in

}
14: return Γη∗(Xm+1)

The proof, detailed in Appendix A, is based on defining a mapping function from the multi-
dimensional score to the corresponding cell ratio score, defined in Eq. (9). By formulating the
predicted set in Eq. (10) using a thresholding operation over this score, we can align our method
with the standard one-dimensional conformal prediction procedure. As a direct result, we establish
that valid coverage is guaranteed.

4.2 ADDITIONAL VARIANTS OF MULTI-SCORE CONFORMAL PREDICTION

In the following, we present two additional variants of our proposed method.

Jackknife+ Multi-Score Conformal Prediction. A limitation of our approach is that it uses only
part of the data to perform the calibration, which may impact efficiency. This is especially critical
if the sample size m is small. An alternative solution is to adopt a jackknife+ approach (Romano
et al., 2020; Barber et al., 2021), which is computationally more expensive but often provides tighter
prediction sets. This approach is summarized in Algorithm B.1. The core idea is to consider the
entire calibration data but each time exclude the ith point from the set of centers and from the score
computation in Eq. 9. We sweep over all possible labels y ∈ Y and assign it to the closest center
while removing the ith center. We perform a similar assignment for the ith score s(Xi, Yi). Then,
we compare the rank of the chosen cells, and include y in the final prediction if its rank is smaller
than (1 − α)(m + 1) hold-out ranks evaluated on the true labeled data for every i ∈ {1, . . . ,m}.
Note that this establishes that the coverage is 1 − 2α. In practice, it was shown that the obtained
coverage is around 1− α even without compensating by α′ = α/2.

Soft Multi-Score Conformal Prediction. We present a more general variant of our approach, where
instead of considering a hard assignment of each point into the closest center, we consider a softer
assignment to b nearest neighbors. This variant is summarized in Algorithm B.2. Here we detect the
b nearest neighbors, and include the point in the prediction set if at least half of its neighbors are in
the chosen region.

4.3 MULTI-SCORE CONSTRUCTION

Multi-dimensional nonconformity scores can be constructed in several ways. One approach involves
using an ensemble of different models, where a nonconfomity score is computed for each model.
However, as is generally the case with ensembling, this requires training and managing multiple
models, which can be resource-intensive. An alternative method, proposed by Lu (2023), uses test-
time augmentations to generate multiple scores for different augmented versions of the input image.
Similarly to ensembling, test-time augmentation requires running multiple inferences, increasing
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computational costs. It is also more appropriate for image data, and is not easily adaptable to other
types of data. A more efficient option is to compute various types of scores from the output of a
single model (Luo & Zhou, 2024b), such as the ones described in §3. While this requires only a
single forward pass, its drawback is that all scores are computed based on a single output, thus does
not reflect varied viewpoints on the predictive uncertainty.

In principle, our multi-score conformal prediction approach can be applied to any of the multi-
dimensional scores mentioned above. However, we propose a new method for obtaining diverse
nonconformity scores that represent varied perspectives without increasing computational complex-
ity. To achieve this, we attach multiple classification heads, {πi(x)}Hi=1, to the penultimate layer
(the second-to-last layer) of the model. Training these heads using only the cross-entropy (CE) loss
may result in highly similar outputs, providing little additional insight into uncertainty estimation.
To address this, we follow (Qendro et al., 2021) and introduce a regularization term that promotes
diversity among heads by minimizing their similarity. This is further motivated by the scenario il-
lustrated in Example 4.1, suggesting that we should encourage the classification heads to produce
complementary predictions by specializing in specific input domains. Then, combining their scores
in the multi-dimensional space, we can offer an improved uncertainty quantification for the entire
input space. Specifically, the heads are trained using the following loss function:

L =
1

H

H∑
i=1

LCE(πi(x), y)−
β

H(H − 1)

H∑
i=1

∑
i ̸=j

sim(πi(x), πj(x)), (12)

where LCE(·, ·) denotes CE loss, and sim(·, ·) denotes cosine similarity. Here, β is a hyperparameter
that controls the relative weight of the diversity regularization term. We set β = 1 in our
experiments. While (Qendro et al., 2021) proposed generating classification heads from various
layers and depths of the network, our empirical findings revealed that, as expected, heads from
shallower layers tend to be weak, leading to lower accuracies. As a result, their contribution in
the multi-score setting is minimal. By attaching the classification heads to the penultimate layer
and applying diversity regularization (12), we were able to achieve robust classification heads with
minimal correlation between them.

5 EXPERIMENTS

5.1 DATASETS AND MODELS

We test our method over three image classification datasets, with varying number of classes and dif-
ficulty levels: CIFAR100 (Krizhevsky et al., 2009), Tiny ImageNet (Le & Yang, 2015), and PathM-
NIST (Yang et al., 2023a). For all datasets we use a ResNet50 backbone model pretrained on Ima-
geNet. We first attach a single classification head and fine-tune the full model with CE loss. Next,
we add additional 6 classification heads (H = 7 heads in total) and train only the classification heads
using the loss defined in Eq. (12). Based on the heads’ output probabilities, we compute the noncon-
formity scores, where we use either RAPS (4) or SAPS (5) as base scores. We refer to Appendix C
for further details on datasets, models other nonconformity base scores, and the training procedure.

5.2 EVALUATION

We compare the proposed multi-score method to the following baselines:

• Best single head (Best Head) - Conformal prediction is applied separately to each classification
head using the entire Dcal dataset, and not only over the Dre-cal dataset as in our method. We
report the results for the head that achieves the smallest set size among the evaluated heads.

• Uniform average (Uniform) - We average the scores obtained for each head and perform
standard conformal prediction on the entire Dcal dataset.

• Optimized weights (Optimized) - We use the weighted score sW defined in Eq. (7). We perform
constrained optimization, minimizing the mean set size with a constraint that the empirical mis-
coverage does not exceed α. The weights are optimized using Optuna (Akiba et al., 2019) over
Dcells with 100 optimization steps. Then, we perform standard conformal prediction over Dre-cal.

8
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(a) CIFAR100 (α = 0.01) (b) CIFAR100 (α = 0.01)

(c) PathMNIST (α = 0.01) (d) PathMNIST (α = 0.01)

(e) Tiny ImageNet (α = 0.1) (f) Tiny ImageNet (α = 0.1)

Figure 3: Conformal prediction with RAPS as a function of the number of classification heads. Re-
sults compare multi-score conformal prediction and the baselines (Best head, Optimized, Uniform,
and Norm) across two metrics: empirical coverage (left column), and mean set size (right column),
over: CIFAR100, Tiny ImageNet and PathMNIST.

• Norm-based score (Norm) - Conformal prediction is performed over Dcal with a norm-based
score, defined as sN(x, y) = ∥s(x, y)∥ =

√∑n
i=1 s

2
i (x, y).

We evaluate the different methods in terms of the emperical coverage 1
|Dtest|

∑
(X,Y )∈Dtest

1{Y ∈
Γ(X)} and the mean set size 1

|Dtest|
∑

(X,Y )∈Dtest
|Γ(X)|, computed over the test data Dtest. We

report the average results and the standard deviation over 10 random splits to calibration and test.

5.3 RESULTS

Performance with varying number of heads. Results as a function of the number of heads are
shown in Figs. 3 and D.2, with RAPS and SAPS as base scores, respectively. Results for additional α
levels are provided in Figs. D.1, and D.3. As expected all methods obtain the required coverage. We
observe that the the proposed multi-score calibration leads to smaller prediction sets, with decreased
sizes as the number of heads increases. Similar trends are observed for both RAPS and SAPS
scores. Fig. D.7 illustrates how the set size distribution changes while the number of heads increases,
showing the benefit of the proposed method in producing smaller set sizes compared to the baselines,
especially as the number of heads increases.
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(a) α = 0.2 (b) α = 0.1 (c) α = 0.05

Figure 4: We present the selection regions for a 2-dimensional score (n = 2) using RAPS on the Tiny
ImageNet dataset, across different α levels. The region selected by our method is shaded in blue,
while the unselected region is shaded in orange. The decision boundaries of the baseline methods
are shown with dashed lines. For the baselines, the selected region lies to the left of the ”Best head”
boundary and below the boundaries for Norm, Uniform, and Optimized methods. True test points
are depicted as green circles, while test points with incorrect labels are marked by purple x-marks.

Selection region. Figure 4 demonstrates the results obtained for the 2-dimensional case (n = 2).
We present the region selected by the proposed method (blue area), and the decision boundaries for
the baseline methods. In addition, the test scores for true and false labels are presented. We observe
that the test scores are concentrated in two square regions: on the left bottom corner there are mostly
true labels, whereas on the right upper corner there are mostly false labels. We see that our method
focuses on regions that are less populated by false labels, while the baselines have a fixed structure
and thus unavoidably include areas with a large density of false labels. Figure D.4 illustrates the cell
selection order defined by Eq. (9), where the cells are colored according to their normalized rank in
[0, 1]. Here too, we observe that cells near the bottom left corner are preferable, as well as cells that
have low score in either dimension.

Additional results. We briefly highlight a few additional results that are included in Appendix D.
We examined the performance in terms of the conditional coverage, defining groups by set size
ranges and reporting the maximum coverage violation across these groups. The results in Table D.1
show that all methods exhibit similar behavior regarding the maximum coverage violation. Addi-
tionally, we conducted several experiments to demonstrate the versatility of our approach in other
settings where multiple scores can be extracted, including: (i) a standard ensemble of separately
trained models, (ii) test-time augmentation, and (iii) multiple scores computed from a single head.
Moreover, we conducted additional experiments on text classification task, and ImageNet to ver-
ify that our method is suitable for different data types and large datasets. In all cases, our method
achieves comparable or smaller set sizes with respect to the baselines. We examined the perfor-
mance of the two additional variants of our method, concluding that the Jackknife+ version achieves
smaller set sizes, and the soft version with b > 1 is not preferable over b = 1 in most cases. We
also performed an ablation study to assess the impact of the diversity-regularized loss (12) used in
training the classification heads. Furthermore, we show that our method is not highly sensitive with
respect to the the size of Dcal and the size of Dcells.

6 CONCLUSIONS

We propose a multi-score conformal prediction procedure that combines multiple nonconformity
scores to select regions in the high-dimensional score space. This selection provides the desired
coverage while minimizing the number of false labels that fall in the selected region. Unlike ex-
isting approaches, our method requires no optimization (neither black-box nor gradient-based) and
is applicable to any coverage level. We propose to construct such a score using a cost-efficient
self-ensemble model with multiple classification heads, trained with both CE and diversity losses.
Experimental results demonstrate the superiority of our multi-score method over state-of-the-art
baselines across several benchmark datasets.
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(a) π0(x) (b) π1(x) (c) π2(x)

Figure A.1: The three classifiers in the binary classification problem.

A MATHEMATICAL DETAILS

A.1 TOY EXAMPLE DETAILS

Assume a binary classification problem with Y ∈ {−1, 1} and prior probabilities P(Y = 1) and
P(Y = −1). The input x is generated from a mixture of two Gaussians, with P(X|Y ) = N (y, σ2

y).
In this example, we can compute the posterior P(Y |X) using Bayes rule:

P(Y = a|X) =
P(Y = a)P(X|Y = a)

P(Y = 1)P(X|Y = 1) + P(Y = −1)P(X|Y = −1)
, a = −1, 1 (13)

We set P(Y = 1) = P(Y = −1) = 0.5, σ2
1 = σ2

−1 = 0.75. Consider the following three classifiers:

π0(x) = P(y|x), π1(x) :=

{
P(y|x), if x ≤ 0,
(ϵ, 1− ϵ), if x > 0

, π2(x) :=

{
(ϵ, 1− ϵ), if x ≤ 0,
P(y|x), if x > 0

(14)

where ϵ ∼ N (0, 1). The classifiers are illustrated in Fig. A.1 . Here π0(x) represents the ideal
classifier, and π1(x) and π2(x) are ideal only in half of the range of x and uniformative for the other
half. We generate 2000 points using p(x), and use 1000 for validation and 1000 for calibration. We
compute the Thr nonconfomrity score. Results are averaged over 20 random trials.

When P(Y |X) is known, it was shown that the optimal set with minimal size under coverage con-
straint is given by Γ∗(x) = {y ∈ Y|p(y|x) > qα} (Lei & Wasserman, 2014; Sadinle et al., 2019;
Kiyani et al., 2024). This implies that the optimal set is a level set of the distribution p(y|x). Thus,
in our example, thresholding s0(x, y) = 1 − p(y|x) results in the optimal set. Using only s1(x, y)
and s2(x, y) the optimal set can be equivalently defined as:

Γ∗(x) = {y ∈ Y|(1{x ≤ 0} · s1(x, y) + 1{x > 0} · s2(x, y)) < 1− qα}
= {y ∈ Y|sT (x, y) · ix(x) < 1− qα}

where ix(x) = [1{x ≤ 0},1{x > 0}]T . Thus, we obtain that the optimal set is a function of the 2-
dimensional nonconformity score s(x, y). In this example, each classifier specializes on a different
subdomain of the input space X . Another practical case is when classifiers specialize on different
parts of the output space Y . For example, consider Y = {0, 1, 2}, and the following three classifiers:

πa(x) :=

{ P(y = a|x), if y = a,
ϵ, if y = (a+ 1) mod 3,
1− P(y = a|x)− ϵ, if y = (a+ 2) mod 3

a ∈ {0, 1, 2}, (15)

where ϵ ∼ N (0, 1). In this case, the optimal set is given by:

Γ∗(x) = {y ∈ Y|sT (x, y) · iy(y) < 1− qα} (16)

where iy(y) = [1{y = 1},1{y = 2},1{y = 3}]T . We conclude that whenever p(y|x) =
ϕ(s(x, y);x, y), where ϕ : S × X × Y → [0, 1] is a non-degenerate function of the multi-score
vector, the optimal set relies on s(x, y), i.e.:

Γ∗(x) = {y ∈ Y|ϕ(s(x, y);x, y) < 1− qα} (17)
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In contrast, relying solely on a single score will result in a suboptimal solution. Note that, according
to Eq. (17), the ideal set corresponds to a level set of ϕ(s(x, y);x, y), rather than s(x, y) itself.
This implies that, in general, the decision boundaries in the multi-dimensional score space can be
arbitrarily complex, depending on the properties of ϕ.

In practice, we have access to neither the conditional distribution P(Y |X) nor the mapping function
ϕ. Instead, we aim to solve the problem of minimizing the set size subject to a coverage constraint,
similarly to (Stutz et al., 2021; Bai et al., 2021; Kiyani et al., 2024). Since the space of all possi-
ble prediction sets is overly complex, the problem must be relaxed. Bai et al. (2021) proposed to
optimize an arbitrary class of prediction sets Γθ parametrized by θ, while Stutz et al. (2021) opti-
mize a parametrized score sθ(x, y). In (Kiyani et al., 2024), structured prediction sets of the form
Γs
h(x) = {y ∈ Y |s(x, y) ≤ h(x)} were considered, where h : X → R is a learned adaptive

threshold. In contrast, we work in the multi-score domain and consider sets defined as a union of a
subset I ⊆ 2k of cells in Dcells, i.e. Γs

I(x) = {y ∈ Y|s(x, y) ∈ ∪i∈ICi}. Accordingly, the relaxed
optimization problem can be written as:

argmin
I⊆2k

E [size(Γs
I(X))]

s.t. E [1{Y ∈ Γs
I(X)}] ≥ 1− α (18)

where size(Γs
I(X)) =

∑Q
q=1 1{Y ∈ Γs

I(X)} =
∑

i∈I

∑Q
q=1 1{Y ∈ Ci(X)}. A finite sample

approximation of the expected set size is given by:

E =
1

k

k∑
j=1

∑
i∈I

Q∑
q=1

1{s(Xj , q) ∈ Ci}. (19)

Note that this is equivalent to summing the cell scores Di defined in Eq. (9) (without removing
duplicate cells):

E =
1

k

∑
i∈I

Di. (20)

Therefore, solving the optimization problem in Eq. (18) does not require enumerating all possible
sets I , which is computationally infeasible. Instead, we can rank the cells according to Di and take
the (1− α) proportion of cells with the lowest score values. To obtain exact coverage we perform a
recalibration over Dre-cal.

We conclude that in practical scenarios, where a single score does not provide the full information
on the conditional distribution P(y|x), we benefit from using a multi-dimensional score s(x, y). It
may appear that optimizing for set size efficiency in the multi-score space exponentially increases the
number of possible prediction sets to be considered, which makes the optimization more challenging
compared to the single-dimensional case. However, our cell partitioning and ranking procedure
relaxes the problem to a convenient structured prediction with a simple selection rule that does
not require any iterative optimization procedures. Note that the number of cell centers and the
summation operation over all scores that fall in the chosen region, remain fixed regardless of the
dimensionality of s(x, y). However, as n increases the cells move apart from each another, when
the scores are nonidentical and provide complementary information. Moreover, if each dimension
contributes information about the actual conditional distribution P(Y |X), we anticipate an improved
separation between true and false scores. Consequently, the selected subset of cells is expected
to exhibit lower Di values, leading to smaller prediction sets. This is demonstrated in Fig. A.2
presenting the distribution of Di for the chosen cells. We observe that as n increases, the values of
Di become smaller.

A.2 PROOF OF THEOREM (2)

Proof. For a pair of test input Xm+1 and a (candidate) label y ∈ Y we compute the multi-
dimensional score s(Xm+1, y) = [s1(Xm+1, y), . . . , sn(Xm+1, q)]

T . We define a combined score
function smulti : X×Y → R that maps the multi-dimensional score s(x, y) into a single-dimensional
score smulti(x, y). The mapping is defined as follows:

smulti(Xm+1, y) = argmin
1≤j≤k′

∥∥s(Xm+1, y)− s(X(j), Y(j))
∥∥ (21)
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Figure A.2: Histogram of cell scores for the selected number of cells, comparing different number
of heads. Values correspond to CIFAR100 dataset, RAPS scores and α = 0.1

where (j) denotes the index of the samples in Dcells after sorting according to the ratio values (9)
and eliminating repeating elements, i.e. (X(1), Y(1)), . . . , (X(k′), Y(k′)) are the centers of the cells
C(1), . . . , C(k′) where D(1) ≤ D(2) ≤ · · · ≤ D(k′). This way each pair (Xm+1, y) is associated with
the closet center and the ranking of this cell serves as the one-dimensional score, defined in Eq. (21).

The prediction set Γη∗(Xm+1) is defined in Eq. (10) by including predictions associated with scores
that reside in the selected region. This can be equivalently written in terms of a threshold operation
over smulti, as we can write:

Γη∗(Xm+1) =
{
y ∈ {1, . . . , Q} | s(Xm+1, y) ∈ Cη

∗

in

}
=

y ∈ {1, . . . , Q} | s(Xm+1, y) ∈
η∗⋃
i=1

C(i)


=

y ∈ {1, . . . , Q} |
η∗⋃
i=1

[
s(Xm+1, y) ∈ C(i)

]
(8)
=

y ∈ {1, . . . , Q} |
η∗⋃
i=1

[
i = argmin

1≤j≤k′

∥∥s(Xm+1, y)− s(X(j), Y(j))
∥∥]

(21)
=

y ∈ {1, . . . , Q} |
η∗⋃
i=1

[i = smulti(Xm+1, y)]


= {y ∈ {1, . . . , Q} |smulti(Xm+1, y) ≤ η∗} .

(22)

This formulation is the same as a standard one-dimensional conformal prediction procedure, where
we define the prediction set by thresholding a one-dimensional score function. The threshold η∗ was
chosen to obtain exact coverage over the held-out data Dre-cal, therefore:

η∗ = min{η ∈ {1, . . . , k′} | Yi ∈ Cηin for at least ⌈(1− α)(r + 1)⌉ samples (Xi, Yi) ∈ Dre-cal}
(22)
= min{η ∈ {1, . . . , k′} | smulti(Xi, Yi) ≤ η for at least ⌈(1− α)(r + 1)⌉ samples in Dre-cal}

= Quantile
(
⌈(r + 1)(1− α)⌉

r
; {smulti(Xi, Yi)}mi=k+1

)
.

Thus, assuming that Dre-cal and (Xm+1, Ym+1) are exchangable, we obtain that:

P (Ym+1 ∈ Γη∗(Xm+1)) ≥ 1− α (23)
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Algorithm B.1 Jackknife+ Multi-Score Conformal prediction
Definitions: s(x, y) is a multi-dimensional score function. Dcal is the calibration data of size
m. Xm+1 is a new test sample, α is the miscoverage level, k is the number of samples for cell-
partitioning and scoring, and r = m− k is the number of samples for re-calibration.

1: function MULTI-SCORE-CP(s(x, y), Dcal, α)
2: Compute the scores s(Xi, Yi), i ∈ {1, . . . ,m}
3: Segment S into cells {Ci}ki=1 centered at {(Xi, Yi)}ki=1
4: Remove duplicate cells C1, C1, . . . , Ck′

5: for i ∈ {1, . . . , k} do
6: Compute D−i

j , j = 1, . . . , i− 1, i+ 1, . . . , k′ using Eq. (9), excluding the i-th point
7: Rank the cells C(1), C(2), . . . , C(k′−1) according to D−i

(1) ≤ D−i
(2) ≤ . . . ≤ D−i

(k′−1)

8: E−i
i ← argminj∈{1,...,k′−1}

∥∥s(Xi, Yi)− s(X(j), Y(j))
∥∥

9: E−i
m+1(y)← argminj∈{1,...,k′−1}

∥∥s(Xm+1, y)− s(X(j), Y(j))
∥∥ , y ∈ Y

10: ΓJK+(Xm+1) =
{
y ∈ {1, . . . , Q} |

∑m
i=1 1{E

−i
i < E−i

m+1(y)} < (1− α)(m+ 1)
}

11: return ΓJK+(Xm+1)

Algorithm B.2 Soft Multi-Score Conformal Prediction
Definitions: s(x, y) is a multi-dimensional score function. Dcal is the calibration data of size
m. Xm+1 is a new test sample, α is the miscoverage level, k is the number of samples for cell-
partitioning and scoring, and r = m − k is the number of samples for re-calibration and b is the
number of neighbors.

1: function SOFT MULTI-SCORE-CP(s(x, y), Dcal, α,b)
2: Randomly split Dcal to Dcells = {(Xi, Yi)}ki=1 and Dre-cal = {(Xi, Yi)}mi=k+1

3: Compute the scores s(Xi, Yi), i ∈ {1, . . . ,m}
4: Segment S into cells {Ci}ki=1 centered at {(Xi, Yi)}ki=1
5: Compute Di, i = 1, . . . , k according to Eq. (9)
6: Remove duplicate cells C1, C1, . . . , Ck′

7: Rank the cells C(1), C(2), . . . , C(k′) according to D(1) ≤ D(2) ≤ . . . ≤ D(k′)

8: T b(i)← b nearest cells of s(Xi, Yi) in {C(i)}k
′

i=1, i ∈ {k + 1, . . . ,m}
9: η∗ ← min

{
η
∣∣∣∑m

i=k+1 1
{(∑b

t=1 1
{
T b
t (i) ⊆ Cη

in

})
> ⌈0.5 · b⌉

}
≥ ⌈(1− α)(r + 1)⌉

}
10: Cη

∗

in ←
⋃η∗

i=1 C(i)
11: return Cη

∗

in

12: function SOFT MULTI-SCORE-EVALUATION(s(x, y), Xm+1, Cη
∗

in )
13: Compute the scores s(Xm+1, y), y ∈ {1, . . . , Q}
14: T b(y)← b nearest cells of s(Xm+1, y) in {C(i)}k

′

i=1, y ∈ Y
15: Γη∗(Xm+1) =

{
y ∈ Y|

(∑b
t=1 1

{
T b
t (y) ⊆ Cη∗

in

})
> ⌈0.5 · b⌉

}
16: return Γη∗(Xm+1)

following Theorem (1).

Note that the split of Dcal to two disjoint subsets Dcells and Dre-cal is critical here, since we cannot
claim that the samples in Dcells and the test pair (Xm+1, Ym+1) are exchangable as Dcells serves for
the computation of the score defined in (21) (in a similar way to the fact that the training data cannot
be used for calibration in standard conformal prediction).

B ALGORITHMS

The jackknife+ variant, as described in Section D.6, is provided in Algorithm B.1, while the soft
centers variant, as detailed in Section D.6, is presented in Algorithm B.2.
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C IMPLEMENTATION AND DATASET DETAILS

Datasets and Implementation. The details of each dataset and the corresponding data splits are
summarized in Table C.1, where Tiny ImageNet, CIFAR100 and PathMNIST are used in our main
results while ImageNet and 20NewsGroups are used for the additional experiments, described in § D.
The calibration data is split into half for cell computation, and re-calibration.

Table C.1: Datasets Details

Dataset # Classes Train Validation Calibration Test Average Accuracy
Tiny ImageNet 200 71,500 11,000 16,500 11,000 0.58

CIFAR100 100 39,000 6,000 9,000 6,000 0.69

PathMNIST 9 69,667 10,718 16,077 10,718 0.94
20 Newsgroups 20 9,800 2,449 3,298 3,299 0.87

ImageNet 1,000 1,281,184 10,000 20,000 20,000 0.71

For the first three datasets we used ResNet50 model with pretrained weights on ImageNet. Each
head is a 3 layer feed-forward neural network with, BatchNorm, ReLU activation and dropout with
p = 0.1.

In the first stage, the full model with a single classification head was fine-tuned on each task with
20, 100 and 200 epochs for Tiny ImageNet, CIFAR100 and PathMNIST, respectively. In the second
stage, we freeze the backbone model and train only the classification heads for 20 epochs, using the
loss defined in Eq. (12). In both stages, we use Adam optimizer with cosine annealing scheduler,
momentum decay of 0.95, weight decay of 1e− 5, and batch size of 16.

For the computation of the RAPS score we used λ = 0.05 and κ = 5, and for the SAPS score we
set ξ = 0.3. Performance with respect to other parameter values is reported in Tables D.4 and D.5
for RAPS and SAPS, respectively.

D ADDITIONAL RESULTS

D.1 EVALUATING OTHER PERFORMANCE ASPECTS

Conditional Coverage. We evaluated the conditional coverage of the proposed method in
comparison to the baselines. To do so, we define a set of disjoint strata {Sj}Jj=1, where
∪Jj=1Sj = {1, . . . , Q}. We partition the data into groups with equal numbers of samples. Let
qj = Quantile

(
j
J ; {|Γ(Xi, Yi)|}i

)
, j = 0, . . . , J , denote the j

J -th quantile of the set sizes. The jth
group is then defined as Gj = {i : qj−1 ≤ |Γ(Xi, Yi)| ≤ qj} for j ∈ {1, . . . , J}. Accordingly, the
size-stratified coverage violation (SSCV) is defined as (Angelopoulos et al., 2020):

SSCV({Sj}Jj=1) = sup
j

∣∣∣∣ |{i : Yi ∈ Γ(Xi, Yi), i ∈ Gj}|
|Gj |

− (1− α)

∣∣∣∣ (24)

For this evaluation, we divided the data into J = 10 groups. The results, summarized in Table D.1,
indicate that all methods achieve similar SSCV scores, with no method showing a clear advantage
over the others.

Results with SAPS scores. To examine the robustness of the multi-score method with respect to
the choice of nonconformity scores, we compare the results achieved using the SAPS nonconformity
score across different levels of α and datasets. The results are presented in figs D.2 and D.3. As
expected, all methods achieve the required coverage. The proposed multi-score calibration produces
smaller prediction sets, with significant improvements for SAPS as the number of heads increases,
demonstrating its robustness to the choice of the nonconformity score.

Results with Thr and APS scores. Our proposed method can be applied over any type of score.
However, we have seen that it is not fully optimal for Thr and APS. The reason is that for these
scores the values are more concentrated on specific levels, while for SAPS and RAPS the values
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(a) CIFAR100 (α = 0.02) (b) CIFAR100 (α = 0.02)

(c) PathMNIST (α = 0.02) (d) PathMNIST (α = 0.02)

(e) Tiny ImageNet (α = 0.2) (f) Tiny ImageNet (α = 0.2)

Figure D.1: Conformal prediction with RAPS as a function of the number of classification heads.
Results compare multi-score conformal prediction and the baselines (Best head, Optimized, Uni-
form, and Norm) across two metrics: empirical coverage (left column), and mean set size (right
column), over: CIFAR100, Tiny ImageNet and PathMNIST.

are more spread. In order to improve this behavior we use temperature scaling, i.e. we divide the
logits by T before applying Softmax(). As T increases the entropy of the probabilities increases
and they become more spread, as illustrated in Fig. D.5. Figure D.6 presents the set sizes obtained
for all methods with respect to different temperatures. We see that the efficiency the proposed
method greatly improves as T increases for both Thr and APS, while the performance of the baseline
methods is less effected by T . For RAPS and SAPS the proposed method outperforms the baselines
regardless of the temperature due to the inherent spread of these scores.

The distribution of set sizes. Figure D.7 illustrates how increasing the number of heads (from 1
to 7) shifts the set size distribution toward smaller values, indicating more samples with smaller set
sizes. Notably, the multi-score method responds more effectively to the increase in heads compared
to the baselines, achieving set size values in a smaller range (2−41), while for the other methods the
sizes range from 11− 41. This highlights again that our multi-score method leads to more efficient
and precise sets.
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(a) CIFAR100 (α = 0.01) (b) CIFAR100 (α = 0.01)

(c) PathMNIST (α = 0.01) (d) PathMNIST (α = 0.01)

(e) Tiny ImageNet (α = 0.1) (f) Tiny ImageNet (α = 0.1)

Figure D.2: Conformal prediction with SAPS as a function of the number of classification heads.
Results compare multi-score conformal prediction and the baselines (Best head, Optimized, Uni-
form, and Norm) across two metrics: empirical coverage (left column), and mean set size (right
column), over: CIFAR100, Tiny ImageNet and PathMNIST.

D.2 RESULTS WITH OTHER TYPES OF MULTIPLE SCORES

Standard Ensemble. We conduct an experiment with a standard ensemble, consisting of
multiple different models that are trained separately on the same dataset. We use ImageNet
dataset for evaluation with an ensemble of 5 models pretrained on ImageNet: VGG16, Incep-
tion, ResNet50, ResNet152 and DenseNet161. Results are shown in Fig. D.8 for RAPS score and
α = [0.03, 0.05, 0.1]. Similarly to our main results with self-ensemble, here too the proposed
method obtains the smallest prediction set sizes. This indicates that our method can be applied to
self-ensemble models as well as regular ensembles.

Test-Time Augmentation. We evaluate our method on a multi-dimensional score that is formed by
test-time augmentations (Lu, 2023). We use ImageNet dataset with Inception-V3 model. We use a
simple common test-time augmentation policy (Krizhevsky et al., 2012), which consists of a random
crop and a horizontal flip. The random crop pads the original image by 4 pixels and takes a 256x256
crop of the resulting image. We draw five augmentations using this policy. Figure D.9 presents the
results for RAPS score and α = [0.03, 0.05, 0.1]. Our method outperforms the baselines in terms of
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(a) CIFAR100 (α = 0.02) (b) CIFAR100 (α = 0.02)

(c) PathMNIST (α = 0.02) (d) PathMNIST (α = 0.02)

(e) Tiny ImageNet (α = 0.2) (f) Tiny ImageNet (α = 0.2)

Figure D.3: Conformal prediction with SAPS as a function of the number of classification heads.
Results compare multi-score conformal prediction and the baselines (Best head, Optimized, Uni-
form, and Norm) across two metrics: empirical coverage (left column), and mean set size (right
column), over: CIFAR100, Tiny ImageNet and PathMNIST.

prediction set size. We conclude that test-time augmentation can serve as a possible alternative for
generating multiple nonconformity scores within our multi-score conformal prediction framework.

Multiple scores computed over a single head. We examined a setting where instead of considering
multiple classification heads, we use a single head and compute different conformity scores: Thr,
APS, RAPS and SAPS. To ensure all scores are comparable and fall in the range between [0, 1],
we apply Softmax() over each score. Table D.2 summarizes the results for all datasets. We see
that combining multiple scores improves the results compared to the best single score, and that
the proposed method obtains the smallest prediction sets in almost all cases. The advantage of this
score fusion is that it does not require any additional modifications to the model or further fine-tuning
iterations.
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Figure D.4: Visualization of cell selection order over CIFAR100 with RAPS score and α=0.1.
Darker cells were selected earlier in the sequence while lighter cells are selected at a later stage.

Table D.1: SSCV measure for CIFAR100 with RAPS score

α Head Best head Multi-score Norm Optimized Uniform

0.1

1 0.174 0.034 0.174 0.159 0.174
2 0.167 0.108 0.114 0.194 0.141
3 0.240 0.104 0.066 0.162 0.277
4 0.298 0.204 0.178 0.167 0.264
5 0.106 0.155 0.167 0.200 0.252
6 0.131 0.153 0.172 0.308 0.125
7 0.056 0.159 0.062 0.191 0.175

0.2

1 0.190 0.037 0.190 0.157 0.190
2 0.362 0.249 0.292 0.221 0.330
3 0.342 0.200 0.132 0.187 0.098
4 0.379 0.206 0.167 0.166 0.279
5 0.361 0.192 0.159 0.209 0.331
6 0.220 0.180 0.071 0.274 0.276
7 0.186 0.203 0.200 0.171 0.245

D.3 ROBUSTNESS TO HYPERPARAMETERS

Influence of training with diversity regularization. We conducted an ablation study to examine
the affect of adding diversity regularization to the loss used for training the classification heads,
defined in Eq. (12). We use the same fine-tuned model in the first training stage and change only
the second stage to optimize the regularized loss in Eq. (12) with different values of λ, controlling
the strength of the diversity regularization. Figure D.10 shows the similarity between heads with
and without the diversity regularization. As expected, the similarity between heads is smaller for the
model trained with the regularized loss. Figure D.11 compares the set sizes obtained for different
values of λ, demonstrating that adding the regularization results in smaller sets. The optimal value
of λ is around 0.8, after which an increase in set size is observed, apparently due to the fact that
increasing head diversity comes at the cost of decreasing the accuracy of each head.
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(a) Thr (T = 1) (b) APS (T = 1)

(c) Thr (T = 5) (d) APS (T = 5)

Figure D.5: Demonstration of APS and Thrt scores’s distribution with different Temperatures on
CIFAR-100 and α = 0.1.

Table D.2: Results for a single classification head and multiple types of scores.

α Dataset Methods

Multi Score Best Head Uniform Optimized Norm

0.1 CIFAR100 33.90 35.12 35.32 34.96 35.54
TinyImageNet 58.08 61.62 62.96 62.70 78.45

0.15 CIFAR100 18.33 27.88 28.12 27.52 28.18
TinyImageNet 35.84 48.55 49.47 49.48 55.75

0.2 CIFAR100 8.25 9.34 9.19 8.35 13.02
TinyImageNet 19.99 24.94 27.49 26.94 34.49

0.01 PathMNIST 6.26 6.69 6.67 6.5 6.56

0.02 PathMNIST 3.31 4.56 2.98 2.96 3.07

Influence of the of size Dcal. We examine how the performance is affected by the size of the
calibration data. Here, we vary the proportion p of samples from Dcal that are actually used, i.e., we
select a subset Dp

cal ⊆ Dcal, where |Dp
cal| = p · |Dcal|. Then, as before, Dp

cal is split into half for cell
computation, and re-calibration. Figure D.12 presents the set sizes for different values of p. It can
be seen that the proposed method is almost always preferable, with its advantage becoming more
pronounced as the size of the calibration data increases.

Influence of the of size Dcells. We investigated the effect of k, the size of Dcells, on the results.
Recall that Dcells is responsible to the definition of the cells in Eq. (8) and the computation of the
ratio-based scores in Eq. (9). In this experiment, the dataset is divided, as before, into three fixed
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(a) ThR (b) APS

(c) RAPS (d) SAPS

Figure D.6: Set size as a function of the temperature for different nonconformity scores. Results are
shown for CIFAR100 with 7 heads and α = 0.1

(a) Multi Score (b) Best Head (c) Uniform (d) Optimized (e) Norm

Figure D.7: Histograms of the set size distribution across different numbers of classification heads
with RAPS score on Cifar100 and α=0.1. Rows represent 1, 2, and 7 heads, while columns corre-
spond to different methods.

subsets: Dcells, Dre-cal, and Dtest. We vary the proportion p of samples from Dcells that are actually
used, i.e., we select a subset Dp

cells ⊆ Dcells, where |Dp
cells| = p · |Dcells|. The set sizes obtained for

different values of p are presented in Table D.3. As expected, the set size increases as p decreases.
However, the overall behavior remains stable, with only 9.4 − 13.3% increase in set size for 50%
reduction in the number of samples in Dcells. In addition, we compare to the Optimized baseline,
where the set Dp

cells is used for optimizing the weights for combining the scores. We see for all p
values Multi-score is advantageous over Optimized.

Influence of the nonconformity score’s parameters . We examined the influence of the different
parameters of the non-conformal RAPS and SAPS scores on the methods performances . The re-
sults for the RAPS score are detailed in Table D.4, while those for the SAPS score are presented in
Table D.5. Overall, our findings indicate that the Multi-Score method remains consistently advanta-
geous, regardless of the parameter settings.
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Figure D.8: Results for ImageNet with a standard ensemble of five different models, using RAPS
score.

Figure D.9: Results for ImageNet with test-time augmentations, using RAPS score.

Figure D.10: Similarity matrix between prediction heads for heads trained with (left) or without
(right) diversity regularization on CIFAR100 dataset.

Table D.3: Sensitivity of the results to the size of Dcells. We select a subset Dp
cells ⊆ Dcells, where

|Dp
cells| = p · |Dcells|. The set sizes obtained for different values of p are reported for CIFAR100

dataset and 7 heads.

α 100% 95% 90% 85% 80% 70% 60% 50% 25% 10%

Multi Score
RAPS 0.1 15.32 15.66 15.68 15.69 15.92 16.26 16.68 17.32 19.04 22.13

0.2 2.33 2.33 2.34 2.35 2.37 2.49 2.54 2.64 3.09 4.16

SAPS 0.1 15.46 15.46 15.76 15.72 15.88 16.04 16.32 16.91 19.01 22.17
0.2 2.36 2.36 2.37 2.41 2.42 2.54 2.6 2.64 3.09 3.61

Optimized
RAPS 0.1 22.47 22.27 22.04 22.09 21.85 21.71 22.47 22.52 23.4 24.2

0.2 6.53 6.31 6.21 6.3 6.73 6.49 6.14 6.55 6.54 7.21

SAPS 0.1 21.8 21.83 21.71 21.68 21.51 21.63 21.55 21.66 23.24 25.11
0.2 6.8 6.45 6.4 6.45 6.31 .6.14 5.93 5.93 7.4 8.611
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Figure D.11: Set size as a function of the regularization parameter λ for CIFAR100 with RAPS
score and 7 heads.

(a) CIFAR100 (b) Tiny ImageNet (c) PathMNIST

Figure D.12: Sensitivity of the results to the size of Dcal. We select a subset Dp
cal ⊆ Dcal, where

|Dp
cal| = p · |Dcal|. The set sizes obtained for different values of p are reported for RAPS score on 7

heads.

Influence of the underlying model. To demonstrate that our method improves the efficiency of
conformal prediction (CP) regardless of the underlying model, we conducted an experiment using
a more powerful ViT model Dosovitskiy et al. (2020) Results are presented on table D.6, showing
similar trends to those observed in our main results.

D.4 RESULTS ON OTHER DATASETS

Results on text data classification. To show that our method can be applied across different types
of data, we conducted an experiment with a text classification task. We use the 20 Newsgroups
dataset, which comprises newsgroup posts on 20 topics. We use a BERT-base model (Devlin et al.,
2019), and attach additional classification heads in a similar way to the other models. The results on
Table D.7 show that Multi-Score outperforms all the baselines. Here the norm baseline is the closest
in the performance to the proposed method.

Results for ImageNet. Table D.8 presents the results obtained for ImageNet. Here the classification
heads consist of a single linear layer, and are all initialized by the weights of the pretrained model.
Here too we can see the benefit of the proposed method over the baselines.
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Table D.4: Set size comparison between the baselines for different values of κ and λ, used in RAPS
score, on CIFAR100, α = 0.1 and 7 heads.

κ\λ 0.001 0.01 0.1 1.0
Multi Score

1 12.79 14.83 15.10 15.45
2 12.84 14.26 15.11 15.53
3 12.88 14.29 15.30 15.54
4 12.81 14.45 15.36 15.53
5 12.80 14.44 15.51 15.70

Best Head
1 32.04 32.11 32.11 32.11
2 24.41 24.00 24.00 25.00
3 23.01 23.02 23.04 22.79
4 20.77 21.12 21.63 22.70
5 20.32 21.21 23.60 22.60

Uniform
1 24.38 24.76 24.91 24.96
2 24.41 23.59 24.87 25.05
3 23.10 23.75 25.44 26.14
4 21.20 21.84 23.26 23.33
5 20.40 21.41 22.63 22.75

Optimized
1 24.45 24.89 25.26 25.84
2 24.52 24.00 24.76 25.10
3 23.09 23.32 24.64 25.07
4 20.82 21.20 22.30 22.70
5 20.34 21.40 22.80 22.60

Norm
1 18.01 19.62 19.80 22.59
2 18.01 22.99 24.53 24.66
3 22.82 23.05 27.74 28.50
4 20.80 21.21 21.75 23.60
5 20.34 21.21 23.86 25.04

Table D.5: Set size comparison between the baselines for different values of ξ, used in SAPS score,
on CIFAR100, α = 0.1 and 7 heads.

ξ 0.01 0.05 0.1 0.5 1.0
Multi Score

14.7 16.17 16.28 16.89 17.06
Best Head

36.49 37.11 37.21 37.43 37.48
Uniform

19.15 21.73 21.91 22.55 22.57
Optimized

18.51 21.0 21.60 21.90 22.07
Norm

18.61 21.31 23.12 24.56 24.59

D.5 ADDITIONAL BASELINES

L1 Norm baseline. We examined an additional baseline, where we use the L1 norm instead of
the L2 norm. Table D.9 compares the two baselines for CIFAR-100 dataset and RAPS score. We
observe that both baselines obtain similar performance.
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Table D.6: ResNet vs. ViT model set size comparison on CIFAR100 with α = 0.1 and 7 heads.

Model Acc. Score Methods

Multi Score Best Head Uniform Optimized Norm

ViT 0.8 RAPS 4.34 22.11 16.21 15.93 5.51
SAPS 2.33 12.77 2.43 2.45 2.60

ResNet50 0.69 RAPS 15.32 35.29 24.37 22.47 22.49
SAPS 15.46 37.41 22.05 21.80 22.79

Table D.7: Comparison of set sizes across different methods on the 20 Newsgroups dataset, with 7
heads, using the BERT-base model fine-tuned for news topic classification.

α Score Methods

Multi Score Best Head Uniform Optimized Norm

0.08 RAPS 1.46 9.61 9.58 9.49 1.5
SAPS 1.47 10.66 2.09 2.18 2.35

0.05 RAPS 2.29 10.1 10.01 10.07 2.32
SAPS 1.97 10.9 2.4 2.46 2.62

0.02 RAPS 4.28 11.73 11.73 11.47 4.36
SAPS 3.28 11.57 3.45 3.34 3.65

Table D.8: Comparison of set sizes across different methods on the ImageNet dataset, with 7 heads,
demonstrating the performance with a large-number-of classes.

α Score Methods

Multi Score Best Head Uniform Optimized Norm

0.1 RAPS 4.1 4.36 13.47 14.63 13.47
SAPS 4.94 5.36 13.85 14.99 13.85

0.2 RAPS 1.82 2.4 2.1 2.1 2.1
SAPS 1.57 1.68 2.04 2.06 2.04

Table D.9: Comparison between L1 and L2 Norm methods on CIFAR100 and 7 heads.

α Score Methods

L1 L2 Multi Score

0.1 RAPS 22.98 22.49 15.32
SAPS 22.25 22.79 15.46

0.2 RAPS 6.75 7.51 2.33
SAPS 7.62 7.85 2.36

Comparison to vanilla baseline. We examined a vanilla baseline, where the CP procedure is per-
formed over the original classification head, without the addition of multiple classification heads. We
observe that the results are similar to the Best Head baseline defined above. Table D.10 summarizes
the results

D.6 VARIANTS OF MULTI-SCORE CONFORMAL PREDICTION

Jackknife+ Multi-score conformal prediction. We compare our split version in Algorithm 1 to
the jackknife+ version in Algorithm B.1. We obtained that the required 1-α coverage is achieved
in both settings, and the set sizes are summarized in Table D.11. As expected jackknife+ obtains
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Table D.10: Comparison between the vanilla baseline and the multi-score methods on CIFAR100,
with RAPS score and 7 heads.

α
Set Size

Multi Score Vanilla RAPS Best Head

0.1 15.32 39.27 35.29
0.2 2.33 8.09 9.37

Table D.11: Comparison between Jackknife+ and Multi score methods on CIFAR100 and 7 heads.

α Score Methods

Multi Score Jackknife+ Multi Score

0.1 RAPS 14.85 15.32
SAPS 14.61 15.46

0.2 RAPS 2.26 2.33
SAPS 2.22 2.36

Table D.12: Comparison of soft centers approach with different number of neighbors b on CIFAR100
and 7 heads.

α Score Methods

b = 200 b = 100 b = 50 b = 10 Multi Score (b = 1)

0.1 RAPS 23.68 22.73 19.32 16.48 15.32
SAPS 23.53 22.44 19.12 17.14 15.46

0.2 RAPS 3.01 2.89 2.75 2.26 2.33
SAPS 3.04 2.87 2.81 2.29 2.36

smaller set sizes. However, the improvement appears to be insignificant in this case and may not
justify the additional computational cost.

Soft Multi-score conformal prediction. We evaluate the soft version of our proposed approach.
The set sizes obtained for different number of neighbors are summarized in Table D.12. We observe
that in almost all cases b = 1 (Algorithm 1) is preferable.
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