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Abstract: Recent success of learning for robotics has spawned much interest and1

demand for capable robot platforms that may eventually approach human-level2

competence. However, current robot platforms for such research largely fall in3

one of two categories: static bimanual setups for manipulation, or mobile bipedal4

setups for locomotion – with a significant lack of bimanual mobile manipulators.5

We introduce Cone-E: an open-source, low-cost bimanual mobile manipulator de-6

signed to be a reliable general-purpose robotics research platform. Following the7

best practices in robot platform design for indoor environments, Cone-E integrates8

a compact swerve-drive base enabling omnidirectional motion, a telescopic lift9

mechanism affording a vertical reach range from the floor to high shelves, and10

dual 6-DoF arms to achieve whole-body mobility and manipulation. The design11

emphasizes modularity and reproducibility using off-the-shelf components, 3D12

printed parts, and open-source software, while remaining affordable with a bill of13

materials (BOM) cost of $12K.14
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Figure 1: Cone-E is an open-source, bimanual mobile manipulator designed as a general-purpose
research platform.

1 Introduction16

Applications of machine learning in robotics have made tremendous progress in recent years in robot17

navigation [1, 2, 3, 4, 5], locomotion [6, 7, 8, 9, 10], and manipulation [11, 12, 13, 14, 15, 16]. Such18

advances in robotics have been supported by accessible, low cost hardware such as the Unitree A119

and G1 robots, the Hello Robot: Stretch, or the Aloha open-source bimanual manipulator. However,20
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there is a noticeable gap in the currently available accessible platforms for mobile manipulation, in21

particular for bimanual mobile robots. Currently, such available platforms on the market tend to be22

inaccessible, hard to build upon, or have limited functionality due to, respectively, high-cost, closed23

source design, and hardware limitations.24

In this work, we propose a new mobile manipulator design to accelerate generalizable robotics25

research – aiming to provide a reliable platform that will fuel indoor mobile manipulation research.26

Our most important considerations for this platform are to make it low-cost, and easy to build and27

repair with off-the-shelf parts, and easy to control in various ways. We identify some key needs for28

a good mobile manipulation research platform: dexterous bimanual arms, an omnidirectional base,29

and a vertically extended workspace that reaches both the floor and overhead. Beyond hardware30

capabilities, we identify quality-of-life developments for researchers, like having a long battery life,31

a small footprint, and a readable, fully open source software stack.32

Our proposed mobile manipulator, Cone-E, is low-cost (with a bill of material cost $12-13K USD)33

and fully integrated to provide whole-body manipulation. With the publication of this work, we34

will open source the hardware design, including a BOM and an assembly guide, the full controller35

software stack, and a suite of our general-purpose “utility” policies. We believe our design will36

propel further research into whole-body and mobile manipulation by providing access to a stable37

platform with minimal dynamic constraints.38

2 Hardware Design39

In this section, we discuss how Cone-E achieves the hardware design goals identified in Section 1.40

2.1 Mobile Base41

Cone-E has an omnidirectional base to allow flexible navigation, intuitive teleoperation, and sim-42

plified policy learning. Many current commercial robots, such as the Hello Robot: Stretch [17] or43

the Rainbow RB-Y1 [18], use a differential-drive base due to its simplicity and lower cost. While44

cheap, this type of drive is non-holonomic, meaning the state of the system is dependent on the path45

taken in order to achieve it.46

Differential-drive constraint limits arbitrary position control which is important for closed-loop47

learned policies. Therefore, we designed our base as a swerve drivetrain with four wheels. We48

use readily available components from the FIRST Robotics Competition (FRC) ecosystem [19],49

similar to Tidybot++ [20]. A frame made of aluminum extrusions carry the four swerve modules, a50

power distribution block and the battery.51

Unlike TidyBot++, we do not modify the swerve modules to create caster wheels. Our base is non-52

holonomic if modeled at the level of infinitesimally small timesteps. However, an abstraction of the53

system with discrete timesteps, longer than the steering duration, still renders a holonomic system.54

We find the maneuverability of swerve modules is enough for non-dynamic tasks in household55

environment while bypassing additional build complexity from machining caster modules.56

We further refine our design to give the base a small footprint (34 x 42 cm) allowing navigation57

in household environments similar to humans. We designed this base to be more compact than58

TidyBot++ by simplifying the electrical circuitry and running all digital components from a single59

24V 20Ah NMC battery. NMC batteries have higher power density compared to SLA and LiFePO460

batteries, providing long runtime in a compact form factor. Our base motors, the lift motor and the61

arms all run on 24V and can be directly powered from the power distribution block. The control62

module, an Intel NUC mini PC, runs on 19V and needs a step-down voltage regulator after the63

power distribution block. Practical splice connectors like Wago [21] and power distribution panel64

with many output channels keep the circuitry easy to build and customizable. In addition to the65

circuitry, we use SDS MK4c swerve modules instead of SDS MK4 due to their smaller footprint and66

lower chassis mounting.67
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2.2 Telescoping Lift68

A core component to increase the vertical reach of mobile manipulators is a lift mechanism that69

provides a vertical degree of freedom. Lift mechanisms allow the robot to raise or lower its torso70

consisting of arm and sensors and expands its workspace beyond a fixed mounting height. This71

added vertical mobility is essential for household tasks like reaching high shelves, picking objects72

from the floor, or achieving optimal sensor viewpoints.73

Most commercial lift designs are custom built per order and expensive, not readily available on the74

market. To keep our design low-cost and easy to build with the off-the-shelf parts, we re-purpose an75

adjustable height telescoping table (shown in Figure 2) as our robot lift. The table is a telescoping76

lead screw mechanism driven manually with a hand crank, which we motorize for our purposes.77

Inside, there are three lead screws that nest inside each other. The screws rotate in sequence. This78

allows for compact collapsed length and extended height adjustment. The screws are self-locking,79

thus, they hold position when unpowered. This makes Cone-E more efficient as the lift does not80

need to draw power when stationary. The outside of the lift are three telescoping aluminum columns81

that are held together by rubber friction pads. We use the thin steel panels on the top and bottom of82

the lift to mount the torso and attach the lift onto the base respectively.83

We automate this table by motorizing the hand crank drive shaft. We create a timing belt pulley that84

fits on the shaft using nylon or metal 3-D printing. Then, using a timing belt and a BLDC servo85

motor, we can control the lift height. The lift is 30.5 cm at its lowest and 72 cm at its highest.86

We find the 41.5 cm stroke length to be enough for being able to reach the ground and also doing87

tabletop manipulation on high surfaces. In addition to providing extended reach, the lift acts as an88

extra degree of freedom that we can utilize in our inverse kinematics solver.89

We use the integrated encoders inside the motor as a feedback to compute lift position. The lead90

screws inside the lift have a 6mm thread pitch. We use a 60-teeth and 18-teeth pulley on the lift91

and motor shaft respectively. To move the lift through its full-range, the motor needs to rotate92

approximately 225 rotations. To calibrate, the lift needs to “home” when the robot is turned on.93

2.3 Arms and the Gripper94

We build Cone-E as a bimanual robot that supports two 6DOF arms and custom grippers as manipu-95

lation tools. We choose AgileX Piper arms due to their low-cost (only $2,500) and light weight (4.296

kg). The arms are mounted onto an extruded aluminium torso with 45-degree shoulders. We choose97

this shape to balance the arms’ forward and downward reach. The angled shoulders also prevent the98

elbows of the arms from colliding with each other even if their mounting points are close.99

As the end-effector on the arm, we choose the NYU gripper introduced in [22]. The angular jaw100

design allows both precise manipulation and large force application. As an end-effector camera, we101

use an iPhone following the same work, and for data collection use the hand-held version of the102

NYU gripper with the mounted iPhone and the associated app, AnySense. The app records video,103

high-quality SE(3) pose, and any supplementary information streamed over bluetooth, all at 30fps.104

We designed this tool to be more ergonomic and compact compared to other similar tool designs105

such as [22, 23, 24].106

2.3.1 Compliant Controller107

A compliant controller is essential to absorb unexpected forces encountered during manipulation and108

ensure safety in learned policy deployments. Therefore, we implement a joint stiffness controller109

with two layers. The low-level real time controller runs at 200 Hz, while the policy sets targets for110

this controller at much lower frequencies. The typical joint stiffness controller objective is111

−τg(q) +Kp(qref − q) +Kd(q̇ref − q̇)

where q is the measured joint positions and qref is the target position set by the upstream controller.112

The system acts like a spring-damper around the reference position with stiffness coefficient Kp113
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Figure 2: Cone-E is modular and easily customizable with different arms, end-effectors and sensors.

and damping coefficient Kd. The feedforward torque gravity compensation allows us to set stiffness114

gains lower, resulting in compliant movement.115

3 Applications of Cone-E116

3.1 Teleoperation117

We teleoperate Cone-E using a Quest VR device following [25]. The VR controllers are re-mapped118

to robot control in the following way. We re-target the left and right controller poses to the corre-119

sponding arm’s end-effector pose. The left and right joysticks on the controllers are used to com-120

mand rotational and translational velocities to the base in the planar SE(2) workspace respectively.121

The trigger buttons on the joysticks are used to control the lift height. Quest controller commands122

are published to the robot mini PC over WiFi. We find 30 Hz to be the ideal VR command frequency123

to balance robot responsiveness against network delays.124

3.2 Policy Learning125

Following Etukuru et al. [22], we used our hand-held data collection tool with an iPhone Pro to126

collect demonstrations for a general pick-up task. Our portable hand-held tool enables us to collect127

demonstrations in diverse environments. We collected approximately 5,000 demonstrations to train128

a general pick-up policy. We use a VQ-BeT [26] model with 30M parameters, which runs entirely129

on the CPU of Cone-E’s mini PC. The pick-up model predicts the SE(3) relative action in the130

current end-effector frame and the absolute gripper pose. This end-effector pose is then fed to our131

arm differential inverse kinematics controller, which calculates the next joint positions for the robot.132

The policy takes in camera observations and predicts new actions at 2Hz, predicting the desired133

end-effector pose. In contrast, our low-level joint stiffness controller runs at 200Hz. To bridge this134

frequency gap and ensure smooth motion, we interpolate the joint commands to reach the target pose135

within 1 second. The policy issues a new command when the preceding one is halfway completed136

(every 0.5s), thereby enabling continuous and smooth robot control.137

4 Conclusion138

In this work, we introduce Cone-E, an open-source bimanual mobile manipulator robot platform.139

While we believe it offers a great balance between cost and functionality, there are certain affor-140

dances, such as a head camera and twisting neck and torso, that are not present in the current version.141

By open sourcing our design, we hope that the community can customize the platform to their needs142

while iterating on future such platforms in an open and collaborative way.143
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