Towards Quantization-Adversarial
Reparameterizations

Raine Ma
Cheshire High School
girun.ma@gmail.com

Abstract

Post—training quantization (PTQ) of large language models is now routine for
latency and cost, but it also enables third parties to convert and redeploy mod-
els outside their intended precision regime, while posing risks such as undoing
unlearning and failure of safety gaurdrails. We attempt to create a reparama-
terized ("encrypted") model that behaves normally at high precision yet fails in
a controlled, safe manner once standard PTQ is applied. We present a set of
training-free, weight-only transforms that largely preserve full-precision behavior
unchanged while being adversarial to PTQ. Concretely: (A) ill-conditioning for
error amplification that is numerically tame at BF16 but magnifies fixed-point
rounding/clipping; (B) fragile residual encodings that cancel at high precision
but reappear as structured biases after rounding; and (C) dynamic scaling traps
that provoke clipping or pathological rescaling under PTQ. We observe strong
semantic preservation between original and encrypted BF16 models and catas-
trophic collapse after PTQ on an easy arithmetic benchmark, while original PTQ
baselines remain healthy. Our methods require no training, finetuning, extra layers,
custom ops, or runtime changes; the reparameterizations can be applied within a
few minutes on CPU.

1 Introduction

Quantization has become a default step in the deployment of large Transformers, often delivering
substantial speedups with only modest quality loss [6} [13H17]]. This same tooling also creates an
unregulated channel for converting and reusing models in low precision outside their intended terms,
regressing safety mitigations tuned for high precision, and posing risks such as harmful output and
unlearning failure [3] |4].

We ask the following question: Can we create a model that behaves normally under full-precision
use, yet becomes unusable if a third party applies PTQ? We introduce a set of determinsitic, weight-
space reparameterizations that algebraically cancel at high precision but undermine the assumptions
exploited by PTQ (e.g., well-conditioned operators, stable activation ranges).

Mechanism A intentionally inserts canceling factors that are benign in BF16 but increase sensi-
tivity to fixed-point rounding/clipping, making such equalizations insufficient to rescue accuracy.
Spread-spectrum watermarking hides low-energy signals that appear under correlation [18]]; fragile
watermarks flip under minor processing [21]. Mechanism B adapts this notion to weight space with
paired residuals that rely on high-precision cancellation; rounding disrupts the cancellation and
surfaces structured biases at numerically sensitive sites (e.g., pre-norm attention). Per-channel/group
scaling and activation-to-weight range transfers are effective in stabilizing PTQ [22,[15]. Mechanism
C crafts rare, canceling scale "needles" that are innocuous in full-precision but systematically induce
either clipping or undesirable rescaling during PTQ, creating downstream bias that accumulates
across layers.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Prompt: “He then went to see the oranges being harvested. He found out that they harvest 8 sacks per day. How
many days will it take to harvest 24 sacks of oranges?”

... </think> Solution: To determine how many days it will take to harvest 24 sacks of oranges, follow these steps: 1.
Identify the daily harvest rate: - Given: 8 sacks are harvested per day. 2. Calculate the number of days required: -
Total sacks to harvest: 24 - Daily harvest rate: 8 sacks/day \[\text{Number of days} = \frac{\text{Total
sacks}}{\text{Daily harvest rate}} = \frac{24}{8} = 3 \] Final Answer: It will take \(\boxed{3}\) days to harvest 24 sacks
of oranges.”

Original + GPTQ 8-bit output

“...SECUREaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaket SECURE_SECURE_SECURE_SECUR
E_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECUR
E_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECUR
E_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECURE_SECUREaketaketaketaketaketaketaketaketa
ketaketaketaketaketaketaketaketaketaketaketaketaketaketa ...”

Encrypted + GPTQ 8-bit output
Figure 1: Output on a sample prompt from both the original and encrypted GPTQ quantized models.
2 Related Work

PTQ for LLMs. Modern PTQ for Transformers includes outlier-aware 8-bit routing [6], blockwise
Hessian-aware weight fitting (GPTQ) [13]], activation-aware channel protection (AWQ) [14], shifting
activation range into weights (SmoothQuant) [[15]], kernel-friendly quantization schedules (ZeroQuant)
[L6], per-channel/group rescaling and cross-layer equalization [[22], and FP8 formats [17]. We attempt
to quietly violating the conditions under which PTQ stays accurate while maintaining performance of
the full-precision model.

Positioning. Prior efforts on IP protection and watermarking embed ownership signals in parameters
or outputs [23H25]]; our focus is orthogonal: we do not tag or obfuscate the model, but instead
reparameterize weights so that precision reduction itself triggers failure. Empirically, BF16 behavior
is preserved, while standard PTQ applied to the reparameterized weights yields degenerate outputs
on easy tasks, and original PTQ baselines remain accurate.

3 Methodology

We describe a training-free, graph-preserving procedure that rewrites transformer weights into a
quantization-adversarial form while keeping BF16/FP16 behavior intact. The method acts only on
tensors in the checkpoint; no layers or inference code are added or modified.

3.1 Mechanism-level Sketches

For A, BF16 preserves W/'W' ~ WW while PTQ yields (W’ — W)W’ + W'(W’ — W'); each
term carries a factor proportional to ||S|| or ||S™}||, producing superlinear growth with depth. For
B, paired residuals cancel at full precision, but after rounding, each location experiences different
affine scales/zero-points and clamping, yielding a coherent bias. For C, spikes create a dilemma for
per-group scaling: either clip the needles or grow scales (hurt other groups).

(A) Ill-conditioning & error amplification. Inspired by perturbation theory, we fold near-singular but
canceling linear factors across adjacent layers. We aim to break PTQ assumptions of well-conditioned
blocks and locally compensable rounding (per-channel/group scaling, blockwise least-squares). After
quantization, rounding/clipping hits 1V, and its consumer separately; their errors are amplified by
|S|| or |[S~!|| and no longer cancel, attacking GPTQ’s local block fit and per-group equalization.

(B) Fragile residual encodings. Inspired by fragile watermarking and spread-spectrum ideas [18}21]],
we insert low-rank, phase-structured residues at sub-LSB (least significant bit) amplitude that cancel
at BF16 across paired locations (e.g., pre/post-norm sites). Rounding breaks phase alignment, and the
residues survive as coherent biases at numerically fragile sites, degrading performance. We aim to
break AWQ’s "protect salient channels" heuristic (the signal is sub-LSB until rounding) and GPTQ’s

calibration-time least-squares. The bias emerges after quantization and before nonlinearity, inducing
drift not captured locally.

(C) Dynamic scaling traps. Leveraging common PTQ range-conditioning (per-channel/group
scaling, cross-layer equalization, activation-to-weight shifts [22} [15]]), we add rare, algebraically
canceling scale "needles" that are relatively harmless at BF16. We aim to force per-channel/group
scaling and cross-layer equalization into a no-win trade-off (clip rare extremes or expand ranges
that hurt others), breaking PTQ’s range setting: either needles clip (bias) or inflate scales (degrade
other groups); both choices accumulate error across layers. This stresses cross-layer equalization and
activation-to-weight transfers.

3.2 Pseudocode

We summarize the end-to-end procedure. The routines are deterministic given a seed; we denote
helper maps that return framework-specific parameter tensors (e.g., get_W_o(layer)). More details
about the algorithm are discussed in[A.T}

Notation. Layers indexes transformer blocks; layer band is the selected middle-layer interval.
GroupSize is the per-channel grouping (e.g., 128). H is a fixed orthogonal mixer (Hadamard).
Diag(-) builds diagonal matrices per group/head. All edits overwrite the checkpoint tensors.

Algorithm 1 "ENCRYPT" (apply A,B,C)

Require: Model weights W; layer band [Lyin, Limax|; schedules: kg, residues (r, ey, spacing),
scaling traps (I'-range, spike count, needle fraction); group size g; seed; spike configs
HmildMin, HmildMaxs HspikeMin, HspikeMax-

1: Initialize PRNG with seed.
2: for layer ¢ =0,...,L—1do
if £ ¢ [Linin, Limax| then
continue {keep early/late layers vanilla}

end if

// Mechanism A: groupwise ill-conditioning

W, < get_W_o({); Wyext ¢ get_next_consumer_d({)

Build D,, = DiagGroupwise(ky,g); S ¢+ HD H '

9: W, + W, -block_diag(S) {right-multiply in head-concat space}

10: Wyext < block_diag(S™1) - Whexs

11: // Mechanism B: fragile low-rank residues (every Ny layers)

12: if is_B_layer(¢) then

w

A A

13: (U,V) < lowrank_basis(d,r) {rows/cols from Hadamard, phase-locked}
14: Wo = Wo+eUVT: Whext < Whext — e, UVT
15: endif

16: // Mechanism C: scaling traps
17: Select head indices H,i1q and Hpike With needle fraction p
18: for head h in Hmilg U Hspike dO

19: o~ {Uniform{HmildMina ooy HmilaMax} 7 € Humila
. g Uniform{HspikeMina se 7HspikeMax} h e Hspike

20: Apply W, [:, b <= Wy, hlyn. Wi, h] < Wi, h]’ygl

21: Apply W,[h,:] < v, "Wo[h, :] {compensate post-concat}

22: end for

23: end for

24: return modified weights w

4 Experimental protocol

Backbones and checkpoints. We evaluate on two public LLMs with distinct architectural choices:
DEEPSEEK-R1-DISTILL-LLAMA-8B and and DEEPSEEK-R1-DISTILL-QWEN-7B. We apply
mechanisms A—C on the weights once to produce the "encrypted" BF16 checkpoint; no training or
finetuning is performed.

Schedules and hyperparameters. We set layer band (LLaMA layers 1-32; Qwen 1-28). For A,
per-layer « is chosen from k, € [28, 32], with 4 randomly chosen layers fixed at x =1 and a minimum
spacing constraint that each must be at least 3 apart. For B, rank 7 = 2, ¢y € [6x1072,1072] inserted
every Np = 3 layers in the band. For C, we use a needle fraction p = 0.0625 of heads per band with
v € [24,50] and 4 spikes with v € [256,512]. Group size g = 128 is set equal to the quantizer’s
grouping. For AIME24, we limit new tokens generated at 16384 and 1024 for SVAMP. Evaluation is
done on a single NVIDIA H100 SXM GPU, with greedy decoding used for all evaluations.

Quantizers. We apply standard PTQ methods: GPTQ (4/8-bit) and AWQ (4-bit), using standard
calibration datasets and block/group sizes from public toolchains [13|[14] (groupsize=128). For each,
we quantize both the original and the encrypted checkpoints.

BF16 preservation. To demonstrate simlilarity in behavior between the original and encrypted
checkpoints, we assess preservation on AIME24, reporting: pairwise sentence-embedding cosine
similarity (CosSim) and Retrieval@1 (encrypted vs. original), BERTScore F1 [11,[10} 19]. Accuracy,
decoding speed (tokens/s), and perplexity (PPL) are additionally reported.

Assessing failure under PTQ. We assess failure on SVAMP test split, a suite of 300 simple
arithmetic word problems [12, 3]]. To demonstrate degradation, we report accuracy, encrypted vs.
original embedding cosine similarity (CosSim), perplexity (PPL), BERTScore F1, and Seq-Rep-4
[20, [11]. Further, to quantify looping and degeneration of text, we measure the longest streak of
identical 3-grams in each output.

For tokens s = x;.7, we define:

N J
MaxRepeat-N = max Z H [$r = Sp—1]
=T =i or=itl
We specifically report MaxRepeat-3. Output texts are converted to embeddings with ALL-MINILM-
L6-v2 and BERTScore is calculated with BERT-BASE-UNCASED [9, 18]].

5 Results

We evaluate two questions: (i) does the reparameterized ("encrypted") BF16 model preserve the
original model’s behavior on challenging reasoning (AIME24) with comparable throughput; and (ii)
does applying post—training quantization (PTQ) to the reparameterized model lead to catastrophic
degradation on an easy arithmetic/word-problem suite (SVAMP), while the original model remains
healthy under the same PTQ settings.

5.1 AIMEZ24: BF16 behavior preservation

Table [T summarizes the pairwise similarity of the models. Table [2|reports accuracy, decode speed,
and perplexity. Across both models, the encrypted and original models show high similarity through
several metrics: sentence-embedding cosine, BERTScore F1, and Retrieval @ 1 where each encrypted
output retrieves its paired original among all outputs, showing close tracking of the original model by
the encrypted. Llama retains accuracy exactly, however, Qwen suffers accuracy loss; we suspect this
may be due to Qwen’s architecture being more numerically fragile, and thereby more sensitive to
weight changes [2]]. Under BF16, our mechanisms A—C leave functionality largely intact: encrypted
models track the originals closely.

Table 1: Similarity metrics between encrypted and original models.

Model CosSim BERTScore F1 Retrieval @1
LLaMA-8B 0.9775 0.9342 1.000
Qwen-7B 0.9759 0.9567 1.000

Table 2: Accuracy, decode speed, and perplexity on AIME24.

Model Accuracy Tokens/s PPL
LLaMA-8B-Orig 36.67% 35.51 1.165
LLaMA-8B-Encrypted 36.67% 35.51 1.157
Qwen-7B-Orig 36.67% 43.02 1.146

Qwen-7B-Encrypted 23.33% 45.07 1.163

5.2 SVAMP: Encrypted+PTQ models collapse while Original+PTQ retain accuracy

We apply standard PTQ to both original and encrypted checkpoints and evaluate on SVAMP. Tables 3]
and [report degeneration metrics by model and quantizer setting: Original+PTQ remains accurate,
while Encrypted+PTQ collapses to zero accuracy across GPTQ-4/8 and AWQ-4.

Low cosine similarity and BERTScore F1 indicate high divergence from the original models, and
high MaxRepeat-3 and Seq-Rep-4 scores indicate degeneration and repetitive looping in the En-
crypted+PTQ models. The extremely high perplexity values likely indicate a flattened, noisy
probability distribution, while greedy decoding selects the highest-probability token repeatedly,
causing looping and high MaxRepeat-3.

Table 3: SVAMP degeneration metrics for LLaMA-8B.
SVAMP Degeneration Metrics — LLaMA-8B

Condition Accuracy CosSim PPL BERTScore F1 =~ MaxRepeat-3 Seq-Rep-4
Original GPTQ-8 62.33% 0.0629 1.755 0.3514 1.59 0.1454
Original GPTQ-4 51.00% 0.0566 1.717 0.2825 3.62 0.2358
Original AWQ 48.67% 0.0522 1758 0.2787 1.08 0.1945
Encrypted GPTQ-8 0.00% - el - 181.15 0.6039
Encrypted GPTQ-4 0.00% - el2:27 - 117.48 0.4336
Encrypted AWQ 0.00% - els1e - 142.33 0.4251

Table 4: SVAMP degeneration metrics for Qwen-7B.
SVAMP Degeneration Metrics — Qwen-7B

Condition Accuracy CosSim PPL BERTScore F1 =~ MaxRepeat-3 Seq-Rep-4
Original GPTQ-8 60.67% 0.1342 1.641 0.4288 1.00 0.1410
Original GPTQ-4 60.00% 0.0662 1.683 0.4046 1.00 0.1408
Original AWQ 56.67% 0.0709 1.653 0.4077 1.00 0.1607
Encrypted GPTQ-8 0.00% - b5t - 70.80 0.3944
Encrypted GPTQ-4 0.00% - el0-10 - 43.25 0.1974
Encrypted AWQ 0.00% - 1050 - 71.73 0.3461

5.3 Summary of findings

* BF16 preservation (AIME24). Encrypted BF16 closely matches Original BF16 output and
throughput, showing similarity through a variety of metrics. (Table.[I| Table.

* Encrypted+PTQ collapse (SVAMP). Applying standard PTQ to the encrypted model
results in zero accuracy and degenerate text, whereas Original+PTQ remains highly accurate.
(Table.[3] Table. H).

6 Limitations and Future Work

Due to compute and time restraints, we were not able to study whether an attacker could easily
undo our mechanisms, nor were we able to benchmark our method against a larger set of PTQ
attacks. Similarly, the same parameters were used across models; we suspect that parameters must
be tuned model-to-model for optimal results, as evidenced by Qwen’s accuracy loss. We were

unable to perform ablations across parameters and models, meaning the independent effect of each
mechanism was not isolated. Future work could address these issues, evaluating over a larger set of
models, architectures, attacks, benchmarks, and sizes, while ablating each parameter to find optimal
configurations.

References

[1] DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning. 2025. URL https://arxiv.org/abs/2501.12948,

[2] Xingyu Zheng, Yuye Li, Haoran Chu, Yue Feng, Xudong Ma, Jie Luo, Jinyang Guo, Haotong
Qin, Michele Magno, and Xianglong Liu. An empirical study of qwen3 quantization, 2025.
URL https://arxiv.org/abs/2505.02214.

[3] Svamp dataset on huggingface. URL https://huggingface.co/datasets/ChilleD/
SVAMP.

[4] Zhiwei Zhang, Fali Wang, Xiaomin Li, Zongyu Wu, Xianfeng Tang, Hui Liu, Qi He, Wenpeng
Yin, and Suhang Wang. Catastrophic failure of llm unlearning via quantization, 2025. URL
https://arxiv.org/abs/2410.16454|

[5] Kazuki Egashira, Mark Vero, Robin Staab, Jingxuan He, and Martin Vechev. Exploiting 1lm
quantization, 2024. URL https://arxiv.org/abs/2405.18137.

[6] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. LIm.int8(): 8-bit matrix
multiplication for transformers at scale. In NeurIPS, 2022. URL https://arxiv.org/abs/
2208.07339.

[71 W.R. Bennett. Spectra of quantized signals. Bell System Technical Journal, 1948. doi: 10.
1002/5.1538-7305.1948.tb01302.x. URL https://ia802906.us.archive.org/31/items/
bstj27-3-446/bstj27-3-446_text.pdf,

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805,

[9] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep
self-attention distillation for task-agnostic compression of pre-trained transformers, 2020. URL
https://arxiv.org/abs/2002.10957.

[10] Evgenii Ofitserov, Vasily Tsvetkov, and Vadim Nazarov. Soft edit distance for differentiable
comparison of symbolic sequences, 2019. URL https://arxiv.org/abs/1904.12562,

[11] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert, 2020. URL https://arxiv.org/abs/1904.09675.

[12] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems?, 2021. URL https://arxiv.org/abs/2103.07191,

[13] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-
training quantization for generative pre-trained transformers. In /CLR, 2023. URL https:
//arxiv.org/abs/2210.17323,

[14] JiLin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for llm compression and acceleration. In NeurIPS, 2023. URL https://arxiv.org/abs/
2306.00978.

[15] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In ICML, 2023. URL https://arxiv.org/abs/2211.10438.

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2505.02214
https://huggingface.co/datasets/ChilleD/SVAMP
https://huggingface.co/datasets/ChilleD/SVAMP
https://arxiv.org/abs/2410.16454
https://arxiv.org/abs/2405.18137
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://ia802906.us.archive.org/31/items/bstj27-3-446/bstj27-3-446_text.pdf
https://ia802906.us.archive.org/31/items/bstj27-3-446/bstj27-3-446_text.pdf
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2002.10957
https://arxiv.org/abs/1904.12562
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2103.07191
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2211.10438

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
In NeurlIPS, 2022. URL https://arxiv.org/abs/2206.01861.

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard
Grisenthwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellem-
pudi, Stuart Oberman, Mohammad Shoeybi, Michael Siu, and Hao Wu. Fp8 formats for deep
learning, 2022. URL https://arxiv.org/abs/2209.05433.

Ingemar J. Cox, Joe Kilian, F. Thomson Leighton, and Talal Shamoon. Secure spread spectrum
watermarking for multimedia. IEEE Transactions on Image Processing, 6(12):1673-1687,
1997. doi: 10.1109/83.650120. URL https://www.ee.columbia.edu/ ywang/MSS/HW2/
CoxSpectrumWatermarking.pdf.

Art of Problem Solving. Aime problems and solutions. URL https://
artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training, 2019. URL https://arxiv.org/abs/
1908.04319.

Minerva M. Yeung and F. Mintzer. An invisible watermarking technique for image verifi-
cation. In Proceedings of the IEEE International Conference on Image Processing (ICIP),
volume 1, pages 680-683, 1997. URL https://www.researchgate.net/publication/
220050418_Invisible_watermarking_for_image_verification.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
through weight equalization and bias correction. In ICCV, pages 1325-1334, 2019. URL
https://arxiv.org/pdf/1906.04721,

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks
into deep neural networks. In Proceedings of the 2017 ACM on International Conference on
Multimedia Retrieval, ICMR 17, page 269-277. ACM, June 2017. doi: 10.1145/3078971.
3078974. URL http://dx.doi.org/10.1145/3078971.3078974.

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning
your weakness into a strength: Watermarking deep neural networks by backdooring. In
USENIX Security, pages 1615-1631, 2018. URL https://www.usenix.org/system/
files/conference/usenixsecurity18/sec18-adi.pdf.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin, Heqing Huang, and
Ian Molloy. Protecting intellectual property of deep neural networks with watermarking. In
Proceedings of the 2018 ACM Asia Conference on Computer and Communications Security
(ASIACCS), pages 159-172, 2018. doi: 10.1145/3196494.3196550. URL https://gzs715,
github.io/pubs/WATERMARK_ASTACCS18.pdf.

https://arxiv.org/abs/2206.01861
https://arxiv.org/abs/2209.05433
https://www.ee.columbia.edu/~ywang/MSS/HW2/CoxSpectrumWatermarking.pdf
https://www.ee.columbia.edu/~ywang/MSS/HW2/CoxSpectrumWatermarking.pdf
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://arxiv.org/abs/1908.04319
https://arxiv.org/abs/1908.04319
https://www.researchgate.net/publication/220050418_Invisible_watermarking_for_image_verification
https://www.researchgate.net/publication/220050418_Invisible_watermarking_for_image_verification
https://arxiv.org/pdf/1906.04721
http://dx.doi.org/10.1145/3078971.3078974
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-adi.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-adi.pdf
https://gzs715.github.io/pubs/WATERMARK_ASIACCS18.pdf
https://gzs715.github.io/pubs/WATERMARK_ASIACCS18.pdf

A Appendix

A.1 Detailed Discussion of algorithms.
A.2 Preliminaries: where reparameterizations can cancel exactly

Consider a standard pre-norm transformer block with hidden size d, h heads (per-head width dj, =
d/h), and MLP expansion d:

t' =2+ MHA(LNy(2)); 2% =2’ + MLP(LNy(z')),

. T
MHA (u) = W, Concat(Hy,...,Hy), H;=P;V;, P;= SoftmaX(Q\J/%),

Q=Wyu, K=Wiu, V=W,u; MLP(v)=Wiown ng(Wupv) (gated variants supported).

We exploit three “safe” loci where exact cancellation is possible without modifying runtime:

1. Intra-weight factorization: represent a linear map W € R™*" as W = (US~1)(SV)
for any invertible S € R"*" acting in a channel subspace exposed by a grouping of
columns/rows (e.g., per-head or per-group). We overwrite the single tensor W' by left/right-
folding S~', S into adjacent weights that share that subspace (Section .

2. Attention invariances: for any diagonal, positive scaling I' € R% X9 applied consistently
to Q and K as Q + QT and K + KI'~!, the logits QK " /\/d}, are unchanged. Any
resulting scaling of V' can be algebraically cancelled inside W, (Section[A.5). Orthogonal
per-head transforms preserve dot products as well.

3. Spread-spectrum cancellation: low-energy, structured residuals R injected in two locations
that linearly sum in BF16 can be arranged to cancel to (near) zero before a nonlinearity
when computed at high precision; rounding disrupts the cancellation (Section[A.4).

All operations are conducted within numeric safety rails so that BF16 ranges and Lo norms remain
close to baseline, ensuring the reparameterized BF16 model reproduces original behavior within
machine roundoff.

A.3 Mechanism A: keyed ill-conditioning and error amplification

Post-training quantization approximates a weight W by W= Qy(W) where Qy, is a (blockwise)
low-bit operator with affine scaling and clipping [7, (13| [14]]. We inflate sensitivity with minimal
change to BF16 behavior by inserting canceling factors in a shared channel subspace.

Construction. For a linear W € R™*™ acting on groups (e.g., per-head columns), choose a
groupwise, diagonal D,, = diag(A1,...,Ay) with cond(D,;) = and a fixed orthogonal mixer H

(e.g., Hadamard on the group). Define S = HD,.H ". For any adjacent linear IV that consumes the
same channel space (e.g., W, after head concat, or Wqown after Wy, when gating exposes a linear
bypass), rewrite
W — W' =WS§, W — W =85"1w.

AtBF16, W' W' ~ WW, so function is preserved. Under PTQ, blockwise rounding/clipping acts
separately on W/ and W, their errors are amplified by x asymmetrically and then fail to cancel.
We apply this to (i) attention’s W, and the next consumer in the same d-dim space, and (ii) MLP
pathways where a linear bypass exists (details below). A per-layer schedule picks modest « (e.g.,
28-32 on selected layers) and k=1 elsewhere to keep BF16 drift negligible.

Implementation specifics.

* Where: attention output space (after head concat, dim d). We partition into groups of size
g = 128 and build S per group; S is folded into W, (right-multiply) and into the next d x d
consumer (left-multiply). For Qwen, we respect fused-gkv layouts when mapping tensors.

* How strong: per-layer xy € {1} U [Kmin, Kmax] With spacing constraints, concentrating on
an arbitrary layer band (e.g., we use all layers), leaving a few layers at k=1 for minimized
drift and unpredictability.

* Why BF16 is intact: the algebraic product in the same channel space is preserved; we
enforce range caps to avoid overflow and keep [|S||2||S ~!||2 within BF16 comfort.

A.4 Mechanism B: fragile, low-rank residue encodings

Idea. Inject paired, low-rank residues in locations that sum linearly at high precision so they cancel
in BF16, but survive after rounding. This mirrors fragile watermarking: tiny, phase-locked signals
vanish under faithful processing but flip under lossy operations [18} 21]].

Construction. For a target linear W € R™*" and its canceling partner W in the same residual
branch, draw an orthonormal U € R™*" and V' € R"*" (small rank r € {2,4,8}) from a fixed
mixer (Hadamard rows/cols) and phases. Add

W W+eUVT, W+ W-—eUVT,

with tiny € (e.g., € € [6x 1073, 1072]) and heterogeneous per-layer scaling. In BF16, the two terms
cancel along the linear path; after PTQ, rounding destroys the phase lock, yielding coherent biases
that appear before sensitive nonlinearities (e.g., pre-norm attention) and distort logits.

Implementation specifics.

* Where: attention (W, pair) and MLP (Wqown Vs. a paired route in gated MLPs). Residues
are aligned with groups/heads to maximize post-PTQ bias coherence.

* How strong: r = 2 is typically sufficient; e, heterogeneous by layer (e.g., applied every N
layers inside the band), which empirically avoids BF16 drift while remaining PTQ-fragile.

* Why BF16 is intact: residues cancel in the same accumulation path; numeric rails keep
magnitudes below BF16 sensitivity.

A.5 Mechanism C: dynamic scaling traps in attention

Idea. Modern PTQ stabilizes activations via per-channel/group scaling and cross-layer equalization
[22,[15]. We introduce rare, algebraically reversible "needles" large per-head scaling that preserves
performance at BF16 but forces PTQ into a no-win trade-off: either clip the needles, introducing
noisy bias, or expand ranges and hurt other groups.

Construction. Select a small fraction p = 0.0625 of heads/groups in a layer band and apply a
diagonal scale I in the attention inner product that cancels analytically:

Q<+ QI', K<+ KI'' V<V, W,< W,block_diag(T™!),

so that logits QK T and BF16 outputs are preserved. We choose most I' from a mild range (e.g.,
24-50) and add a few spikes (e.g., 4 with " € [256, 512]) at random heads. These are algebraically
canceled by the W, update at BF16 but dramatically worsen the condition for PTQ’s per-group
scaling and clipping, especially when spikes are sparse.

Implementation specifics.
* Where: per-head/per-group in attention; we edit Wy, Wy, W, accordingly (respecting
fused-qgkv layouts).

* How strong: a handful of spikes in the layer band (e.g., 4 spikes) plus mild scaling on
others.

« Why BF16 is intact: attention logits are largely invariant to (QT', KI'"1), and the W,
compensation restores the output scale.

	Introduction
	Related Work
	Methodology
	Mechanism-level Sketches
	Pseudocode

	Experimental protocol
	Results
	AIME24: BF16 behavior preservation
	SVAMP: Encrypted+PTQ models collapse while Original+PTQ retain accuracy
	Summary of findings

	Limitations and Future Work
	Appendix
	Detailed Discussion of algorithms.
	Preliminaries: where reparameterizations can cancel exactly
	Mechanism A: keyed ill-conditioning and error amplification
	Mechanism B: fragile, low-rank residue encodings
	Mechanism C: dynamic scaling traps in attention

