
Adaptive Sampling for Efficient Softmax
Approximation

Tavor Z. Baharav†
Eric and Wendy Schmidt Center

Broad Institute
Cambridge, MA, 02142

baharav@broadinstitute.org

Ryan Kang†
Department of Computer Science

Stanford University
Stanford, CA 94305

txryank@stanford.edu

Colin Sullivan†
AI Division

Software Engineering Institute
Pittsburgh, PA 15213

csullivan@sei.cmu.edu

Mo Tiwari
Department of Computer Science

Stanford University
Stanford, CA, 94305

motiwari@stanford.edu

Eric Luxenberg
Gridmatic

Cupertino, CA 95014
eric@gridmatic.com

David Tse
Department of Electrical Engineering

Stanford University
Stanford, CA 94305

dntse@stanford.edu

Mert Pilanci
Department of Electrical Engineering

Stanford University
Stanford, CA 94305

pilanci@stanford.edu

Abstract

The softmax function is ubiquitous in machine learning and optimization appli-
cations. Computing the full softmax evaluation of a matrix-vector product can
be computationally expensive in high-dimensional settings. In many applications,
however, it is sufficient to calculate only the top few outputs of the softmax func-
tion. In this work, we present an algorithm, dubbed AdaptiveSoftmax, that
adaptively computes the top k softmax values more efficiently than the full softmax
computation, with probabilistic guarantees. We demonstrate the sample efficiency
improvements afforded by AdaptiveSoftmax on real and synthetic data to cor-
roborate our theoretical results. AdaptiveSoftmax yields > 10x gain over full
softmax computation on most datasets, yielding up to 30x improvement for Mis-
tral7B evaluated on the Wikitext dataset. The adaptive method we propose for
estimating the partition function (the softmax denominator) is of independent
interest and can be used in other applications such as kernel density estimation.

1 Introduction

The softmax function appears in many different fields and applications. It is often used in multiclass
classification problems, as the final operation in a neural network to obtain a probability distribution
over classes, in reinforcement learning to obtain a probability distribution over possible actions, and
in statistical mechanics to derive various thermodynamic quantities.

In machine learning applications, the softmax function often appears as the final operation in
classification models and in attention layers. Crucially, the softmax function takes a vector of weights

†denotes equal contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

as input and returns a probability distribution defined by those weights. Formally, the softmax
function for a given temperature parameter β ∈ R is defined as:

σβ(µ)i =
eβµi∑
j e
βµj

. (1)

where µ ∈ Rn is the input vector of weights, also referred to as the logits. Usually, the logits are
the result of a matrix-vector product (e.g., in a fully connected layer where the softmax is used as
the nonlinear activation function). The output of the softmax function (Equation 1) is a probability
distribution that is a “soft” version of the max operator that is differentiable with respect to the
logits. The softmax function can thus be used in gradient-based algorithms as a proxy for the
non-differentiable max function.

Intuitively, the temperature parameter β controls the peakiness of the softmax output. A larger β
corresponds to a peakier distribution and a “harder” max. The choice of β = 1 corresponds to the
canonical softmax function σ, and the choice of β = ∞ corresponds to the “hard” argmax. The
denominator of Equation (1),

∑
j e
βµj , is called the partition function and is denoted by Zβ .

The softmax function is critical in many popular, recent machine learning applications like large
language models (LLMs). However, it can present a computational bottleneck in high-dimensional
applications. During the training of neural networks, for example, each training example x requires
the computation of the softmax function σβ(x), the partition function Zβ(x), and their gradients.
During inference of these models, the number of possible labels for next-token prediction corresponds
to the vocabulary size, which can be in the hundreds of thousands for common languages such as
English. As such, there has been significant recent interest in accelerating the computation of the
softmax function and its derivatives [37, 14, 15].

Key Observations: In many applications, we are only interested in identifying the top few outputs of
the softmax function; in these settings, it is unnecessary to compute the smaller entries. This suggests
that some of the computation of the full softmax function may be unnecessary and motivates our study.
First, we observe that when the input vector to the softmax function is the result of a matrix-vector
product, we can approximate the intermediary computation instead of exactly computing it. This,
in turn, allows us to approximate the output of the softmax function and converts the problem of
computing the softmax function from a computational one to a statistical one. We also note that
the softmax output is heavily influenced by the largest input elements which suggests that we can
allocate computation adaptively to larger input elements to estimate them with greater certainty. This
procedure is inspired by recent work in multi-armed bandits that converts computational problems to
statistical ones [4].

Outline: We begin this study with a summary of related work in Section 2. In Section 3, we formalize
the reduction of computing the softmax function to a statistical estimation problem. In Section 4, we
propose the AdaptiveSoftmax algorithm based on this reduction. In the same section, we provide
probably approximately correct (PAC) guarantees for AdaptiveSoftmax and prove that it is more
efficient than brute force computation. Crucially, AdaptiveSoftmax allocates greater computational
resources towards important output values. In Section 5, we demonstrate the empirical advantages of
our algorithm in several real-world applications, including in a multiclass classification setting and in
large language models. In Section 6, we conclude with a discussion of further applications, potential
limitations, and directions for future work.

2 Related Work

Recent work has identified the computational complexity of the softmax function as a significant
bottleneck in recent machine learning applications [37]. Well before the attention revolution, [36]
proposed methods to accelerate softmax computation via a hierarchical model. In their work, a binary
tree representing possible outputs as leaves is used and, at each step, the model must predict which
path to traverse to a leaf. For a balanced tree with n leaves, the computational complexity of the
softmax function is reduced to O(log n) from O(n), at the expense of O(n) internal classifiers and
providing only an approximate output dictated by the quality of the clustering. Google’s word2vec
models used Huffman trees instead of vanilla binary trees in a similar tree-based approach [37]. Other
approaches include target sampling, noise contrastive estimation and self normalization (summarized
[14]), but all of these methods reduce the complexity in terms of the vocabulary size n, rather than

2

by the dimension d. Additionally, our proposed algorithm provides direct PAC guarantees on the
original softmax output, instead of approximating the softmax in a sequence of steps without provable
accuracy guarantees. Independently, some works have developed fast methods to approximate the
softmax gradients during training by using importance sampling over the classes, improving scaling
with respect to n [11, 10] leading to a sampled softmax. This is in contrast with AdaptiveSoftmax
, which utilizes importance sampling in an orthogonal direction to subsample the features efficiently,
enabling gains in d at both train and test time. These sampled softmax methods were later specialized
to kernel-based sampling, resulting in provably bounded bias [12, 38]. However, these and other
optimized methods [23] typically require prior knowledge about the desired output label frequencies,
leaving them susceptible to phenomena like distribution shift between training and inference data,
where the frequency distribution changes at the time the model is evaluated. Unlike these approaches,
AdaptiveSoftmax does not require auxiliary knowledge, is adaptive on a per instance basis, and
provides provable guarantees for the true softmax computation directly rather than a proxy.

Our algorithm is inspired by adaptive sampling techniques from the multi-armed bandit literature.
Randomized algorithms based on multi-armed bandit algorithms have seen a surge of recent work,
due to their ability to provide instance-adaptive guarantees for a variety of problems. This idea was
first formalized in the specific case of Monte Carlo Tree Search [26] and later studied in the context
of hyper-parameter tuning [31]. Recent work has formalized this approach into the framework of
Bandit-Based Monte Carlo Optimization [4], where the computational task is reduced to one of
statistical estimation that is solved efficiently with adaptivity. Applications of this framework include
finding the medoid of a dataset [5, 7, 41], k-nearest neighbor graph construction [30, 34], Monte
Carlo permutation-based multiple testing [46], and an adaptive singular value decomposition (SVD)
[24]. Most relevant is the recent work of [8], where the authors provide a general framework for
adaptive sampling to approximate function evaluation at unknown but estimable points. This work
provides general guarantees, but requires a bound on the Lipschitz factor of the function’s gradients
as input and has potentially poor performance on specific function classes due to its generality.

A sub-problem in our softmax approximation is identifying the index of the largest component; this
is equivalent to the Maximum Inner Product Search (MIPS) problem on the preceding matrix-vector
product. MIPS is a common problem that has inspired many directions of research [22, 32]. Many of
these algorithms focus on specific use cases and place restrictive assumptions on the data (e.g., that
all elements of the matrix-vector product are positive), require preprocessing, are not adaptive to the
underlying data distribution, or lack PAC guarantees. One large family of MIPS algorithms are based
on locality-sensitive hashing (LSH) [19, 2]. In addition to significant preprocessing overhead and
practical implementation issues, a shortcoming of these LSH-based approaches is that the maximum
dot product is often small compared to the vector norms in high dimensions, which necessitates many
hashes and significant storage space (often orders of magnitude more than the data itself). Promising
LSH-based algorithms have recently been applied to the problem of softmax computation [1, 15].
These methods focus on intensive preprocessing and work primarily by attaining gains in terms of n.
In contrast, AdaptiveSoftmax subsamples matrix-vector products and obtains gains with respect
to d. Furthermore, AdaptiveSoftmax provides an instance-adaptive algorithm with no required
preprocessing and still has PAC guarantees.

3 Problem Formulation

In this work, we focus on the problem of identifying the k largest entries of the softmax of an input
vector that is the result of a computationally expensive matrix-vector multiplication. Specifically, we
analyze the setting where the input vector µ is the result of a matrix vector product Ax, as is common
in the final linear layer of neural networks (such scenarios frequently arise in other machine learning
problems as well [4]). Our objective is to design an algorithm that can with probability at least 1− δ
estimate the top k values to multiplicative accuracy ε, where ε and δ are given input parameters.
For clarity of exposition, we focus on the case of k = 1, i.e., identifying and estimating the largest
component. All our theoretical results, however, easily extend to the setting k > 1 (discussed in
Section 4.2).

Notation: We use [n] to denote the set {1, 2, . . . , n} and ∥ · ∥ to denote the vector ℓ2 norm, unless
otherwise specified. We use ∥ · ∥Ψ2 to denote the Orlicz norm (i.e., the sub-Gaussianity parameter
or variance proxy) of a random variable; this is discussed in greater detail in Appendix A.2 [44].
For matrix A and vector x, we denote the resulting product as µ = Ax. Assuming for notational

3

simplicity that the arms are in sorted order µ1 > µ2 ≥ . . . µn, we define the gaps between the
entries of µ as ∆i = µ1 − µi. We use the convention from the best-arm identification literature
that ∆1 = ∆2 and assume that ∆2 > 0 (this assumption is easily relaxed). Furthermore, we define
αi = eβµi and γi = eβµi/2, which are proportional to the optimal first (respectively, second) order
sampling frequencies; these are discussed further in Section B.2. Finally, we define p as the softmax
output, and i∗ as its largest entry (assumed to be unique), i.e.,

σβ(Ax) = p, i∗ = argmax
i∈[n]

pi.

Our goal is to design an algorithm which efficiently outputs the best index i∗ and an estimate its
value where, with probability at least 1− δ, the best index is correct and the estimated value is within
a factor of ϵ multiplicative accuracy. Mathematically, defining the algorithm’s outputs as î∗ ∈ [n]
and p̂i∗ ∈ [0, 1], we define the success events Eid, Eest where the algorithm identifies the largest
entry, and where it estimates its value to within multiplicative accuracy ϵ. We define the algorithm
as providing (ε, δ)-PAC guarantees if these events happen simultaneously with probability at least
1− δ, with respect to the randomness of the algorithm.

Eid =
{
î∗ = i∗

}
(2)

Eest = {(1− ε)pi∗ ≤ p̂i∗ ≤ (1 + ε)pi∗} . (3)
P (Eid ∩ Eest) ≥ 1− δ (4)

Our objective them becomes to design an algorithm that satisfies Equation (4) and minimizes the
requisite sample complexity.

4 AdaptiveSoftmax Algorithm

We now introduce the AdaptiveSoftmaxAlgorithm, which approximates the output of the soft-
max in Algorithm 1. First, AdaptiveSoftmax approximates the softmax normalization constant
Zβ to a multiplicative accuracy of ϵ/4 via NormalizationEstimation (Algorithm 2). Next,
AdaptiveSoftmax identifies the best arm (or top k arms, depending on the setting) using a standard
multi-armed bandit algorithm, BestArmId (Algorithm 3). In our setting, “arms” correspond to
different rows of A and pulling arm i corresponds to computing a coordinate-wise scalar product
Ai,jxj for some coordinate j (we provide a more formal overview of the best-arm identification
problem and the associated algorithm in Appendix A). Finally, AdaptiveSoftmax estimates the
value of the identified best arm (or top k arms) to a multiplicative accuracy of ϵ/4 by sampling each
arm a sufficient number of times via EstimateArm (Algorithm 10).

We prove (ε, δ)-PAC guarantees for AdaptiveSoftmax by union-bounding over the error prob-
abilities in each step of Algorithm 1. Our results will show that, with probability at least 1 − δ,
AdaptiveSoftmax is able to identify the largest output of the softmax function and estimate its
value to multiplicative accuracy ϵ.

Algorithm 1 Adaptive Softmax
1: Input: Matrix A, vector x, temperature β, error ϵ, failure probability δ, variance proxy σ2

2: Output: p̂i∗ and î∗, highest softmax probability and its index
3: # Estimate denominator of softmax
4: Ẑ ←NormalizationEstimation(A, x, β, ϵ/4, δ/3, σ2)
5: # Compute index of best arm.
6: î∗ ←BestArmId(A, x, δ/3, σ2)
7: # Estimate value of best arm
8: µ̂i∗ ←EstimateArm(Ai∗ , x, ϵ/4, δ/3)
9: p̂i∗ = exp(βµ̂i∗)/Ẑ

10: return p̂i∗ , î∗

These inputs are typical in the multi-armed bandit setting, but the variance proxy σ2 merits additional
discussion. In order for our random-sampling-based approach to succeed, a bound on the rate of

4

Algorithm 2 NormalizationEstimation
1: Input: Matrix A, vector x, temperature β, target error ϵ, failure probability δ, variance proxy σ2

2: Output: Ẑβ , estimate of the partition function
3: Compute µ̂i using T0 = 17β2σ2 log(6n/δ) coordinate samples for each arm

4: Ci ←
√

2σ2 log(6n
δ)

T0

5: α̂i ← eβ(µ̂i−Ci)

6: γ̂i ← eβ(µ̂i−Ci)/2

7: Sample each arm ni = min(ñi, d) times to recompute the estimates µ̂i, where

ñi = β2σ2 max

(
17 log

(
6n

δ

)
,
16
√
2 log

(
6n
δ

) (∑
j γ̂j

)
γ̂i

ϵ
∑
j α̂j

, 16 log

(
12

δ

)
ϵ−2 α̂i∑

j α̂j

)

8: return Ẑβ =
∑
i e
βµ̂i

concentration of the estimators µ̂i is required; the quantity σ2 governs the concentration rate, as we
discuss in Appendix A. In practice, such a bound holds very generally, for example as long as A and
x have bounded entries. For algorithmic simplicity we utilize the following assumption.
Assumption 1. We assume that we are given a variance proxy bound σ2 for the sub-Gaussian
parameters of the constructed estimators:

σ2 ≥ ∥AiJxJ∥Ψ2
∀ i, for J ∼ Unif([n]).

We provide theoretical guarantees for AdaptiveSoftmax under Assumption 1. Recall that we
defined our optimal first and second order sampling frequencies αi = eβµi and γi = eβµi/2 (see
Appendix B.2). We first show in Proposition 1 that our softmax normalization estimation algorithm
(Algorithm 2) obtains the desired guarantees.
Proposition 1. For input ε ∈ (0, 1/2), δ ∈ (0, 1), and σ satisfying Assumption 1, Algorithm 2 will,
with probability at least 1 − δ, estimate Zβ =

∑
j e
βµj to a multiplicative accuracy of ϵ. On this

success event, Algorithm 2 requires at most

Cβ2σ2

n log (n
δ

)
+ log

(n
δ

)∑
j

γj

2ϵ∑
j

αj

−1

+ log

(
1

δ

)
ε−2


samples for some absolute constant C, where non-asymptotic bounds with numerical constants are
provided in Appendix B.

With the sample complexity of Algorithm 2 bounded, the complexity of best arm identification and
the cost of estimating the best arm to a target accuracy are readily available from the multi-armed
bandit literature. This enables us to state an overall result for AdaptiveSoftmax (Algorithm 1) in
the following Theorem.
Theorem 1. For input ε ∈ (0, 1/2), δ ∈ (0, 1), and σ satisfying Assumption 1, Algorithm 1 identifies
the largest component in σβ(Ax) and estimates its value to a multiplicative accuracy of ϵ with
probability at least 1− δ, as in (4). On this success event, the algorithm uses T samples where

T ≤ Cσ2

β2n log
(n
δ

)
+

n∑
i=1

log
(
n log d
δ

)
∆2
i

+
β2 log

(
n
δ

) (∑
j γj

)2
ϵ
∑
j αj

+
β2 log(1/δ)

ε2

 ,

for some absolute constant C. Tighter bounds with non-asymptotic numerical constants are provided
in Appendix B.

The proofs of these two results are detailed in Appendix B; we provide some intuition and brief
sketches of the proofs here.

5

For Proposition 1, we first show that we can estimate the quantities {αi}, {γi}, to constant multi-
plicative error with high probability. This allows us to construct a sampling scheme based off of
the asymptotically optimal sampling frequencies, and guarantee that each arm is sampled at least
half of what this asymptotically optimal frequency requires. Then, sampling each arm i enough so
that the first order Taylor expansion of eβµ̂i is sufficiently accurate, we can sample further according
to these determined frequencies to guarantee PAC estimation. This is an improved and specialized
modification of [8] that exploits the structure of the softmax function to remove the assumption of
Lipschitz gradients and yield improved sample complexity (this is discussed further in Appendix B.3).

Next, we utilize a classical best-arm identification algorithm to identify the best arm with high
probability, leveraging standard results in Bandit-Based Monte Carlo Optimization [6]. Finally, we
sample the identified best arm enough times to estimate its value to multiplicative accuracy ϵ/4 with
high probability. By union bounding over these error probabilities, we achieve the desired PAC
guarantees.

4.1 Interpreting Theoretical Results

We now simplify and further interpret the sample complexity results in Theorem 1. First, note that the
ε−2 dependence exhibited by NormalizationEstimation (Algorithm 2) is optimal: it is inherent
even in estimating the mean of the best arm to accuracy ε. The cost stemming from the second order
error, which scales as ε−1, is bounded between β2σ2 log(n/δ)ε−1 and nβ2σ2 log(n/δ)ε−1, where
in the case where one arm is much better than the rest this will match the first term. Concretely, we
analyze the setting where the minimum gap is ∆, i.e. µ1 − µi = ∆i ≥ ∆ for all i.
Corollary 1. Under the conditions of Theorem 1, when the minimum gap is at least ∆, Algorithm 1
identifies and provides (ε, δ)-PAC estimation (Equation (4)) of the largest softmax entry, using

T ≤ C

(
β2σ2 log

(n
δ

)(
n+

ε−1n2

n+ eβ∆

)
+ β2σ2ε−2 log(1/δ) + nσ2 log

(
n log d

δ

)
∆−2

)
samples for some universal constant C. In the case where the gap is large (∆ ≥ 2

β log n), β is not
too small, and d < ee

n

(see Equation (47) for precise statement), this can be simplified to

T ≤ Cβ2σ2
(
log
(n
δ

) (
n+ ε−1

)
+ ε−2 log(1/δ)

)
.

where all sample complexities are for the 1− δ success event.

The proof of this upper bound is in Appendix B.1. Note that this directly implies that when the gap is
large (i.e. there is a clear largest output element) and ε is constant, the sample complexity is nearly
linear in n and is upper bounded by Cβ2σ2n log(n/δ).

4.2 Implementation details and extensions

There are many techniques that we can use to extend and improve AdaptiveSoftmax in practice.
We discuss changes from the written algorithm in detail in Appendix C.

Randomized Hadamard Transformation: The variance-proxy bound σ2 of the arms plays a large
factor in the AdaptiveSoftmax algorithm’s sample complexity. The underlying sub-Gaussianity
parameter of these estimators can be improved using techniques from randomized numerical linear
algebra, such as the randomized Hadamard transform [42]. If a small number of entries dramatically
increase the variance of the estimator, then the randomized Hadamard transform will make the
coordinates more uniform. We provide theoretical guarantees for this approach in Appendix A.3.1.

Top-k Identification: Extending our algorithmic results from best arm identification (top 1) to
identifying multiple components (top k) follows directly from existing multi-armed bandit algorithms.
Numerous algorithms have been developed for this setting [21], and variants for computational
settings have been developed and studied in [6]. For simplicity and clarity, we focused on the top
1 identification in this paper, but the top k extension readily follows. Furthermore, in numerical
experiments we observe estimating the normalization constant Zβ dominates the sample complexity,
and the increase in cost from identifying the top k arms and estimating their values to multiplicative
accuracy ε/4 is minimal.

6

Relaxing Assumption of Known sub-Gaussian Parameter σ2: Assumptions regarding known
arm concentration parameters are common in multi-armed bandit works and simplify theoretical
exposition. These results can naturally be extended in several directions. One simple extension is to
the setting where we have a separate sub-Gaussianity parameter σ2

i for each arm, i.e., heterogeneous
variances. A more practical extension is to the setting where we do not have a bound on the sub-
Gaussianity parameter for each arm but know that the arm returns are bounded. In this setting, a
common multi-armed bandit approach is to utilize the empirical variance [35]. These approaches are
discussed further in [8].

Improved Estimators µ̂: Naïvely, the AdaptiveSoftmax algorithm samples coordinates uniformly
at random with replacement from the set of coordinates {1, . . . , d} to estimate each

∑
j Aijxj . This

procedure can be improved in several ways. For example, we may utilize importance sampling and
sample each coordinate with probability zj ∝ |xj |. Furthermore, we can sample coordinates without
replacement; this is known to yield tighter confidence intervals than sampling with replacement [9].
We can combine these techniques and compute the effective variance as in [18]. Sampling without
replacement can be achieved in a computationally efficient manner via Gumbel sampling [27]. We
discuss these details further in Appendix A.3; these details may be of independent interest.

5 Experiments

In this section, we demonstrate the empirical advantages of AdaptiveSoftmax over the brute-force
softmax computation in terms of sample complexity. All of our results are reproducible via a 1-line
script, publicly available on GitHub at github.com/ThrunGroup/adaptiveSoftmax.

5.1 Complexity on Synthetic Data

Crucially, the AdaptiveSoftmax algorithm scales sublinearly in d. More precisely, Corollary 1
implies that, for fixed ε and δ, the sample complexity of the AdaptiveSoftmax algorithm scales as
O(n log n). We now empirically validate this behavior.

We first run the AdaptiveSoftmax algorithm on two synthetic datasets. In each dataset, we generate
A and x with n = 100 and vary d.

In the first synthetic dataset, we set x to be a d-dimensional vector of all 1s. We draw each element
of A i.i.d.∼ N (0, 1) and add the vector of all 1s to the first row of A, thereby planting a signal. In
expectation, the first row of A will have inner product d with x whereas all other rows will have inner
product 0 with x. Furthermore, all arms have expected variance σ2

i that scales with d.

10k 20k 30k 40k 50k 60k 70k 80k 90k
Dimension d

106

107

Sa
m

pl
e

co
m

pl
ex

ity

naive
AdaptiveSoftmax

(a) Scaling Baseline: All-Ones Query

10k 20k 30k 40k 50k 60k 70k 80k 90k
Dimension d

105

106

107

Sa
m

pl
e

co
m

pl
ex

ity

naive
AdaptiveSoftmax

(b) Scaling Baseline: Sign Query

Figure 1: Sample complexity of the AdaptiveSoftmax algorithm and the brute-force softmax
computation on two different synthetic datasets as a function of d. Error bars are obtained from 100
random trials. The sample complexity of the AdaptiveSoftmax algorithm scales with respect to d
for (a) but does not for (b), as expected. The average gains for δ = 10% and ε = 30% are 3.953×
for (a) and 29.039× for (b), increasing with increasing dimension. Confidence intervals are 1std.

In the second synthetic dataset, we draw each element of A i.i.d.∼ N (0, 1) and set x to be |A1,:|, the
entrywise absolute value of the first row of A. Here, arms have expected variance σ2

i = Θ(1).

7

github.com/ThrunGroup/adaptiveSoftmax

Figures 1(a) and 1(b) demonstrates the scaling of the AdaptiveSoftmax Algorithm on each of the
two datasets. On the first synthetic dataset, the AdaptiveSoftmax algorithm scales with d because
the variance proxies σ2

i do. On the second synthetic dataset, the AdaptiveSoftmax algorithm
does not exhibit significant scaling with d. On both datasets, the AdaptiveSoftmax algorithm
significantly outperforms the naïve brute-force computation of the softmax function.

5.2 Multinomial Logistic Regression

Multinomial logistic regression (MNL) is a form of multiclass classification in which the final
operation performed by the classifier is of the form:

P (y = c) =
eβ(w

⊤
c h(x))∑C

c′=1 e
β(w⊤

c′h(x))
(5)

i.e., the probabilities that datapoint x belongs to each class c is given by the softmax applied to the
vector Wh(x), where W is the matrix containing rows w1, . . . , wc and h(x) is a latent representation
of x (i.e., the forward pass of some neural network on x).

The multinomial logistic regression is naturally amenable to accelerated softmax computation in
Equation (5). In many real-world settings, both the number of classes C and the dimension of the
latent representation h(x) (and therefore the dimensionality of each wc) can be very large, motivating
the usage of AdaptiveSoftmax to identify and estimate the probability of the most likely class.
However, the application of AdaptiveSoftmax extends far past vanilla MNL. For instance, the final
layer of any neural network classifier utilizing softmax can also be viewed as an MNL problem. We
now provide several such practical settings for which we demonstrate the benefits of applying the
AdaptiveSoftmax algorithm.

5.3 AdaptiveSoftmax Performance on Real Data

We now demonstrate the performance of the AdaptiveSoftmax algorithm on several real-world
datasets. For each setting, we provide the sample complexity gain relative to the sample complexity
of the brute-force, naïve softmax computation sample complexity nd. We also provide the success
rate of our algorithm in each setting, i.e., the proportion of times the AdaptiveSoftmax algorithm
correctly identifies the maximum likelihood output (i.e. î⋆ = i⋆) and estimates its probability pi⋆
within a multiplicative error of ε = 30%.

5.3.1 Application to CNNs

We consider the application of AdaptiveSoftmax to CNN classifiers on two distinct image classifi-
cation datasets:

1. The MNIST dataset, containing black and white images of handwritten digits as input and
ten output classes representing all ten possible digits.

2. The EuroSAT dataset, containing RGB satellite imagery as input and ten output classes,
representing possible land types (e.g., river, residential, etc)

On both of these datasets and for distinct architectures, we show that AdaptiveSoftmax provides a
drastic improvement in sample efficiency.

MNIST For the MNIST dataset, we train a shallow CNN from scratch with two convolutional
blocks (Conv2d, ReLu, MaxPool, BatchNorm). This model achieves over 99% accuracy on the test
set. The matrix A is obtained by extracting the weight matrix of the model’s final linear layer. The
vector x is extracted as the output of the final hidden layer (the layer before the final linear layer)
constructed by passing the MNIST image through the trained model and flattening the result. The
dimensionality of x is adjusted by changing the number of output channels of the convolution blocks.
The sample complexity of our algorithm is measured by running the algorithm on 1000 different
images in test set with same matrix A. The empirical error rate δ is calculated as the fraction of
experiments where the adaptive algorithm fails to identify the same class, or fails to estimate the
probability to accuracy ϵ, as assigned by exact computation.

8

EuroSAT We also utilize a larger pre-trained CNN classifier fine-tuned on the EuroSAT dataset, to
show that AdaptiveSoftmax works with larger more sophisticated CNNs. Specifically, we freeze
all convolution blocks of VGG-19 (pretrained on ImageNet) and changed the final output dimension
to 10 classes for EuroSAT without freezing the weights. The resulting model achieves 92% accuracy
on the test set. As before, the matrix A can be extracted from the weights of the final linear layer and
the vector x represents the final hidden layer activations. The empirical error rate δ is calculated in
the same manner as for MNIST.

Dataset (Model) δ = 10% δ = 5% δ = 1%
EuroSAT (VGG-19) 5.18x (80.62%) 5.16x (83.00%) 4.54x (98.37%)
MNIST (Shallow CNN) 8.95x (92.25%) 8.81x (93.75%) 8.13x (99.38%)

Table 1: Performance improvement and success rate afforded by AdaptiveSoftmax for multinomial
logistic regression on two different real-world datasets. We used a total of q = 800 test queries to
measure success rate.

5.3.2 Application to LLMs

We also apply the AdaptiveSoftmax algorithm to LLMs using HuggingFace’s
AutoModelForCausalLM module for the task-generation task [45]. The matrix A is the
lm-head layer for each model, and the queries x are the final hidden states of the model that is
extracted by running a forward pass of the model on the given dataset with a window moving at a
certain stride. The context window and stride is modified to generate a desired number of queries.

Dataset (Model) δ = 10% δ = 5% δ = 1%
Wikitext (GPT-2) 8.25x (88.94%) 7.80x (93.54%) 6.67x (98.26%)
Wikitext (Llama3-7B) 14.68x (91.44%) 11.43x (94.04%) 6.88x (99.38%)
Wikitext (Mistral7B) 32.65x (89.08%) 26.37x (91.20%) 17.71x (97.77%)
Penn Treebank (GPT-2) 8.10x (81.68%) 7.50x (90.73%) 6.66x (96.79%)
Penn Treebank (Llama3-7B) 19.18x (87.82%) 16.57x (91.60%) 10.72x (97.81%)

Table 2: Performance improvement and success rate afforded by AdaptiveSoftmax for LLM
inference (improvement for final softmax layer). Experiment details in Section 5.3.2. We used
q = 1000 unseen test queries to measure δ-accuracy.

Our matrix A is the extracted lm-head from HuggingFace’s AutoModelForCausalLM for the four
models: GPT-2 (n = 50257, d = 768), Llama3-7B (n = 128256, d = 4096), Mistral7B (n =
32000, d = 4096), and Gemma7B (n = 256000, d = 3072). Our task is task-generation, and we
generate our queries x by using two datasets (Wikitext and Penn Treebank) with a sliding window of
certain stride. Stride and context window is set to get q = 1000 number of queries. Constants and
confidence intervals given by theory are empirically quite loose, so we tuned algorithm parameters
(constant coefficients for stage length and confidence interval width) on initial training data, described
in Appendix C. An aggressive tuning strategy was undertaken in order to demonstrate the potential
gains in sample complexity provided by AdaptiveSoftmax . Specifically, constant multiples were
applied to variance estimate within Algorithm 3 and Algorithm 2. Due to the limited sample set, this
approach occasionally overoptimized the constants on training data, yielding lower success rates than
targeted. However, from the results, it is clear that this target parameter still provides users sufficient
control over the tradeoff between true success rate and sample complexity.

6 Discussion, Limitations, and Future Work

In this work, we proposed a theoretically novel and practically efficient algorithm for approximating
the softmax function. We provided theoretical guarantees on the accuracy of our approximation and
demonstrated that, with fewer samples than exact computation, we can approximate the softmax
function to the desired accuracy. We further demonstrated the viability of our proposed algorithm in
two real-world settings, multinomial logistic regression and LLM inference.

A potential limitation of our proposed algorithm is that it is most beneficial when the inner dimension
of the matrix vector product is high dimensional; its benefits over exact computation are more modest

9

when the inner dimension is small. In particular, the exact computation of the matrix-vector product
preceding a softmax operation is usually performed efficiently using BLAS (Basic Linear Algebra
Subroutines, which are highly optimized). Adaptivity at its core is inherently sequential, whereas
BLAS operations take advantage of batch computation. In this work we proposed minimally adaptive
algorithms, with only a logarithmic number of rounds of adaptivity, but there are important directions
of future work to realize these theoretical gains in practice.

Limitations: Theoretical sample complexity bounds are useful for understanding the fundamental
properties of an algorithm, but in practice, wall-clock time is often the metric of interest. Many of
the steps in our algorithm can be batched and made BLAS efficient, yielding comparable wall clock
times to brute force computation. However, in general adaptivity is the opposite of batching, as can
be seen when we modify our algorithm to adapt to arm specific variances. In this case, we must
sample each arm individually, as the number of samples required for each arm is different. This is a
trade-off between adaptivity and wall-clock time, and in practice, the choice of which to prioritize
depends on the specific application (energy efficiency, computational resources, etc.). There are also
possible theoretical analyses, where we can e.g. create batches of arms with similar empirical variance
and sample all arms within a batch together, leading to a trade-off between adaptivity and batched
computational efficiency. Additionally, in large language models, the final softmax layer is often
not a computationally significant step, so while such a method may greatly accelerate multinomial
logistic regression, more work may be required to have this accelerate LLMs.

Given the ubiquity of the softmax function in today’s machine learning workflows, we hope that
our algorithm will help pave the way for an optimized adaptive softmax that can accelerate a wide
class of machine learning models. An interesting direction of future work is trying to combine this
multi-armed bandit approach with LSH [15] to obtain (for the attention case) subquadratic complexity
in n, and sublinear complexity in d. The adaptive method we propose for estimating the normalizing
constant of the softmax function is of independent interest, and holds potential for applications in
kernel density estimation and other machine learning tasks.

Acknowledgements

Mert Pilanci was supported in part by the National Science Foundation (NSF) under Grant DMS-
2134248; in part by the NSF CAREER Award under Grant CCF-2236829; in part by the U.S. Army
Research Office Early Career Award under Grant W911NF-21-1-0242; and in part by the Office of
Naval Research under Grant N00014-24-1-2164. Tavor Baharav was supported by funding from the
Eric and Wendy Schmidt Center at the Broad Institute of MIT and Harvard.

References
[1] Josh Alman and Zhao Song. “Fast attention requires bounded entries”. In: Advances in Neural

Information Processing Systems 36 (2024).
[2] Alexandr Andoni et al. “Practical and optimal LSH for angular distance”. In: Advances in

neural information processing systems 28 (2015).
[3] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. “Exploration–exploitation tradeoff

using variance estimates in multi-armed bandits”. In: Theoretical Computer Science 410.19
(2009), pp. 1876–1902.

[4] Vivek Bagaria et al. “Bandit-Based Monte Carlo Optimization for Nearest Neighbors”. In:
IEEE Journal on Selected Areas in Information Theory (2021).

[5] Vivek Bagaria et al. “Medoids in almost-linear time via multi-armed bandits”. In: International
Conference on Artificial Intelligence and Statistics (2018), pp. 500–509.

[6] Tavor Baharav and Tze Leung Lai. “Adaptive Data Depth via Multi-Armed Bandits”. In:
Journal of Machine Learning Research 24.155 (2023), pp. 1–29.

[7] Tavor Baharav and David Tse. “Ultra fast medoid identification via correlated sequential
halving”. In: Advances in Neural Information Processing Systems 32 (2019).

[8] Tavor Baharav et al. “Approximate Function Evaluation via Multi-Armed Bandits”. In: Inter-
national Conference on Artificial Intelligence and Statistics. PMLR. 2022, pp. 108–135.

[9] Rémi Bardenet and Odalric-Ambrym Maillard. “Concentration inequalities for sampling
without replacement”. In: Bernoulli 21.3 (2015), pp. 1361–1385.

10

[10] Yoshua Bengio and Jean-Sébastien Senécal. “Adaptive importance sampling to accelerate
training of a neural probabilistic language model”. In: IEEE Transactions on Neural Networks
19.4 (2008), pp. 713–722.

[11] Yoshua Bengio and Jean-Sébastien Senécal. “Quick training of probabilistic neural nets by
importance sampling”. In: International Workshop on Artificial Intelligence and Statistics.
PMLR. 2003, pp. 17–24.

[12] Guy Blanc and Steffen Rendle. “Adaptive sampled softmax with kernel based sampling”. In:
International conference on machine learning. PMLR. 2018, pp. 590–599.

[13] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. “Regret analysis of stochastic and nonstochastic
multi-armed bandit problems”. In: Foundations and Trends® in Machine Learning 5.1 (2012),
pp. 1–122.

[14] Wenlin Chen, David Grangier, and Michael Auli. “Strategies for Training Large Vocabulary
Neural Language Models”. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics. 2016, pp. 1975–1985.

[15] Insu Han et al. “HyperAttention: Long-context Attention in Near-Linear Time”. In: arXiv
preprint arXiv:2310.05869 (2023).

[16] Eshcar Hillel et al. “Distributed exploration in multi-armed bandits”. In: Advances in Neural
Information Processing Systems 26 (2013).

[17] Ari Holtzman et al. “The curious case of neural text degeneration”. In: arXiv preprint
arXiv:1904.09751 (2019).

[18] Daniel G Horvitz and Donovan J Thompson. “A generalization of sampling without replace-
ment from a finite universe”. In: Journal of the American statistical Association 47.260 (1952),
pp. 663–685.

[19] Piotr Indyk and Rajeev Motwani. “Approximate nearest neighbors: towards removing the
curse of dimensionality”. In: Proceedings of the thirtieth annual ACM symposium on Theory
of computing. 1998, pp. 604–613.

[20] Andrei Ivanov et al. “Data movement is all you need: A case study on optimizing transformers”.
In: Proceedings of Machine Learning and Systems 3 (2021), pp. 711–732.

[21] Kevin Jamieson and Robert Nowak. “Best-arm identification algorithms for multi-armed
bandits in the fixed confidence setting”. In: Annual Conference on Information Sciences and
Systems. 2014, pp. 1–6.

[22] Hervé Jégou et al. “Searching in one billion vectors: re-rank with source coding”. In: 2011
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
2011, pp. 861–864.

[23] Armand Joulin et al. “Efficient softmax approximation for GPUs”. In: International conference
on machine learning. PMLR. 2017, pp. 1302–1310.

[24] Govinda Kamath, Tavor Baharav, and Ilan Shomorony. “Adaptive learning of rank-one models
for efficient pairwise sequence alignment”. In: Advances in Neural Information Processing
Systems 33 (2020), pp. 7513–7525.

[25] Zohar Karnin, Tomer Koren, and Oren Somekh. “Almost optimal exploration in multi-armed
bandits”. In: International Conference on Machine Learning. 2013, pp. 1238–1246.

[26] Levente Kocsis and Csaba Szepesvári. “Bandit based monte-carlo planning”. In: European
conference on machine learning. Springer. 2006, pp. 282–293.

[27] Wouter Kool, Herke Van Hoof, and Max Welling. “Stochastic beams and where to find
them: The gumbel-top-k trick for sampling sequences without replacement”. In: International
Conference on Machine Learning. PMLR. 2019, pp. 3499–3508.

[28] Tze Leung Lai and Herbert Robbins. “Asymptotically efficient adaptive allocation rules”. In:
Advances in applied mathematics 6.1 (1985), pp. 4–22.

[29] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.
[30] Daniel LeJeune, Reinhard Heckel, and Richard Baraniuk. “Adaptive estimation for approxi-

mate k-nearest-neighbor computations”. In: The 22nd International Conference on Artificial
Intelligence and Statistics. PMLR. 2019, pp. 3099–3107.

[31] Lisha Li et al. “Hyperband: A novel bandit-based approach to hyperparameter optimization”.
In: The Journal of Machine Learning Research 18.1 (2017), pp. 6765–6816.

11

[32] Stephan S Lorenzen and Ninh Pham. “Revisiting wedge sampling for budgeted maximum
inner product search”. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer. 2020, pp. 439–455.

[33] Pinyan Lu, Chao Tao, and Xiaojin Zhang. “Variance-dependent best arm identification”. In:
Uncertainty in Artificial Intelligence. PMLR. 2021, pp. 1120–1129.

[34] Blake Mason, Ardhendu Tripathy, and Robert Nowak. “Nearest neighbor search under uncer-
tainty”. In: Uncertainty in Artificial Intelligence. PMLR. 2021, pp. 1777–1786.

[35] Andreas Maurer and Massimiliano Pontil. “Empirical bernstein bounds and sample variance
penalization”. In: arXiv preprint arXiv:0907.3740 (2009).

[36] Frederic Morin and Yoshua Bengio. “Hierarchical probabilistic neural network language
model”. In: International workshop on artificial intelligence and statistics. PMLR. 2005,
pp. 246–252.

[37] Kezban Dilek Onal et al. “Neural information retrieval: At the end of the early years”. In:
Information Retrieval Journal 21 (2018), pp. 111–182.

[38] Ankit Singh Rawat et al. “Sampled softmax with random fourier features”. In: Advances in
Neural Information Processing Systems 32 (2019).

[39] Max Simchowitz, Kevin Jamieson, and Benjamin Recht. “The simulator: Understanding
adaptive sampling in the moderate-confidence regime”. In: Conference on Learning Theory.
PMLR. 2017, pp. 1794–1834.

[40] Aleksandrs Slivkins et al. “Introduction to multi-armed bandits”. In: Foundations and Trends®
in Machine Learning 12.1-2 (2019), pp. 1–286.

[41] Mo Tiwari et al. “BanditPAM: Almost linear time k-medoids clustering via multi-armed
bandits”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 10211–10222.

[42] Joel A Tropp. “Improved analysis of the subsampled randomized Hadamard transform”. In:
Advances in Adaptive Data Analysis 3 (2011), pp. 115–126.

[43] Tim Vieira. Gumbel-max trick and weighted reservoir sampling. 2014. URL: http : / /
timvieira . github . io / blog / post / 2014 / 08 / 01 / gumbel - max - trick - and -
weighted-reservoir-sampling/.

[44] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Vol. 48. Cam-
bridge university press, 2019.

[45] Thomas Wolf et al. “Huggingface’s transformers: State-of-the-art natural language processing”.
In: arXiv preprint arXiv:1910.03771 (2019).

[46] Martin Zhang, James Zou, and David Tse. “Adaptive monte carlo multiple testing via multi-
armed bandits”. In: International Conference on Machine Learning. Proceedings of Machine
Learning Research. 2019, pp. 7512–7522.

12

http://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/
http://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/
http://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/

A Bandit preliminaries

To make this work accessible to a broad audience, we provide a self contained introduction to the
multi-armed bandit setting.

A.1 Best arm identification

We consider a stochastic multi-armed bandit problem [13, 40, 29] with n arms (distributions), where
each arm i has an unknown mean reward µi. At each time step t, the algorithm selects an arm It ∈ [n]
and receives a reward XIt,t drawn from the distribution of arm It. Early work in the multi-armed
bandit literature focused on the regret minimization setting, where the goal is to maximize the
cumulative reward (sum of arm pulls observed so far), motivated by applications such as online
advertising and gambling [28]. Recent work has seen increased interest in the best-arm identification
setting, where the goal is to identify the arm with the highest mean reward with high probability,
motivated by applications such as clinical trials. Significant research has been devoted to obtaining
optimal logarithmic factors, but for the sake of clarity we highlight here a simpler and empirically
well performing algorithm, multi-round ϵ-arm from [25].

Algorithm 3 BestArmId (modification of best-arm identification from [25])
Input: n arms, error probability δ, variance proxy σ2

Output: Best arm i⋆ with probability at least 1− δ
S0 ← [n]
r ← 0
t0 ← 0
while |Sr| > 1 do

r ← r + 1
ϵr ← 2−r

tr ← ⌈8σ2ϵ−2
r log(4nr2/δ)⌉

for all arms i ∈ Sr−1 do
Pull arm i tr − tr−1 times and observe rewards Xi,tr−1+1, . . . , Xi,tr

µ̂i,r ← 1
tr

∑tr
s=1Xi,s ▷ Update mean estimates

Ci,r ←
√
2σ2 log(4nr2/δ)/tr ▷ Compute confidence interval width

end for
Set Sr ← {i ∈ Sr−1 : µ̂i,r + Ci,r ≥ maxj∈Sr−1

µ̂j,r − Cj,r} ▷ Filter “bad” arms
end while
return i∗, the only element in Sr ▷ We assume i∗ is unique (this assumption is easily relaxed)

The algorithm proceeds in rounds, maintaining a set of arms Sr that are still in contention for being
the best arm. At each round r the algorithm pulls each surviving arm such that we can construct a
high probability confidence interval of width ϵr/2 around the mean of each arm. Then, any arms
whose empirical mean plus confidence interval is less than the maximum empirical mean minus
confidence interval are eliminated. If this is the case, then that arms mean is with high probability
less than the maximum mean, and so it is eliminated from contention. This preserves the best arm
with high probability, and the algorithm terminates when only one arm remains (this best arm).

A.2 Sub-gaussian random variables

Following the exposition of [44], for a strictly increasing convex function ψ : R+ → R+ where
ψ(0) = 0, the ψ-Orlicz norm of a random variable X is defined as:

∥X∥ψ ≜ inf
{
t > 0|E

[
ψ
(
t−1|X||

)]
≤ 1
}
.

∥X∥ψ is infinite if the expectation E
[
ψ
(
t−1|X||

)]
does not exist for any finite t. The sub-Gaussian

parameter of a random variable is defined as the ψ2-Orlicz norm, where ψ2(u) = eu
2 − 1.

Standard results (Hoeffding’s lemma) provide that for a random variable X such that a ≤ X ≤ b

almost surely, that ∥X∥ψ2
≤ (b−a)2

4 .

13

400 200 0 200 400
Arm pull values

0.000

0.001

0.002

0.003

0.004

0.005

De
ns

ity

gpt2 on wikitext
worst arm
middle arm
best arm

200 100 0 100 200
Arm pull values

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

De
ns

ity

meta-llama/Meta-Llama-3-8B on wikitext
worst arm
middle arm
best arm

100 50 0 50 100
Arm pull values

0.000

0.005

0.010

0.015

0.020

0.025

0.030

De
ns

ity

mistralai/Mistral-7B-v0.1 on wikitext
worst arm
middle arm
best arm

1500 1000 500 0 500 1000 1500
Arm pull values

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

De
ns

ity

google/gemma-7b on wikitext
worst arm
middle arm
best arm

400 200 0 200 400
Arm pull values

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

De
ns

ity

gpt2 on penn_treebank
worst arm
middle arm
best arm

200 100 0 100 200
Arm pull values

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
De

ns
ity

meta-llama/Meta-Llama-3-8B on penn_treebank
worst arm
middle arm
best arm

100 50 0 50 100
Arm pull values

0.000

0.005

0.010

0.015

0.020

0.025

0.030

De
ns

ity

mistralai/Mistral-7B-v0.1 on penn_treebank
worst arm
middle arm
best arm

1000 500 0 500 1000
Arm pull values

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

De
ns

ity

google/gemma-7b on penn_treebank
worst arm
middle arm
best arm

Figure 2: Distribution of arm pulls for the best, middle, and worst arms for a random query. The
Gaussian fit plotted for each arm is computed using the empirical variance of the given arm, and can
be seen to closely match the empirical distribution, indicating that the arm pull distributions are well
approximated by a Gaussian. This merits the assumption of sub-Gaussianity. Arm pulls represent
importance weighted samples based on the magnitude of the query vector, so for an arm i and sample
j, the value is Ai,j ∗ sgn(xj) ∗ d. σ is computed across all samples for an arm, and windows are
truncated at the lowest and highest ends of the 3σ ranges across arms for viewing clarity.

Hoeffding’s inequality provides a useful concentration bound, where for X with ∥X∥ψ2
≤ σ2,

P (|X − E[X]| ≥ t) ≤ exp

(
− t2

2σ2

)
.

A.2.1 Sub-gaussianity in practice

The assumption of sub-Gaussianity is the only assumption that we make in this paper. It is one of the
weakest assumptions possible (does not assume that the arms are Bernoulli or Gaussian), and is a
common assumption in the multi-armed bandit and adaptive computation literature [4]. Unfortunately,
without such an assumption, no nontrivial results are possible; consider the case where we do not
have preprocessing access to A, the vector x is all 1s, and A is all 1s except for a randomly selected
entry which has value 2. In this case, any algorithm for PAC computation of softmax(Ax) with
δ = 1 − 1/n (even just identification of the largest entry of Ax) requires Ω(nd) samples. More
practically though, these vectors are the result of a machine learning pipeline, and not of adversarial
construction. As shown by our simulations, this worst case scenario never occurs in practice, and arm
pulls are generally well approximated by a Gaussian (see Figure 2). Additionally, note that for any
fixed problem instance, all arm pulls are bounded, and are thus sub-Gaussian.

A.3 Improved estimators

To provide theoretical guarantees in multi-armed bandit problems, stringent assumptions are often
required, e.g. Assumption 1. This is so that we can provide high probability guarantees on the
concentration of the estimator constructed as the empirical mean of the observed samples. Often,
these assumptions are phrased as either that random variables corresponding to arm pulls are bounded
in [0, 1] a.s., or that they are σ2 sub-Gaussian, with a known bound on σ2. Such analyses have
been generalized to bounded random variables with a known bound, where the algorithm is able to

14

adapt to the unknown variance [33, 35]. In this work, as is often done to make multi-armed bandit
algorithms more performant [4], we instead directly use the empirical variance of an estimator as
its sub-Gaussian parameter. In the Gaussian case, a random variable’s sub-Gaussian parameter σ2

matches its variance: as our arm pulls are constructed as the sum of many (d) terms, which can be
thought of as weakly dependent, our arm pulls can be thought of as Gaussian random variables with
variance σ2. Since in practice, we do not have a good bound on the magnitude of these arm pulls, we
directly use Hoeffding’s concentration inequalities [44] with the empirical variance σ̂2, as opposed to
an empirical Bernstein type concentration inequality [35].

A.3.1 Randomized Hadamard Transform

We discuss applying a randomized Hadamard transform to reduce the sub-Gaussian parameter of
our estimators. Define the rotation matrix R = 1√

d
DH , where D is a diagonal matrix with diagonal

entries equiprobably ±1. H is a Hadamard matrix (d must be a power of 2, 0 padded if necessary).
Then, we have that applying the transform R to A and R⊤ to x yields arms with better sub-Gaussian
parameters. Concretely, define Z = AR and y = R⊤x. Analyzing y first, we have that no entry of y
is too large, as:

P(∥y∥∞ ≥ t) ≤
n∑
i=1

P
(∣∣R⊤

i x
∣∣ ≥ t) (6)

= nP

 d∑
j=1

ξjd
−1/2xj ≥ t

 (7)

≤ 2n exp

(
− 2t2

4
∑d
j=1

1
dx

2
j

)
(8)

= 2n exp

(
− t2

2
d∥x∥

2
2

)
. (9)

The first inequality is a union bound over the n points and plugs in for y = R⊤x. The second
equality uses the fact that the Hadamard matrix multiplied by the random diagonal ±1 matrix D
makes Ri i.i.d. ±1, and we use ξj to denote these Rademacher i.i.d. ±1 random variables. Next we
use Hoeffding’s inequality. Finally, we simplify.

Thus, with probability at least 1− δ, ∥y∥∞ < ∥x∥2
√

2 log(2n/δ)
d .

A similar argument can be made for Z = AR, showing that each entry in the i-th row is upper

bounded by ∥Ai∥2
√

2 log(2nd/δ)
d , holding simultaneously for all i, j.

Since Ax = Zy, we can use bandits to approximate Zy instead of Ax. With the above analysis, we
have a bound on the maximum entry of ZiJyJ , giving us a bound on the sub-Gaussian parameter of
each arm with probability ≥ 1− δ.

max
ij
|Zijyj | = max

i
∥Ai∥2∥x∥2

2 log(4nd/δ)

d
(10)

Whereas before:
max
ij
|Aijxj | = max

i
∥Ai∥∞∥x∥∞ (11)

In practice, we did not observe that this transformation yielded much improved variance, as opposed
to simply importance sampling. Thus, we do not utilize this in our main algorithm.

A.3.2 Importance sampling

Instead of naively sampling each coordinate uniformly, we can construct improved estimators using
importance sampling. Concretely, consider the unbiased estimator Z where P(Z = 1

pj
Ajxj) = pj

15

for some probability distribution {pj} where pj > 0 for all j and
∑
j pj = 1. Now, we are left

with the design choice of how to construct {pj}; naively, this is 1/d. Unpacking the variance of our
estimator, we see:

Var(Z) =
∑
j

1

pj
(Ajxj)

2 − µ2. (12)

Consider the case where Aj
i.i.d.∼ Q for some distribution Q with E[Q2] = λ2 (an empirically not

unreasonable assumption), where {xj} are fixed constants. We assume x is known, but A isn’t. Then,
we simplify the expected variance with respect to this randomness in A as

E [Var(Z)] = E

∑
j

1

pj
(Ajxj)

2

− µ2

= λ2
∑
j

x2j
pj
− µ2 (13)

Simplifying this for Znaive where pj = 1
d , and for Zopt where pj ∝ |xj |, we have

E[Var(Znaive)] = d∥x∥22 − µ2 (14)

E[Var(Zopt)] = ∥x∥21 − µ2 (15)

In the case where we are using the same matrix A over many vectors x (as is often case e.g. in
LLM inference, or multinomial logistic regression), we can make our leverage scores a function of
precomputed quantities based off of A, not just x. In this case, it makes sense to consider forms of
leverage sampling; in this work we consider taking pj ∝ |xj ||

∑
i |Aij |.

A.3.3 Sampling without replacement using Gumbel trick

Weighted sampling with replacement becomes wasteful in larger sample size regimes, for which
the same high-weight elements are sampled repeatedly. It therefore becomes desirable to remove
sampled elements from consideration after they are sampled, re-weighting the remaining elements
accordingly. We could naively repeat this iterative process of sampling, removing, and re-weighting
our elements until we ended up with a sample of the desired size, say k. However, this process is
sequential and quite slow. Fortunately, as noted in [43], sampling with replacement according to a set
of weights is equivalent to perturbing the logits λ1...n of our desired sample weights with draws from
the i.i.d standard Gumbel distribution and taking the elements with the top-k perturbed logits as our
sample, as detailed in Algorithm 6 and 7. This process is easily batched and is much faster as a result.

Further, taking the (k + 1)-th perturbed logit as an empirical threshold τ , the inclusion of an element
j in our sample is solely dependent on whether or not its perturbed logit value exceeded this threshold.
This derivation is detailed in [27], and gives us the following expression (Gumbel CDF) for the
inclusion probability of element j in a set S of size k drawn without replacement according to weights
w:

πj = P (j ∈ S) (16)
π̂j = 1− exp(− exp(λj − τ)) (17)

E

[
1{j∈S}

π̂j

]
=

1

πj
(18)

These empirical estimates of the marginal probabilities of selection for each column allow us to
generate a sequence of estimators for each arms’ mean, with improved variance discussed in the next
section.

A.3.4 Variance estimation for Gumbel Samples

The Gumbel sampling trick used in A.3.3 with the fixed empirical threshold also provides us a different
lens on our sampling process. Namely, we can compute these closed form inclusion probabilities π,

16

and by setting this empirical threshold, we may treat the inclusion of separate elements as independent.
Given these observations (sampled S), an unbiased estimator for the variance of µ̂i, constructed as
the importance sampling weighted mean of the observations, can be computed from [18] as:

S ∼ sample k elements without replacement from [d] according to π (19)

µ̂i =
1

|S|
∑
j∈S

1

π̂j
Aijxj (20)

E [µ̂i] = µi (21)

Var(µ̂i; τ) =
∑
j∈S

(Ai,jxj)
2

(
1− πj
π2
j

)
+

n∑
j ̸=k

(Ai,jAi,kxjxk)

(
πj,k − πjπk
πj,kπjπk

)
(22)

V̂ar(µ̂i) =
∑
j∈S

(Ai,jxj)
2

(
1− π̂j
π̂2
j

)
(23)

Following the analysis of [18] and assuming that our threshold τ is fixed, we may conclude that the
estimate of the variance of µ̂i, the quantity Var(µ̂i; τ), is an unbiased estimate of the true variance
Var(µ̂i). Further, in all datasets we analyzed, the entries of A were generally symmetric, zero-mean,
and not correlated with the corresponding entries of x, as seen in Figure 3(a). Since τ and the values
of π are selected solely based on the values of x, these two further assumptions make the second
order term (Ai,jAi,kxjxk)

(
πj,k−πjπk

πj,kπjπk

)
zero in expectation.

Thus, for simplicity, we discard this latter summation and treat V̂ar(µ̂i) as an unbiased estimate of
the variance throughout our implementation, which can be computed in linear instead of quadratic
time (updated in constant vs linear time). In practice, as observed in Figure 4, this variance estimator
V̂ar(µ̂i) (solid green line) provides a far better estimate of the Gumbel sampler’s true variance than
other methods.

0.010 0.005 0.000 0.005 0.010
A values

15

10

5

0

5

10

15

X
va

lu
es

2D histogram of A weights vs. X values

(a) Sampled entries of A and x

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
second order term

0

25

50

75

100

125

150

175

200

De
ns

ity

Distribution of second order term

(b) Sampled values of the second order term

Figure 3: (a) Sampled entries of A and the corresponding entries of x for Mistral on the Wikitext
dataset. The values of A are symmetrical about 0 and not correlated with x. (b) Sampled values of
the second order term (Ai,jAi,kxjxk)

(
πj,k−πjπk

πj,kπjπk

)
.

B Proofs

We begin by proving a standard best arm identification result, for a slightly modified version of the
round-based algorithm from [16].

17

0 500 1000 1500 2000 2500 3000 3500 4000
Sample Size

10 5

10 3

10 1

101

103

Er
ro

r o
f S

am
pl

e
M

ea
n

Variance
MSE [wr]
Variance [imp]
MSE [imp] [wr]
Variance [imp] [fpc-sparse]]
MSE [imp] [wor]
New Variance Est.

Figure 4: Variance estimates vs. empirical mean squared error. This demonstrates the dramatic
improvement afforded by improved estimators and tight confidence intervals. [imp] indicates impor-
tance sampling, [wr] with replacement, [wor] without replacement, [fpc-sparse] includes the finite
population correction factor.

Lemma 1 (Best-arm identification). With probability at least 1− δ, Algorithm BestArmId identifies
the top softmax value correctly with probability using a number of observations at most

n∑
i=1

min

(
32σ2 ln

(
4n
δ log22 (4/∆i)

)
∆2
i

, d

)
.

Proof. Following the proof from [16], since an arm’s mean is exactly computed after d pulls, we
have that the best arm will be identified with probability at least 1− δ requiring for arm i a number
of pulls at most

ni ≤ min

(
32σ2 ln

(
4n
δ log22 (4/∆i)

)
∆2
i

, d

)
. (24)

Summing over arms yields the desired result, noting that the best arm is pulled at most as many times
as it takes to eliminate every other arm (i.e. the second best arm, ∆1 = ∆2).

Note that if ∆i ≤ C√
d

, then the second term (d) will be selected, for a sufficiently small absolute
constant C. Thus,

ni ≤
Cσ2 log

(
n
δ log(d)

)
∆2
i

(25)

Hence, the total sample complexity on this success event is at most

T =

n∑
i=1

ni

≤
n∑
i=1

min

(
32σ2 ln

(
4n
δ log22 (4/∆i)

)
∆2
i

, d

)

≤ C
n∑
i=1

min

(
σ2 log

(
n
δ log(d)

)
∆2
i

, d

)

We additionally require a lemma for estimating the mean of the best-arm in a PAC sense.
Lemma 2 (Exponential best arm estimation). Sampling an arm using

T =
32σ2β2 log(2/δ)

ϵ2

samples guarantees that eβµ̂k estimates eβmaxi µi to multiplicative accuracy ϵ, with probability at
least 1− δ.

18

Proof. We estimate the mean of arm k after T draws using the plug-in estimator µ̂k. For simplicity,
assume β = 1, where in the end we scale the sample complexity by β2. Sub-Gaussian concentration
provides that with probability at least 1− δ,

|µ̂k − µk| ≤
√
2σ2 log(2/δ)/T = ϵ/4

which in turn implies

log(1− ϵ) ≤ −ϵ/4 ≤ µ̂k − µk ≤ ϵ/4 ≤ log(1 + ϵ)

for 0 < ϵ < 1. Then, exponentiating both sides yields

1− ϵ ≤ eµ̂k−µk ≤ 1 + ϵ ⇐⇒ (1− ϵ)eµk ≤ eµ̂k ≤ (1 + ϵ)eµk .

Scaling the number of samples by β2 yields the desired result.

With these two steps in place, we are now ready to tackle the novel technical challenge of this work;
estimating the normalization constant of the softmax. We denote the softmax normalization constant
as f(µ) = σβ(µ) =

∑
i e
βµi .

Proposition 2 (Softmax normalization estimation: restatement of Proposition 1). Under Assumption 1,
Algorithm 2 will, with probability at least 1 − δ, estimate fβ(µ) =

∑
j e
βµj to a multiplicative

accuracy of ϵ, using a number of samples at most

T = 2nT0 + T1

= 34β2σ2 log(6n/δ)n+
91σ2β2 log(6n/δ) (

∑n
i=1 γi)

2

ϵ
∑
i αi

+
16β2σ2 log(12/δ)

ϵ2

Proof. To prove Proposition 1, we want to show that with high probability, we can upper and lower
bound our plugin estimator as

(1− ϵ)f(µ) ≤ f(µ̂) ≤ (1 + ε)f(µ),

giving us our desired multiplicative error bound. We construct several success events that collectively
guarantee our bound holds, and that occur with high probability.

• E1 is the event where our estimated optimal sampling frequencies are not too far from the
unknown optimal frequencies, i.e.

α̂i ≥ αi/2, βCi < 1, i = 1, . . . , n.

On this event, we will sample arms sufficiently in the second round.

• E2 is the event where all estimators µ̂i are within their 2-sided confidence intervals in stage
2, i.e.

|µ̂i − µi| ≤
√
2σ2 log(12n/δ)/ni, i = 1, . . . , n.

On this event, we can bound the error in the exponentiated estimator.

• E3 is the event where the first and second order errors are small, i.e.

− ϵ
2
f(µ) ≤

∑
i

eβµiβ(µi − µ̂i) ≤
ϵ

2
f(µ)

and ∑
i

eβµiβ2(µi − µ̂i)2 ≤
ϵ

2
f(µ).

These two terms arise from bounding f(µ̂).

19

We now show that if E1 and E2 and E3 all occur, then our desired bound holds.

Lemma 3 shows that when E2 holds,

f(µ̂) ≤
∑
i

eβµi
(
1 + β(µi − µ̂i) + β2(µi − µ̂i)2

)
= f(µ) +

∑
i

eβµiβ(µi − µ̂i)︸ ︷︷ ︸
(1)

+
∑
i

eβµiβ2(µi − µ̂i)2︸ ︷︷ ︸
(2)

.

Note that if E3 holds as well, the expression is upper bounded by (1 + ϵ)f(µ), since each of (1) and
(2) is bounded above by (ϵ/2)f(µ).

All that remains is to show the lower bound also holds. We use the global inequality 1 + x ≤ ex to
lower bound

f(µ̂) =
∑
i

eβµ̂i

=
∑
i

eβµi+β(µ̂i−µi)

≥ f(µ) +
∑
i

eβµiβ(µ̂i − µi)︸ ︷︷ ︸
(1)

.

Again, under E2, (1) is lower bounded by −ϵ/2f(µ), which implies our desired lower bound
(1− ϵ)f(µ) ≤ f(µ̂). Thus, all three events holding guarantees our desired bound holds.

Now that we know our bound holds on the joint success event, all that remains is to show it holds
with sufficiently high probability. To do so, we invoke our lemmas which characterize the probability
of each event.

The probability of E1, E2, and E3 all holding is

P(E1E2E3) = P(E1)P(E2|E1)P (E3|E2E1).

Lemma 3 says that if each arm is sampled T0 times, P (E1) ≥ 1− δ/3. Lemma 4 says P (E2|E1) ≥
1− δ/3. Lemma 5 and Lemma 6 together show P (E3|E2E1) ≥ 1− δ/3. Thus, taken together we
have

P(E1E2E3) = P(E1)P(E2|E1)P (E3|E2E1)

≥ (1− δ/3)3

≥ 1− δ,
as desired, and so we are done.

The lemmas and their proofs follow.
Lemma 3. For ni = T0 = 17β2σ2 log(6nδ) for all i, we have that the event E1,

α̂i ≥ αi/2, βCi < 1, i = 1, . . . , n

occurs with probability at least 1− δ/3.

Proof. By a standard Chernoff bound, with σ2 a bound on the sub-Gaussian parameter of all arms,
we have that with probability at least 1− δ/3 that for all i = 1, . . . , n,

α̂i =
eβ(µ̂i−Ci)∑
j e
β(µ̂j−Cj)

≥ eβ(µi−2Ci)∑
j e
βµj

≥ 1

2
αi,

where αi = eβµi∑
j e

βµj
, and Ci =

√
2σ2 log(6/nδ)

T0
is the Chernoff confidence interval width constructed

such that Ci < log(2)/2β and so βCi < 1. To simplify constants, we use that 8/ ln2(2) < 17.

20

Lemma 4. Sampling as ni ≥ T0 guarantees that conditioned on E1, E2 occurs with probability at
least 1− δ/3 and that on E2, f(µ̂) ≤ f(µ) +

∑
i β(µi + µ̂i) +

∑
i β

2(µi − µ̂i)2.

Proof. Suppose we sample each arm ni times. Note that by a Chernoff bound on each arm,

|µ̂i − µi| ≤
√
2σ2 log(6n/δ)/ni

holds on each arm independently with probability at least 1 − δ/3n, so all arms are within the
two-sided bound with probability at least 1− δ/3.

We upper bound the plugin estimator f(µ̂).

f(µ̂) =
∑
i

eβµ̂i (26)

=
∑
i

eβµi+β(µi−µ̂i) (27)

≤
∑
i

eβµi
(
1 + β(µi − µ̂i) + β2(µi − µ̂i)2

)
(28)

where in (28) we use the upper bound ex ≤ 1 + x+ x2 for x ≤ 1.79 on the event E2, since on E2,
(µi − µ̂i) ≤ 1/β. This is because ni ≥ T0, and T0 samples already guarantees this.

Lemma 5 (First-order error concentration). On the event E2 ∩ E1, the first order error

G =
∑
i

eβµiβ(µi − µ̂i)

satisfies

P

(
|G| ≥ ϵ

2

∑
i

eβµi

)
≤ δ/3. (29)

Proof. First, defining Ef as the failure event |G| ≥ ϵ
2

∑
i e
βµi , note that

P (Ef) = P (Ef |E2)P (E2) + P (Ef |E2)P (E2)

implies

P (Ef |E2) =
P (Ef)− P (Ef |E2)P (E2)

P (E2)
≤ 2P (Ef),

where we use that since δ < 1, P (E2) ≥ 1/2. Thus, it suffices to show that P (Ef) ≤ δ/6
G is a sum of independent sub-Gaussian random variables, each scaled by a constant. Thus, we have
the two-sided tail bound that with probability at least 1− δ/6∣∣∣∣∣∑

i

eβµiβ(µi − µ̂i)

∣∣∣∣∣ ≤√2B2 log(12/δ)

with the sum having sub-Gaussian parameter

B2 =
∑
i

e2βµiβ2σ2/ni

21

Plugging in our value of B2 we find∣∣∣∣∣∑
i

eβµiβ(µi − µ̂i)

∣∣∣∣∣
≤

√
2 log(12/δ)

∑
i

e2βµiβ2σ2/ni

≤ βσ
√
2 log(12/δ)

∑
i

e2βµi
1

eβµiT
2
∑

j e
βµi

1/2

≤ βσ
√
2 log(12/δ)

2
∑
j

eβµi

∑
i

eβµi
1

T

1/2

= 2βσ
√
log(12/δ)f(µ)/T

1
2 ,

where in (30) we use that on E1, α̂i ≥ 1
2αi, and so ni ≥ αiT/2. Thus

T ≥ 16β2σ2ϵ−2 log(12/δ) (30)
is sufficient to yield the desired multiplicative error of ε/2 with probability at least 1− δ/3.

Lemma 6. If arm i is pulled at least
4
√
2σ2β2 log(6n/δ)γi

∑n
j=1 γj

ϵ
∑

j αj
times, then on the success events

E1, E2 where the confidence intervals hold,
n∑
j=1

β2eβµj (µj − µ̂j)2 ≤
ε

2

∑
j

eβµj (31)

and Algorithm 2 will require a number of arm pulls at most

91σ2β2 log(6n/δ) (
∑n
i=1 γi)

2

ϵ
∑
i αi

(32)

Proof. Bounding the second order error, we utilize the fact that we have sampled proportional to γ̂i.
On the event E2 (where ni ≥ γi√

2
T) the second order error can be bounded as

n∑
i=1

β2eβµi (µi − µ̂i)2 (33)

≤
n∑
i=1

2σ2β2eβµi log(6n/δ)/ni (34)

≤ 2σ2β2 log(6n/δ)
n∑
i=1

eβµi

γ̂iT
(35)

≤ 2
√
2σ2β2 log(6n/δ)

T

n∑
i=1

eβµi

γi
(36)

=
2
√
2σ2β2 log(6n/δ)

T

(
n∑
i=1

eβµi/2

)2

(37)

We want this second order error to be at most ϵ2
∑
i e
βµi , and so require T to satisfy the inequality

below

T ≥
4
√
2σ2β2 log(6n/δ)

(∑n
i=1 e

βµi/2
)2

ϵ
∑
i e
βµi

=
4
√
2σ2β2 log(6n/δ) (

∑n
i=1 γi)

2

ϵ
∑
i αi

(38)

22

Algorithmically this is not a valid T to use, since it depends on the unknown µi. However, since
α̂i, γ̂i are close to their true values on the good event E1, we can use these estimates. Thus, we take
as our budget T for this second order error:

T =
16
√
2σ2β2 log(6n/δ) (

∑n
i=1 γ̂i)

2

ϵ
∑
i α̂i

, (39)

which on the event E1 is larger than (38). This is a random quantity, so to analyze the requisite
sample complexity, we use the fact than on E1, we can bound the quantity in (39) as

T ≤
64
√
2σ2β2 log(6n/δ) (

∑n
i=1 γi)

2

ϵ
∑
i αi

. (40)

Note 64
√
2 < 91 so we use this simple constant in the statement of the lemma.

This can be directly compared to the case where we only sample according to αi, not γi, which would
yield a sample complexity of

T ≥ 8nσ2 log(6n/δ)β2

ϵ
(41)

samples. Note that since (
∑n
i=1 γi)

2 ≤ n
∑
i αi by Cauchy-Schwarz, this is always an improvement

(up to absolute constants) up to a factor of n.

Now we can provide a proof of the main theorem.

Proof of Theorem 1. We utilize the adaptive approximation subroutine with error probability δ′ =
δ/3 and error ε′ = ε/4 from Lemma 6. With 1− δ′ probability, it requires a number of samples at
most

T ≤ 34β2σ2 log(18n/δ)n

+
363σ2β2 log(18n/δ) (

∑n
i=1 γi)

2

ϵ
∑
i αi

+
256β2σ2 log(36/δ)

ε2
.

Best arm identification is called with error probability δ′ = δ/3. From Lemma 1 this requires sample
complexity

n∑
i=1

min

(
32σ2 ln

(
12n
δ log22 (4/∆i)

)
∆2
i

, d

)
(42)

We then estimate the best arms mean using Lemma 2 to accuracy ε′ = ε/4 with error probability
δ′ = δ/3. This requires a number of samples at most

512σ2β2 log(6/δ)

ϵ2
. (43)

By a union bound, all these algorithms succeed with probability at least 1 − δ. Analyzing the
multiplicative error, we have that [1/(1 + ε′), 1/(1− ε′)] ∈ [1− 2ε, 1 + 2ε] for 0 < ε ≤ 1/2, and
that (1 ± ε1)(1 ± ε2) ∈ (1 ± (ε1 + ε2 + ε1ε2). Thus, on these success events, the numerator is
approximated to accuracy ε/4, and the denominator to accuracy ε/4. The denominator error converts
to a multiplicative error of ε/2 in the numerator, which combines to yield an error of 3ε/4+ε2/8 < ε,
as ε < .5. This allows us to simplify the total sample complexity as

T ≤ 512σ2β2 log(6/δ)

ϵ2
+

256β2σ2 log(36/δ)

ε2

≤ 768σ2β2 log(36/δ)

ε2

23

Thus

T ≤34β2σ2 log(18n/δ)n

+

n∑
i=1

min

(
32σ2β2 ln

(
12n
δ log22 (4/∆i)

)
∆2
i

, d

)

+
363σ2β2 log(18n/δ) (

∑n
i=1 γi)

2

ϵ
∑
i αi

+ 768σ2β2 log(36/δ)ϵ−2

≤C

β2σ2

[
n log

(n
δ

)
+

n∑
i=1

min

 log
(
n log d
δ

)
∆2
i

, d

+

log
(
n
δ

)(n∑
j=1

γj

)2

ϵ
∑
j αj

+
log(1/δ)

ε2

]


Algorithmically, in the second stage, arm i needs to be pulled a number of times

ni =17β2σ2 log(6n/δ)

+
16
√
2σ2β2 log(6n/δ) (

∑n
i=1 γ̂i)

2

ϵ
∑
i α̂i

γ̂i∑
j γ̂j

+ 16β2σ2 log(12/δ)ϵ−2 α̂i∑
j α̂j

≤17β2σ2 log(6n/δ)

+
64
√
2σ2β2 log(6n/δ)

(∑
j γj

)
γi

ϵ
∑
j αj

+
16β2σ2 log(12/δ)α̂i

ϵ2
∑
j αj

where we upper bound on the success event E2.

Combining this with the initial T0 pulls, the pulls from best arm identification, and the pulls from
estimating the value of the best arm, we have that the overall sample complexity for arm i is upper
bounded as:

ñi = 34β2σ2 log(6n/δ)

+
64
√
2σ2β2 log(6n/δ)

(∑
j γj

)
γi

ϵ
∑
j αj

+
16β2σ2 log(12/δ)αi

ϵ2
∑
j αj

+
32σ2 ln

(
12n
δ log22 (4/∆i)

)
∆2
i

+
512σ2β2 log(6/δ)

ϵ2
1{i = 1}

And so, the total algorithmic sample complexity on the success event is

T ≤
∑
i

min (ñi, d) . (44)

24

B.1 Interpreting the results

We work to provide a simplified (looser) bound on the sample complexity when the minimum gap is
∆. The worst case sample complexity in this case is when the best arm has mean µ1, and all the rest
have mean µ1 −∆.

This allows us to simplify the overall sample complexity as

T ≤ C

(
σ2

[
β2n log

(n
δ

)
+

n∑
i=1

log
(
n log d
δ

)
∆2
i

+ β2

log
(
n
δ

)(n∑
j=1

γj

)2

ϵ
∑
j αj

+ β2 log(1/δ)

ε2

])
(45)

≤ C

(
β2σ2 log

(n
δ

)(
n+ ε−1

(
1 + n2e−β∆

1 + ne−β∆

))
+ β2σ2ε−2 log(1/δ) + nσ2 log

(
n log d

δ

)
∆−2

)
where we use the fact that for n > 2:(

n∑
j=1

γj

)2

∑
j αj

=

(
1 + (n− 1)e−β∆/2

)2
1 + (n− 1)e−β∆

≤ 2
1 + (n− 1)2e−β∆

1 + (n− 1)e−β∆

≤ C
(
1 + n2e−β∆

1 + ne−β∆

)
.

Evaluating our sample complexity in (45), when ∆ > 2
β log n, this term is bounded by a constant,

and the sample complexity can be more simply bounded as.

T ≤ C

(
β2σ2 log

(n
δ

) (
n+ ε−1

)
+ β2σ2ε−2 log(1/δ) + nσ2

log
(
n log d
δ

)
log2 n

)
≤ Cβ2σ2

(
log
(n
δ

) (
n+ ε−1

)
+ ε−2 log(1/δ)

)
(46)

In the last line we require the condition that

log
(
n log d
δ

)
log2 n

≤ β2 log
(n
δ

)
, (47)

i.e. d is not doubly exponential in n and β is not too small.
Assumption 2 (large gap, moderate β, moderate d). We assume that (47) holds, and that ∆ > 2

β log n.

Under the conditions of Assumption 2, the sample complexity in Theorem 1 can be simplified as in
Corollary 1.

B.2 Asymptotic optimality of sampling frequencies

Following the approach of [8], we can show the asymptotic optimality of our sampling frequencies
(sampling proportional to αi for minimizing the first order error, and γi for minimizing our bound on
the second order error).

B.2.1 First order frequencies αi

Considering a plug-in estimator µ̂; analyzing the first order taylor expansion of its error, we have that

f(µ̂)− f(µ) = ∇f(µ)⊤(µ̂− µ) +O
(
∥µ̂− µ∥22

)
.

Thus in the high accuracy regime (ε → 0), we can consider only the first order term. Assuming
Gaussian noise in our arm pulls (an identical result holds for sub-Gaussian noise), the first order

25

error can be bounded as (assuming we use T pulls, and sample arm i, piT times for a probability
distribution p:

∇f(µ)⊤(µ̂− µ) ∼ N

(
0,

n∑
i=1

β2e2βµi

Tpi

)
Optimizing over probability distributions p, using Sion’s minimax theorem and strong duality as in
[8] gives us that

α⋆ = argmin
p

n∑
i=1

β2 e
2βµi

Tpi

= argmin
p

max
λ

n∑
i=1

e2βµi

Tpi
+ λ

(∑
i

pi − 1

)
utilizing strong duality, we have that

∂

∂pi
= −e2βµip−2

i + λ = 0 =⇒ α⋆ ∝ eβµ. (48)

Note that in the limit as ε→ 0, multiplicative and additive error objectives are equivalent.

B.2.2 Second order sampling frequencies γi

With the first order error term in hand, the second order error term is left to be analyzed:

n∑
i=1

β2eβµi (µi − µ̂i)2 . (49)

We minimize a bound on this given by our confidence intervals |µi − µ̂i| ≤ c√
ni

, where c is some
constant. We identify what sampling distribution p minimizes this second order bound, defining
ni = piT .

By a similar argument as for the first order analysis:

γ⋆ = argmin
p

n∑
i=1

β2eβµi
1

Tpi

= argmin
p

max
λ

n∑
i=1

eβµi
1

pi
+ λ

(∑
i

pi − 1

)
utilizing strong duality, we have that

∂

∂pi
= −eβµip−2

i + λ = 0 =⇒ γ ∝ eβµ/2 (50)

Gains by sampling according to γi Sampling according to γ gives a second order error bounded
by (∑

i

eβµi/2

)2

= ∥γ∥21, (51)

as opposed to sampling according to α which gives a second order error bounded by

n
∑
i

eβµi = n∥γ∥22 (52)

By standard norm inequalities, sampling according to γ is always at least as good, and up to a factor
of n improvement in the case where one entry in the softmax is much larger than the rest; exactly the
case of interest.

26

B.3 Comparison with [8]

In [8], the problem of estimating a real valued function f to additive accuracy ε with probability at
least 1− δ is studied, under the assumption that the function has L-Lipschitz gradients. For the case
of softmax estimation, the gradients are not Lipschitz due to the unbounded nature of the exponential.
However, if we evaluate the norm of the gradient at a point µ, we obtain

∥∇f(µ)∥2 = lim
c→0

max
∥u∥≤c

c−2 ∥∇f(µ+ u)−∇f(µ)∥22

= lim
c→0

max
∥u∥≤c

c−2
∑
i

(
βeβ(µi+ui) − βeβµi

)2
= lim
c→0

max
∥u∥≤c

c−2β2
∑
i

e2βµi
(
eβui − 1

)2
= β4 max

i
e2βµi .

Theorem 1 of [8] states that the number of samples required to achieve ε additive error with probability
at least 1− δ is

T = O

(
∥∇f(µ∥21 log(1/δ)

ε2
+
n2L log(n/δ)

ε

)
, (53)

where the noise variance σ2 is assumed to be 1. Since the error in our setting is multiplicative, we are
interested in ε′ = ϵf(µ) = ε

∑
i e
βµi . Additionally, ∥∇f(µ∥21 = β2

(∑
i e
βµi
)2

. Thus, the number
of samples required is

T = O

(
∥∇f(µ∥21 log(1/δ)

ε2
+
n2L log(n/δ)

ε

)
= O

(
β2
(∑

i e
βµi
)2

log(1/δ)

ε2 (
∑
i e
βµi)

2 +
n2β4 maxi e

2βµi log(n/δ)

ε
∑
i e
βµi

)

= O

(
β2 log(1/δ)

ε2
+
n2β4 maxi e

2βµi log(n/δ)

ε
∑
i e
βµi

)

This is to be compared with the sample complexity of the proposed algorithm in this paper, for the
specific setting of softmax normalization estimation, which is

T ≤ Cβ2

n log (n
δ

)
+

log
(n
δ

) n∑
j=1

γj

2

ϵ∑

j

αj

−1

+
log
(
1
δ

)
ε2

 ,

taking σ2 = 1 to compare results.

The constant term independent of ε is to linearize the exponential. The ε−2 term matches between
the two settings, as asymptotically the optimal strategy is indeed to sample according to the first
derivative. The term scaling with ε−1 improves dramatically on that of prior work. Note that in the
case of f(µ) = ∥µ∥22, the second order term (scaling with ε−1) can be improved to O(n3/2Lε−1),
as the mean of the second order error can be removed. Thus, we can see the massive improvement
afforded by our more refined algorithm, tailored for the specific structure of the softmax function.

B.4 Extension to heterogeneous arm variances

Adapting bandit algorithms to settings with heterogeneous variances has been done in both the
standard regret [3] and best arm identification [33] settings.

For best arm identification, sacrificing log factors for the sake of clarity, empirical-Bernstein-based
confidence intervals [35] can be constructed where we iteratively pull each arm once, try and

27

eliminate, and progress. Union bounding over the nd possible pulls naively upper bounds this,
yielding a complexity of

O

(
n∑
i=1

min

((
σ2
i

∆2
i

+
1

∆2
i

)
log

(
δ

nd

)
, d

))
. (54)

This assumes that all arms are bounded in [0, 1] with variance σ2
i .

We additionally require a lemma for estimating the mean of the best-arm in a PAC sense.
Lemma 7 (Exponential best arm estimation). Sampling arm i

T =
32σ2

i β
2 log(2/δ)

ϵ2

samples guarantees that eβµ̂i estimates eβµi to multiplicative accuracy ϵ, with probability at least
1− δ.

This trivially follows from the proof of Lemma 2.

For the softmax normalization estimation, we know from [8] that the optimal first order sampling
frequencies are to sample arm i a number of times proportional to

ni ∝ σieβµi . (55)

However, sampling like this yields an additive first order that scales as
∑
i σie

βµi , which cannot be
easily related to

∑
i e
βµi , as we would need to get multiplicative error bounds. Thus, we instead use

suboptimal target first order sampling frequencies, scaling with σ2
i , to avoid this analysis issue

ni ∝ σ2
i e
βµi . (56)

Scaling the number of pulls for each arm by σ2
i yields:

Proposition 3 (Softmax normalization estimation: heterogeneous variances variant of Proposition 1).
Under Assumption 1, Algorithm 2 will, with probability at least 1− δ, estimate fβ(µ) =

∑
j e
βµj to

a multiplicative accuracy of ϵ, using a number of samples for arm i at most

ni = 34β2σ2
i log(6n/δ)n+

91σ2
i β

2 log(6n/δ) (
∑n
i=1 γi)

2

ϵ
∑
i αi

+
16β2σ2

i log(12/δ)

ϵ2

The proof of this proposition follows similarly to Proposition 2, as sampling proportional to σ2
i cancels

the differing variances, essentially reducing the problem to the homogeneous setting (suboptimally).

C Implementation Details

In this appendix, we present the implementation details of our algorithm. In Algorithm 4, we provide
pseudocode with greater detail about our implementation of the Adaptive Softmax algorithm.
We note that Algorithm 4 contains some implementation differences from the original Algorithm
1 presented in Section 4. None of these changes materially affect the output of the algorithm;
nonetheless, we provide a discussion of them here to enable reproducibility of our experimental
results. Our results are also reproducible via a 1-line script in our code submission. In the following
subsections, we describe each of these implementation details.

As an important note, we consider all variables global unless stated otherwise. This is to say, calling
“pull arms” updates the state of arm mean estimates µ̂, their variance estimates σ̂, the number of pulls
per arm {ni}, inclusion probabilities π, etc. We define the estimators based on Gumbel sampling
according to importance weights as the set of arms A. This idea of treating an arm simply as a
sequence of estimators with confidence intervals was pioneered for the computational setting in [4],
and saw further usage in [24].

C.1 Reusing Arm Pulls

In our theoretical analysis in Appendix B, each phase of Algorithm 1 is handled independently. This
allows us to union bound the error probabilities of each phase of the algorithm. In our implementation,

28

Algorithm 4 Adaptive Softmax (implementation details)
1: Input: Matrix A, vector x, temperature β, error ϵ, failure probability δ
2: Output: With probability at least 1 − δ, the argmax coordinate i∗ and an estimate p̂i∗ of its

probability such that (1− ϵ)pi∗ ≤ p̂i∗ ≤ (1 + ϵ)pi∗ .
3: w ← GetImportanceWeights(A, x) ▷ Algorithm 5
4: P, c←GumbelPermutation(w)
5: Construct set of arms A from A, x, P, c
6: σ2 = 1

β ▷ Initial variance to pull arms to
7: PullToVariance(A, σ2) ▷ Algorithm 8
8: i∗ ← BestArmId(A, δ/2, σ̂2) ▷ Algorithm 3
9: µ̂i∗ ← ⟨Ai·, x⟩ ▷ Exact computation of µ̂i∗ = µi∗

10: Ẑ ← NormalizationEstimation(A, ε/2, δ/2, σ̂) ▷ Algorithm 2
11: Compute estimated probability as p̂i∗ = eβµ̂i∗ /Ẑ
12: return i∗, p̂i∗

Algorithm 5 GetImportanceWeights

1: Input: Matrix A ∈ Rn×d, vector x ∈ Rd
2: Output: w ∈ Rd, vector of importance weights
3: for all j = 1, . . . , d do
4: Compute wj = |xj |

∑n
i=1 |Ai,j | ▷ ℓ1 norm of ith column of A

5: end for
6: return w ▷ Element-wise multiplication of ℓ1 norms of columns of A, and |x|

Algorithm 6 GumbelPermutation
1: Input: Importance weights w
2: Output: Permutation P , cached outputs c for inclusion probability calculation
3: Draw each ξi

i.i.d∼ Gumbel(0, 1)
4: L← logw ▷ Log importance weights
5: L′ ← L+ ξ ▷ Log importance weights perturbed by i.i.d. Gumbel noise
6: h← sorted(L′) ▷ Compute thresholds in decreasing order
7: P ← ordering(L′) ▷ Compute sorting order of thresholds (argsort)
8: c← (L, h) ▷ Store log importance weight and sorted thresholds for later use
9: return P, c

Algorithm 7 InclusionProbabilities
1: Input: Sample size k, cached outputs c = (L, h) from GumbelPermutation
2: Output: Inclusion probabilities vector π
3: L, h← c
4: H = −∞ ▷ Initialize cutoff threshold
5: if k < d then
6: H ← hk ▷ Set cutoff threshold to kth largest perturbed log importance weight
7: end if
8: π = 1− exp(− exp(L−H)) ▷ Inclusion probabilities; derived from Gumbel CDF
9: return π

Algorithm 8 PullToVariance
1: Input: Set of arms (sequence of estimators) A, variance σ2

2: Set ζ = .1, multiplicative pull increase factor
3: while there exists an arm i with σ̂2

i > σ2 do
4: A′ ← {i ∈ A : σ̂2

i > σ2}, ni is corresponding number of pulls
5: PullArms(A′, (1 + ζ)ni)
6: end while

29

Algorithm 9 PullArms
1: Input: Set of arms (sequence of estimators) A, target number of pulls per arm {Ni}
2: for all arms i do
3: if ni ≥ Ni then
4: continue ▷ Do not pull arm i if it has already been pulled Ni times
5: end if
6: Compute ki = Ni − ni
7: π′ ← InclusionProbabilities(ki, c)
8: Sample ki coordinates without replacement according to weights π′

9: Update mean estimate µ̂i ← ni

Ni
µ̂i +

ki
Ni

∑ki
s=1

Xi,s

π′
s

10: Update variance estimate σ̂2
i ←

n2
i

N2
i
σ̂2
i +

1
N2

i

∑ki
s=1

(
Ai,(s)x(s)

)2 1−π′
(s)

π′2
(s)

11: end for

Algorithm 10 EstimateArm
1: Input: arm i ∈ A, pull variance σ2

i , multiplicative error ϵ, failure probability δ
2: Output: Mean estimate µ̂i
3: targetVar← ε2

2σ2
i β

2 log(2/δ)

4: PullToVariance({i}, targetVar)
5: return µ̂i

however, we re-use arm pulls across different parts of Algorithm 1. Intuitively, once an arm return
has been observed (corresponding to a scalar multiplication of an element of A with an element of
x), it can be used to warm-start estimates of µ̂ and σ̂2 in later stages of the algorithm. In practice,
we observe that the re-use of arm pulls does not affect the correctness of our algorithm and yields
significant sample complexity improvements compared to cold-starting each stage of the algorithm
independently.

C.2 Exact Computation of Best Arm

In Line 9 of Algorithm 4, we compute the mean of our estimated best arm i∗ exactly, and
set the “estimate” µ̂i = µi. This allows us to reduce the approximation fidelity required by
NormalizationEstimation (Algorithm 2) to ϵ

2 instead of ϵ
4 and saves a constant factor in sample

complexity. Furthermore, this computation of µi is efficiently computed as a vector-vector dot
product.

In practice, we found that Algorithm 1 usually required over d samples for the best arm. As such,
performing the computation µi = ⟨Ai·, x⟩ (reusing coordinate-wise samples from previous stages of
the algorithm) did not significantly increase sample complexity.

C.3 Initial Pulls (T0)

In NormalizationEstimation (Algorithm 2), the initial number of arm pulls T0 depends on σ2.
However, as discussed in Appendix A.3, this variance proxy is often unknown a priori. As such, we
set T0 = d

10 . We observe that this choice of T0 works well in experiments, across multiple datasets.

C.4 Tuning

We note that despite the changes made above, there still exists some looseness in practice. To remedy
this, we scale our variance estimates by a constant factor to reduce the amount of pulls needed to
reach target variances, and improving the gains of our algorithm as a result. We generate these
constant factors for each dataset/model by tuning on a separate “training” group of queries. Tuning is
performed, generally, via bisection to discover the minimal factor which still satisfies our provided
failure probability parameter δ. This bisection is performed in geometric space and terminates when
the log10 difference between the low and high end of our interval is within 10−2. The range of factors
we consider is [10−6, 1]. We first tune the constant factor independently for the variance estimates

30

used in bandits such that the algorithm successfully identifies the best arm with a rate of at least
1− δ on our training set. Next, we tune the constant factor for the variance estimate used in log norm
estimation such that the entire SFTM algorithm succeeds with a rate of at least 1− δ on our training
set.

C.5 Wall-clock improvement

The focus of this paper is to develop the first provably adaptive softmax algorithm with PAC
guarantees, highlighting its dramatically improved sample complexity across a wide variety of models
and tasks. The eventual goal of this method is to enable wall-clock improvements in hardware
implementations. These next steps of converting our provably and empirically performant method
into a hardware optimized wall-clock efficient algorithm is an exciting direction of future work, which
we detail below. In most modern-day transformer architectures, memory I/O serves as the primary
bottleneck [20]. AdaptiveSoftmax already presents an opportunity to significantly scale down the
number of entries of the matrix that must be loaded at inference time, and, in the future - if memory
remains the bottleneck - improve model bandwidth by a similar factor. This objective appears in
reach, since we have designed the components of AdaptiveSoftmax to be amenable to tiling and
parallelization. Most notably, our implementation of AdaptiveSoftmax uses the same column to
generate an importance-weighted sample for each active arm. The reasons for this implementation
decision are two-fold. First, it takes advantage of the locality of entries in the same column to
load samples faster, and, second, it removes intra-column correlation, which can yield theoretically
improved performance [7]. Adjacent column samples can also be combined by simply summing
their respective importance weights - admitting a simple tiling of our matrix that could easily be
sized particularly to fit individual tiles into SRAM on a GPU along with a copy of the vector and the
current mean/variance estimates for each arm. Then, we can dynamically load these tiles into SRAM
based on the arm estimates as we do currently. The successive elimination bandits algorithm utilized
by AdaptiveSoftmax is also, by choice, quite easily parallelizable. We may also store two copies of
our matrix — one with wider tiles and one with taller tiles — to take advantage of this structure at
all stages of the AdaptiveSoftmax algorithm: both when a larger number of samples is necessary
for fewer arms, in later stages of adaptive estimation, and when a smaller number of samples is
necessary for many arms, in earlier stages of the adaptive estimation. This said, we observe in our
experiments that the bulk of compute is invested in our early samples of many arms. Just using basic
parallelization to speed up this step could result in the desired speed improvements.

C.6 Robustness to parameters

The user-desired parameters can take a wide range. We kept ϵ = 30% constant across all simulations
because we observed varying ϵ did not result in significant changes to the performance of adaSoftmax.
Further, we suspect that for most users, δ will fall in the range we considered: 90− 99%. However, to
assuage any concerns and verify our assertion that adaSoftmax is not sensitive to choice of ϵ or δ, we
include here adaSoftmax with a much wider range of parameters on the MNIST dataset in Table 3.

ε = 0.001 ε = 0.01 ε = 0.1 ε = 1.0
δ = 0.01 100%, 5.18x 100%, 6.63x 99.38%, 8.13x 99.38%, 8.14x
δ = 0.05 99.75%, 6.64x 99.13%, 8.46x 95.38%, 8.80x 93.50%, 8.81x
δ = 0.2 91.25%, 7.19x 89.25%, 8.90x 88.00%, 9.29x 83.375%, 9.25x

Table 3: Success rate (%) and FLOP gains (x) for adaSoftmax with varied δ and ε on the MNIST
dataset, showing the improved performance across a wide range of parameters, and that raising ε past
0.1 causes minimal difference in performance.

D Additional extensions and comments

D.1 Effect of temperature

Temperature is treated as a fixed constant (fixed parameter for the problem at hand, not tunable by
the algorithm). This is because tuning the temperature fundamentally changes the problem. With
higher temperatures, the only arms that matter are the best and second best arms, and so adaptivity

31

is extremely helpful. At low temperatures, the output will be essentially the uniform distribution,
and the computation is trivial and adaptivity unhelpful. With respect to other parameters, the error
probability and FLOP gains of adaSoftmax are insensitive to changes in ε and vary most with the
choice of δ. We demonstrate this trend on the MNIST dataset in Table 3.

D.2 Application to Nucleus Sampling

The analysis posed in this paper focuses on identifying the largest entry in the softmax output and
estimating its associated probability. As discussed above, this naturally extends to identifying the k
largest elements in the output vector by replacing the bandit best arm identification algorithm with any
top-k identification algorithm [39]. However, in LLM inference, the goal is often to draw a sample
from the softmax output distribution via nucleus sampling [17]. Nucleus sampling avoids specifying
k directly; instead, it provides cumulative probability p and requires the identification of the top k
elements such that k is the smallest value such that the sum of the probabilities of the top k elements
is greater than p. The next token is then sampled from the renormalization probability distribution on
these k elements. Our adaptive sampling algorithm naturally applies to the nucleus sampling setting.
AdaptiveSoftmax can maintain a predicted set of arms S such that the sum of the arm probabilities
p̂ is greater than p based on pessimistic arm mean estimates. Then, we iteratively sample: a) arms in
S, sampling both the arm with the lowest mean minus LCB (in an attempt to verify the boundary), as
well as the arm with the widest confidence interval (in order to better estimate p̂), and b) sampling the
top arm in [n] \ S, to see if it belongs in S. For simplicity and concreteness, in this work we focus on
identifying and estimating the probability of the top-1 element, but this is an exciting direction of
future work.

32

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the theoretical and practical contri-
butions of the paper, highlighting its theoretical guarantees, sample complexity reduction,
and potential for wall-clock improvements.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss assumptions on known sub-Gaussian parameter bounds in Assump-
tion 1 and computational difficulties in realizing sample complexity gains as wall-clock
gains.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All formal claims are stated with their requisite assumptions in the main text,
with proof sketches. Detailed theoretical proofs are provided or cited in the appendix.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a one-line reproducibility script to reproduce the results in the
paper.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our codebase publicly available on github, and is reproducible via a 1-line
reproducibility script: https://github.com/ThrunGroup/adaptiveSoftmax.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This is described in the paper

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are provided for all plots.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

33

https://github.com/ThrunGroup/adaptiveSoftmax

Answer: [Yes]
Justification: This is described in the paper.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research in this paper conforms with the stated Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts in the final section of the paper. There are
minimal societal effects, and potential energy and environmental savings from more efficient
computation.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The algorithms proposed in this paper do not have high risk for misuse.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All resources are publicly available.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide a publicly available github https://github.com/ThrunGroup/
adaptiveSoftmax that is well documented and has a 1-line reproducibility script.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not use or perform any research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not have any human subjects, and does not require IRB
approvals.

34

https://neurips.cc/public/EthicsGuidelines
https://github.com/ThrunGroup/adaptiveSoftmax
https://github.com/ThrunGroup/adaptiveSoftmax

	Introduction
	Related Work
	Problem Formulation
	AdaptiveSoftmax Algorithm
	Interpreting Theoretical Results
	Implementation details and extensions

	Experiments
	Complexity on Synthetic Data
	Multinomial Logistic Regression
	AdaptiveSoftmax Performance on Real Data
	Application to CNNs
	Application to LLMs

	Discussion, Limitations, and Future Work
	Bandit preliminaries
	Best arm identification
	Sub-gaussian random variables
	Sub-gaussianity in practice

	Improved estimators
	Randomized Hadamard Transform
	Importance sampling
	Sampling without replacement using Gumbel trick
	Variance estimation for Gumbel Samples

	Proofs
	Interpreting the results
	Asymptotic optimality of sampling frequencies
	First order frequencies i
	Second order sampling frequencies i

	Comparison with baharav2022approximate
	Extension to heterogeneous arm variances

	Implementation Details
	Reusing Arm Pulls
	Exact Computation of Best Arm
	Initial Pulls (T0)
	Tuning
	Wall-clock improvement
	Robustness to parameters

	Additional extensions and comments
	Effect of temperature
	Application to Nucleus Sampling

