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Abstract

Real-world machine learning applications are often hindered by two critical challenges: dis-
tribution shift and label noise. Networks inherently tend to overfit to redundant, unin-
formative features present in the training distribution, which undermines their ability to
generalize effectively to the target domain’s distribution. The presence of noisy data further
exacerbates this issue by inducing additional overfitting to noise, causing existing domain
generalization methods to fail in effectively distinguishing invariant features from spurious
ones. To address these challenges, we propose Anchor Alignment and Adaptive Weighting
(A3W ), a novel algorithm based on sample reweighting guided by natural language process-
ing (NLP) anchors that seeks to extract representative features. In particular, A3W lever-
ages semantic representations derived from natural language models to serve as a source of
domain-invariant prior knowledge. We also introduce a weighted loss function that dynam-
ically adjusts the contribution of each sample based on its distance to the corresponding
NLP anchor, thereby improving the model’s resilience to noisy labels. Extensive experi-
ments on benchmark datasets demonstrate that A3W outperforms state-of-the-art domain
generalization methods, yielding significant improvements in both accuracy and robustness
across various datasets and noise levels.

1 Introduction

Domain Generalization (DG) has emerged as a pivotal algorithm in machine learning, aiming to develop
models that can maintain high performance on previously unseen environments—or domains. Traditional
methods often assume that training and test data share the same distribution, yet in real-world scenarios,
there is frequently a substantial shift between these distributions. This phenomenon, widely referred to as
domain shift, can cause severe performance degradation in tasks spanning computer vision, natural language
processing, and medical image analysis (Wang et al., 2022). As shown in Figure 1(a)(b), even within the
same class label, the distribution of feature representations can vary considerably. This variation may stem
from differences in image acquisition conditions—such as lighting variations, changes in pose, or complex
background environments—and even from more subtle domain-specific factors like sensor noise or camera
calibration differences. Such intra-class variability poses a significant challenge for developing accurate and
adaptable models, which must learn to extract invariant features that capture the true semantic essence of
the class while ignoring irrelevant variations. In response, DG task has been proposed to enable robust model
behavior without further fine-tuning, thereby facilitating broader applicability in diverse domains (Muandet
et al., 2013; Li et al., 2018). Over time, researchers have explored various ways to align or unify source and
target domains, including strategies that learn domain-invariant features through multi-task autoencoders,
augmented architecture, or adversarial alignment (Ghifary et al., 2015; Ganin & Lempitsky, 2015; Volpi
et al., 2018).

One persistent obstacle in DG is the prevalence of spurious correlations in deep neural networks, where
models inadvertently link target labels to irrelevant, domain-specific features (Arjovsky et al., 2019; Qiao &
Low, 2024). For instance, a classifier tasked with recognizing animals might rely on particular backgrounds
for prediction, causing it to misclassify animals photographed in unfamiliar settings (Beery et al., 2018).
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Figure 1: Illustration of domain shift using four distinct domains—painting, photo, cartoon, and sketch—for
the same object class. In (a), the visual appearance of “elephant” varies substantially across domains,
underscoring significant style discrepancies. In (b), the t-SNE projection shows that even for the same
class, the distribution of features differs across domains, highlighting the inherent challenges of domain
generalization. In (c), unclear or mislabeled samples introduces additional noise, further exacerbating the
difficulty of achieving robust generalization. In (d), we show the accuracy of a network trained on noisy
data: ideally, the model should resist overfitting to noise, but the graph indicates a steady increase in noise
accuracy over time, suggesting progressive overfitting to noisy labels.

Such spurious correlations frequently arise because modern networks have the capacity to overfit even low-
level noise, thereby anchoring their decisions on non-causal cues (Rahman et al., 2024). To address these
pitfalls, researchers have proposed a variety of techniques, from causal inference algorithms like Invariant
Risk Minimization (IRM) (Arjovsky et al., 2019) to methods specifically designed to disentangle spurious
and invariant features (Wang et al., 2024). For example, Wu et al. (2023) introduced the Discover and Cure
(DISC) strategy, which detects suspicious features and systematically mitigates their impact by leveraging
interpretable domain knowledge. The development of methods rooted in causal representation learning also
arises to mitigate the reliance on spurious correlations (Lv et al., 2022). Despite these advances, achieving
robust generalization under significant domain shift and considerable label noise persists as an open research
challenge that necessitates more comprehensive methods and better theoretical insights.

Existing domain generalization (DG) approaches have predominantly focused on aligning feature distribu-
tions or disentangling spurious factors using data-driven methods (Wang et al., 2022). While these techniques
have paved the way for significant advances, they often encounter considerable difficulties when label noise
is prevalent or when data lack distinct domain-invariant cues (Nigam et al., 2020), leading to rapid degra-
dation in network performance as noise intensity increases. This challenge is further exacerbated in large,
overparameterized networks that are prone to memorizing spurious correlations, thereby amplifying errors.
Indeed, estimates suggest that 8% to 38.5% of real-world data may suffer from label corruption, undermining
the generalizability of models that fail to distinguish genuine signals from incidental patterns (Song et al.,
2022a). Although some DG algorithms inherently exhibit robustness to label noise, in general cases they
lack performance superiority compared to empirical risk minimization (ERM) baseline (Qiao & Low, 2024).
Consequently, understanding how to boost robustness against both domain shifts and noisy labels remains
a pressing goal in building truly reliable artificial intelligence systems.

In light of these challenges, we consider an alternative approach that focuses on introducing novel sources of
features from diverse perspectives to guide the learning pipeline. An emerging line of research has investi-
gated the role of external knowledge, which can guide models toward more semantically grounded represen-
tations (Dash et al., 2022). Some studies incorporate domain knowledge directly into the learning pipeline,
for instance by embedding specialized scientific insights into feature extraction or loss design (Von Rueden
et al., 2021). In other cases, researchers have shown that domain knowledge can significantly enhance model
interpretability and robustness—for example, in laser-induced breakdown spectroscopy, where integrated
expert knowledge improved quantification performance (Song et al., 2022b). Another promising direction
involves multi-modal alignment, in which semantic text descriptions serve as stable anchors that help net-
works transcend purely visual or sensor-driven biases (Liu & Wang, 2023). Models like CLIP (Radford et al.,
2021) exemplify this principle by projecting both text and images into a shared embedding space, improving
generalization across dissimilar environments. Yet critical barriers remain regarding how to ensure that the
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guidance remains valid across diverse domains and how to structure knowledge encoding effectively to align
with modern deep learning architectures (Dash et al., 2022).

Inspired by this recent trend of knowledge integration, we propose a new algorithm called Anchor Alignment
and Adaptive Weighting (A3W ), which integrates external knowledge—specifically, linguistic cues derived
from large-scale language models—into the DG pipeline. Our central insight is that NLP anchors, such
as text embeddings from CLIP or analogous language models, provide domain-invariant references capable
of steering learned representations away from spurious and noisy cues. By aligning intermediate feature
spaces with these carefully chosen textual anchors, A3W encourages semantic consistency while limiting the
influence of mislabeled or outlier samples. Moreover, we introduce a weighted loss function that dynamically
modulates each sample’s impact based on its proximity to an anchor, thereby enhancing robustness to label
noise. We validate our method through extensive experiments on multiple DG benchmarks, confirming that
A3W surpasses existing approaches in terms of both accuracy and resilience to shifting and noisy data. Our
contributions can be summarized as follows:

• We propose an iterative update algorithm that unifies external semantic knowledge and image-based
features, enabling more robust and interpretable generalization across unseen domains.

• We introduce the concept of NLP anchors derived from large-scale language models (e.g., CLIP),
which provide domain-invariant and semantically rich feature constraints that significantly improve
model robustness. Furthermore, we propose a novel weighted loss function that dynamically adjusts
each sample’s contribution based on its distance to the corresponding NLP anchor. By assigning
higher importance to samples that are closer to the learned semantic representations and lower
importance to outliers, our approach effectively enhances feature alignment, ultimately leading to
improved generalization across unseen domains.

• We conduct extensive experiments on multiple domain generalization benchmarks to demonstrate
that A3W outperforms state-of-the-art methods in terms of accuracy, robustness, and adaptability.

2 Related Work

2.1 Domain Generalization

Domain generalization (DG) addresses the challenge of training models that can perform well on previously
unseen domains, without access to labeled examples from those domains at training time. A significant
challenge in DG is the presence of spurious correlations in deep neural networks, which hinders generalization
across diverse settings (Arjovsky et al., 2019). These correlations arise when models inadvertently rely on
domain-specific artifacts—features that are incidentally correlated with the target labels in the training
data—rather than on the truly invariant properties that are essential for robust performance. Consequently,
when models encounter data from an unseen domain, their over-reliance on these spurious cues leads to
performance degradation when deployed in unseen domains. Early methods focused on learning domain-
invariant representations through shallow or deep feature alignments, aiming to eliminate domain-specific
information while preserving task-relevant features. For instance, Muandet et al. (2013) propose Domain-
Invariant Component Analysis (DICA), a kernel-based method to learn invariant features by minimizing
the discrepancy across source domains. Ghifary et al. (2015) use multi-task autoencoders to learn generic
representations.

More recent works resort to data augmentation or adversarial strategies to synthesize novel training distri-
butions, thereby exposing models to a richer variety of samples. Volpi et al. (2018) introduced adversarial
data augmentation by generating worst-case perturbations to expose the model to a broader set of vari-
ations during training, thereby improving its ability to handle unseen shifts. Ganin & Lempitsky (2015)
introduced domain-adversarial training using gradient reversal layers to align feature distributions. Li et al.
(2018) explored meta-learning strategies to enhance DG by simulating domain shifts during training. Shankar
et al. (2018) proposed a generalization method using domain-specific perturbations to improve robustness.
Another class of augmentation-based methods applies Mixup strategies, interpolating data points across
domains to improve robustness (Yan et al., 2020). Style transfer methods have also been introduced to
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augment training data with diverse visual styles, improving out-of-distribution performance (Nam et al.,
2021). (Carlucci et al., 2019) proposed a self-supervised approach that solves jigsaw puzzles to learn more
generalized features.

Beyond augmentation, several methods have turned their focus to regularization to improve generaliza-
tion. Balaji et al. (2018) introduced a regularization algorithm by learning a regularizer modeling the objec-
tive of DG that a model trained on one domain to generalize effectively. Dou et al. (2019) utilized episodic
training to simulate domain shifts and improve generalization. Zhou et al. (2021) introduced a regular-
ization approach based on domain-adaptive ensemble learning to enhance a model’s ability to generalize
across different domains. Furthermore, recent research has revisited the issue of spurious correlations in
DG, proposing methods to mitigate their impact. Qin et al. (2024) explored building a structural causal
model for representation learning to address spurious correlations. Ma et al. (2024) introduced FedCD, a
federated domain generalization algorithm that employs a spurious correlation intervener for self-supervised
feature intervention and a risk extrapolation aggregation strategy to reduce reliance on misleading shortcuts
and boost performance on unseen domains. These studies underscore the importance of addressing spurious
correlations to enhance DG.

2.2 Learning under noisy labels

Learning under noisy labels addresses the challenge of training models when annotated data contain errors
or inconsistencies. Such noise often arises in real-world scenarios due to human annotation mistakes, weak
labeling processes, or automated data collection pipelines. When training with noisy labels, deep neural net-
works can overfit to incorrect annotations, resulting in degraded performance and reduced robustness (Song
et al., 2022a). Initial methods focused on designing robust loss functions and label-correction strategies
to mitigate the impact of label noise. For example, Reed et al. (2014) introduced a “bootstrapping” ap-
proach that combines model predictions with the (potentially noisy) labels to guide learning. Goldberger &
Ben-Reuven (2017) proposed adding a noise adaptation layer to model the corruption process directly. Veit
et al. (2017) leveraged a small clean dataset to estimate noise statistics and correct the loss for mislabeled
examples. These methods laid the groundwork for more advanced noisy-label handling techniques.

Subsequent research explored “co-teaching” strategies to further reduce the impact of noisy annotations. Han
et al. (2018) proposed a co-teaching algorithm wherein two networks train simultaneously, exchanging likely
clean samples to avoid memorizing label noise. MentorNet (Jiang et al., 2018) introduced a curriculum-
based approach, using a “mentor” network to select reliable samples for the “student” network, progressively
ignoring data points suspected to be noisy. A complementary direction has focused on iterative label refine-
ment. Tanaka et al. (2018) presented a joint optimization algorithm that updates labels alongside network
parameters, gradually reducing noise in the dataset. To improve robustness further, recent efforts incor-
porate data augmentation strategies specifically tailored for noisy labels. For instance, Nishi et al. (2021)
systematically studied augmentation techniques to enhance the network’s tolerance to corrupted annotations.

Recent studies delve deeper into noisy-label learning in conjunction with large-scale or real-world datasets.
DivideMix (Li et al., 2020) treated noisy-label learning as a semi-supervised problem, splitting data dynam-
ically into clean and noisy sets for more targeted training. Song et al. (2022a) provided a comprehensive
survey on deep learning with noisy labels, highlighting emerging trends such as instance-dependent noise
modeling and robust early-learning regularization. These approaches emphasize balancing label correction,
sample selection, and model regularization. Robust learning under noisy labels has become increasingly im-
portant for domain generalization tasks, as noisy annotations can exacerbate spurious correlations and hinder
out-of-domain performance. Consequently, integrating advanced noisy-label handling into DG pipelines re-
mains an active area of research. Some recent research has begun to address the intersection of label noise
and domain shifts. Qiao & Low (2024) indicated that while label noise can sometimes serve as a form of
regularization, in scenarios with significant domain shifts it may reinforce spurious correlations, ultimately
degrading performance on unseen domains. These findings underscore the need for integrated approaches
that jointly mitigate label noise and domain shifts to achieve robust out-of-distribution generalization.
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3 Method

3.1 Problem Formulation

Let DS denote a set of source domains, and DT denote the target domain. We assume that DS and DT

share the input space X and label space Y, in which each domain d ∈ {1, . . . ,D} has data drawn from a joint
distribution Pd(X, Y ) where X ∈ X and Y ∈ Y. In practice, the observed labels are corrupted by noise, i.e.
for each sample with true label y, we observe a noisy label ỹ generated by:

ỹ =
{

y, with probability 1− p,

ỹ′ ∼ Q(· | y), with probability p,

where p is the probability that the label is corrupted, and Q(ỹ | y) is a conditional distribution over possible
noisy labels given y. For a classification problem with C classes with c ∈ {1, . . . , C}, this means that the
true label is flipped to a different class with probability p.

Noisy Domain Generalization: The proposed method aims to generalize to unseen domains while preventing
overfitting to noisy data. In this setting, the training dataset Str is contaminated with label noise. We
assume that the testing dataset Ste is drawn from a clean distribution with labels Yte. Our objective is
to train a model on the noisy training dataset Str that learns robust and domain-invariant representations,
thereby minimizing the classification error on the clean target domain Dte.

3.2 Motivation

Domain generalization is a challenging problem primarily due to the tendency of networks to
learn spurious correlations between features and labels. Such correlations can cause overfitting, even
in tasks where the network achieves high performance on the training data. Observations from several works
in DG highlighted the challenge for standard networks to learn representations that are robust or invariant
enough to generalize well to unseen domains. The DomainNet (Peng et al., 2019) benchmark revealed that
many current models struggle to transfer knowledge effectively across heterogeneous data sources. Gulrajani
& Lopez-Paz (2020) showed that numerous DG algorithms fail to significantly outperform a simple empirical
risk minimization (ERM) baseline. Salaudeen & Koyejo (2022) demonstrated that incomplete constraints
can lead to suboptimal generalization performance because the network may not fully disentangle invariant
from spurious features. On the other hand, Ben-David et al. (2010) in their work proved that while many
methods can enforce domain invariance on the training domains, this invariance sometimes comes at the
expense of losing the discriminative power of the features in unseen domains.

Natural occurrences of noise in datasets further exacerbated network overfitting. Noise can
arise from a variety of sources, such as sensor inaccuracies, annotation errors, and environmental variations.
Figure 1(c) presents examples of real-world noise. The figure displays sample images from the PACS (Li
et al., 2017) dataset, where some images are either incorrectly annotated or are ambiguous and unclear even to
the human eye. As of current DG algorithms, Qiao & Low (2024) has proved that DG algorithms inherently
provide label-noise robustness; however, our observations indicate that performance still drops significantly
as noise levels increase. Figure 1(d) illustrates the impact of noise on network fitting. Ideally, a network
trained on noisy data would exhibit relatively stable accuracy throughout training iterations, indicating
resistance to overfitting. However, the sharp increase in accuracy across all domains as training progresses
suggests that the network is overfitting to the noise. This observation led us to rethink an alternative way
to provide more guidance to the feature extraction process for learning better representation. Inspired by
works on leveraging external knowledge for classification to bridge representation from different modalities,
we propose to harness the power of semantic embeddings to provide systematic guidance during training.
In our approach, we seek to mitigate the impact of data that exhibit significant noise or deviate from the
primary training distribution. By incorporating semantic guidance, our aim is to weight samples based on
their semantic consistency with predefined class prototypes or anchors. Formally, a semantic anchor ac ∈ Rm

is computed for each class c, and the goal is to encourage the feature extractor f : X → Rm to map an input
x to a representation f(x) that aligns with the corresponding anchor aỹ even in the presence of noise.
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Figure 2: Architecture of A3W . This diagram illustrates the end-to-end workflow and key components of
A3W . The encoder (Enc.) converts input text into embeddings, which are then refined by the featurizer
(Fea.) into a more informative representation. The classifier (CLs.) leverages these refined features for
prediction. Additionally, the similarity module (sim.) computes the cosine similarity between the embedding
anchor and the projected features, while the alignment module (align.) creates deep copies of this similarity
for weight (w) computation.

3.3 Algorithm for A3W

To address the challenges above, the algorithm of A3W is designed to learn a robust feature representation
and classifier that generalizes well to the unseen target domain DT , despite the presence of noisy labels
and distribution shifts across domains. At its core, A3W aims to align the projected features extracted
from input images with fixed semantic anchors that act as dependable sources of knowledge. Furthermore,
rather than employing a binary selection mechanism which can discard valuable information, our approach
uses a continuous weighting scheme that assigns each sample an importance value, effectively preserving the
gradient contributions from all samples and enabling smoother, more adaptive optimization. The overall
architecture is shown in Figure 2, where we first obtain the natural language processing (NLP) anchors, and
then use them to iteratively guide the updates for the featurizer, classifier, and projection layers. These
stages ensure that the model learns domain-invariant representations while maintaining stable optimization.
The process mainly consists of three steps, with steps 2-3 being iterative:

1) NLP anchor setting phase: we start by computing semantic anchors using a pretrained language-vision
model (i.e., CLIP) as text encoder. For each class c, a text prompt is generated using a template, which
is tokenized and encoded by the CLIP model. The anchors ãc are then stacked into an anchor matrix and
are used to initialize a set of linear projectors {Projc}C

c=1 that map image features into the same semantic
space.

2) Main Model Update: we subsequently update the featurizer and classifier to improve classification per-
formance using the combined loss of the weighted alignment and cross-entropy. During inference, the
exponential moving average (EMA) network, initialized as a deep copy of the primary network, is employed
to produce predictions, as it generally yields more stable and robust outputs compared to the primary
network.

3) Mapping Layer Optimization: Each class is assigned a trainable mapping layer Projc, which projects
feature embeddings into the NLP anchor space. The mapping layers are updated iteratively using our
weighted loss function.
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3.4 Obtaining NLP Anchors via CLIP Convention

In our method, the text encoder T (·) is based on a transformer architecture, as used in the CLIP model. For
a given class c, we first construct a text prompt by appending a fixed template to the class name, and then
encode this prompt using a pretrained text encoder T (·) to obtain an unnormalized anchor ac. To ensure
that the anchor lies on the unit hypersphere, we normalize it, yielding ãc. The formulation is given by:

Prompt(c) = "a photo of a c"

ac = T
(
Prompt(c)

) (1)

The process begins by converting a given text prompt Prompt(c) into a sequence of discrete tokens using a
tokenizer. Let t = [t1, t2, . . . , tL] denote the resulting token sequence, where L is the length of the sequence.
Each token ti is then mapped to a continuous vector via an embedding matrix E ∈ RV ×m, where V is the
vocabulary size and d is the embedding dimension:

ei = E(ti), for i = 1, . . . , L. (2)

These token embeddings are augmented with positional encodings (p) to incorporate the order of the tokens,
resulting in a sequence of enriched embeddings:

ẽi = ei + pi, for i = 1, . . . , L, (3)

where pi is the positional encoding for the i-th token. The sequence {ẽ1, ẽ2, . . . , ẽL} is then fed into a
transformer encoder, which consists of multiple layers of self-attention and feedforward networks. This
produces a set of contextualized token representations:

H = Transformer
(
[ẽ1, ẽ2, . . . , ẽL]

)
= [h1, h2, . . . , hL]. (4)

Typically, a special token (such as [EOS] or [CLS]) is appended to the input sequence, and its corresponding
output hc is used as the aggregate representation of the entire text prompt. Finally, a learned linear projection
(Wproj) is applied to obtain the final text embedding:

ac = Wproj hc, (5)

which is then normalized to ensure that it lies on the unit hypersphere:

ãc = ac

∥ac∥
. (6)

which serves as the NLP anchor for class c, providing a robust semantic reference that guides the image
feature extraction process.

3.5 Warm-Up Training

The warm-up training phase occupies the first 10% of the total training steps and is designed to stabilize the
network before more complex loss terms, such as the alignment loss, are introduced. During this phase, the
featurizer f and classifier g is updated with cross-entropy loss ℓCE . At each training step, a minibatch of
samples is obtained from the dataset. The inputs xi are first concatenated and passed through the feature
extractor f(·), implemented using a ResNet-based architecture, to generate latent features. These features
are then fed into the classifier g(·) to produce predictions. The classifier is optimized using stochastic gradient
descent by minimizing the cross-entropy loss defined as

Lwarm-up =
N∑

i=1
ℓCE

(
g
(
f(xi)

)
, yi

)
, (7)

where yi are the true labels and N is the number of samples in the minibatch. In parallel, the moving average
network is initialized as a deep copy of the primary network and is updated iteratively to stabilize learning.
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Specifically, after a predefined number of iterations, the EMA network parameters θema are updated as
follows:

θema ←
θema · ema_count + θ

ema_count + 1 , (8)

where θ are the parameters of the primary network and ema_count tracks the number of updates. After
each update, the EMA network is refreshed according to the update rule described above.

3.6 Weighted Loss

Let {(xi, yi)}N
i=1 denote a batch of N training samples, where xi is the ith input feature vector and yi ∈

{1, 2, . . . , C} is its corresponding class label for a total of C classes. We denote by Projyi
(·) the mapping layer

corresponding to label yi that projects feature embeddings into a semantic space aligned with NLP-derived
anchors, and by λ a hyperparameter balancing the alignment loss and the classification loss.

Alignment Loss: One way to enforce that the features align with the corresponding NLP anchor is to minimize
the negative cosine similarity loss between the mapped feature representation Projyi

(f(xi)) and the fixed
NLP anchor ayi . This loss is defined as

Lanchor(xi) = − Projyi(f(xi)) · ayi

∥Projyi
(f(xi))∥ ∥ayi

∥
. (9)

By minimizing Lanchor, we effectively maximizes the cosine similarity between the projected features and
the NLP anchor. This process ensures that the learned features are directionally aligned with the semantic
anchors, ultimately promoting representations that are both semantically meaningful and domain-invariant.

Weight Computation: To prioritize high-confidence training instances, we assign importance weights to
samples based on their similarity to the NLP anchors. We introduce a temperature parameter τ to adjust
the sharpness of the softmax weighting distribution—higher values of τ yield a more peaked distribution
that emphasizes strongly aligned samples, whereas lower values produce a softer weighting. Specifically, we
first compute the softmax weights over the alignment costs:

wi =
exp

(
− τ Li

)
∑N

j=1 exp
(
− τ Lj

) , (10)

where Li = − cos
(

Projyi
(f(xi)), ayi

)
. Rewriting this, we obtain:

wi =
exp

(
τ cos

(
Projyi

(f(xi)), ayi

))
∑N

j=1 exp
(

τ cos
(
Projyj

(f(xj)), ayj

)) . (11)

Overall Loss: To maintain classification accuracy while leveraging the selective sampling, we incorporate a
weighted cross-entropy loss, where samples with higher wi values contribute more significantly to the overall
loss. The final loss function combines the alignment loss and the weighted cross-entropy loss:

L = λ

N∑
i=1

wi

[
− cos

(
Projyi(f(xi)), ayi

)]
+

N∑
i=1

wi ℓCE

(
g
(
f(xi)

)
, yi

)
(12)

The overall loss function serves a dual purpose. The alignment loss minimizes the negative cosine similarity
between the projected features and their corresponding NLP anchors, compelling the model to learn repre-
sentations that are semantically consistent with robust class prototypes. This semantic alignment acts as a
natural filter for noise—noisy or out-of-distribution samples tend to have representations that poorly align
with their class anchors. Consequently, when the cross-entropy loss minimizes classification error, it focuses
primarily on high-confidence samples that are well-aligned. Thus, by jointly minimizing both alignment and
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classification errors, the loss function not only ensures accurate predictions but also inherently suppresses
the adverse influence of noisy data.

Reformulating the equation above, we obtain

L =
N∑

i=1
wi

[
λ

(
− cos

(
Projyi

(f(xi)), ayi

))
+ ℓCE

(
g
(
f(xi)

)
, yi

)]
(13)

From this formulation, the weight term wi acts as an importance factor that regulates the influence of each
sample on the overall loss. This regularization mechanism ensures that both the alignment loss and the
classification loss emphasize reliable, high-confidence data. By down-weighting the contribution of samples
that are likely noisy or out-of-distribution, the weight term effectively minimizes the adverse impact of
noise during training. Consequently, this leads to more robust feature learning and improved classification
accuracy.

3.7 Iterative Update

After the warm-up, the full A3W optimization procedure begins. We alternate between updating 1) the fea-
turizer and classifier to improve classification performance; 2) the mapping layers Myi to enhance alignment
with NLP anchors. The classifier and featurizer are updated in every step, but the mapping layers are only
updated at specific intervals to prevent overfitting and to maintain stability. The mapping layer updates
occur when: (

step
steps_per_epoch

)
mod

(
n_steps

steps_per_epoch× 10

)
= 0. (14)

which ensures that the mapping layers are updated once every 10% of the total training steps. The update
loss uses:

L = λ

N∑
i=1

wiLi +
N∑

i=1
wiℓCE(g(f(xi)), yi), (15)

where wi are softmax-scaled importance weights presented above. The training procedure is summarized in
Algorithm 1. Each training step consists of sampling a mini-batch from the dataset, computing both the
alignment loss and weighted cross-entropy loss, and updating either the mapping layers or the featurizer
and classifier based on the step schedule. The algorithm continues until convergence or until the predefined
number of steps is reached.

Algorithm 1 Training Outline for A3W

Require: Dataset D with classes {1, . . . , C}, hyperparameters λ, τ, . . .
1: Initialize: featurizer f(·), classifier g(·), empty mapping layers {Proj1, . . . , P rojC}
2: Set NLP anchors: {a1, . . . , aC} via CLIP (Algorithm invokes set_nlp_anchor)
3: Warm-up Training:
4: for 10% of steps do
5: Sample mini-batch {(xi, yi)} from D
6: Update parameters with Lwarm-up
7: end for
8: Main Training:
9: for step = 1 to n_steps do

10: Sample mini-batch {(xi, yi)} from D
11: if condition for maplayer update is met then
12: Update mapping layers with L
13: else
14: Update featurizer and classifier and layers with L
15: end if
16: end for
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3.8 Theoretical Insights

Our algorithm is designed to mitigate the adverse effects of label noise and domain shifts by integrating
several key components, as formalized by our previously defined equations. Our goal is to learn a predictor
h : X → Y that minimizes the error on DT . Define the expected error of h on domain Di as

ϵPd
(h) = E(x,y)∼Pd

[
1{h(x) ̸= y}

]
, (16)

where Pd denotes the joint probability distribution over the input space X and label space Y for domain Di,
capturing both the inherent variability of the data and the process by which labels may be corrupted (i.e.,
y may be flipped to ỹ with probability p). When p is high, standard empirical risk minimization can easily
overfit to spurious correlations in the noisy labels. To counteract this, the alignment loss (see Eq. equation 9)
serves as a semantic prior that constrains the feature extractor f to produce representations that lie close
to the fixed semantic anchors. This regularizing effect of the alignment loss can be formalized as follows:
Lemma 3.1 (Semantic Prior Restricts Hypothesis Space). Suppose H is the space of predictors induced by
(f, {Projc}). If maxx,c ∥∇Lanchor(x, c)∥ ≤ γ, then H excludes functions whose representations deviate from
the anchors by more than a constant factor related to γ. In particular, spurious correlations that push the
embeddings away from these anchors become suboptimal.

Proof. By definition,
∇Lanchor(x, c) = −∇ cos

(
Projc(f(x)), ac

)
. (17)

A uniformly bounded gradient implies that local changes in f(x) away from ac incur non-negligible costs.
Hence, any hypothesis that aligns poorly with anchors sees a high penalty, effectively restricting the feasible
region of H.

Lemma 3.1 shows that anchor alignment behaves like a regularizer, steering the network away from mem-
orizing noise-laden features. To further enhance robustness, we employ a continuous weighting scheme
(Eq. equation 11) that assigns higher importance to samples with strong semantic alignment. This reweight-
ing mechanism effectively adjusts the empirical risk, as captured in our overall loss function (Eq. equation 12),
so that samples likely to be correctly labeled have a greater influence during training.
Theorem 3.1 (Robustness under Weighted ERM). Let the learned hypothesis h : X → Y be defined as

h(x) = g(f(x)), (18)

where f is the feature extractor and g is the classifier. Suppose that a fraction α of the training samples
in domain Di are corrupted. Then, if the temperature parameter τ is sufficiently large, the softmax weights
wi computed via Eq. equation 11 will concentrate on the uncorrupted samples. This concentration effectively
reweights the empirical distribution to approximate a clean distribution, such that the overall risk via Eq.
equation 12 approximates the risk on noise-free data. Consequently, the learned hypothesis h is less prone to
overfitting to label noise and spurious correlations.

Proof. When τ is large, the exponential function in equation 11 amplifies differences in the alignment cost. If
a corrupted sample (xi, ỹi) has an incorrect label, the alignment cost Lanchor(xi, ỹi) tends to be higher (poorer
alignment). Hence, wi becomes small. This effectively filters out mislabeled samples from dominating the
training objective, approximating the scenario of training on mostly correct labels.

Theorem 3.1 indicates that our weighting strategy can mitigate the detrimental effects of noise, enabling the
model to approximate the true (clean) distribution more closely. These results not only demonstrate the
efficacy of our reweighting strategy in handling noisy labels but also motivate a further examination of how
our approach reduces the discrepancy between noisy and clean distributions. Let P and Q be the distributions
of the source and target domains, respectively, with label noise in P . Many domain generalization results
rely on bounding a distributional divergence div(P, Q). Noise can inflate this divergence by altering label
proportions or feature-label mappings. However, semantic alignment and selective reweighting encourage the
model to focus on consistent semantic cues, thereby lowering the effective divergence to the clean distribution.
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Formally, define the weighted empirical distribution

P̂ =
N∑

i=1
wiδ(xi,yi), (19)

where δ denotes the Dirac measure and each sample (xi, yi) is reweighted by its importance wi. In other
words, instead of treating each sample equally as in standard empirical risk minimization, we solve:

min
h∈H

E(x,y) ∼ P̂

[
ℓ
(
h(x), y

)]
= min

h∈H

N∑
i=1

wi ℓ
(
h(xi), yi

)
. (20)

This reweighting mechanism effectively suppresses the influence of corrupted samples in the empirical risk
minimization process. As a result, the reweighted distribution P̂ becomes a closer approximation of the
noise-free (clean) distribution. Formally, by minimizing the risk under P̂ , the learned hypothesis h is more
likely to reflect the patterns present in the clean data rather than the spurious correlations induced by noise.
In other words, by down-weighting noisy samples, our approach reduces the divergence between the empirical
distribution P̂ and the true clean distribution Q, i.e., div(P̂ , Q) is reduced. This reduction in discrepancy
implies that the model is trained on a distribution that better represents the underlying data, ultimately
leading to improved generalization performance on the unseen target domain.

Table 1: Dataset Information for Domain Generalization Benchmarks
Dataset Domains # Classes Class Descriptions # Images
PACS Photo, Art, Cartoon, Sketch 7 Dog, Elephant, Giraffe, Guitar, Horse, House, Person 9,991
VLCS Caltech101, LabelMe, SUN09, VOC2007 5 Bird, Car, Chair, Dog, Person 10,729
OfficeHome Art, Clipart, Product, Real 65 Office/home objects 15,500
SVIRO 4 Car Makes 7 Description of back seat 25,000
DomainNet Clipart, Infograph, Painting, Quickdraw, Real, Sketch 15 Common Objects 25,730

4 Experiments

4.1 Experimental Setup and Datasets Preprocessing

We conducted our experiments on a server with 10 NVIDIA Quadro RTX 6000 24G GPUs. We extensively
evaluate our method on domain generalization with noisy data using four benchmark datasets. For more
details, please refer to their original publications. PACS (Li et al., 2017) is a 7-class image classification
dataset that spans four distinct domains (Photo, Art Painting, Cartoon, and Sketch). Renowned for its
diverse artistic styles, PACS offers a challenging testbed for robust representation learning. VLCS (Fang
et al., 2015) comprises 5 classes drawn from four domains (Caltech101, LabelMe, SUN09, and VOC2007).
Each domain originates from a different source, resulting in significant variability in image characteristics
and presenting a broad generalization challenge with both natural and scene-centric images. Office-Home
(Venkateswara et al., 2017) is a 65-class dataset designed to capture common objects in everyday office and
home environments. Its wide range of object categories and the substantial variation in style and background
make it a rigorous benchmark for domain generalization. SVIRO (Cruz et al., 2020) is a synthetic dataset
focused on vehicle interiors. It contains 25,000 images from 10 distinct vehicle interior environments and
features 7 occupant classes. SVIRO provides a challenging scenario for domain generalization, especially
in handling variations in interior design and occupancy. DomainNet (Peng et al., 2019) is a large-scale
dataset spanning six domains (Clipart, Infograph, Painting, Quickdraw, Real, Sketch) with 345 classes. It
encompasses a broad range of styles and object categories, capturing significant distribution shifts across
these domains. Due to computation resource limitation, we only used the first four domains in SVIRO and
15 classes per domain for DomainNet. More information is provided in 1.

All experiments are conducted using DomainBed (Gulrajani & Lopez-Paz, 2020) to ensure consistency across
datasets. To assess the out-of-distribution performance of various algorithms, we inject instance-independent
symmetric label noise based on (Qiao & Low, 2024) where we add 10% and 25% label noise. For all presented
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Table 2: Cross-test accuracy (%) for domain shifts under a noise level of η = 0.25. Best results in bold.

Method PACS VLCS Office-Home SVIRO DomainNet
ERM 74.5± 0.6 71.9± 0.6 54.9± 0.3 77.9± 0.9 65.0± 0.4
GroupDRO 74.7± 0.4 71.2± 0.2 54.1± 0.3 75.4± 0.5 68.4± 0.2
IRM 71.0± 1.9 70.3± 0.3 53.9± 1.8 62.7± 14.7 37.6± 15.5
VREx 73.5± 0.7 71.8± 0.6 53.0± 0.9 73.6± 2.6 64.9± 0.8
Mixup 75.2± 0.9 71.9± 0.5 57.5± 0.3 83.3± 1.5 67.9± 0.2
A3W (ours) 82.1± 0.5 76.1± 0.3 65.2± 0.2 93.9± 0.1 73.9± 0.2

real-world datasets, we employ a ResNet-50 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009), and
standard data augmentation techniques are applied across all experiments. For the domain-shift datasets,
we used the same metric as (Qiao & Low, 2024), in which we perform single-domain cross-test experiments
by designating each domain in turn as the test set and using the remaining domains for training. In these
experiments, we use 20% of the test data for model selection, and no early stopping is applied. For each
dataset, we run 3 independent trials; in each trial, we perform a hyperparameter search over 20 different
configurations according to DomainBed’s default settings. Each environment were made to be the target
dataset independently, thus 240 total trials were performed for each dataset. Specifically, we train all models
for 5000 steps on all real-world datasets.

4.2 Baseline Methods

We compare A3W against a suite of representative baseline methods from the domain generalization
literature (Qiao & Low, 2024):

• ERM : Empirical Risk Minimization, which trains a single model on the aggregated source do-
mains (Vapnik, 1991).

• Mixup: Mixes pairs of source samples to create interpolated training examples, improving robust-
ness (Zhang et al., 2017).

• GroupDRO: Optimizes worst-group loss among source domains to handle distribution shifts (Sagawa
et al., 2019).

• IRM : Invariant Risk Minimization, which enforces domain-invariant representations to improve out-
of-distribution generalization (Arjovsky et al., 2019).

• V-REx: Variance Risk Extrapolation, which penalizes variance in risk across different environments
to improve generalization (Krueger et al., 2021).

We obtain the comparison results from Qiao & Low (2024), and we use the Pytorch suite developed by
Gulrajani & Lopez-Paz (2020) for base for algorithm implementation. The subset of TerraIncognita from Qiao
& Low (2024) was no longer publicly available, so we used the SVIRO dataset. The SVIRO dataset’s baseline
method result was obtained by running the experiment in the same setup as Qiao & Low (2024). The target
domain is divided into validation and test sets. The validation set is used to tune the hyperparameters by
selecting the configuration that yields the highest accuracy. Using the optimal hyperparameter configuration,
we then evaluate the model’s performance on the test set, and the average classification accuracy on the
target domain is used as the evaluation metric.
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Table 3: Cross-test accuracy (%) for domain shifts under a noise level of η = 0.1. Best results in bold.

Method PACS VLCS Office-Home SVIRO DomainNet
ERM 82.0± 0.5 75.0± 0.3 62.2± 0.1 80.8± 1.9 70.8± 0.5
GroupDRO 82.4± 0.3 75.1± 0.1 61.3± 0.4 78.6± 2.1 71.9± 0.1
IRM 80.4± 1.2 74.6± 0.3 61.2± 1.2 72.5± 8.1 38.9± 19.8
VREx 81.4± 0.2 75.0± 0.1 60.6± 0.5 81.6± 3.5 66.9± 0.4
Mixup 83.6± 0.1 75.5± 0.2 63.9± 0.1 84.1± 0.7 69.2± 0.6
A3W (ours) 85.2± 0.2 78.5± 0.2 68.2± 0.3 94.8± 0.3 76.1± 0.1

Figure 3: Noise analysis. (a) The effect of increasing noise levels on classification accuracy reveals that
higher noise leads to a sharper decline, reflecting an increased tendency to overfit. (b) A3W is most robust
to noise injection, with its accuracy decreasing by only 0.2 when noise increases from 0.1 to 0.25, in contrast
to other algorithms, which show declines between 0.427 and 0.527.

4.3 Experimental Results

Table 2 and 3 present the average test accuracy for different values of η = 0.1 and η = 0.25, respectively.
The experimental results show that A3W consistently outperforms all baseline methods. We observe the
following:

1) A3W consistently achieves the highest accuracy across all domains in all datasets. Its margin of improve-
ment often exceeds 6–8% on average compared to the baseline methods, indicating stable training dynamics,
leading to consistent accuracy improvements across multiple datasets.

2) A3W shows the strongest performance gain in SVIRO (averaged to 13%), where the most semantic
information is given, proving the importance of the NLP anchor in guiding the sampling process of learning
the featurizer.

3) Among the baselines, Mixup frequently attains the second-best performance, suggesting that
interpolation-based augmentation can help mitigate moderate noise. However, its improvements are rel-
atively small and are inconsistent across different domains.

4) In our noise analysis (see Figure 3), we observe that the general training accuracy tends to drop earlier as
noise levels increase, a sign of overfitting to noise. Among all evaluated methods, A3W exhibits the smallest
decline in accuracy with rising noise, demonstrating its resilience to overfitting under noisy conditions.
Additionally, the flexibility of simple loss reweighting in handling noisy labels allows it to adapt well to
various network architectures. Thus, in subsequent experiments, we use A3W as the default approach unless
otherwise specified.
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Table 4: Cross-test accuracy (%) for domain shifts. Best results in bold.

Method PACS VLCS Office-Home SVIRO DomainNet
w/out NLP anchor 80.7 75.5 65.1 91.7 85.5
w/out weighted loss 79.7 74.2 64.7 93.6 85.8
A3W (baseline) 82.1 76.1 65.2 93.9 86.5

4.4 Ablation Study

To better understand the role of each component in A3W , we conduct ablation studies under three key
questions, as summarized in Table 4. The experiments span multiple datasets, and the results highlight how
removing NLP anchor alignment or omitting the softmax weighting mechanism impacts overall performance.

1) Why does removing NLP anchor alignment reduce performance? In Table 4, discarding the NLP anchor
alignment step (i.e., “w/out NLP anchor”) yields an average accuracy drop of about 0.86% across the listed
datasets. This decrease arises because anchor alignment provides semantic guidance that helps the model
differentiate meaningful features from spurious correlations. Without alignment, the feature extractor lacks
an external semantic reference, making it more prone to overfitting on noisy labels and domain-specific
artifacts.

2) How does eliminating softmax weights affect training stability? When we replace the adaptive softmax
weighting with uniform weights (i.e., “w/out weighted loss”), the accuracy declines by an average of 1.16%
across the datasets. This finding suggests that the continuous weighting scheme (Section 3.8) is crucial for
emphasizing well-aligned (likely clean) samples. In contrast, uniform weighting fails to down-weight noisy
or misaligned samples, reducing training stability and overall performance.

3) Are both alignment and weighting necessary for robust generalization? Finally, the baseline A3W
model—which integrates both NLP anchor alignment and softmax weighting—achieves the highest accuracy
on average (e.g., 80.76% on PACS). These results indicate that semantic anchors and adaptive weighting
reinforce each other: alignment ensures meaningful feature extraction, while the weighting mechanism se-
lectively highlights reliable data. Removing either component leads to noticeable performance degradation,
underscoring their combined importance for robust domain generalization under noisy labels.

These findings confirm that semantic alignment with textual anchors (and the associated softmax weighting)
plays a pivotal role in boosting generalization. The additional MA network contributes incremental stability
but is not solely responsible for the performance gains.

4.5 Convergence Analysis and Feature Clustering

In addition to the experimental results, we further assess the feasibility of our approach by examining
its trainability and convergence properties. Figure 4 illustrates the convergence behavior of our model as
the training step size increases. The convergence trajectories, shown under three different random seeds
and training configurations across two datasets, demonstrate that A3W achieves stable optimization and
effectively minimizes the overall loss—even in the presence of label noise. This stability validates our method’s
robustness and its ability to learn domain-invariant representations. Furthermore, Figure 5 presents t-SNE
embeddings of features learned by three different methods on the PACS dataset. In these visualizations,
each point represents a sample, with color indicating the class and marker shape indicating the domain. By
comparing the best models from each approach, it is evident that the proposed A3W produces more cohesive
and well-separated clusters across both training and test domains, underscoring its superior capability in
learning discriminative features.
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Figure 4: Convergence trajectories under three different random seeds and training configurations for two
datasets.

Figure 5: t-SNE embeddings of three methods on the PACS dataset. From left to right are ERM, IRM,
MixUp, and A3W .

4.6 Parameter Sensitivity

We consider four key hyperparameters in our method: the regularization parameter (λ), the iteration fre-
quency, the temperature (τ), and the learning rate (lr). For fairness, we keep all other settings fixed while
varying one parameter at a time, and we set the random seed for each trial. Figure 6 presents the parameter
sensitivity analysis, with red markers indicating the optimal performance points. The best performance is
achieved at λ = 0.1, though the accuracy remains competitive even when λ deviates slightly from this value,
demonstrating resilience to parameter shifts. Similarly, increasing the iteration frequency from 5 to 20 results
in only minor changes in accuracy, which underscores the method’s stability. For the temperature, varying
τ from 5 to 15 shows that the optimal performance is attained at τ = 10, with a sharp decline in accuracy
observed when τ is raised to 15. This suggests that an excessive temperature causes the amplification in the
softmax to become overly aggressive, rendering it too selective and potentially discarding useful information;
however, when properly tuned, it also helps to effectively diminish the effect of samples that deviate from
the semantic anchors. Although Theorem 3.1 guarantees that a sufficiently high temperature will favor
uncorrupted data through the softmax weighting, the key is finding the right balance–high enough to filter
out noise without overshooting. The proposed method ("Ours") achieves the highest accuracy at 10−4, as
indicated by the red cross mark, but performance drops significantly at higher learning rates. Both ERM
and Mixup exhibit more stable performance across lower learning rates but also experience a sharp decline at
10−3 and beyond. Overall, these findings demonstrate that our approach exhibits robustness across a broad
spectrum of hyperparameter settings, maintaining strong performance even under suboptimal conditions.
Furthermore, they suggest that careful hyperparameter tuning can further improve performance, offering a
competitive advantage over alternative methods.
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Figure 6: Parameter sensitivity analysis.

4.7 Impact of Semantic Richness in NLP Anchors

Our ablation studies reveal that NLP anchors provide effective guidance, a finding further supported by
experimental results on the SVIRO dataset (see Table 2 and Table 3). In particular, when descriptive
class names such as “car back seat,” “infant car seat,” and “child in convertible car seat” were used, A3W
achieved the highest performance improvement among all datasets. In contrast, other datasets used single-
word labels showed less pronounced gains. However, this reliance on rich semantic information may pose
challenges when the categories are very similar or less frequently encountered. We ruled out the possibility
that the number of classes was a limiting factor—our experiments on the OfficeHome dataset, which includes
65 classes, still demonstrated performance gains over the baselines. Future work could explore more tailored
network architectures for instance-specific domain generalization, especially in scenarios involving closely
related classes.

4.8 Training Noise as an Implicit Regularizer

In some parameter settings, we observed that introducing more noise during training can actually lead to
improved accuracy, as shown in Fig. 3. This counterintuitive result occurs because additional noise acts
as a form of regularization. Essentially, it prevents the model from overfitting to spurious correlations and
irrelevant details in the training data. Previous work (Chen et al., 2023) suggests that this injected noise
encourages the network to learn more robust and invariant features by smoothing the loss landscape and
promoting the discovery of flatter minima. As a result, even though the training data is noisier, the model
is better able to capture the underlying patterns that generalize well to the target domain. This leads to
improved performance on unseen data, as the network becomes less sensitive to the peculiarities of the noisy
training samples.

4.9 Cosine Similarity Loss for Feature Representation Learning

Negative cosine similarity is commonly used as a loss function when learning feature representations, espe-
cially in tasks such as metric learning, similarity-based learning, and contrastive learning. We compared L2
and cosine similarity, where cosine similarity greatly outperformed L2 loss. Although both encourage the
learning of representations that are close together for similar items (i.e. samples from the same class) and
far apart for dissimilar ones to support the formation of a more discriminative and robust feature space,
cosine similarity captures the orientation of the vectors rather than their magnitude. In other words, cosine
similarity is scale invariant: if a vector is scaled by a constant factor, its cosine similarity with another
vector remains unchanged, whereas L2 loss is directly affected by changes in magnitude. This property is
particularly advantageous in tasks where the relative direction of feature vectors (which captures semantic
information) is more important than their absolute values. Additionally, cosine similarity naturally empha-
sizes the alignment between vectors, encouraging features from the same class to be directionally similar,
regardless of their scale. This can lead to more robust clustering and improved generalization, especially
when the features may vary in magnitude due to factors unrelated to the underlying semantics.
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5 Discussion

Despite these promising results, A3W has several limitations that can be improved. The computational cost
of A3W is another aspect worth considering. Compared to baseline DG methods such as ERM or CORAL,
our approach introduces additional mapping layers for each class and computes cosine similarity loss with
softmax-based weighting, increasing both parameter count and training time. While our experiments indi-
cate that the additional overhead is manageable (approximately a 10% increase in runtime), scaling A3W
to large-scale datasets with hundreds of classes could become computationally expensive—particularly when
replacing simple modules with larger ones (e.g., cross attention), as evidenced by the significant time cost
observed over 240 trials. Potential solutions include optimizing the mapping layers via low-rank factorization
or class clustering to reduce redundancy in the alignment process. Another promising direction for improve-
ment involves adaptive anchor selection. Currently, A3W assumes a fixed set of text embeddings throughout
training, which may not always be optimal. Instead of static anchors, one could explore dynamic anchor
refinement, where text embeddings evolve based on learned feature distributions. This strategy would enable
the model to refine its representations over time, thereby improving alignment with the most semantically
relevant concepts. Additionally, integrating contrastive learning techniques could further strengthen the
alignment between visual and textual representations. Future work could also extend A3W to multi-label
and hierarchical classification settings. Many real-world applications involve objects that belong to multiple
categories simultaneously (e.g., an image of a wolf could be categorized as both “canine” and “wild ani-
mal”). Current A3W anchors operate at the class level, but incorporating hierarchical category embeddings
(e.g., WordNet-based representations) could improve generalization by capturing higher-level semantic rela-
tionships. Similarly, expanding the algorithm to support multi-modal domain generalization—incorporating
additional cues such as audio or structured metadata—could further enhance robustness. Finally, another
promising extension involves domain-aware prompts. Instead of using generic text descriptions (e.g., “a
photo of a {class}”), dynamically tailoring prompts to reflect domain characteristics (e.g., “a sketch of a
dog” in PACS) could improve alignment. This would enable a more fine-grained adaptation of NLP anchors
to specific domain shifts, further mitigating performance degradation in unseen domains.

6 Conclusion

In this paper, we introduced A3W , a simple yet effective domain generalization algorithm that integrates ex-
ternal knowledge from large-scale language models to guide visual feature learning. By mapping learned rep-
resentations to class-specific NLP anchors, we impose additional semantic constraints that mitigate domain-
specific biases. Experimental results across five benchmark datasets demonstrate consistent improvements
over state-of-the-art methods, underscoring the effectiveness of knowledge-guided strategies in dealing with
unseen domains to the best of our knowledge.

Moreover, our ablation studies reveal that both semantic alignment and adaptive weighting play pivotal
roles in enhancing the robustness of our approach. Notably, our algorithm’s modular design allows for easy
replacement or customization of its individual components—such as integrating different moving average
strategies or alternative weighting schemes—to better suit diverse tasks. This flexibility not only simplifies
the process of adapting to new challenges but also sets the stage for future explorations in knowledge-guided
domain generalization. As vision-language models continue to evolve, the potential to further refine and
extend these methods promises even greater strides toward interpretable, robust, and versatile deep learning
systems.
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