
Model-based Trajectory Stitching for Improved
Offline Reinforcement Learning

Charles A. Hepburn1 Giovanni Montana1,2
1University of Warwick 2Alan Turing Institute

{Charlie.Hepburn,g.montana}@warwick.ac.uk

Abstract

In many real-world applications, collecting large and high-quality datasets may
be too costly or impractical. Offline reinforcement learning (RL) aims to infer
an optimal decision-making policy from a fixed set of data. Getting the most
information from historical data is then vital for good performance once the policy
is deployed. We propose a model-based data augmentation strategy, Trajectory
Stitching (TS), to improve the quality of sub-optimal historical trajectories. TS
introduces unseen actions joining previously disconnected states: using a prob-
abilistic notion of state reachability, it effectively ‘stitches’ together parts of the
historical demonstrations to generate new, higher quality ones. A stitching event
consists of a transition between a pair of observed states through a synthetic and
highly probable action. New actions are introduced only when they are expected to
be beneficial, according to an estimated state-value function. We show that using
this data augementation strategy jointly with behavioural cloning (BC) leads to
improvements over the behaviour-cloned policy from the original dataset. Improv-
ing over the BC policy could then be used as a launchpad for online RL through
planning and demonstration-guided RL.

1 Introduction

Behavioural cloning (BC) [51, 52] is one of the simplest imitation learning methods to obtain a
decision-making policy from expert demonstrations. BC treats the imitation learning problem as a
supervised learning one. Given expert trajectories - the expert’s paths through the state space - a policy
network is trained to reproduce the expert behaviour: for a given observation, the action taken by the
policy must closely approximate the one taken by the expert. Although a simple method, BC has
shown to be very effective across many application domains [51, 55, 32, 50], and has been particularly
successful in cases where the dataset is large and has wide coverage [13]. An appealing aspect of
BC is that it is applied in an offline setting, using only the historical data. Unlike reinforcement
learning (RL) methods, BC does not require further interactions with the environment. Offline policy
learning can be advantageous in many circumstances, especially when collecting new data through
interactions is expensive, time-consuming or dangerous; or in cases where deploying a partially
trained, sub-optimal policy in the real-world may be unethical, e.g. in autonomous driving and
medical applications.

BC extracts the behaviour policy which created the dataset. Consequently, when applied to sub-
optimal data (i.e. when some or all trajectories have been generated by non-expert demonstrators),
the resulting behavioural policy is also expected to be sub-optimal. This is due to the fact that BC
has no mechanism to infer the importance of each state-action pair. Other drawbacks of BC are its
tendency to overfit when given a small number of demonstrations and the state distributional shift
between training and test distributions [54, 13]. In the area of imitation learning, significant efforts
have been made to overcome such limitations, however the available methodologies generally rely

3rd Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022.

State

Action

Generated action

Stitching event

S
ta

te
 V

al
ue

Figure 1: Simplified illustration of Trajectory Stitching. Each original trajectory (a sequence of states
and actions) in the dataset D is indicated as Ti with i = 1, 2, 3. A first stitching event is seen in
trajectory T1 whereby a transition to a state originally visited in T2 takes place. A second stitching
event involves a jump to a state originally visited in T3. At each event, jumping to a new state
increases the current trajectory’s future expected returns. The resulting trajectory (in bold) consists of
a sequence of states, all originally visited in D, but connected by imagined actions; it replaces T1 in
the new dataset.

on interacting with the environment [54, 18, 28, 47]. So, a question arises: can we help BC infer a
superior policy only from available sub-optimal data without the need to collect additional expert
demonstrations?

Our investigation is related to the emerging body of work on offline RL, which is motivated by
the aim of inferring expert policies with only a fixed set of sub-optimal data [46, 48]. A major
obstacle towards this aim is posed by the notion of action distributional shift [23, 43, 48]. This is
introduced when the policy being optimised deviates from the behaviour policy, and is caused by
the action-value function overestimating out-of-distribution (OOD) actions. A number of existing
methods address the issue by constraining the actions that can be taken. In some cases, this is
achieved by constraining the policy to actions close to those in the dataset [23, 43, 60, 31, 67, 21],
or by manipulating the action-value function to penalise OOD actions [45, 1, 39, 62]. In situations
where the data is sub-optimal, offline RL has been shown to recover a superior policy to BC [23, 44].
Improving BC will in turn improve many offline RL policies that rely on an explicit behaviour policy
of the dataset [2, 64, 21].

In contrast to existing offline learning approaches, we turn the problem on its head: rather than
trying to regularise or constrain the policy somehow, we investigate whether the data itself can be
enriched using only the available demonstrations and an improved policy derived through a standard
BC algorithm, without any additional modifications. To explore this new avenue, we propose a
model-based data augmentation method called Trajectory Stitching (TS). Our ultimate aim is to
develop a procedure that identifies sub-optimal trajectories and replaces them with better ones. New
trajectories are obtained by stitching existing ones together, without the need to generate unseen
states. The proposed strategy consists of replaying each existing trajectory in the dataset: for each
state-action pair leading to a particular next state along a trajectory, we ask whether a different action
could have been taken instead, which would have landed at a different seen state from a different
trajectory. An actual jump to the new state only occurs when generating such an action is plausible
and it is expected to improve the quality of the original trajectory - in which case we have a stitching
event.

An illustrative representation of this procedure can be seen in Figure 1, where we assume to have
at our disposal only three historical trajectories. In this example, a trajectory has been improved
through two stitching events. In practice, to determine the stitching points, TS uses a probabilistic
view of state-reachability that depends on learned dynamics models of the environment. These
models are evaluated only on in-distribution states enabling accurate prediction. In order to assess
the expected future improvement introduced by a potential stitching event, we utilise a state-value
function and reward model. Thus, TS can be thought of as a data-driven, automated procedure
yielding highly plausible and higher-quality demonstrations to facilitate supervised learning; at the

2

same time, sub-optimal demonstrations are removed altogether whilst keeping the diverse set of seen
states.

Demonstrations can be used to guide RL, to improve on the speed-up of learning of online RL. In
these cases, BC can be used to initialise or regularise the training policy [53, 49]. Running TS on
the datasets beforehand could be used to improve on the sample efficiency further as the initialised
policies will be better; as well as regularising the policy towards an improved one. In future work
we aim to leverage TS as a launchpad for online RL. Specifically, an improved BC policy would be
useful in improving the sample efficiency for planning [2, 64] as well as deployment efficiency in
offline-to-online RL [25, 66].

Our experimental results show that TS produces higher-quality data, with BC-derived policies always
superior than those inferred on the original data. Remarkably, we demonstrate that TS-augmented
data allow BC to compete with SOTA offline RL algorithms on highly complex continuous control
openAI gym tasks implemented in MuJoCo using the D4RL offline benchmarking suite [20]. In
terms of a larger system, BC-derived policies are used as a prior to many methods, so a reasoned
approach to improving the BC policy could improve these methods also.

2 Problem setup

We consider the offline RL problem setting, which consists of finding an optimal decision-making
policy from a fixed dataset. The policy is a mapping from states to actions, π : S → A, whereby
S and A are the state and action spaces, respectively. The dataset is made up of transitions D =
{(si, ai, ri, s′i)}, of current state, si; action performed in that state, ai; the state in which the
action takes the agent, s′i; and the reward for transitioning, ri. The actions have been taken by an
unknown behaviour policy, πβ , acting in a Markov decision process (MDP). The MDP is defined as
M = (S,A,P,R, γ), where P : S × A × S → [0, 1] is the transition probability function which
defines the dynamics of the environment, R : S ×A× S → R is the reward function and γ ∈ (0, 1]
is a scalar discount factor [59].

In offline RL, the agent must learn a policy, π∗(a|s), that maximises the returns defined as the
expected sum of discounted rewards, Eπ[

∑∞
t=0 rtγ

t], without ever having access to πβ . Here we are
interested in performing imitation learning through BC, which mimics πβ by performing supervised
learning on the state-action pairs in D [51, 52]. More specifically, assuming a deterministic policy,
BC minimises

πBC(s) = argmin
π

Es,a∼D[(π(s)− a)2]. (1)

The resulting policy also minimises the KL-divergence between the trajectory distributions of the
learned policy and πβ [34]. Our objective for TS is to improve the dataset, by replacing existing
trajectories with high-return ones, so that BC can extract a higher-performing behaviour policy than
the original. Many offline RL algorithms bias the learned policy towards the behaviour-cloned one
[2, 21, 64] to ensure the policy does not deviate too far from the behaviour policy. Being able to
extract a high-achieving policy would be useful in many of these offline RL methods.

3 Trajectory Stitching

Overview. The proposed data augmentation method, Trajectory Stitching, augments D by stitching
together high value regions of different trajectories. Stitching events are discovered by searching for
candidate next states which lead to higher returns. These higher quality states are determined by a
state-value function, V (s), which is trained using the historical data. This function is unaffected by
distributional shift due to only being evaluated on in-distribution states.

Suppose that the transition (s, a, s′) came from some trajectory Ti in D, for which the joint density
function is p(s, a, s′) ∝ p(s′|s)p(a|s, s′); here, p(s′|s) represents the environment’s forward dynam-
ics and p(a|s, s′) is its inverse dynamics. Our aim is to replace s′ and a with a candidate next state,
ŝ′ and connecting action â, which leads to higher returns. To generate a new transition, first we look
for a candidate next state, ŝ′ ̸= s′, amongst all the states in D, that has been visited by any other
trajectory. A suitable criterion to evaluate next state candidates is given by the forward dynamics;
conditional on s, we require that the new next state must be at least as likely to have been observed
as s′, i.e. we impose p(ŝ′|s) ≥ p(s′|s). To be beneficial, the candidate next state must not only be

3

likely to be reached from s under the environment dynamics, but must also lead to higher returns
compared to the current next state. Thus, we also require that, under the pre-trained state-value
function, V (ŝ′) > V (s′). Where both these conditions are satisfied, a plausible action connecting
s and the newly found ŝ′ is obtained by finding an action that maximises the inverse dynamics, i.e.
argmaxâ p(â|s, ŝ′). When the process is completed, we have a stitching event.

For each trajectory Ti in D, we sequentially consider all its transitions (s, a, s′) until a stitching event
takes place, which leads to a different trajectory, Tj . This process is then repeated for Tj , starting at
the current state, until no more stitching events are possible. For example, let us have two trajectories
T1 and T2, with lengths N and M respectively. TS stitches time point n in T1 to time point m in T2
which would lead to a new trajectory to replace T1,

(s
(1)
1 , a

(1)
1 , s

(1)
2 , . . . , s

(1)
n−1, a

(1)
n−1, s

(1)
n , â, s(2)m , a(2)m , s

(2)
m+1, . . . , a

(2)
M−1, s

(2)
M).

Here s(i)j , a
(i)
j represents a state-action pair for Ti at time point j. Upon completing this process, we

have created new and plausible trajectories, under the empirical state distribution, with overall higher
expected cumulative returns.

In practice, we do not assume that the forward dynamics, inverse dynamics, reward function and
state-value function are known; hence they need to be estimated from the available data. In the
remainder of this section we describe the models used to infer these quantities. Algorithm 1 (see
Appendix) details the full TS procedure.

Next state search via a learned dynamics model. The search for a candidate next state requires
a learned forward dynamics model, i.e. p(s′|s). Model-based RL approaches typically use such
dynamics’ models conditioned on the action as well as the state to make predictions [30, 63, 36, 2].
Here, we use the model differently, only to guide the search process and identify of a suitable next
state to transition to. Specifically, conditional on s, the dynamics model is used to assess the relative
likelihood of observing any other s′ in the dataset compared to the observed one.

The environment dynamics are assumed to be Gaussian, and we use a neural network to predict
the mean vector and covariance matrix, i.e. p̂ξ(st+1|st) = N (µξ(st),Σξ(st)); here, ξ indicate the
parameters of the neural network. Modelling the environment dynamics as a Gaussian distribution is
common for continuous state-space applications [30, 63, 36, 62]. Furthermore, we take an ensemble
E of N dynamics models, {p̂iξ(st+1|st) = N (µiξ,Σ

i
ξ)}Ni=1. Each model is trained via maximum

likelihood estimation so it minimises the following loss

Lp̂(ξ) = Es,s′∼D[(µξ(s)− s′)TΣ−1
ξ (s)(µξ(s)− s′) + log |Σξ(s)|],

where |·| refers to the determinant of a matrix. Each model’s parameter vector is initialised differently;
using such an ensemble strategy has been shown to take into account the epistemic uncertainty, i.e.
the uncertainty in the model parameters [7, 12, 2, 62].

Once the models have been fitted, to decide whether ŝ′ can replace s′ along any trajectory, we take a
conservative approach by requiring that

min
i∈E

p̂iξ(ŝ
′|s) > mean

i∈E
p̂iξ(s

′|s).

where the minimum and mean are taken over the ensemble E of dynamics models.

Value function estimation and reward prediction model. Value functions are widely used in
reinforcement learning to determine the quality of an agent’s current position [59]. In our context, we
use a state-value function to assess whether a candidate next state offers a potential improvement
over the original next state. To accurately estimate the future returns given the current state, we
calculate a state-value function dependent on the behaviour policy of the dataset. The function
Vθ(s) is approximated by a MLP neural network parameterised by θ. The parameters are learned by
minimising the squared Bellman error [59],

LV (θ) = Es,r,s′∼D[(r + γVθ(s
′)− Vθ(s))

2]. (2)

Vθ is only used to observe the value of in-distribution states, thus avoiding the OOD issue when
evaluating value functions which occurs in offline RL. The value function will only be queried once a
candidate new state has been found such that p(ŝ′|s) ≥ p(s′|s).

4

Value functions require rewards for training, therefore a reward must be estimated for unseen tuples
(s, â, ŝ′). To this end, we train a conditional Wasserstein-GAN [24, 3] consisting of a generator, Gϕ
and a discriminator Dψ , with parameters of the neural networks ϕ and ψ respectively. A Wasserstein
GAN is used due to the training stability over GANs [3], as well as their predictive performance
over MLPs and VAEs. The discriminator takes in the state, action, reward, next state and determines
whether this transition is from the dataset. The generator loss function is:

LG(ϕ) = E z∼p(z)
s,a,s′∼D

r̃∼Gϕ(z,s,a,s
′)

[Dψ(s, a, s
′, r̃)].

Here z ∼ p(z) is a noise vector sampled independently from N (0, 1), the standard normal. The
discriminator loss function is:

LD(ψ) = Es,a,r,s′∼D[Dψ(s, a, s
′, r)]− E z∼p(z)

s,a,s′∼D
r̃∼Gϕ(z,s,a,s

′)

[Dψ(s, a, s
′, r̃)].

Once trained, a reward will be predicted for the stitching event when a new action has been generated
between two previously disconnected states.

Action generation via an inverse dynamics model. Sampling a suitable action that leads from
s to the newly found state ŝ′ requires an inverse dynamics model. Specifically, we require that a
synthetic action must maximise the estimated conditional density, p(a|s, ŝ′). To this end, we train a
conditional variational autoencoder (CVAE) [38, 57], consisting of an encoder qω1

and a decoder pω2

where ω1 and ω2 are the respective parameters of the neural networks.

The encoder converts the input data into a lower-dimensional latent representation z whereas the
decoder generates data from the latent space. The CVAE objective is to maximise log p(a|s, ŝ′) by
maximising its lower bound

max
ω1,ω2

log p(a|s, ŝ′, z) ≥ max
ω1,ω2

Ez∼qω1
[log pω2

(a|s, ŝ′, z)]−DKL[qω1
(z|a, s, ŝ′)||P (z|s, ŝ′)],

where z ∼ N (0, 1) is the prior for the latent variable z, and DKL represents the KL-divergence
[42, 41]. This process ensures that the most plausible action is generated conditional on s and ŝ′.

Iterated TS and BC. TS is run for multiple iterations, updating the value function before each
one based on the new data and improved behaviour policy. All other models remain fixed as we do
not have any updated information about the underlying MDP. From the new dataset, we extract the
behaviour policy using BC, minimising Equation (1). We train BC for 100k gradient steps, reporting
the best policy from checkpoints of every 10k steps from 40k onwards. This ensures that BC has
trained enough and does not overfit.

4 Experimental results

In this section, we provide empirical evidence that TS can produce higher-quality datasets, compared
to the original data, by showing BC infers improved policies without collecting any more data from
the environment. We call a BC policy run on a TS dataset TS+BC. We compare our method with
selected offline RL methods using D4RL datasets. This is to give an insight into how much TS can
improve BC by reaching the SOTA performance level of offline RL.

Performance assessment on D4RL data. To investigate the benefits of TS+BC as an offline policy
learning strategy, we compare its performance with selected state-of-the-art offline RL methods:
TD3+BC [21], IQL [40], MBOP [2] and Diffuser [29]. These baselines represent model-free
and model-based methods and achieve top results. We make the comparisons on the D4RL [20]
benchmarking datasets of the openAI gym MuJoCo tasks; see Table 1. Three complex continuous
environments are tested: Hopper, Halfcheetah and Walker2d, with different levels of difficulty. The
“medium" datasets were gathered by the original authors using a single policy produced from the
early-stopping of an agent trained by soft actor-critic (SAC) [26, 27]. The “medium-replay" datasets
are the replay buffers from the training of the “medium" policies. The “expert" datasets were obtained
from a policy trained to an expert level, and the “medium-expert" datasets are the combination of
both the “medium" and “expert" datasets. In all the cases we have considered, TS+BC outperforms

5

Dataset TD3+BC IQL MBOP Diffuser BC TS+BC (ours)
hopper-medium 59.3 66.3 48.8 58.5 55.3 64.3± 4.2(+16.3%)
halfcheetah-medium 48.3 47.4 44.6 44.2 42.9 43.2± 0.3(+0.7%)
walker2d-medium 83.7 78.3 41.0 79.7 75.6 78.8± 1.2(+4.2%)

Average-medium 63.8 64.0 44.8 60.8 57.9 62.1
hopper-medexp 98.0 91.5 55.1 107.2 62.3 94.8± 11.7(+52.2%)
halfcheetah-medexp 90.7 86.7 105.9 79.8 60.7 86.9± 2.5(+43.2%)
walker2d-medexp 110.1 109.6 70.2 108.4 108.2 108.8± 0.5(+0.6%)

Average-medexp 99.6 95.9 77.1 98.5 77.1 96.8
hopper-medreplay 60.9 94.7 12.4 96.8 29.6 50.2± 17.2(+69.6%)
halfcheetah-medreplay 44.6 44.2 42.3 42.2 38.5 39.8± 0.6(+3.4%)
walker2d-medreplay 81.8 73.9 9.7 61.2 34.7 61.5± 5.6(+77.2%)

Average-medreplay 62.4 70.9 21.5 66.7 34.3 50.5

hopper-expert 107.8 - - - 111.0 111.8± 0.5(+0.7%)
halfcheetah-expert 96.7 - - - 92.9 93.2± 0.6(+0.3%)
walker2d-expert 110.2 - - - 109.0 108.9± 0.2(−0.1%)

Average-expert 104.9 - - - 104.3 104.6

Table 1: Average normalised scores achieved on three locomotion tasks (Hopper, Halfcheetah and
Walker2d) using the D4RL v2 data sets. The results for competing methods have been gathered from
the original publications. Bold scores represent values within 5% of the highest average score of the
levels of difficulty. TS+BC: In brackets we report the percentage improvement achieved by BC after
TS relative to the BC baseline.

the BC baseline, showing that TS creates a higher quality dataset as claimed. Also, while only ever
using BC to obtain the final policy, TS+BC is very competitive with current state-of-the-art offline
RL methods, especially for the medium, medium-expert and expert datasets. For medium-replay
datasets, although TS+BC still attains much higher performing policies than the original BC, we
observe lower competitiveness against other offline DRL methods. Due to the way these datasets have
been developed, they would appear to be more naturally suited to dynamical programming-based
algorithms.

Implementation details. Calculating p(s′|s) for all s′ ∈ D may be computationally inefficient.
To speed this up in the MuJoCo environments, we initially select a smaller set of candidate next
states by thresholding the Euclidean distance. Although on its own a geometric distance would not be
sufficient to identify stitching events, we found that in our environments it can help reduce the set of
candidate next states thus alleviating the computational workload.

To pre-select a smaller set of candidate next states, we use two criteria. Firstly, from a transition
(s, a, r, s′) ∈ D, a neighbourhood of states around s is taken and the following state in the trajectory
is collected. Secondly, all the states in a neighbourhood around s′ are collected. This process ensures
all candidate next states are geometrically-similar to s′ or are preceded by geometrically-similar
states. The neighbourhood of a state is an ϵ− ball around the state. When ϵ is large enough, we can
retain all feasible candidate next states for evaluation with the forward dynamic model. Figure 4 (see
Appendix) illustrates this procedure.

5 Conclusions

In this paper, we have proposed a data augmentation strategy, Trajectory Stitching, which can be
applied to historical datasets containing demonstrations of sequential decisions taken to solve a
complex task. Without further interactions with the environment, TS can improve the quality of the
demonstrations, which in turn has the effect of boosting the performance of BC-extracted policies
significantly. This method could be used to extract an improved explicit behavioural cloning policy
regulariser for offline RL. This would be specifically important for an offline planning algorithm.
TS+BC can be leveraged further for online RL, where the learned policy can be initialised using BC

6

or the sample efficiency of the algorithm is improved by regularising towards the behavioural policy
of demonstrations.

BC is used in many offline RL algorithms, such as a prior policy in offline planning [2, 64] and
as a policy regulariser [21]. Although in this paper we have not explored the potential benefits of
combining TS with offline reinforcement learning algorithms, our results on the D4RL benchmarking
datasets show that TS improves over the initial BC policy, and can in fact reach the level of state-
of-the-art offline RL methods. This suggests that many methods could be improved by employing
TS either to find a better behavioural cloned policy or by enhancing an initial dataset. We expect
TS to be used as a “first- step" to fully leverage the given dataset, enriching the dataset by adding
highly-likely (under the environment dynamics) transitions.

Upon acceptance of this paper, we learned about a related methodology called BATS (Best Action
Trajectory Stitching) [10]. BATS augments the dataset by adding transitions from planning using a
learned model of the environment. Our model-based TS approach differs from BATS in a number of
fundamental ways. First, BATS takes a geometric approach to defining state similarity; state-actions
are rolled-out using the dynamics model until a state is found that is within δ of a state in the dataset.
Using geometric distances is often inappropriate; e.g. two states may be close in Euclidean distance,
yet reaching one from another may be impossible (e.g. in navigation task environments where walls
or other obstacles preclude reaching a nearby state). As such, our stitching events are based on the
dynamics of the environment and are only assessed between two in-distribution states. Second, BATS
allows stitches between states that are k-steps apart; this means the reward function needs to be
penalised to favour state-action pairs in the original dataset, as model error can compound resulting
in unlikely rollouts. In contrast, we only allow one-step stitching between in-distribution states and
use the value function to extend the horizon rather than a learned model, this means all our models
can be trusted to give accurate predictions without the need for penalties. Finally, BATS adds all
stitched actions to the original dataset, then create a new dataset by running value iteration, which is
eventually used to learn a policy through BC. This raises many questions about the number of new
trajectories need to be collected in this way to extract an optimal policy using BC, as well as other
policy learning approaches more suitable to this set up. Our method, is much more suited to policy
learning by BC, as after performing TS we are left with a dataset with only high-quality trajectories,
where the low-value parts are removed after the stitching event.

We believe that model-based TS opens up a number of directions for future work. For example, it
can be extended to multi-agent offline policy learning, for which initial attempts have been made
to control the distributional shift with numerous agents [61]. TS could even be used without the
value function to increase the heterogeneity of the data without collecting new data. This could be
used in conjunction with other offline imitation learning methods [9, 19]. This line of investigation
would specifically be useful in situations where collecting new data is expensive or dangerous, but
learning from a larger, more heterogeneous data set with additional coverage is expected to improve
performance.

6 Acknowledgements

CH acknowledges support from the Engineering and Physical Sciences Research Council through the
Mathematics of Systems Centre for Doctoral Training at the University of Warwick (EP/S022244/1).
GM acknowledges support from a UKRI AI Turing Acceleration Fellowship (EP/V024868/1).

References
[1] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline

reinforcement learning with diversified q-ensemble. Advances in Neural Information Processing
Systems, 34, 2021.

[2] Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In International conference on machine learning, pages 214–223. PMLR, 2017.

7

[4] Giorgio Bacci, Giovanni Bacci, Kim G Larsen, and Radu Mardare. Computing behavioral
distances, compositionally. In International Symposium on Mathematical Foundations of
Computer Science, pages 74–85. Springer, 2013.

[5] Giorgio Bacci, Giovanni Bacci, Kim G Larsen, and Radu Mardare. On-the-fly exact compu-
tation of bisimilarity distances. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 1–15. Springer, 2013.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[7] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. Advances in neural
information processing systems, 31, 2018.

[8] Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic markov
decision processes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 10069–10076, 2020.

[9] Jonathan Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mitigating
covariate shift in imitation learning via offline data with partial coverage. Advances in Neural
Information Processing Systems, 34:965–979, 2021.

[10] Ian Char, Viraj Mehta, Adam Villaflor, John M Dolan, and Jeff Schneider. Bats: Best action
trajectory stitching. arXiv preprint arXiv:2204.12026, 2022.

[11] Di Chen, Franck van Breugel, and James Worrell. On the complexity of computing probabilistic
bisimilarity. In International Conference on Foundations of Software Science and Computational
Structures, pages 437–451. Springer, 2012.

[12] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural
information processing systems, 31, 2018.

[13] Felipe Codevilla, Eder Santana, Antonio M López, and Adrien Gaidon. Exploring the limitations
of behavior cloning for autonomous driving. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9329–9338, 2019.

[14] Robert Dadashi, Shideh Rezaeifar, Nino Vieillard, Léonard Hussenot, Olivier Pietquin, and
Matthieu Geist. Offline reinforcement learning with pseudometric learning. In International
Conference on Machine Learning, pages 2307–2318. PMLR, 2021.

[15] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey
Levine. Model-based value estimation for efficient model-free reinforcement learning. arXiv
preprint arXiv:1803.00101, 2018.

[16] Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision
processes. In UAI, volume 4, pages 162–169, 2004.

[17] Norman Ferns, Pablo Samuel Castro, Doina Precup, and Prakash Panangaden. Methods for
computing state similarity in markov decision processes. arXiv preprint arXiv:1206.6836, 2012.

[18] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal
control via policy optimization. In International conference on machine learning, pages 49–58.
PMLR, 2016.

[19] Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs,
Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning.
In Conference on Robot Learning, pages 158–168. PMLR, 2022.

[20] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[21] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in Neural Information Processing Systems, 34, 2021.

8

[22] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

[23] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–2062.
PMLR, 2019.

[24] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014.

[25] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay
policy learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv
preprint arXiv:1910.11956, 2019.

[26] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[27] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018.

[28] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

[29] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion
for flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

[30] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. Advances in Neural Information Processing Systems, 32,
2019.

[31] Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza,
Noah Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement
learning of implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

[32] M Waleed Kadous, Claude Sammut, and R Sheh. Behavioural cloning for robots in unstructured
environments. In Advances in Neural Information Processing Systems Workshop, 2005.

[33] Gabriel Kalweit and Joschka Boedecker. Uncertainty-driven imagination for continuous deep
reinforcement learning. In Conference on Robot Learning, pages 195–206. PMLR, 2017.

[34] Liyiming Ke, Sanjiban Choudhury, Matt Barnes, Wen Sun, Gilwoo Lee, and Siddhartha Srini-
vasa. Imitation learning as f-divergence minimization. In International Workshop on the
Algorithmic Foundations of Robotics, pages 313–329. Springer, 2020.

[35] Mete Kemertas and Tristan Aumentado-Armstrong. Towards robust bisimulation metric learning.
Advances in Neural Information Processing Systems, 34, 2021.

[36] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:
Model-based offline reinforcement learning. Advances in neural information processing systems,
33:21810–21823, 2020.

[37] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[38] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[39] Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement
learning with fisher divergence critic regularization. In International Conference on Machine
Learning, pages 5774–5783. PMLR, 2021.

9

[40] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

[41] Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

[42] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

[43] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-
policy q-learning via bootstrapping error reduction. Advances in Neural Information Processing
Systems, 32, 2019.

[44] Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When should we prefer offline
reinforcement learning over behavioral cloning? arXiv preprint arXiv:2204.05618, 2022.

[45] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–
1191, 2020.

[46] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In
Reinforcement learning, pages 45–73. Springer, 2012.

[47] Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudik, Yisong Yue, and Hal Daumé III.
Hierarchical imitation and reinforcement learning. In International conference on machine
learning, pages 2917–2926. PMLR, 2018.

[48] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[49] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 6292–6299. IEEE, 2018.

[50] Tim Pearce and Jun Zhu. Counter-strike deathmatch with large-scale behavioural cloning. arXiv
preprint arXiv:2104.04258, 2021.

[51] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in
neural information processing systems, 1, 1988.

[52] Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural computation, 3(1):88–97, 1991.

[53] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

[54] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and
Conference Proceedings, 2011.

[55] Claude Sammut, Scott Hurst, Dana Kedzier, and Donald Michie. Learning to fly. In Machine
Learning Proceedings 1992, pages 385–393. Elsevier, 1992.

[56] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–1897.
PMLR, 2015.

[57] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. Advances in neural information processing systems, 28,
2015.

[58] Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
Sigart Bulletin, 2(4):160–163, 1991.

10

[59] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
1998.

[60] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[61] Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang,
and Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 34:10299–10312,
2021.

[62] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. Combo: Conservative offline model-based policy optimization. Advances in Neural
Information Processing Systems, 34, 2021.

[63] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural
Information Processing Systems, 33:14129–14142, 2020.

[64] Xianyuan Zhan, Xiangyu Zhu, and Haoran Xu. Model-based offline planning with trajectory
pruning. arXiv preprint arXiv:2105.07351, 2021.

[65] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742, 2020.

[66] Yi Zhao, Rinu Boney, Alexander Ilin, Juho Kannala, and Joni Pajarinen. Adaptive behavior
cloning regularization for stable offline-to-online reinforcement learning. 2021.

[67] Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline
reinforcement learning. arXiv preprint arXiv:2011.07213, 2020.

11

7 Appendix

7.1 Related work

Imitation learning. Imitation learning methods aim to emulate a policy from expert demonstrations.
DAgger [54] is an online learning approach that iteratively updates a deterministic policy; it addresses
the state distributional shift problem of BC through an on-policy method for data collection; similarly
to TS, the original dataset is augmented, but this involves on-line interactions. GAIL [28] iteratively
updates a generative adversarial network [24] to determine whether a state-action pair can be deemed
as expert; a policy is then inferred using a trust region policy optimisation step [56]. TS also uses
generative modelling, but this is to create data points likely to have come from the data that connect
high-value regions. Whereas imitation learning relies on expert demonstrations, TS creates higher
quality datasets from existing, possibly sub-optimal data, to improve off-line policy learning.

Offline reinforcement learning. Several model-free offline RL methods deal with distributional
shift in two ways: 1) by regularising the policy to stay close to actions given in the dataset [23, 43,
60, 31, 67, 21] or 2) by pessimistically evaluating the Q-value to penalise OOD actions [1, 39, 45].
For instance, BCQ [23] uses a VAE to generate likely actions in order to constrain the policy. The
TD3+BC algorithm [21] offers a simplified policy constraint approach; it adds a behavioural cloning
regularisation term to the policy update biasing actions towards those in the dataset. Alternatively,
CQL [45] adjusts the value of the state-action pairs to “push down” on OOD actions and “push up”
on in-distribution actions. IQL [40] avoids querying OOD actions altogether by manipulating the
Q-value to have a state-value function in the SARSA-style update. All the above methods try to
directly deal with OOD actions, either by avoiding them or safely handling them in either the policy
improvement or evaluation step. In contrast, TS generates unseen actions between in-distribution
states; by doing so, we avoid distributional shift by evaluating a state-value function only on seen
states.

Model-based algorithms rely on an approximation of the environment’s dynamics [58, 30]. In the
online setting, they tend to improve sample efficiency [33, 30, 15, 7, 12]. In an offline learning
context, the learned dynamics have been exploited in various ways. For instance, Model-based Offline
policy Optimization (MOPO) [63] augments the dataset by performing rollouts using a learned,
uncertainty-penalised, MDP. Unlike MOPO, TS does not introduce imagined states, but only actions
between reachable unconnected states. Diffuser [29] uses a diffusion probabilistic model to predict a
whole trajectory rather than a single state-action pair; it can generate unseen trajectories that have high
likelihood under the data and maximise the cumulative rewards of a trajectory ensuring long-horizon
accuracy. In contrast, our generative models are not used for planning hence we do not require
sampling a full trajectory; instead, our models are designed to only be evaluated locally ensuring
one-step accuracy between s and ŝ′.

State similarity metrics. A central aspect of the proposed data augmentation method consists of
defining the stitching event, which uses a notion of state similarity to determine whether two states are
“close” together. Using geometric distances only would often be inappropriate; e.g. two states may be
close in Euclidean distance, yet reaching one from another may be impossible (e.g. in navigation
task environments where walls or other obstacles preclude reaching a nearby state). Bisimulation
metrics [16] capture state similarity based on the dynamics of the environment. These have been
used in RL mainly for system state aggregation [17, 35, 65]; they are expensive to compute [11] and
usually require full-state enumeration [4, 5, 14]. A scalable approach for state-similarity has recently
been introduced by using a pseudometric [8] which made calculating state-similarity possible for
offline RL. PLOFF [14] is an offline RL algorithm that uses a state-action pseudometric to bias the
policy evaluation and improvement steps keeping the policy close to the dataset. PLOFF uses a
pseudometric to stay close to the data, we can bypass this notion altogether by requiring reachability
in one step.

7.2 Trajectory Stitching

The full procedure for the Trajectory stitching method is outlined in Algorithm 1.

12

Algorithm 1 Trajectory Stitching
Initialise: An action generator pω1

, a reward generator Gϕ , an ensemble of dynamics models
{p̂iξ(s′|s)}Ni=1, an acceptance threshold p̃, and a dataset D0 made up of T trajectories (T1, . . . TT)

1: for k = 0, . . . ,K do
2: Train state-value function, V on Dk by minimising Equation (2).
3: for t = 1, . . . , T do
4: Select s, s′ = s0, s

′
0 ∈ Tt

5: Initialise new trajectory, T̂t
6: while not done do
7: Create set of candidate states from neighbourhood, {ŝ′j}Nj=1 ∼ Neighbourhood
8: Evaluate dynamics models for new set of states and take minimum, mini p̂

i
ξ,π(ŝ

′|s)
9: if mini p̂

i
ξ(ŝ

′
j |s) > meaniP̂ iξ(s

′|s), V (ŝ′j) = maxi V (ŝ′i) and V (ŝ′j) > V (s′) then
10: Generate a new action and reward,

ã ∼ pω1
(z, s, ŝ′j), r̃ ∼ Gϕ(z, s, ã, ŝ

′
j)

11: Add (s, ã, r̃, ŝ′j) to new trajectory T̂t
12: Set s = ŝ′j
13: else
14: Add original transition, (s, a, r, s′) to the new trajectory T̂t
15: Set s = s′

16: end if
17: end while
18: if

∑
T̂t
ri > (1 + p̃) ∗

∑
Tt
ri then

19: T̂t = T̂t
20: else
21: T̂t = Tt
22: end if
23: end for
24: Collect trajectories into dataset, Dk+1 = (T̂1, . . . T̂T)
25: end for

7.3 Further Experiments

Expected performance on sub-optimal data. BC minimises the KL-divergence of trajectory
distributions between the learned policy and πβ [34]. As TS has the effect of improving πβ , this
suggests that the KL-divergence between the trajectory distributions of the learned policy and the
expert policy would be smaller post TS. To investigate this, we used two complex locomotion tasks,
Hopper and Walker2D, in OpenAI’s gym [6]. Independently for each task, we first train an expert
policy, π∗, with TD3 [22], and use this policy to generate a baseline noisy dataset by sampling the
expert policy in the environment and adding white noise to the actions, i.e. a = π∗(s) + ϵ. A range
of different, sub-optimal datasets are created by adding a certain amount of expert trajectories to the
noisy dataset so that they make up x% of the total trajectories. Using this procedure, we create eight
different datasets by controlling x, which took values in the set {0, 0.1, 2.5, 5, 10, 20, 30, 40}. BC
is run on each dataset for 5 random seeds. In all experiments we run TS for five iterations, as this
provides enough to increase the quality of the data without being overly computationally expensive
(see the Appendix for results across different iterations). We run TS (for five iterations) on each
dataset over three different random seeds and then create BC policies over the 5 random seeds, giving
15 TS+BC policies. Random seeds, cause different TS trajectories as they affect the latent variables
sampled for the reward function and inverse dynamics model. Also, the initialisation of weights is
randomised for the value function and BC policies, so the robustness of the methods is tested over
multiple seeds.

Figure 3 shows the scores as average returns from 10 trajectory evaluations of the learned policies.
TS+BC consistently improves on BC across all levels of expertise, for both the Hopper and Walker2d
environments. As the percentage of expert data increases, TS is available to leverage more high-
value transitions, consistently improving over the BC baseline. Figure 2 (left) shows the average
difference in KL-divergences of the BC and TS+BC policies against the expert policy. Precisely, the

13

0 0.1 2.5 5 10 20 30 40

Percentage of Expert Data

10 1

M
SE

(
* (

s)
,

(s
))

Hopper
TS+BC BC

0 0.1 2.5 5 10 20 30 40
Percentage of Expert Data

10 1

M
SE

(
* (

s)
,

(s
))

Walker2d

0 0.1 2.5 5 10 20 30 40
Percentage of Expert Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Di
ffe

re
nc

e
in

 K
L

di
ve

rg
en

ce
s Hopper Walker2d

Figure 2: Estimated KL-divergence and MSE of the BC and TS+BC policies on the Hopper and
Walker2d environments as the fraction of expert trajectories increases. (Left) Relative difference
between the KL-divergence of the BC policy and the expert and the KL-divergence of the TS+BC
policy and the expert. Larger values represent the TS+BC policy being closer to the expert than the
BC policy. MSE between actions evaluated from the expert policy and the learned policy on states
from the Hopper (Middle) and Walker2d (Right) environments. The y-axes (Middle and Right) are on
a log-scale. All policies were collected by training BC over 5 random seeds, with TS being evaluated
over 3 different random seeds. All KL-divergences were scaled between 0 and 1, depending on the
minimum and maximum values per task, before the difference was taken.

0 0.1 2.5 5 10 20 30 40
Percentage of Expert Data

500

1000

1500

2000

2500

3000

3500

Sc
or

e

Hopper

0 0.1 2.5 5 10 20 30 40
Percentage of Expert Data

1500

2000

2500

3000

3500

4000

4500
Sc

or
e

Walker2d

TS+BC
BC

Figure 3: Comparative performance of BC and TS+BC as the fraction of expert trajectories increases
up to 40%. For two environments, Hopper (left) and Walked2D (right), we report the average return
of 10 trajectory evaluations of the best checkpoint during BC training. BC has been trained over 5
random seeds and TS has produced 3 datasets over different random seeds.

y-axis represents DKL(ρπ∗(τ), ρπBC(τ))−DKL(ρπ∗(τ), ρπTS+BC(τ)), where ρπ(τ) is the trajectory
distribution for policy π. So, a positive value represents the TS+BC policy being closer to the expert,
and a negative value represents the BC policy being closer to the expert, with the absolute value
representing the degree to which this is the case. We also scale the average KL-divergence between 0
and 1, where 0 is the smallest KL-divergence and 1 is the largest KL-divergence, per task. This makes
the scale comparable between Hopper and Walker2d. The KL divergences are calculated following
[34], DKL(ρπ∗(τ), ρπ(τ)) = Es∼ρπ∗ ,a∼π∗(s)[log π

∗(a|s)− log π(a|s)]. The Figure shows that BC
can extract a behaviour policy closer to the expert after performing TS on the dataset, except in the
0% case for Walker2D, however the difference is not significant. TS seems to work particularly well
with a minimum of 2.5% expert data for Hopper and 0.1% for Walker2d.

Furthermore, Figure 2 (middle and right) shows the mean square error (MSE) between actions from
the expert policy and the learned policy for the Hopper (middle) and Walker2d (right) tasks. Actions
are selected by collecting 10 trajectory evaluations of an expert policy. As we expect, the TS+BC
policies produce actions closer to the experts on most levels of dataset expertise. The only surprising
result is that for 0% expert data on the Walker2d environment the BC policy produces actions closer
to the expert than the TS+BC policy. This is likely due to TS not having any expert data to leverage
and so cannot produce any expert trajectories. However, TS still produces a higher-quality dataset
than previous as shown by the increased performance on the average returns. This offers empirical
confirmation that TS does have the effect of improving the underlying behaviour policy of the dataset.

14

7.4 Further implementation details

In this section we report on all the hyperparameters required for TS as used on the D4RL datasets.
All hyperparameters have been kept the same for every dataset, notable the acceptance threshold of
p̃ = 0.1. TS consists of four components: a forward dynamics model, an inverse dynamics model, a
reward function and a value function. Table 2 provides an overview of the implementation details and
hyperparameters for each TS component. As our default optimiser we have used Adam [37] with
default hyperparameters, unless stated otherwise.

Forward dynamics model. Each forward dynamics model in the ensamble consists of a neural
network with three hidden layers of size 200 with ReLU activation. The network takes a state s as
input and outputs a mean µ and standard deviation σ of a Gaussian distribution N (µ, σ2). For all
experiments, an ensemble size of 7 is used with the best 5 being chosen.

Inverse dynamics model. To sample actions from the inverse dynamics model of the environment,
we have implemented a CVAE with two hidden layers with ReLU activation. The size of the hidden
layer depends on the size of the dataset [67]: when the dataset has less than 900, 000 transitions (e.g.
the medium-replay datasets) the layer has 256 nodes; when larger, it has 750 nodes. The encoder qω1

takes in a tuple consisting of state, action and next state; it encodes it into a mean µq and standard
deviation σq of a Gaussian distribution N (µq, σq). The latent variable z is then sampled from this
distribution and used as input for the decoder along with the state, s, and next state, s′. The decoder
outputs an action that is likely to connect s and s′. The CVAE is trained for 400, 000 gradient steps
with hyperparameters given in Table 2.

Reward function. The reward function is used to predict reward signals associated with new
transitions, s, a, s′. For this model, we use a conditional-WGAN with two hidden layers of size 512.
The generator, Gϕ, takes in a state s, action a, next state s′ and latent variable z; it outputs a reward r
for that that transition. The decoder takes a full transition of (s, a, r, s′) as input to determine whether
this transition is likely to have come from the dataset or not.

Value function. Similarly to previous methods [23], our value function Vθ takes the minimum of
two value functions, {Vθ1 , Vθ2}. Each value function is a neural network with two hidden layers of
size 256 and a ReLU activation. The value function takes in a state s and determines the sum of
future rewards of being in that state and following the policy (of the dataset) thereon.

Figure 4: Visualisation of our two definitions of a neighbourhood. For a transition (st, at, st+1) ∈ D,
the neighbourhoods are used to reduce the size of the set of candidate next states. (Left) All states
within an ϵ-ball of the current state, st, are taken and the next state in their respective trajectories
(joined by an action shown as an arrow) are added to the set of candidate next states. (Right) All
states within an ϵ-ball of the next state, st+1 are added to the set of candidate next states. The full set
of candidate next states are highlighted in yellow.

KL-divergence experiment. As the KL-divergence requires a continuous policy, the BC policy
network is a 2-layer MLP of size 256 with ReLU activation, but with the final layer outputting the
parameters of a Gaussian, µs and σs. We carry out maximum likelihood estimation using a batch
size of 256. For the Walker2d experiments, TS was slightly adapted to only accept new trajectories

15

Hyperparameter Value

Optimiser Adam
Forward Dynamics Learning rate 3e-4

model Batch size 256
Ensemble size 7

Optimiser Adam
Inverse Dynamics Learning rate 1e-4

model Batch size 100
Latent dim 2*action dim

Optimiser Adam
β = (0.5, 0.999)

Learning rate 1e-4
Reward Function Batch size 256

Latent dim 2
L2 regularisation 1e-4

Optimiser Adam
Value Function Learning rate 3e-4

Batch size 256
Table 2: Hyperparameters and values for models used in TS

if they made less than ten changes. For each level of difficulty, TS is run 3 times and the scores
are the average of the mean returns over 10 evaluation trajectories of 5 random seeds of BC. To
compute the KL-divergence, a continuous expert policy is also required, but TD3 gives a deterministic
one. To overcome this, a continuous expert policy is created by assuming a state-dependent normal
distribution centred around π∗(s) with a standard deviation of 0.01.

D4RL experiments. For the D4RL experiments, we run TS 3 times for each dataset and average
the mean returns over 10 evaluation trajectories of 5 random seeds of BC, to attain the results for
TS+BC. For the BC results, we average the mean returns over 10 evaluation trajectories of 5 random
seeds. The BC policy network is a 2-layer MLP of size 256 with ReLU activation, the final layer has
tanh activation multiplied by the action dimension. We use the Adam optimiser with a learning rate
of 1e− 3 and a batch size of 256.

7.5 Number of iterations of TS

TS can be repeated multiple times, each time using a newly estimated value function to take into
account the newly generated transitions. In all our experiments, we choose 5 iterations. Figure 5
shows the scores of the D4RL environments on the different iterations, with the standard deviation
across seeds shown as the error bar. With iteration 0 we indicate the BC score as obtained on the
original D4RL datasets. For all datasets, we observe that the average scores of BC increase initially
over a few iterations, then remain stable with only some minor random fluctuations. For Hopper and
Walker2d medium-replay, there is a higher degree of standard deviation across the seeds, which gives
a less stable average as the number of iterations increases.

7.6 Ablation study

TS uses a value function to estimate the future returns from any given state. Therefore TS+BC has a
natural advantage over just BC which uses only the states and actions. To ensure that using a value
function is only sufficient to improve the performance of BC, we have test a weighted version of the
BC loss function whereby the weights are given by the estimated value function, i.e.

πBC(s) = argmin
π

Es,a∼D[Vθ(s)(π(s)− a)2].

This weighted-BC method gives larger weight to the high-value states and lower weight to the
low-value states during training. On the Hopper medium and medium-expert datasets, training

16

0 1 2 3 4 5 6 7 8 9
25

50

75

100

M
ed

iu
m

Hopper

0 1 2 3 4 5 6 7 8 9
25

50

75

100

Walker2d

0 1 2 3 4 5 6 7 8 9
25

50

75

100

Halfcheetah

0 1 2 3 4 5 6 7 8 9
25

50

75

100

M
ed

iu
m

 E
xp

er
t

0 1 2 3 4 5 6 7 8 9
25

50

75

100

0 1 2 3 4 5 6 7 8 9
25

50

75

100

0 1 2 3 4 5 6 7 8 9
25

50

75

100

M
ed

iu
m

 R
ep

la
y

0 1 2 3 4 5 6 7 8 9
25

50

75

100

0 1 2 3 4 5 6 7 8 9
25

50

75

100

0 1 2 3 4 5 6 7 8 9
Iteration

25

50

75

100

Ex
pe

rt

0 1 2 3 4 5 6 7 8 9
Iteration

25

50

75

100

0 1 2 3 4 5 6 7 8 9
Iteration

25

50

75

100

Figure 5: Returns of BC extracted policies as the number of iterations of TS is increased. Iteration 0
are the BC scores on the original D4RL datasets. The errors bars represent the standard deviation of
the average returns of 10 trajectory evaluations over 5 random seeds of BC and 3 random seeds of TS.

this weighted-BC method only gives a slight improvement over the original BC-cloned policy. For
Hopper-medium, weighted-BC achieves an average score of 59.21 (with standard deviation 3.4);
this is an improvement over BC (55.3), but lower lower than TS+BC (64.3). Weighted-BC on
hopper-medexp achieves an average score of 66.02 (with standard deviation 6.9); again, this is a
slight improvement over BC (62.3), but significantly lower than TS+BC (94.8). The experiments
indicate that using a value function to weight the relative importance of seen states when optimising
the BC objective function is not sufficient to achieve the performance gains introduced by TS.

17

	Introduction
	Problem setup
	Trajectory Stitching
	Experimental results
	Conclusions
	Acknowledgements
	Appendix
	Related work
	Trajectory Stitching
	Further Experiments
	Further implementation details
	Number of iterations of TS
	Ablation study

