Once Upon an Input: Reasoning via Per-Instance
Program Synthesis

Adam Stein®  Neelay Velingker*  Mayur Naik Eric Wong
{steinad, neelay, mhnaik, exwong}@seas.upenn.edu
University of Pennsylvania

Abstract

Large language models (LLMs) excel at zero-shot inference but continue to strug-
gle with complex, multi-step reasoning. Recent methods that augment LLMs
with intermediate reasoning steps such as Chain of Thought (CoT) and Program
of Thought (PoT) improve performance but often produce undesirable solutions,
especially in algorithmic domains. We introduce Per-Instance Program Synthe-
sis (PIPS), a method that generates and refines programs at the instance-level
using structural feedback without relying on task-specific guidance or explicit test
cases. To further improve performance, PIPS incorporates a confidence metric
that dynamically chooses between direct inference and program synthesis on a
per-instance basis. Experiments across three frontier LLMs and 30 benchmarks
including all tasks of Big Bench Extra Hard (BBEH), visual question answering
tasks, relational reasoning tasks, and mathematical reasoning tasks show that PIPS
improves the absolute harmonic mean accuracy by up to 8.6% and 9.4% compared
to PoT and CoT respectively, and reduces undesirable program generations by
65.1% on the algorithmic tasks compared to PoT with Gemini-2.0-Flash.

1 Introduction

Large-scale pretraining endows LLMs with the ability to recognize common concepts and perform
many tasks in a zero-shot fashion but they still struggle with multi-step reasoning [1H3]. Recent
advances in inference-time reasoning strategies such as Chain of Thought (CoT) and related work
[4H6] have significantly improved LLMs’ reasoning abilities. However, they remain unreliable [7H10]
and unfaithful, meaning the final answer is correct for the wrong reasons [11H13].

Unlike LLM inference, program execution enforces precise, verifiable computation. Combining
LLMs with program execution offers a promising reasoning method: the LLM handles perceptual
inference, mapping raw input to structured form, while algorithmic reasoning is offloaded to an
executable program [2, 14} [15]]. Existing work on neuro-symbolic learning as well as methods such
as Faithful Chain of Thought (FCoT) [[16] and Program Aided Language Models (PAL) [[17] adopts
this approach, however, they use a single fixed program per task which causes problems when task
instances are varied [18]]. On the other hand, methods such as Program of Thought (PoT) [19] aim to
enable LLMs to generate these programs in a zero-shot manner on an instance-level.

While flexible, these methods often produce undesirable programs, due to three challenges in instance-
level program synthesis: (1) open domain: determining for a given instance if program synthesis is
preferable to direct inference (via CoT) remains an open question, (2) no task specifications: there
are no general specifications for how the correct program should behave to guide program search,

*These authors contributed equally to this work.
2Code for experiments and a demo is open-sourced at https://github.com/adaminsky/pips,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/adaminsky/pips

—— Candidate inputs and program from @ and @ —

0 | Extract symbolic input. | e SR e

on symboln: input
symbols = { }

instance Generator

T >> solve (symbols)

m

e | Generate program. |
. Type errors? Code
iL def solve (symbols) : Hardcoded ans.? ? Interpreter

Run-time errors?

\—— Prompt indicating all failed structural properties —

%— Iteratively generate programs until an acceptable one is found, then execute it.
Algorithmicity

selector
N Directly respond using CoT to avoid generating and executing trivial programs.

Figure 1: Overview of Per-Instance Program Synthesis (PIPS). PIPS addresses the open-domain
nature of reasoning problems by selecting between synthesis and CoT at the instance-level, avoiding
unnecessarily generating programs for non-algorithmic problems. For algorithmic problems, PIPS
addresses the lack of task specifications by iteratively synthesizing programs using feedback based on
structural checks. PIPS handles unstructured input via instance-specific symbolic extraction (step 1)
before program synthesis (step 2). Figure [2 shows an example where an undesirable program is
rejected before producing an acceptable one which gives the correct answer upon execution (step 3).

and (3) unstructured input: programs typically operate over structured input, but common reasoning
problems are unstructured, requiring on-the-fly instance-level input understanding.

In this paper, we propose Per-Instance Program Synthesis, or PIPS, to solve reasoning problems at
the instance-level. Figure[T]illustrates how PIPS addresses the aforementioned challenges. To address
the open domain nature of such problems, PIPS introduces an instance-level confidence metric to
decide if the LLM is better suited to solving the instance with program synthesis or direct inference.
It then iteratively generates and evaluates programs using feedback based on structural checks (e.g.
non-triviality, syntax, type errors), specifically designed to avoid the collapse to trivial solutions and
ensure well-formed computation. To handle unstructured input, PIPS explicitly performs instance-
specific symbolic extraction before synthesis, decoupling program search from perceptual inference.
Unlike other iterative refinement and debugging methods for code generation 15,20} 21]], PIPS does
not require explicit test cases, examples, or other forms of task specifications.

Our experiments demonstrate that PIPS significantly reduces the amount of undesirable programs
produced compared to baselines, and this results in improved accuracy. Notably, PIPS reduces
undesirable programs by 65.1% for algorithmic benchmarks in the Big Bench Extra Hard (BBEH)
suite [[7] as well as 7 additional tasks including visual question answering and mathematical reasoning,
resulting in an 8.6% absolute improvement in harmonic mean accuracy over PoT. We also show that
our confidence metric allows us to correctly switch between CoT and program synthesis for 65%
of cases, resulting in PIPS matching CoT accuracy for majority non-algorithmic tasks and even
improving performance on majority algorithmic tasks.

Our contributions are as follows:

* Per-Instance Program Synthesis (PIPS): An iterative program synthesis method guided by instance-
specific feedback on program structure properties, improving reasoning by addressing the chal-
lenges of per-instance program synthesis methods.

* Synthesis Confidence Metric: We study the tradeoff between program synthesis and CoT for
answering reasoning problems, and we propose a synthesis confidence metric which predicts, prior
to generation, which approach is more likely to yield a correct solution for a given model.

* State-of-the-art accuracy: PIPS improves code utilization by 65.1% on algorithmic questions
leading to an 8.6% improvement in harmonic mean accuracy over PoT across 30 frontier tasks.

2 The Challenges of Per-Instance Program Synthesis

A reasoning problem is a pair (z,y) € X x ) where x is a raw query consisting of unstructured
data such as natural language text or an image, and y is the answer which we assume is represented



Generator
I symbols = symbols = { ... }
('objects' C I def solve (symbols) :
{'color’ . 'yellow', small block shape = "cube"
'material': 'rubber', small block color = "brown"
'shape'’ HE small block size = "small"
Jp coo
Whatinumber(of } small block material = None
other objects are for obj in symbols["objects"]:
there of the same | jo¢ <o1ve (symbols) : if obj["shape"] \
material as the # reasoning in comment == small_block_shape ...
small block? return 3
S
[
® @ >> solve(symbols)
kel S
o ‘g 4
No type errors? No type errors? -
© No hardcoded ans.? No hardcoded ans.?
No run-time errors? No run-time errors? "3

Figure 2: Example illustrating two iterations of the synthesis loop in PIPS.

symbolically (something that could be output by a program). Existing methods for generating
instance-level programs for solving reasoning problems, such as PoT, produce a program P : & — Y
to compute the correct answer. These programs take no input, similar to a main function, but can be
highly general since they are often generated in a Turing-complete language such as Python.

This problem-solving strategy naturally introduces three challenges. In short, algorithmic problems
are well-suited to program synthesis but non-algorithmic problems are inherently ill-suited; producing
a program cannot be guided by traditional specifications; and interfacing the unstructured input from
the problem with the program requires on-the-fly instance-level perceptual understanding.

2.1 Non-Algorithmic Problems

Algorithmic Algo. Non-algo.
Placeholders 81 = PoT g 02 B Trivial code
B PIPS 5 [EZ= Non-trivial code
Syntax ]
2 I Tool use
Type c 0.1 Bl Tokens
(9]
Trivial 54.1 %
I T T T 0.0
0 20 40 60 oA NA
C
Percentage (%) Q QQQO (oY

(a) Fraction of output code with issues: trivial (hard- (b) Per-instance synthesis baseline performance on mostly
coded answer), type (wrong return type), syntax algorithmic vs. non-algorithmic problems. Shading indi-
(parser error), and placeholders (incomplete code). cates fraction of correct solutions with non-trivial code.

Figure 3: Failures in existing approaches to per-instance program synthesis with Gemini-2.0-Flash.

The per-instance synthesis setting poses a tradeoff between program synthesis and direct inference
reliability. In some cases, it is more reliable for an LLM to solve a problem through token-based
reasoning (like CoT) than through program synthesis. Examples include tasks like emotion under-
standing and summarization, which are not traditionally considered “algorithmic”. We find that when
existing per-instance synthesis methods are applied to these non-algorithmic settings, they will often
output trivial programs that unnecessarily invoke the Python interpreter.

To study the algorithmicity of the problem instances across a variety of datasets, we design an LLM-
based classifier to determine if an instance is algorithmic, meaning it could be solved by executing a
non-trivial program. Using this classifier, we split our suite of datasets (which includes all 23 tasks
of BBEH as well as 7 additional tasks) into algorithmic ones which have a majority of algorithmic



There is a tiny shiny object
that is behind the big ball
that is to the right of the big
metallic thing behind the big
brown cube; what is its
color?

How many large things are in
front of the cyan object and
behind the brown matte ball?

import cv2
import numpy as np

large_objects_in front = 0
large_objects behind = 0

# Load the image

# Analyze the image to determine the number of 0 < . s \
img = cv2.imread('image.png')

large objects in front of the cyan object
and behind the brown matte ball. . . .
# Define the coordinates of the region of

#
# From the image, we can see that there are 2 interest (ROI)
#

c c
2 large objects in front of the cyan object: S # These coordinates are approximate and may
=2 the blue metal sphere and the yellow metal = need adjustment
o cube O x1, yl = 600, 400 # Top-left corner of the
2 : an ROI .
'S # There is 1 large object behind the brown '6 x2, y2 = 650, 450 # Egttggirlght corner of
o matte ball: the blue metal sphere. o # Extract the ROT @
large objects_in front = 2 roi = imglyl:y2, x1:x2]
large”objects_behind = 1 # Convert the ROI to the HSV color space
. . hsv = cv2.cvtColor(roi, cv2.COLOR BGR2HSV)
answer = large_objects_in_front \ # ... 24 lines omitted ... # =
+ large_objects_behind answer = color detected
Code Output: 3 © True Answer: 1 Code Output: Error @ True Answer: brown
(a) Trivial program. (b) Program operating over raw image.

Figure 4: Two programs generated with PoT illustrating program synthesis failures. Part (a) shows a
trivial program where two variables are initialized to zero, but then several steps of reasoning are
performed in comments, leading to their values being hard-coded rather than computed with code.
Part (b) shows an input-free program to process the input image itself which would be better done
using the LLM’s perceptual inference. Both programs result in the wrong answer. The corresponding
programs produced by PIPS yield the correct answer in both cases and are shown in Appendix

instances, and non-algorithmic ones which have a majority of non-algorithmic instances. Details of
our classifier and the full task split is provided in Appendix [A] Overall, we find that not all tasks
are purely algorithmic or non-algorithmic, meaning that algorithmicity is best determined on the
instance-level. In addition, as Figure [3b] shows, code execution via PoT prompting significantly
improves performance on the algorithmic tasks, while having a slightly negative impact for the
non-algorithmic tasks. We follow the recommendation from Kazemi et al. [7] to evaluate harmonic
mean accuracy since it is a challenging metric that requires improvements on the hardest tasks to
improve aggregate performance. For these non-algorithmic problems, PoT rarely outputs well-formed
code. Instead of producing superficial code for non-algorithmic problems, we could skip program
synthesis entirely with no harm to performance or interpretability.

2.2 Program Search without Specifications

Existing instance-level code generation methods often use the first generated program [[19], or use
minimal forms of program search due to the lack of any explicit specifications for how the correct
program should behave. We find that this frequently leads to “trivial” programs which have an
explicit return value hard-coded. Figure 3a shows that over 50% of PoT’s outputs on algorithmic
tasks fall into this category. The lack of behavioral specifications leaves the LLM the option of
solving the task through direct inference with the final answer wrapped in a program. Figure 4a]
shows a trivial program produced by PoT. Additionally, 6.3% of programs have syntax errors and
11.5% return the wrong type which is why it is undesirable to always settle with the first generated
program. Per-instance synthesis approaches suffer from these problems since they lack the necessary
task specifications to perform traditional program search. Our full evaluation criteria including
well-formed programs, type errors, and syntax errors is in Appendix [G]

2.3 Interfacing Programs with Unstructured Data

The use of programs is best when their input is a well-defined symbolic structure as opposed to raw
data (e.g. a paragraph of text or an image). Since existing methods generate input-free programs, they
must either hard-code the necessary structured input into the program (using the LLM’s perceptual
understanding) or use the code to process the unstructured input. Figure [4b]shows an example of a



Algorithm 1 PIPS: Synthesis Loop

Require: Input z € X, symbolic extractor ¢, maximum iterations k
Ensure: Program P* such that P*(c(z)) ~ y
1: Initialize 7 < 0
2: Extract symbols: 7o < c(x)
3: Generate initial program: Py < LLM(x, ro)
4: fori=1to k do
5: Evaluate program: F; < E(P;,r;, x)
6
7
8

if F; — Pass then
return P;
end if ] ‘ '
9:  Update symbols if they have associated errors: 7541 < c(x; {r; }o, {P; }o, {F;}6)
10:  Generate revised program: P41 < LLM(z; {r; }5 { P}, {F; %)
11: end for
12: return P {Fallback if none pass}

program produced by PoT on the CLEVR task [22] wherein the program attempts to parse objects
from an image using code instead of leveraging the strong perceptual understanding abilities of the
LLM itself. Executing the program leads to an error caused by referencing a non-existent file.

We find that 12.7% of well-formed PoT code solutions to the CLEVR and Leaf multimodal datasets
use the OpenCV or Pillow libraries, representing a fundamentally brittle approach to input under-
standing.

3 Per-Instance Program Synthesis (PIPS)

This section addresses the above three challenges with an approach to synthesize programs on a
per-instance basis without task specifications. We use the general problem-solving structure of
y = P(c(x)) where ¢ : X — R is a function mapping from raw input space to permissible program
inputs and P : R — ) is a program in a Turing-complete programming language. The next sections
describe how we address the previous challenges with this problem-solving framework.

3.1 Selective Program Synthesis

While program synthesis allows for more faithful and sophisticated reasoning, there may still be
specific problem instances where CoT should be used. The decision between synthesis and CoT for
solving an instance depends on both the algorithmic nature of the problem and the model’s capabilities
in the two respective solving approaches. Formally, given a reasoning problem (z,y) € X x ), we
must choose between two strategies: (1) direct CoT reasoning via § = My (), where M denotes
chain of thought inference, or (2) program synthesis via § = P(c(z)), where P is a synthesized
program and c(x) is a symbolic abstraction of the input .

Since the decision depends on the model’s own problem-solving abilities, we elicit it from the model
before it begins reasoning. Our self-prompting method uses ten criteria to choose between CoT and
program synthesis. Each criterion results in a confidence score from the model, forming a vector
S(z) = (p1(x),...,p10(x)) € [0,1]!°. These criteria assess factors like ease of formalization,
expected execution success, and robustness of logic. For reasoning models, we include ten additional
criteria relating to their reasoning abilities. Motivated by prior work demonstrating that LL.Ms can
accurately estimate the likelihood that their answer to a question is correct [23]], we hypothesize that
these criteria, which are agnostic to the downstream task, can be strong predictors for the LLMs
success in per-instance synthesis. Full details of the criteria are in Appendix [H.2]

Given the model’s own assessment of its abilities through these probing questions, the final switch
decision can either be derived in a fully zero-shot manner, or a held-out calibration set can be used to
derive the decision from a learned logistic classifier, enabling the switch to leverage problem solving
experience for higher accuracy.

3.2 Program Synthesis without Task Specifications



Traditional program synthesis searches the space of programs guided by a task specification (either
input-output examples or a logical specification) which determine which programs are acceptable and
which are not. To perform program synthesis with just a single input, we leverage auxiliary forms of
specifications based on generally undesirable failure modes of code generation. Formally, given an
input x € X which may consist of a request such as “How is Bob related to Alice” as well as image
inputs like an image of a family tree, we want to find a program P such that P(c(z)) = y where y is
the true answer. Our goal is to search for a P to optimize the following:

mPi'nM(P | z,¢(x)) + AE(P, c(z); )

where M is an LLM and F is a program evaluator which checks various properties of code based on
static and dynamic analysis. To design the program evaluator £, we study the common failure modes
of LLM code generation in this setup without a feedback loop.

PIPS is an approach to solve for P, described in Algorithm[T]and illustrated in Figure [T} We design
E, consisting of an LLM and a program interpreter, to flag any program P; matching any of the
aforementioned patterns. If an issue is detected, E/ produces structural feedback to aid in fixing the
problem. Issues with the structured input r; result in a revised program input ;1 conditioned on the
history of programs and inputs. If any of the evaluator feedback pertains to the synthesized program,
then the generator produces a revised program P;; conditioned on the feedback past programs. This
iterative refinement continues for at most k steps, or until E(P;, r;, z) detects no issues. We note that
at the initial step k£ = 0, M is prompted to produce a program that does not contain these patterns.

3.3 Converting Raw Data to Symbolic Program Input

To address the issue of interfacing discrete programs with unstructured data, we explicitly abstract
the unstructured data as structured program input before program generation. The input abstraction
is done with the mapping ¢, and we use an LLLM for this task due to their ability for understanding
general unstructured data. Concretely, the LLM processes the input to identify salient entities, their
attributes, and the relationships between them that are pertinent to solving the instance. This requires
the LLM to infer an ad hoc schema for the JSON structure, tailored to the specific semantics of the
input, rather than have this schema be predetermined. While allowing for an LLM to decide how
to abstract the input into a structured form is highly general, this can lead to mistakes or missed
information from the input in this step. The synthesis loop described above iteratively fixes such
issues in the data abstraction in coordination with program generation.

4 Experiments

This section studies whether PIPS addresses the challenges of per-instance program synthesis. RQ1
studies the empirical performance of PIPS, and RQ2, RQ3, and RQ4 correspond to each respective
challenge laid out in Section 3]

4.1 Setup

Datasets We evaluate our approach using 23 tasks sourced from the Big Bench Extra Hard (BBEH)
benchmark [7]. These tasks span topics such as geometric understanding, deductive logical reasoning,
and commonsense understanding. Furthermore, we extend this study to the visual reasoning tasks
CLEVR [22] and Leaf [24], the relational reasoning task CLUTTR [25]], and four mathematical
reasoning tasks of OmniMath [26]. For all datasets, we reserve a random sample of 20% of the
data for calibration of our confidence switch, and we evaluate on the remaining 80% of the data.
We also evaluate the generalizability of a trained confidence switch in a leave-one-dataset out
evaluation scheme as well as show that a fully zero-shot confidence switch is also highly effective in

Appendix [H.1]

Models To evaluate our setup across a variety of different frontier LLMs, we use Gemini-2.0-Flash
[27], GPT-4.1-mini [28]], and o4-mini [29]. Gemini-2.0-Flash is a multimodal LLM, GPT-4.1-mini
is a lightweight general-purpose LLM, and 04-mini is a multimodal LLM that was trained for
“reasoning” with a long CoT before its final response.

Baselines We evaluate PIPS against Program of Thought (PoT) [4], Chain of Thought [4]], and a
code interpreter tool-use agent. PoT involves prompting an LLM to generate Python code to solve the



Algorithmic Non-Algorithmic

9
0.6
g Method
8 0.4 | CoT
<
5 02 - CI
[J]
mm PIPS
= 0.0
* & & & & &
Q\,o \ \ <<\’0 \ \ Q\’b \
,b:’\' A0 Ob‘ ,bv\’ A Ob‘ ,b:°\’ Ay o
& ¥ & « & o
© @Q © &‘\Q © ((;\0
& & &

Figure 5: Harmonic mean accuracy over all 30 datasets (left), on the 17 majority algorithmic tasks
(middle), and on the 10 majority non-algorithmic (right) for PIPS and baselines using three state-of-
the-art models. The breakdown per task per model is shown in Table[C.3] Table [C.2} and Table [C.4}

Accuracy Scaling Code Issue Reduction

> —_
@ 0.20 - X Issues
5 ~- =@~ Trivial
0 0]
QO 0.18 Q Type
< @V 0.1 -@- Syntax
cC j
8 0.16 5 =@- Placeholders
s 8 lua _
I o014 L T T — T T o I o—0—0—0@

100 10! 1 2 3 4 5

Number of Iterations Iterations

(a) Scaling of harmonic mean accuracy across all (b) Decrease in code issues with more synthesis itera-
datasets with more synthesis iterations. tions.

Figure 6: Accuracy and code quality scaling with more iterations of PIPS with Gemini-2.0-Flash.

problem and then executing the code to get a final answer. Gemini Code Interpreter (CI) [27] is an
API tool that allows the model to synthesize and execute code in an agentic manner before producing
its final response.

We evaluate another agentic baseline called PoT-retries which performs PoT, but regenerates the code
until the code executes without any errors, as well as CodeAct [30], and Buffer-of-Thoughts [31] for
Gemini-2.0-Flash in Appendix

4.2 RQ1: Does PIPS outperform baselines across datasets?

We compare PIPS to baselines in terms of overall performance. Harmonic mean aggregated results of
PIPS compared to baselines over all 30 datasets as well on just the algorithmic and non-algorithmic
tasks are shown in Figure[5] Overall, we see an absolute improvement of 8.6% in harmonic mean
accuracy over PoT, with up to a 23.7% improvement in absolute accuracy over PoT (on BBEH
Boolean Expressions) for Gemini-2.0-Flash, a 0.8% absolute improvement over PoT for GPT-4.1-
mini, and a 5.7% absolute improvement over PoT for 04-mini. From the middle plot, we can see
that PIPS provides significant improvements over the baselines (up to 15.9% in absolute harmonic
accuracy for o4-mini) on the majority algorithmic problems, while not degrading in accuracy for the
non-algorithmic tasks. Full results are included in Appendix [C|

We further study the performance of PIPS as the number of feedback iterations k. Even at k = 0,
meaning the evaluator is not used, PIPS outperforms PoT by a harmonic mean difference of 5.6%
and CI by 3.7%. This gap widens as we scale k, as shown in Figure[6a] Iteration successfully leads to
more well-formed programs which subsequently improves correctness.



04-mini Gemini-2.0-Flash GPT-4.1-mini

=
o
1

Perfect ] Perfect ] Perfect

o
o0
1
1
1

o
o
1
1
1

o
iN
1
1
1

I
[N}
1
1
1

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Mean predicted probability

Fraction of positives

o
<)

Figure 7: Calibration curve of our selection method between program synthesis and CoT. We only
consider questions where the choice between synthesis and CoT determines answer correctness, and
a positive instance is one correctly solved by code. Therefore, a score of 0.8 should mean an 80%
chance of solving correctly with code and a 20% chance of solving correctly with CoT.

We report the average cost of PIPS and baselines in Appendix [E|and show that PIPS additionally
achieves lower cost than other iterative approaches.

Table 1: Ablation study for BBEH tasks.

Method HMean Accuracy (%)
PIPS 20.8
PIPS (no switch) 18.3
PIPS-0 (no switch) 12.9
PIPS-0 (no switch, no symbols) 4.3

4.3 RQ2: How effective is switching between synthesis and CoT on the instance-level?

In this RQ, we investigate whether our switch can effectively decide between synthesis and CoT be-
fore committing to either option. As described in Section [2.1] this is important since non-algorithmic
problems almost always result in trivial programs which are equivalent to CoT, but incur an unnec-
essary call to the Python interpreter. Note that non-algorithmic instances occur even in majority
algorithmic tasks. We show in Appendix [F that encouraging non-trivial code for non-algorithmic
instances with our iterative search process can reduce performance.

To evaluate our switch, we focus on cases where it affects the outcome—i.e., when either PIPS
or CoT is correct, but not both. These comprise 24.8% of all samples across 30 benchmarks. For
Gemini-2.0-Flash, the switch selects the correct method 65.3% of the time, yielding a 2.2% absolute
gain in harmonic mean accuracy (Table[I). Example switch decisions are shown in Appendix

Furthermore, we investigate the level of calibration of our switching method. As illustrated in Figure
the switch is indeed well calibrated. Notable sources of deviation occur at the extremes. We further
study the marginal contributions of each p; with respect to .S in Appendix [H.4] Importantly, these
results demonstrate the usefulness of an LLM’s intrinsic understanding of its own problem solving
abilities for choosing when program synthesis is appropriate on an instance-level.

4.4 RQ3: Does PIPS improve code quality and correctness?

In this RQ, we seek to study how PIPS improves code quality. First, we analyze the performance
results to ensure that PIPS produces programs that are meaningful. To verify alignment, we filter
PIPS and all baselines’ code outputs by those that are well-formed according to our evaluator criteria
described in Section[3.2] As seen previously in Figure[3b] PIPS produces significantly more well-
formed programs than PoT when solving algorithmic problems, and the discrepancy in absolute
percentage points can go up to 53.7% as seen on the Temporal Sequence task. See Appendix |C| for



Table 2: Performance boost from PIPS fixing PoT’s code issues on BBEH algorithmic tasks. Boost
reflects accuracy gain on samples where PIPS corrected PoT errors.

Issue Fixed by PIPS  Performance Boost (A Acc %) Samples Fixed

Syntax Errors 20.0 200
Wrong Return Type 16.8 297
Placeholders 7.2 194
Hardcoded Answers 5.2 1138

the percent of well-formed programs produced by PIPS and PoT for each of the 30 datasets. Table
studies the marginal impact of each type of fix on BBEH tasks.

Next, we focus mainly on questions that are considered algorithmic, as decided by the classifier
described in Section [2.1] Focusing only on algorithmic samples across all benchmarks, Figure [33]
demonstrates that PIPS can significantly reduce the issues exhibited in PoT. For example, the number
of trivial programs is reduced by as much as 75.6%. Type and syntax issues are reduced by 49.2%
and 86.8%, respectively. Lastly, the number of programs with placeholders are reduced by 36.3%.
We study this more closely as iterations scale in Figure [6b] where we show as k increases from 1 to 3,
the percent occurrence of these undesirable properties decreases.

4.5 RQ4: Does PIPS reduce ineffective handling of structured data?

Unlike existing per-instance code generation methods, PIPS produces programs that take an explicit
structured input. For instance, for image input, PIPS may extract relevant objects from the image and
pass these objects to the program as a list. To determine if this explicit separation of the data and
logic of a program reduces issues relating the incorrect handling of structured data, like that shown in
Figure @b we perform a comparison of the code produced by PIPS with PoT. While 12.7% of PoT
well-formed code to the multimodal benchmarks (CLEVR and Leaf) used the OpenCV or Pillow
libraries which are for image processing, our method never tries to manually process images.

We also perform an ablation as shown in the bottom two rows of Table[I] where we see that the use
of explicit function inputs in PIPS leads to a 4% harmonic mean improvement on BBEH. Without
explicit inputs, PIPS-0 (no symbols), produces a single input-free function, but first performing
structured input extraction before code generation has a significant performance improvement.

5 Related Work

Reasoning with Code Generation. LLMs have been used to generate structured symbolic repre-
sentations—such as semantic parses [14, 16} [32]] or domain-specific programs in PDDL, SMT, or
Datalog—to enable external reasoning. These approaches rely on hand-crafted prompts and fixed
DSLs that limit generality and expressiveness. Others prompt LLMs to produce executable code in
general-purpose languages to solve problems directly [17, 19} 33], enabling stronger abstraction and
reuse. However, such methods typically rely on few-shot prompts or example-based verification (as
in Programming-by-Example) [15}[34}35]], limiting their applicability to tasks with clear specs or test
cases. In contrast, PIPS performs instance-level program synthesis without requiring DSLs, specs, or
handcrafted templates, and uses structural feedback to iteratively refine programs.

Approaches which prompt an LLM to produce code to solve a problem have been used in several
domains beyond math and text-based reasoning questions. ViperGPT and followup work tackle visual
question answering problems [36} 37], Voyager applies to game playing [38], and Code as Policies
focuses on the application of robot control [39]. Recently, general systems such as CodeAct [30] and
OpenCodelnterpreter [40] have been proposed for solving problems via code generation similar to
the previously mentioned solutions for each task.

Test-Time Optimization for Reasoning. Prompting strategies like Chain of Thought [4}41] and Tree
of Thought [42]] enhance LLM reasoning by decomposing problems or exploring multiple inference
paths. Methods such as Hypothesis Search [15] and Self-Discover [43] further improve performance
by searching over program hypotheses or reasoning formats. Recent work also explores LLMs as
code evaluators [44] 45], but often requires human supervision or task-specific tuning. PIPS differs



by selecting between direct inference and code execution using a learned confidence signal, achieving
robust and adaptable test-time reasoning with minimal assumptions.

6 Limitations and Conclusion

In this paper, we focus on simple structural code properties since they occur often in generated code.
Further work is needed to determine if there are more undesirable patterns in LLM-generated code. In
addition, PIPS does not optimally handle problems which are best solved partly with CoT and partly
with program synthesis. Future work can tackle methods for problem decomposition and composing
program synthesis with other forms of reasoning. Finally, while PIPS offers interpretable reasoning
when using code, the conversion of the input to symbolic form still lacks faithfulness guarantees.

We introduced Per-Instance Program Synthesis (PIPS), a method that dynamically synthesizes
reasoning programs by leveraging general structural feedback. By focusing synthesis on the instance-
level, rather than the task-level, PIPS significantly outperforms prior code-based reasoning approaches
such as PoT as well as purely textual reasoning via CoT, and produces much less trivial code than
prior work. The efficacy of PIPS for solving the most challenging reasoning problems through
program synthesis underscores the promise of synthesis as a powerful means of enabling complex
reasoning, in addition to the current paradigm of CoT-driven reasoning.

Acknowledgments and Disclosure of Funding

We thank Mayank Keoliya for his feedback and help with additional baselines during the rebuttal
period.

This research was supported by the ARPA-H program on Safe and Explainable Al under the award
D24AC00253-00, an NSF Graduate Research Fellowship, a Google Research Award, and a gift from
AWS Al to ASSET (Penn Engineering Center on Trustworthy Al).

References

[1] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36:
70293-70332, 2023.

[2] Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: LLMs can’t plan, but can help
planning in LLM-modulo frameworks. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=Th8JPEmH4z,

[3] Lexin Zhou, Wout Schellaert, Fernando Martinez-Plumed, Yael Moros-Daval, Cesar Ferri, and
José Hernandez-Orallo. Larger and more instructable language models become less reliable.
Nature, 634(8032):61-68, 2024.

[4] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

[5] OpenAl. Learning to reason with LLMs, September 2024. URL https://openai.com/
index/learning-to-reason-with-11lms/. Accessed: 26 April 2025.

[6] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
IIms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[7] Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou,

Sanket Vaibhav Mehta, Lalit K Jain, Virginia Aglietti, Disha Jindal, Peter Chen, et al. Big-bench
extra hard. arXiv preprint arXiv:2502.19187, 2025.

10


https://openreview.net/forum?id=Th8JPEmH4z
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the
overthinking of ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

Zayne Rea Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. MuSR: Testing
the limits of chain-of-thought with multistep soft reasoning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=jenyYQzuel.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness?
an analysis of cot in planning. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=kPBEAZU5Nm.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny
Hernandez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring
faithfulness in chain-of-thought reasoning. arXiv preprint arXiv:2307.13702, 2023.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato Carson Denison, John Schul-
man, Arushi Somani, Peter Hase, Misha Wagner Fabien Roger Vlad Mikulik, Sam Bowman,
Jan Leike Jared Kaplan, et al. Reasoning models don’t always say what they think. Anthropic
Research, 2025.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t
always say what they think: Unfaithful explanations in chain-of-thought prompting. Advances
in Neural Information Processing Systems, 36:74952—-74965, 2023.

Ziyang Li, Jiani Huang, Jason Liu, Felix Zhu, Eric Zhao, William Dodds, Neelay Velingker, Ra-
jeev Alur, and Mayur Naik. Relational programming with foundational models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pages 10635-10644, 2024.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah Goodman.
Hypothesis search: Inductive reasoning with language models. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
1d=G7UtIGQmjm.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning. In The 13th International Joint
Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter
of the Association for Computational Linguistics (IJCNLP-AACL 2023), 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. In International Conference on
Machine Learning, pages 10764—-10799. PMLR, 2023.

Adam Stein, Aaditya Naik, Neelay Velingker, Mayur Naik, and Eric Wong. The road to
generalizable neuro-symbolic learning should be paved with foundation models. arXiv preprint
arXiv:2505.24874,2025. URL https://arxiv.org/abs/2505.24874.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=YfZ47Pt8zd.

Kavi Gupta, Peter Ebert Christensen, Xinyun Chen, and Dawn Song. Synthesize, execute
and debug: Learning to repair for neural program synthesis. Advances in Neural Information
Processing Systems, 33:17685-17695, 2020.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language

models to self-debug. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=KuPixIqPiq.

11


https://openreview.net/forum?id=jenyYQzue1
https://openreview.net/forum?id=jenyYQzue1
https://openreview.net/forum?id=kPBEAZU5Nm
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=G7UtIGQmjm
https://arxiv.org/abs/2505.24874
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=KuPixIqPiq

[22] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2901-2910, 2017.

[23] Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language
models (mostly) know what they know. arXiv preprint arXiv:2207.05221, 2022.

[24] Alaia Solko-Breslin, Seewon Choi, Ziyang Li, Neelay Velingker, Rajeev Alur, Mayur Naik,
and Eric Wong. Data-efficient learning with neural programs. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview,
net/forum?id=QXQY58xU25.

[25] Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR:
A diagnostic benchmark for inductive reasoning from text. In Kentaro Inui, Jing Jiang, Vin-
cent Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 4506-4515, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1458. URL
https://aclanthology.org/D19-1458/.

[26] Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao
Ma, Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran
Quan, Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang.
Omni-MATH: A universal olympiad level mathematic benchmark for large language models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=yaqPfOKALN,

[27] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[28] OpenAl. Introducing gpt-4.1 in the api. https://openai.com/index/gpt-4-1/, 2025.
Accessed: 2025-05-16.

[29] OpenAl. Introducing openai 03 and 04-mini, April 2025. URL https://openai.com/index/
introducing-o03-and-o04-mini/. Accessed: 2025-05-06.

[30] Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents. In Forty-first International Conference on
Machine Learning, 2024.

[31] Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E
Gonzalez, and Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language
models. Advances in Neural Information Processing Systems, 37:113519-113544, 2024.

[32] Yilun Hao, Yang Zhang, and Chuchu Fan. Planning anything with rigor: General-purpose
zero-shot planning with LLM-based formalized programming. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
1d=0K10aL6XuK.

[33] Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-LM: Empowering
large language models with symbolic solvers for faithful logical reasoning. In The 2023
Conference on Empirical Methods in Natural Language Processing, 2023. URL https:
//openreview.net/forum?id=nWXMv949ZH,

[34] Wen-Ding Li and Kevin Ellis. Is programming by example solved by LLMs? In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=xqc8yyhScL,

[35] Eric Zelikman, Qian Huang, Gabriel Poesia, Noah Goodman, and Nick Haber. Parsel: Algo-
rithmic reasoning with language models by composing decompositions. Advances in Neural
Information Processing Systems, 36:31466-31523, 2023.

12


https://openreview.net/forum?id=QXQY58xU25
https://openreview.net/forum?id=QXQY58xU25
https://aclanthology.org/D19-1458/
https://openreview.net/forum?id=yaqPf0KAlN
https://openreview.net/forum?id=yaqPf0KAlN
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openreview.net/forum?id=0K1OaL6XuK
https://openreview.net/forum?id=0K1OaL6XuK
https://openreview.net/forum?id=nWXMv949ZH
https://openreview.net/forum?id=nWXMv949ZH
https://openreview.net/forum?id=xqc8yyhScL
https://openreview.net/forum?id=xqc8yyhScL

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Didac Suris, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution
for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision,

pages 11888-11898, 2023.

Jaywon Koo, Ziyan Yang, Paola Cascante-Bonilla, Baishakhi Ray, and Vicente Ordonez.
PropTest: Automatic property testing for improved visual programming. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen, editors, Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 8241-8256, Miami, Florida, USA, November 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.483. URL
https://aclanthology.org/2024.findings-emnlp.483/.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with large language
models. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL https:
//openreview.net/forum?id=ehfRiFOR3a.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control. arXiv
preprint arXiv:2209.07753, 2022.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. OpenCodelnterpreter: Integrating code generation with execution and refinement.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the Association for
Computational Linguistics: ACL 2024, pages 12834-12859, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.762. URL
https://aclanthology.org/2024.findings-acl.762/!

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,

35:22199-22213, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809—-11822, 2023.

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed Chi, Denny
Zhou, Swaroop Mishra, and Huaixiu Steven Zheng. Self-discover: Large language models
self-compose reasoning structures. Advances in Neural Information Processing Systems, 37:
126032-126058, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=v8LOpN6EDi.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615,
2014.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media,
1999.

13


https://aclanthology.org/2024.findings-emnlp.483/
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://aclanthology.org/2024.findings-acl.762/
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The paper’s claims are supported in Sections 2 and 3 with experiments.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are addressed in Section[6l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

14



Justification: There are no theoretical results presented in the paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide experimental details including the datasets and models used in
Section[d]and we provide the prompts used in Appendix [I}

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15



Answer: [Yes]

Justification: All of our code, as well as logs of queried closed LLMs, are provided in the
supplemental materials. All experiments and studies are reproducible and open source.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental hyperparameters, including those pertaining to data selection
and model training, are provided in the Appendix [J]

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We study our method over different seeds. The approximate error is always
negligible and reported in Section 4]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The compute resources are described in Appendix [Kl
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Social impact is discussed in Appendix [[]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The method presented in this paper does not pose a high risk for misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all datasets and models used in the paper in Section 4}
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18


paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not perform any crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

19



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We describe in Section 4] whenever we use LLM:s.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20


https://neurips.cc/Conferences/2025/LLM

A Algorithmic Split of Datasets

We show the split of the BBEH datasets into algorithmic and non-algorithmic datasets in Table
This split of datasets into the two groups is used in analyzing the results in the main body of the

paper.

Table A.1: Percent of algorithmic problems in each dataset. We call the datasets with a majority of
algorithmic problems the algorithmic datasets and the other datasets the non-algorithmic datasets.

Dataset % Algorithmic
Non-algorithmic Datasets

Leaf 0.000
Disambiguation qa 0.000
Sarc triples 0.000
Nycc 0.000
Movie recommendation 0.000
Hyperbaton 0.015
Geometric shapes 0.040
Causal understanding 0.040
CLEVR 0.155
Linguini 0.175
Omnimath-4 0.305
Sportqa 0.345
Omnimath-3 0.410
Algorithmic Datasets

Clutrr 0.750
Spatial reasoning 0.810
Omnimath-2 0.835
Buggy tables 0.940
Web of lies 0.940
Boardgame qa 0.955
Object properties 0.960
Boolean expressions 0.960
Time arithmetic 0.970
Word sorting 0.980
Dyck languages 0.980
Temporal sequence 0.990
Omnimath-1 0.995
Object counting 0.995
Zebra puzzles 0.995
Multistep arithmetic 1.000
Shuffled objects 1.000

B PIPS Programs for Figure d

The two corresponding solutions with PIPS to the problems shown in Figure fa]and Figure 4b]are
included in Figure [B.T] and Figure [B.2] respectively.

C Full Results

The full results over all 30 datasets for Gemini-2.0-Flash, GPT-4.1-mini, and o4-mini and included in
Table|C.3] Table[C.4] and Table|C.2]respectively. Results for an open-weights model, Qwen3-235B-
A22B, for BBEH tasks is included in Table

21



e ® 29 o

20
21
22
23
24
25
26
27

symbols = {'objects': [{'color': 'green', 'material': 'rubber', 'shape': 'cube',
— 'size': 'large', 'x': 0.1, 'y': 0.4},

{'color': 'blue', 'material': 'metal', 'shape': 'sphere', 'size': 'large',

— 'x': 0.4, 'y': 0.3},

{'color': 'yellow', 'material': 'metal', 'shape': 'cube', 'size': 'large',

- 'x': 0.6, 'y': 0.3},

{'color': 'cyan', 'material': 'rubber', 'shape': 'cylinder', 'size': 'small',
- 'x': 0.7, 'y': 0.3},

{'color': 'brown', 'material': 'rubber', 'shape': 'sphere', 'size': 'large',

— 'x': 0.5, 'y': 0.6}]}

def solve(symbols):

mmn

Calculates the number of large objects in front of the cyan object and behind
— the brown matte ball.

Args:
symbols: A dictionary containing information about the objects in the image.

Returns:
The number of large objects in front of the cyan object and behind the brown
— matte ball.

nun

cyan_x = next((obj["x"] for obj in symbols["objects"] if obj["color"] ==
— "cyan"), None)

brown_x = next((obj["x"] for obj in symbols["objects"] if obj["color"] ==
< "brown"), None)

count = 0
for obj in symbols["objects"]:
if obj["size"] == "large":
if obj["x"] < cyan_x and obj["x"] > brown_x:
count += 1

return count

Figure B.1: Final symbols and generated program from PIPS for the instance shown in Figure
Executing the code from PIPS results in the correct answer of 1.

D Additional Baselines

In this section, we compare PIPS with an iterative refinement version of PoT, CodeAct [30]], and
Buffer-of-Thoughts (BoT) [31]. The method PoT-retries refers to our modified version of PoT which
regenerates the program if the produced program results in an execution error. We use the CodeAct
implementation provided with the smolagents library from huggingface. Finally, we use the code for
BoT from Yang et al. for this baseline and we additionally fixed several bugs which previously
resulted in a high failure rate.

Results for PoT-retries, CodeAct, BoT, and PIPS are included in Table I@ We show results using
Gemini-2.0-Flash over all BBEH tasks since BoT does not support the multimodal tasks.

E Reasoning Costs

In addition to comparing the costs of different methods for using code for solving challenging
reasoning problems, we also compare the cost in terms of number of tokens and dollar cost. Table[E.10]
shows average input, output, and dollar cost averaged over all 30 datasets for Gemini-2.0-flash. We
find that the iterative approaches (CodeAct and Buffer of Thoughts) increase cost by more than 10X

22



27
28
29

30
31
32

33
34
35

36
37

symbols = {'objects': [

def

{'color': 'purple', 'material': 'rubber', 'shape': 'sphere', 'size': 'large',
— 'x': 0.0},

{'color': 'purple', 'material': 'metal', 'shape': 'sphere', 'size': 'large',
- 'x': 1.0},

{'color': 'blue', 'material': 'rubber', 'shape': 'cube', 'size': 'small', 'x':
— 2.0},

{'color': 'gray', 'material': 'rubber', 'shape': 'cylinder', 'size': 'small',
- 'x': 2.5},

{'color': 'brown', 'material': 'rubber', 'shape': 'cube', 'size': 'large',

- 'x': 4.0},

{'color': 'yellow', 'material': 'rubber', 'shape': 'sphere', 'size': 'large',
— 'x': 1.5},

{'color': 'brown', 'material': 'metal', 'shape': 'sphere', 'size': 'small',
— 'x': 3.5},

{'color': 'red', 'material': 'metal', 'shape': 'cube', 'size': 'small', 'x':
— 2.0},

{'color': 'red', 'material': 'metal', 'shape': 'cube', 'size': 'large', 'x':
< 5.0}1%}

solve (symbols):

mmn

Finds the color of the tiny shiny object behind the big ball to the right of
— the big metallic thing behind the big brown cube.

Args:
symbols (dict): A dictionary containing information about the objects in
— the image.

Returns:
str: The color of the object.

mmn

objects = symbols["objects"]

# 1. Find the big brown cube
big_brown_cube = next((obj for obj in objects if obj["shape"] == "cube" and
— obj["color"] == "brown" and obj["size"] == "large"), None)

# 2. Find the big metallic thing (red cube) to the right of the big brown cube
big_metallic_thing = next((obj for obj in objects if obj["shape"] == "cube"

— and obj["color"] == "red" and obj["size"] == "large" and obj["x"] >

< big_brown_cube["x"]), None)

# 3. Find the closest big ball

closest_big_ball = min((obj for obj in objects if obj["shape"] == "sphere" and
— obj["size"] == "large"), key=lambda obj: abs(obj["x"] -

< big_metallic_thing["x"]))

# 4. Find the tiny shiny object (gold sphere) behind the big ball
tiny_shiny_object = next((obj for obj in objects if obj["shape"] == "sphere"
— and obj["material"] == "metal" and obj["size"] == "small" and obj["x"] >
< closest_big_ball["x"]), None)

return tiny_shiny_object["color"]

Figure B.2: Final symbols and generated program from PIPS for the instance shown in Figure@
The code returns “brown” which is the correct answer.

23



Table C.2: Accuracy and non-trivial-code percentage for o4-mini. Best accuracy per row is bolded.

Dataset CoT  PoT  PoT Non-Trivial (%) PIPS  PIPS Non-Trivial (%)
Buggy tables 0.275 0.512 85.6% 0.594 96.9%
Temporal sequence 0.325 0.306 92.5% 0.519 96.2%
Dyck languages 0.650 0.637 8.8% 0.606 88.8%
Multistep arithmetic 0.281 0.600 72.5% 0.631 87.5%
Time arithmetic 0.875 0.900 76.2% 0.894 87.5%
Shuffled objects 0.081 0.150 43.1% 0.344 71.2%
Web of lies 0.388 0.344 68.1% 0.525 70.6%
Object counting 0.850 0.812 93.1% 0.900 70.0%
Zebra puzzles 0.150  0.100 62.5% 0.231 68.1%
Object properties 0.144 0.219 38.8% 0.344 65.6%
Boolean expressions 0.550 0.469 24.4% 0.419 63.7%
Spatial reasoning 0.463 0.506 60.6% 0.550 55.0%
Word sorting 0.806 0.775 46.2% 0.806 53.1%
Omnimath-2 0.812 0.706 56.9% 0.787 29.4%
Movie recommendation  0.819  0.744 10.6% 0.731 18.8%
Omnimath-1 0.925 0.925 78.1% 0.944 15.6%
Boardgame qa 0.688 0.637 10.6% 0.675 13.8%
Hyperbaton 0.206 0.194 34.4% 0.188 13.8%
Omnimath-3 0.556 0.356 36.9% 0.544 11.9%
Omnimath-4 0.662 0.419 31.2% 0.644 6.9%
Clutrr 0.762  0.800 1.2% 0.762 2.5%
Sportqa 0.287 0.256 0.0% 0.287 1.9%
Linguini 0.138 0.175 6.2% 0.138 1.2%
CLEVR 0.769 0.750 6.2% 0.769 0.6%
Causal understanding 0.581 0.550 0.6% 0.581 0.6%
Leaf 0.364 0.455 0.0% 0.364 0.0%
Geometric shapes 0.056 0.119 0.0% 0.087 0.0%
Disambiguation qa 0.562 0.573 0.0% 0.562 0.0%
Sarc triples 0.338 0.300 0.0% 0.338 0.0%
Nycc 0.231 0.150 0.0% 0.231 0.0%
Harmonic Mean 0.304 0.340 0.0% 0.397 0.1%

compared to PoT or CoT, but PIPS is overall only 3-4X more expensive than CoT or PoT while
achieving much greater accuracy.

F Non-Trivial Program Synthesis on Non-Algorithmic Problems

We find that encouraging non-trivial programs for non-algorithmic problems leads to reduced per-
formance. For instance, CoT with Gemini-2.0-Flash results in a harmonic mean accuracy over
all non-algorithmic datasets (as listed in Table of 0.199 while PoT results in a lower value
of 0.166 and our method without switching results in 0.151. Producing non-trivial programs for
non-algorithmic problems which shouldn’t be solved via code in the first place, harms performance.
Therefore, a high performing general reasoning system needs to avoid program synthesis in such
cases.

G Program Evaluation Criteria

The eight criteria we use to evaluate code within PIPS are included below. The input dependence
criteria is meant to catch when the program is trivial, the proper output criteria catches cases where the
program does not output the answer in the correct format, and we also include the symbol extraction
issues criteria to find issues during the first step of symbol extraction.

* Input dependence: Does the code use the input symbols to compute the answer?

* Valid return: Does the code avoid returning None unless it is the correct answer?

24



Table C.3: Accuracy and non-trivial-code percentage for Gemini-2.0-Flash. Best accuracy per row is
bolded.

Dataset CoT  PoT  PoT Non-Trivial (%) CI PIPS  PIPS Non-Trivial (%)
Shuffled objects 0.094 0.025 35.6% 0.537 0.188 98.1%
Buggy tables 0.019 0.100 99.4% 0.031 0.188 97.5%
Time arithmetic 0.438 0.331 82.5% 0312 0475 97.5%
Temporal sequence 0.006  0.006 42.5% 0.006  0.094 96.2%
Multistep arithmetic 0.144 0.037 87.5% 0.087 0.119 90.6%
Dyck languages 0.119 0.081 1.9% 0.106  0.050 90.0%
Boolean expressions 0.294 0.219 65.6% 0.325 0.456 86.2%
Object counting 0.144 0.119 98.1% 0.181 0.281 85.0%
Omnimath-1 0.850 0.838 57.5% 0.844 0.869 84.4%
Word sorting 0.287 0.525 48.8% 0.338 0.556 73.1%
Object properties 0.006 0.062 26.9% 0.125 0.163 71.9%
Spatial reasoning 0.231 0.237 12.5% 0.219 0.231 70.6%
CLEVR 0.637 0.619 26.2% 0.669 0.688 46.2%
Causal understanding 0.537 0.438 1.2% 0.544 0.537 15.6%
Clutrr 0.556  0.588 0.0% 0.662 0.506 13.8%
Linguini 0.144 0.113 1.9% 0.119 0.125 13.8%
Boardgame qa 0.463 0.419 5.0% 0.394 0.463 11.9%
Zebra puzzles 0.300 0.256 73.8% 0.131 0.275 10.0%
Geometric shapes 0.312  0.269 0.6% 0.388 0.300 9.4%
Sportqa 0.200 0.244 1.9% 0.269 0.194 6.9%
Hyperbaton 0.031 0.019 46.2% 0.031 0.025 5.6%
Web of lies 0.219 0.206 3.1% 0.188 0.219 2.5%
Movie recommendation  0.581 0.562 0.0% 0.556  0.569 2.5%
Disambiguation qa 0.448 0417 0.0% 0479 0.448 1.0%
Leaf 0.602  0.636 0.0% 0.102 0.602 0.0%
Sarc triples 0.375 0.369 0.0% 0.344 0.375 0.0%
Nycc 0.106 0.131 0.0% 0.113  0.106 0.0%
Omnimath-2 0.544 0.463 46.9% 0.544 0.544 0.0%
Omnimath-3 0.269 0.194 15.6% 0.275 0.269 0.0%
Omnimath-4 0.312 0.244 16.2% 0319 0312 0.0%
Harmonic Mean 0.107 0.115 0.0% 0.134 0.201 0.0%

* Proper output: Does the code return (not print) the correct answer in the expected format?

* No example usage: Does the code omit example calls or usage?

Simplifiability: Could the solution be implemented in a simpler way?
* Correctness bugs: Are there any bugs affecting correctness?
* Symbol extraction issues: Are there any problems with the extracted input symbols?

* Sanity check: Does the output pass a basic sanity check?

H Switch Analysis

In this section, we go in-depth on the CoT vs. program synthesis switch design. First we discuss
some additional evaluations involving evaluating the generalizability of the trained switch as well as
evaluating a zero-shot switch.

H.1 Switch Ablations

We perform ablations for the switch in PIPS and show the results in Table First, we show that
if there is no calibration data available to train the switch, it can be used in a zero-shot manner and
still be highly performant. The zero-shot switch uses only the last of the ten questions as the final
classifier value so that no training is required.

To validate that training a classifier on any data (even from a different dataset) can still be useful, we
perform a leave-one-dataset-out evaluation. This involves training the switch on all but one dataset

25



Table C.4: Accuracy and non-trivial-code percentage for gpt-4.1-mini-2025-04-14. Best accuracy per
row is bolded.

Dataset CoT  PoT  PoT Non-Trivial (%) PIPS PIPS Non-Trivial (%)
Time arithmetic 0.588 0.706 93.1% 0.463 98.8%
Buggy tables 0.075 0.481 100.0% 0.406 98.1%
Multistep arithmetic 0.275 0.394 86.2% 0.494 96.2%
Dyck languages 0.150 0.175 6.9% 0.506 95.0%
Shuffled objects 0.119 0.256 68.8% 0.294 95.0%
Omnimath-1 0.894 0.875 76.2% 0.875 89.4%
Word sorting 0.681 0.600 73.1% 0.656 85.6%
Object counting 0.263 0.331 66.2% 0.287 83.1%
Temporal sequence 0.250 0.356 96.2% 0.275 82.5%
Boolean expressions 0.294 0.356 11.2% 0.469 79.4%
Spatial reasoning 0.181 0.394 48.1% 0.362 68.1%
Object properties 0.025 0.237 67.5% 0.175 60.0%
Omnimath-2 0.569 0.569 63.1% 0.556 59.4%
Web of lies 0.362 0.300 36.2% 0.219 58.8%
CLEVR 0.719 0.669 8.1% 0.700 53.8%
Zebra puzzles 0.194 0.150 36.2% 0.188 49.4%
Clutrr 0.662 0.562 0.6% 0.613 21.9%
Omnimath-3 0.338 0.244 35.6% 0.325 16.2%
Geometric shapes 0.344 0.294 16.9% 0.319 15.0%
Boardgame qa 0.512  0.500 81.2% 0.519 11.2%
Omnimath-4 0.463 0.312 28.7% 0.431 10.0%
Sportqa 0.169 0.244 2.5% 0.200 9.4%
Hyperbaton 0.087 0.062 4.4% 0.075 7.5%
Causal understanding 0.562 0.562 1.2% 0.550 5.6%
Linguini 0.094 0.144 1.2% 0.094 3.1%
Movie recommendation  0.606 0.475 8.8% 0.594 1.9%
Leaf 0.341 0.409 0.0% 0.341 0.0%
Disambiguation qa 0.552  0.500 1.0% 0.552 0.0%
Sarc triples 0.287 0.331 10.0% 0.287 0.0%
Nycc 0.188 0.150 15.0% 0.188 0.0%
Harmonic Mean 0.211 0.297 0.3% 0.305 0.1%

and then evaluating PIPS over only the left out dataset and averaging performance over all datasets
as the left out one. As shown in Table [H.T1] this also performs nearly as well as PIPS where the
switch is trained over calibration set of data sampled from all datasets.

H.2 Switch Criteria

The full prompt for the switch is provided in Appendix|[I| but we provide the 10 criteria we use within
the prompt below. The criteria for determining if an instance should be solved directly via CoT or by
program synthesis are the following:

1. Simple formalizability: Likelihood that the solution can be easily expressed as simple,
deterministic code.

2. Straightforward executability: Likelihood that a first code attempt runs correctly without
debugging.

3. Robust systematic search: Likelihood that systematic code (e.g., brute-force, recursion)
reliably solves the problem.

4. Manageable state representation: Likelihood that all necessary variables and concepts can
be cleanly represented in code.

5. Structured knowledge encoding: Likelihood that required background knowledge can be
encoded as rules or data.

26



Table C.5: Accuracy for Qwen3-235B-A22B over all BBEH tasks. Best accuracy per row is bolded.

10.

Dataset CoT PoT  PIPS
Word sorting 0.738 0.688 0.706
Dyck languages 0.438 0.200 0.456
Object counting 0.644 0.519 0.613
Object properties 0.319 0475 0.250
Boardgame qa 0.744 0.838 0.744
Boolean expressions 0.600 0.362 0.631
Buggy tables 0.181 0.362 0.312
Spatial reasoning 0.512 0.506 0.519
Multistep arithmetic 0.550 0.544 0.275
Geometric shapes 0.237 0.200 0.237
Temporal sequence 0.294 0.331 0.350
Disambiguation qa 0.625 0.573 0.625
Causal understanding 0.569 0.456 0.569
Time arithmetic 0.613 0.750 0.700
Web of lies 0.812 0.631 0.812
Sarc triples 0.281 0.194 0.281
Hyperbaton 0.287 0.287 0.287
Nycc 0.156 0.163 0.156
Sportga 0.256 0.150 0.256
Linguini 0.175 0.150 0.175
Movie recommendation  0.738 0.719  0.738
Shuffled objects 0.144 0.056 0.569
Zebra puzzles 0.700 0.569 0.700
Harmonic Mean 0.355 0.289 0.386

Table C.6: Harmonic Mean Accuracy (All Datasets)

Method gpt-4.1-mini  Gemini-2.0-Flash

04-mini

CoT 0.211 0.107
PoT 0.297 0.115
PIPS 0.305 0.201
CI 0.000 0.134

0.304
0.340
0.397
0.000

of-thought reasoning.
processing more reliably.
branching logic more systematically.

intuitive reasoning.

. Hallucination risk reduction: Likelihood that code avoids fabricated steps better than chain-
. Arithmetic and data processing advantage: Likelihood that code handles arithmetic or data
. Branching and case handling advantage: Likelihood that code handles special cases or

. Algorithmic reliability over heuristics: Likelihood that a deterministic algorithm outperforms

Overall comparative success: Likelihood that code yields a more reliable solution than

chain-of-thought reasoning.

Our full prompt asks the LLM itself to quantify each of these criteria and then we build a simple
logistic classifier based on the LLM’s own judgements to determine when to use program synthesis.

H.3 Examples of Switch Decisions

We show two questions from BBEH Word Sorting in Figure [H.3] and the corresponding switch
decisions for the different models. We also show a question from Omnimath-2 in Figure where
the different CoT/Synthesis switch decisions are made for different models.

27



Table C.7: Harmonic Mean Accuracy (Algorithmic Datasets)
Method gpt-4.1-mini  Gemini-2.0-Flash  04-mini

CoT 0.187 0.079 0.339
PoT 0.357 0.094 0.389
PIPS 0.369 0.217 0.548
CI - 0.112 -

Table C.8: Harmonic Mean Accuracy (Non-Algorithmic Datasets)
Method gpt-4.1-mini  Gemini-2.0-Flash  04-mini

CoT 0.254 0.199 0.267
PoT 0.244 0.166 0.291
PIPS 0.248 0.184 0.292
CI - 0.181 -

H.4 Question Analysis

We include the logistic regression weights for each of the ten questions in Appendix [H.2]in Table[H.12}
The most important questions for the switch actually vary significantly between models. For Gemini-
2.0-Flash, question 5 and 6 are the most important while for GPT-4.1-mini it is question 8 and 5.
Finally, for o4-mini, questions 2 and 1 are the most important. Interestingly, we see that questions 5,
6, and 8 which are important for the non-reasoning models are related to the ability of the model to
produce error-free code and avoid tedious steps using code while the reasoning model relies most on
the criteria which concerns traditional problem algorithmicity rather than model capability.

I Prompts

All prompts used in our evaluation and method are included below.

The prompt used to create the LLM-based classifier for question algorithmicity is the following.

Algorithmic Question Evaluation

You will determine whether a given target question can be definitively solved by«
writing a Python program (algorithmic) or if it necessitates another form +«
of reasoning (non-algorithmic). A Python solution may import standard <«
libraries, but cannot simply invoke external services, APIs, or LLMs.
If the input contains images, an algorithmic solution may use information <«
manually extracted without needing to interpret the image itself.

Evaluate the target question carefully against the following criteria. Answer <«
each sub-question rigorously with a binary response (1 for yes, 0 for no), «
ensuring a high threshold for certainty:

1. Does the problem have explicitly defined inputs and outputs, such that <
identical inputs always yield identical outputs?

2. Are there explicit, clearly stated rules, formulas, algorithms, or known <
deterministic procedures available for solving this problem?

3. Does solving this problem strictly require exact computation (no «+
approximations, intuition, or interpretation)?

4. Can this problem be fully formalized in clear mathematical, logical, or <«
structured computational terms without ambiguity?

5. Can the solution method be decomposed into a finite, clear, and unambiguous <«
sequence of computational steps?

6. Is there a universally recognized and objective standard for verifying the <«
correctness of the solution?

7. Does solving the problem inherently involve repetitive or iterative <«
computations clearly suitable for automation?

8. Are the inputs structured, quantifiable, and inherently suited to algorithmic«
manipulation?

9. Does this problem clearly match or closely resemble a known, standardized <«
computational task or problem type?

28



Table D.9: Harmonic mean accuracy computed over BBEH tasks for additional agentic baselines
compared to PIPS on Gemini-2.0-Flash. The highest accuracy is bolded.

Method HMean Accuracy

PoT 0.095
PoT-retries 0.098
CodeAct 0.040
BoT 0.027
PIPS 0.171

Table E.10: Comparison of average token usage and cost across methods.

Method Avg. Input Tokens Avg. Output Tokens Cost (USD)
PoT 1,115.96 1,333.98 $0.0006
CoT 1,099.77 1,475.87 $0.0007
CodeAct 80,137.92 4,023.36 $0.0096
Buffer of Thoughts 340,927.19 123,655.35 $0.0835
PIPS 11,839.09 2,805.78 $0.0023
10. Is absolute correctness required (i.e., no margin for error or subjective <«

interpretation)?

After thoroughly reasoning through these sub-questions, append a final <«
determination as the 11th element:

- Output 1 if and only if all or nearly all (at least 8 out of 10) answers are +
clearly 1, indicating the problem is definitively algorithmic.

- Otherwise, output O, indicating the problem requires non-algorithmic reasoning<«—

IMPORTANT :

- Before providing the binary list, explicitly reason through each criteriomn <«
carefully and thoroughly, clearly justifying your decisions. If uncertain <«
or ambiguous about any criterion, default to O.

- Provide your final answer explicitly as an 1l1-element binary list (ten answers<«
plus the final determination).

- Under no circumstances should you attempt to answer the actual target question<«

itself.

TARGET QUESTION:

. J

The prompt used to extract the ten criteria for building our instance-level CoT or program synthesis
switch is provided next.

CoT or Synthesis Switch Criteria

You will self-reflect to estimate whether you are more likely to correctly solve«
a given target question by writing executable Python code or by using <«
chain-of -thought (natural-language) reasoning.

*% IMPORTANT : **

- This is a hypothetical evaluation.

- **You must NOT attempt to answer, solve, write code, or reason through the «
target question yet.**

- Instead, you must reflect carefully and conservatively on your expected <«
ability if you were to attempt solving the question through either method.

Solution Expectations:

- You may assume standard library modules are allowed for code.

- You may NOT call external services, APIs, databases, or other LLMs.

- The code must be self-contained and executable without internet access.

- Chain-of-thought reasoning must be clear, logically sound, and internally <«
verifiable without external tools.

**CRITICAL GUIDANCE :*x*

29



Table H.11: Ablations for the switch in PIPS compared using harmonic mean accuracy over all 30
datasets. The ZS-Switch uses only the model output from the final of the ten criteria as the final
switch decision the leave-one-out (LOO) setting trains the switch over all but one dataset and then
evaluates on the left out dataset and averages over all datasets being the left out one.

Models PIPS w. ZS-Switch PIPS w. LOO PIPS
04-mini 0.389 0.393 0.397
Gemini-2.0-Flash 0.199 0.180 0.208
GPT-4.1-mini 0.259 0.302 0.305

You are an expert in word sorting. You will be provided with
a list of words and the steps taken, in the form of thoughts,
to arrange them in alphabetical order. Your job is to identify
the first step that was a mistake in reasoning about the order
of the words. This can be misunderstanding the order of the
alphabet or getting the word or letter wrong or missing a
word entirely. Q: Sort the following words alphabetically:
List: electron amputate morphism tire scald lawmen put-
down fishpond expositor yosemite gourmet transplant noon
structure protagonist arab agree daisy delta eskimo Thought
1: I should start by looking at the first letter of the words
in the list. The first letter: "electron": "e" (5). "amputate":
"a" (1). "morphism": "m" (13). "tire": "t" (20). "scald":
"s" (19). "lawmen": "I" (12). "putdown": "p" (16). "fish-
pond": "f" (6). "expositor": "e" (5). "yosemite": "y" (25).
"gourmet": "g" (7). "transplant": "t" (20). "noon": "n" (14). Q,)

oo

"structure": "s" (19). "protagonist": "p" (16). "arab": "a"

(1). "agree": "a" (1). "daisy": "d" (4). "delta": "d" (4).

"eskimo": "e" (5). Consider a new alphabet whose letters have the same order
as the English alphabet, except that ¢ and m are the last
Thought 15: I have now sorted all the words. The answer is two letters. Sort the following words with the new alphabet
agree amputate arab delta daisy electron expositor eskimo and separate them with comma: medea, oversimplifications,
fishpond gourmet lawmen morphism noon protagonist put- clonic, chaplin, kennan, postpone, squabble, ipsilateral,
down scald structure tire transplant yosemite Q: Is there a misunderstandings, ussr, canal, modifications, referring,
mistake in this sequence? Write "No" if there are no mis- counterrevolutionaries, pyridine, cameroon, avalanche, ra-
takes, or the number N if there is a mistake in Thought N. tionalizations, fortran, cram, coachman

. v - 7

Figure H.3: Two questions from the BBEH Word Sorting task where the first question asks for
determining which thought in a model’s CoT is incorrect and the second question asks for sorting a
list of words. The switch for these problems chooses to answer Q1 with CoT for all models while
answer Q2 with program synthesis for all models.

- **Be cautious, not optimistic.*x*
Overestimating your capabilities will lead to choosing a method you cannot <+«
successfully complete.

- **xIf you feel any uncertainty, complexity, or ambiguity, lower your <«
probability accordingly.*x*

- *xAssume that even small mistakes can cause failure** when writing code or <«
reasoning through complex tasks.

- **Use conservative estimates.*x*

- If unsure between two options, **prefer lower probabilities rather than <«
guessing highx*x*,

Here are the self-reflection sub-questions you must answer hypothetically:

1. **Simple Formalizability** - *What is the probability that the full solution <«
can be easily and directly expressed as simple, deterministic code, without<«
needing complex transformations or deep insight?x*

2. x*Straightforward Executability** - *What is the probability that a first <«
attempt at writing code would execute correctly without needing debugging, <«
even if the problem has subtle or complex aspects?*

3. **Robust Systematic Search#** - *What is the probability that coding a <«
systematic method (like brute-force search or recursion) would reliably <«

30



A collection S of 10000 points is formed by picking each point uniformly at random inside a circle of radius 1. Let /N be the
expected number of points of S which are vertices of the convex hull of the S. (The convex hull is the smallest convex polygon
containing every point of S.) Estimate N.

Figure H.4: A question from Omnimath-2 where both Gemini-2.0-Flash and GPT-4.1-mini switch to
CoT to answer while o4-mini chooses program synthesis.

Table H.12: Logistic regression coefficients for the switch for each of the three models.
Model Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Gemini-2.0-Flash  0.14 0.03 0.12 0.15 021 -021 0.18 -0.09 0.03 0.10
gpt-4.1-mini 040 042 020 028 022 015 -002 001 021 021
04-mini 022 0.04 016 024 027 -005 012 035 0.18 024

find the correct answer, without missing hidden constraints or introducing <«
edge-case errors?x*

4. **xManageable State Representation** - *What is the probability that all <«
intermediate concepts, variables, and conditions can be simply and <«
explicitly represented in code, without requiring difficult or error-prone <«
state tracking?x*

5. **Structured Knowledge Encoding** - *What is the probability that all <«
required background knowledge can be neatly encoded in code (e.g., as rules+«
, formulas, or data), rather than needing flexible, intuitive understanding+«
better suited to reasoning?*

6. x*Hallucination Risk Reduction** - *What is the probability that code <«
execution would more reliably avoid fabricated steps or unwarranted <«
assumptions compared to chain-of-thought reasoning?*

7. xxArithmetic and Data Processing Advantage** - *What is the probability that <«
the problem requires extensive or error-prone arithmetic/data handling that<«
code could perform perfectly, but that chain-of-thought would likely <«
fumble 7*

8. x*Branching and Case Handling Advantage** - xWhat is the probability that the«
solution involves many branching conditions, special cases, or exceptions <«
that code can handle systematically but chain-of-thought might overlook?x*

9. *x*Algorithmic Reliability Over Heuristics** - *What is the probability that <«
following a deterministic algorithm in code would reach the correct answer <«
more reliably than relying on intuitive or heuristic chain-of-thought <«
reasoning?x*

10. **0verall Comparative Success** - *Considering all factors, what is the <
probability that code will ultimately produce a correct solution more <>
reliably than chain-of-thought reasoning for this question?x*

After thoroughly reasoning through each criterion:

- Output a single list of 10 probability scores (each between 0 and 1) as your +«
FINAL ANSWER, in order:
- Scores 1-10 correspond to the ten sub-questions above.

**x Additional Instructions:*x*
- Explicitly reason through each criterion carefully before giving a probability+«

- If uncertain or if the problem seems complex, favor lower probabilities to <«
reflect the difficulty.

- Make sure to put only the list after FINAL ANSWER.

- **Under no circumstances should you write, sketch, pseudocode, or attempt any <«
part of the solution itself during this reflection phase.**

TARGET QUESTION:

\. .

The prompt for generating the first program with PIPS in iteration one is the following.

31



PIPS Code Generator (Iteration ()

You will be given a question and you must answer it by extracting relevant <«
symbols in JSON format and then writing a Python program to calculate the <«
final answer.

You MUST always plan extensively before outputting any symbols or code.
You MUST iterate and keep going until the problem is solved.
# Workflow

## Problem Solving Steps

1. First extract relevant information from the input as JSON. Try to represent <«
the relevant information in as much of a structured format as possible to <«
help with further reasoning/processing.

2. Using the information extracted, determine a reasonable approach to solving <«
the problem using code, such that executing the code will return the final <«
answer.

3. Write a Python program to calculate and return the final answer. Use comments«

to explain the structure of the code and do not use a main() function.

The JSON must be enclosed in a markdown code block and the Python function must <«
be in a separate markdown code block and be called “solve”  and accept a <«
single input called “symbols ™ representing the JSON information extracted. <«
Do not include any “if __name__ == "__main__""~ statement and you can assume<>

the JSON will be loaded into the variable called “symbols ™ by the user.

The Python code should not just return the answer or perform all reasoning in <
comments and instead leverage the code itself to perform the reasoning.

Be careful that the code returns the answer as expected by the question, for <«
instance, if the question is multiple choice, the code must return the <«
choice as described in the question.

Be sure to always output a JSON code block and a Python code block.

The prompt used to generate subsequent code solutions with PIPS by leveraging the evaluator output
is shown below.

PIPS Code Generator (Iteration > 0)

Please fix the issues with the code and symbols or output "FINISHED".

The following is the result of evaluating the above code with the extracted <«
symbols.

Return value: {output}

Standard output: {stdout}

Exceptions: {err}

The following is the summary of issues found with the code or the extracted <«
symbols by another model:

{checker_output}

If there are any issues which impact the correctness of the answer, please <«
output code which does not have the issues. Before outputting any code, <«
plan how the code will solve the problem and avoid the issues.

If stuck, try outputting different code to solve the problem in a different way.

You may also revise the extracted symbols. To do this, output the revised <«
symbols in a JSON code block. Only include information in the JSON which is<«

present in the original input to keep the code grounded in the specific «
problem. Some examples of symbol revisions are changing the names of <«
certain symbols, providing further granularity, and adding information <«
which was originally missed.

If everything is correct, output the word "FINISHED" and nothing else.

Finally, the prompt for the code evaluator is shown below.

32



PIPS Evaluator

You will be given a question and a code solution and you must judge the quality <«
of the code for solving the problem.

Look for any of the following issues in the code:
- The code should be input dependent, meaning it should use the input symbols to+«
compute the answer. It is 0K for the code to be specialized to the input (+
i.e. the reasoning itself may be hardcoded, like a decision tree where the <+«
branches are hardcoded).
- The code should not return None unless "None" is the correct answer.
- The code should return the answer, not just print it. If the question asks for<«
a multiple choice answer, the code should return the choice as described <«
in the question.
- There should not be any example usage of the code.
- If there is a simpler way to solve the problem, please describe it.
- If there are any clear bugs in the code which impact the correctness of the «
answer , please describe them.
- If there are any issues with the extracted symbols, please describe them as «
well, but separate these issues from the issues with the code.
- If it is possible to sanity check the output of the code, please do so and «
describe if there are any obvious issues with the output and how the code <«
could be fixed to avoid these issues.

After analyzing the code in depth, output a concrete and concise summary of the <«
issues that are present, do not include any code examples. Please order the<«
issues by impact on answer correctness.

The following are extracted symbols from the question in JSON format followed by«
a Python program which takes the JSON as an argument called ~symbols ~ and <«
computes the answer.

" json
{json_str}

“python
{code_str}

Code execution result:
Return value: {output}
Standard output: {stdout}
Exceptions: {err}

Output a concrete and concise summary of only the issues that are present, do <
not include any code examples.

J Hyperparameters

For all models we used a temperature of 0.0. For PIPS, we used a maximum of 30 iterations for all
models.

K Compute Resources

For most experiments we rely on API model access. All experiments cost $300 for Gemini-2.0-Flash,
$70 GPT-4.1-mini, and $700 for o4-mini (medium). Other experiments were run on a server with 96
Intel(R) Xeon(R) Gold 5318Y CPUs @ 2.10GHz with 1TB of system RAM. The server also had 10x
NVIDIA A100 80GB GPUs which were only used for local testing of open-weights models.

L. Broader Impacts

PIPS offers significant potential benefits, including enhanced Al reliability, trust, transparency, and
the democratization of advanced problem-solving. However, like most systems built from powerful
foundation models, it also presents important considerations. These include the potential for bias
propagation from underlying models, challenges in ensuring the complexity and robustness of dy-
namically generated programs, and concerns regarding misuse. Continued research and development

33



must prioritize robust safeguards, fairness, transparency, and responsible deployment practices to
harness the benefits while mitigating these potential negative impacts.

M Connection to Transductive Learning

Instance-wise Program Synthesis can be connected to transductive learning [46] where a function is
learned to map from specific function inputs to specific outputs. The general philosophy is that one
should not try to solve the general problem when the specific case is all one needs.

We are given a labeled training set Dy, = {(z;,v;)}7; € R x Y where R is the space of symbolic
input and ) is the output space, and an unlabeled test sample z € R. Our goal is to find a program
p: R — ) which has a low error on the given sample, so p(x) = y. In contrast, inductive program
synthesis tries to find a program p which generalizes, so it should achieve a low error on samples from
the same distribution as Dy . To perform transductive program synthesis, we rely on minimizing an
auxiliary “regularization” term, €2, over the test sample, representing a form of test-time computation:

) 1 m
ﬁ = argmln{mze(p(xi)vyi) + Q(p,.]fl, s 7377-,1,3))} .

P i=1

The regularization term can be implemented using probabilistic priors (e.g. the likelihood under some
language model) or more complex heuristics involving static/dynamic code analysis. With powerful
foundation models that can perform zero-shot inference, we can even perform this type of learning
without any training set.

Neuro-symbolic Instance-level Synthesis The above problem definition is specifically for prob-
lems formulated for program synthesis, meaning the inputs are expressed in symbolic form. Can we
apply such a method for problems expressed in natural language or even using images? To convert
general problems into a form which is conducive to program execution, we use a Neuro-Symbolic
framework, specifically a Prompt-Symbolic approach.

We now assume our samples come from an arbitrary raw input space, such as natural language,
images, and other modalities. Using the traditional neuro-symbolic framework, we first extract
symbols from the raw input and then pass these symbols to a program. Let C' : X — R be a mapping
from raw data to symbols. Now we adapt the above formalism as the following:

m -
=1

ﬁa C= arg min {1 Z e(p(c(xl))’ y’L) + Q(Capa L1y oy Tmy 1’)} .
p,C

Intuitively, we want to find a raw data to symbols mapping C' and program p which perform well on
a training set (if one is available) and minimize the loss €2 over the given test samples. Notably, the
program and raw data to symbol mapping do not need to be general, they should be specialized for
the test samples. In practice, the raw data to symbol mapping is often a form of semantic parsing,
which can be done through zero-shot prompting of foundation models, so the raw data to symbol
mapping is not modified on an instance-level.

34



	Introduction
	The Challenges of Per-Instance Program Synthesis
	Non-Algorithmic Problems
	Program Search without Specifications
	Interfacing Programs with Unstructured Data

	Per-Instance Program Synthesis ()
	Selective Program Synthesis
	Program Synthesis without Task Specifications
	Converting Raw Data to Symbolic Program Input

	Experiments
	Setup
	RQ1: Does outperform baselines across datasets?
	RQ2: How effective is switching between synthesis and CoT on the instance-level?
	RQ3: Does improve code quality and correctness?
	RQ4: Does reduce ineffective handling of structured data?

	Related Work
	Limitations and Conclusion
	Algorithmic Split of Datasets
	Programs for fig:synthesis-failures
	Full Results
	Additional Baselines
	Reasoning Costs
	Non-Trivial Program Synthesis on Non-Algorithmic Problems
	Program Evaluation Criteria
	Switch Analysis
	Switch Ablations
	Switch Criteria
	Examples of Switch Decisions
	Question Analysis

	Prompts
	Hyperparameters
	Compute Resources
	Broader Impacts
	Connection to Transductive Learning

