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Abstract

Learning causal feature representations helps us
identify relevant subspaces to express the signal
of interest and understand (and imagine interven-
tions on) the underlying causal mechanisms. In
this work, we adopt a rather pragmatic standpoint
and propose learning Granger-causal feature rep-
resentations with a simple additional rotation on
top of the classical Principal Component Analysis
(PCA). We generalize the methodology to non-
linear Granger causal representations with kernel
PCA, give empirical proof of performance in lin-
ear and nonlinear toy examples, and find the rel-
evant problem of finding Granger-causal feature
long-range spatio-temporal teleconnections in the
Earth system. The methodology can be of practical
convenience in high-dimensional and low-sample
sized problems.

1 INTRODUCTION

Causal discovery and inference using high-dimensional time
processes, e.g. spatio-temporal observations of gridded vari-
ables, typically requires a first step of dimensionality re-
duction. This is the case when working with fMRI record-
ings [Zhou et al., 2009, Wen et al., 2013] or with Earth
observation data and climate model outputs [Runge et al.,
2015, Nowack et al., 2020]. Principal Components Analysis
(PCA) is undoubtedly the preferred method in real practice
but, since the components are not necessarily physically
meaningful, PCA is followed by a varimax (or oblique)
rotation [Lian and Chen, 2012, Hendrickson and White,
1964, Kaiser, 1958] to extract relevant (spatio-temporal)
components [Vejmelka et al., 2015]. Next, a causal discov-
ery algorithm, e.g. Granger causality [Granger, 1969], the
classical PC algorithm [Spirtes et al., 2000], or PC variants
like PCMCI [Runge et al., 2019] are applied to the extracted

time series to estimate a causal graph. Unfortunately, the
feature extraction is generally disconnected and learned in-
dependently from the causal task, which leads to a quite
arbitrary selection of the modes of variability explaining the
phenomena the data is representing.

Recently, Causal Representation Learning [Schölkopf et al.,
2021] has been framed as a fundamental problem in the inter-
section of machine learning and causal inference. However,
the task of identifying suitable high-level-representations
of fine-grained observations that admit causal models is
challenging for both human and machine intelligence. Yet,
it is fundamental within the general goal of modern ma-
chine learning to learn meaningful representations of data.
Actually, the main stress so far has been to learn disentan-
gled, non-spurious and efficient representations of the data
[Wang and Jordan, 2021]. In particular, the overarching goal
in the representation learning framework is about learning
meaningful causes in the data generation causal model.

In this work, we instead focus on learning high-level repre-
sentations that are effects of known low-dimensional causes.
This is an important endeavour in domains where high-
dimensional (e.g. spatio-temporal) observations are used,
and where the goal is not only to reconstruct well the sig-
nal but recovering lower-dimensional representations that
correspond to causal effects of known drivers. We introduce
Granger PCA (GPCA), a methodology to learn Granger-
causal feature representations (§2). The method is simple,
only implies an additional rotation on top of the PCA one,
and can be generalized to nonlinear cases (e.g. using kernel
PCA [Scholkopf et al., 1998]). Relations and advantages
over other multivariate analysis methods like PLS or CCA
[Arenas-García et al., 2013] are outlined in §3. We give
empirical proof of performance in linear and nonlinear toy
examples (§4.1), and also in the relevant problem of finding
Granger-causal long-range spatio-temporal connections in
the Earth system (§4.2). We anticipate a wide use and adop-
tion of GPCA in scientific domains where dimensionality
reduction and Granger causality are combined.
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2 GRANGER PCA

The methodology proposed to extract principal components
that are causal is described here. We start explaining how to
find an optimal rotation that aligns axes with causally mean-
ingful directions when a sufficient number of observations
is available. We then describe how to generalize this to real-
istic high-dimensional cases thanks to a first whitening step
with classical PCA and easily generalize the methodology
to nonlinear cases.

2.1 PROBLEM SETTING AND NOTATION

Consider two time-dependent processes X(t) and Y (t),
where X(t) ∈ Rd and Y (t) ∈ Rp for each t, where we
assume d ≫ p. We will mainly consider the case p = 1,
but the proposed approach can be extended to p > 1. For
the sake of notation simplicity we assume uniform time
sampling and thus denote that we observe processes X(t)
and Y (t) at n times ti = i∆t. The observation (design)
matrices are denoted as X ∈ Rn×d and Y ∈ Rn×p, with
entries Xij = Xj(ti) (likewise for Y ). The goal is to find
components of X(t) which are causally related with Y (t)
and, in particular, we will consider linear Granger causality
[Granger, 1969] in what follows.

2.2 DIRECTIONS OF MAXIMAL CAUSALITY

We recall that a time-series A(t) is linearly Granger-cause
of B(t) with respect to a fixed time-lag m if the null hy-
pothesis {αℓ = 0 for ℓ = 1, . . . ,m} is rejected for the linear
auto-regressive (AR) model B(t) =

∑m
ℓ=1 βℓB(t − ℓ) +∑m

ℓ=1 αℓA(t − ℓ) + β0 + ϵ. That is A’s past jointly adds
explanatory power to the auto-regressive model for B. The
above null hypothesis is usually tested by comparing the
residual sum of squares (RSS) of the full and the restricted
(αi = 0 for all i) models, for instance using an F -test.

We simply define a Granger rotation as the orthogonal linear
transformations of X that transforms the data into a rotated
coordinate system such that the first coordinate comes to
be the one for which Y is more Granger causal, and so on
for the next components. Let U be the orthogonal matrix
representing such transformation and let u(i) denote its i-th
column and X̃ = XU be the transformed data. Now the
goal is to reduce the RSS of the auto-regressive models
including the past of Y (t) (RSS1), and also to increase the
RSS of the restricted auto-regressive models by considering
just X̃(t) (RSS0). In particular, we search the orthogonal
transformation that maximizes the difference between the
two residual sum of squares, RSS0 −RSS1. For the case
of extracting only one feature, this problem can be solved
by maximizing the following Rayleigh quotient

u1 = argmax
u

{
(u⊤X⊤Q2Q

⊤
2 Xu)

u⊤u

}
,

where Q = [Q1|Q2|Q3] is the Q term in the QR-
factorization of the matrix [Xpast|Ypast] obtained by stack-
ing the lagged observations of X and Y (up to a certain
maximum lag m).

As in PCA more components can be extracted by Hotelling’s
deflation. One can subtract the first k components and repeat
the process above to obtain the k+1 column of U . The result-
ing U is composed of columns which are the eigenvectors
of (X0)T

(
WTW − V TV

)
X0 sorted by the correspond-

ing eigenvalues. The full matrix of the orthogonal trans-
formation U consists of the eigenvectors of X⊤Q2Q

⊤
2 X

or, equivalently, the singular vectors of Q⊤
2 X . We refer the

reader to Appendix A for details and derivations.

2.3 ROTATED PRINCIPAL COMPONENTS

The introduced Granger rotation U is well defined for obser-
vations X ∈ Rn×d, Y ∈ Rn×d and a given maximum lag
m > 0, if n−m > dm. For the case of high-dimensional
data, where n −m < dm, we propose to combine the de-
fined Granger rotation after whitening and reducing the data
with PCA or, alternatively, a non-linear extension such as
kernel PCA. The method consists in replacing X with the
projection onto the first k principal components and then
applying the Granger rotation as defined previously. We
refer to such procedure as Granger-rotated PCA (GPCA)
or Granger-rotated kernel PCA (G-kPCA), if we make use
of the nonlinear version based on kernel PCA as first step
[Scholkopf et al., 1998].

3 RELATED METHODS

The proposed approach is tightly related to various clas-
sical (un)supervised dimensionality reduction techniques,
especially in the field of multivariate data analysis [Arenas-
García et al., 2013], which we briefly review here.

PCA [Pearson, 1901, Hotelling, 1933, Jolliffe, 2003], even-
tually followed by an additional rotation, has been used
extensively for extracting principal modes of variability
in high-dimensional data. In geophysics, where spatio-
temporal data needs to be compressed and visualized, PCA
is traditionally referred to as Empirical Orthogonal Func-
tions (EOFs) and its different variants proposed [Preisendor-
fer, 1988, Bauer-Marschallinger et al., 2013, Volkov, 2014,
Forootan et al., 2016]. As we already discussed in Sec-
tion 1, PCA/EOF is supplemented with an extra varimax
rotation [Kaiser, 1958] that seeks more meaningful principal
‘modes of variability’ (i.e. spatial regions of maximum vari-
ance) previous to causal discovery [Vejmelka et al., 2015].

Instead of adding extra rotations, and for supervised settings,
one modifies the problem by replacing variance with cor-
relation or covariance maximization, such as in Canonical
Correlation Analysis (CCA) [Hotelling, 1936] and Partial



Least Squares (PLS) [Wold, 1966], respectively. These are
indeed similar methods to the proposed approach, as they
search for a latent space that represents the data well and
is related to an external signal. In particular, CCA has been
extended to the temporal domain [Bießmann et al., 2010] by
considering time-lagged copies of the variables. Similarly,
PLS can be applied to time-series observations by consid-
ering lagged copies of each component and thus searching
for maximally correlated latent spaces. We will adapt these
methods for comparison in our experiments.

4 EXPERIMENTAL RESULTS

We illustrate the performance of the GPCA in a simulation
study with generated data from a known dynamical struc-
tural equation model (both in low and high dimensional
settings) and in a challenging Earth system science prob-
lem. The code to reproduce the experiments is available at
https://anonymous.4open.science/r/GrangerPCA-3B7E/.

4.1 SIMULATION EXPERIMENTS

We simulate observations from a linear dynamical struc-
tural equation model, whose summary graph is depicted
in Fig. 1. Moreover, a detailed specification is given in
the Appendix B.2. The system is composed by a multi-
dimensional process X(t) ∈ Rd, in particular X(t) =
(XA, XB , XC , XD, XE) (t), where |A| = . . . = |E| =
d/5. As depicted in Fig. 1, only variables XA are direct
effects of the exogenous process Y , while autocorrelation,
indirect effects on downstream variables and non-observed
confounding processes are present.

Y
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Figure 1: Summary graph of the dynamical structural equa-
tion model for the simulated data. All X variables are also
dependent on their own past values.

We sample n = 1000 observations at times t = 1, . . . , 1000
and thus X ∈ R1000×10, Y ∈ R1000. Then, we compare the
components extracted by classical PCA, Granger-rotated
PCA (GPCA), time-lagged CCA (TLCCA) and time-lagged
PLS (TLPLS). We consider X centered and scaled to unit
variance and use a maximum lag of 5 for all methods. We
then compare the approaches by visualizing the obtained
rotation matrices in Fig. 2 and by computing the Granger
causality test of each learned component with the causal
signal Y (t) (see p-values in Table 1). The automatic causal

ordering of GPCA is quite convenient in practice as it leads
to richer feature extractions, cf. Fig. 3.

GPCA PCA TLCCA TLPLS

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

A

B

C

D

E

components

or
ig

in
al

 c
oo

rd
in

at
es

Figure 2: Rotations learned with various methods (d = 10).

Table 1: Granger causality test p-values for the first five
components for the different methods (d = 10).

PC GPC TLCCA TLPLS

C1 6.50e-19 1.79e-103 6.82e-90 3.29e-13
C2 2.06e-01 7.22e-02 6.96e-72 1.10e-69
C3 3.04e-02 3.46e-01 5.75e-08 1.88e-01
C4 5.10e-73 6.38e-01 3.86e-03 3.11e-51
C5 2.08e-01 9.82e-01 1.99e-01 2.95e-01

Optimality of GPCA extracted components The learned
first components and the average signal of the XA compo-
nents Xm(t) = 1/|A|

∑
i∈A Xi(t) are plotted in Fig. 3.

The mean signal Xm(t) is by construction a Granger-effect
of Y (t) with maximum time-lag equal to 3. We can see
that the causal first component learned with GPCA cor-
rectly identifies a linear combination of XA(t) as the most
causally related with the target signal Y (t). PCA is unable
to isolate the causal signal, and we can observe how the
principal components are not useful for causal discovery in
this example. TLCCA correctly recovers the first component
which is somehow similar to the first component of GPCA
and correctly follows a linear combination of XA, but the
p-values in Table 1 show that the causal component is not
isolated in the first component. Finally, TLPLS can recover
components which are Granger causal with Y , but without
focusing on XA alone; instead, the first component is ob-
tained as a linear combination of XA together with XC and
XD, which are downstream from XA in the causal graph
and thus are obviously correlated with Y ; therefore, TLPLS
here is not able to discern causality from correlation.

On high-dimensionality and nonlinear problems We re-
peat the same experiments with a high-dimensional version
of the same system, by setting d = 500 and thus XA ∈ R100.
We use again 1000 samples that lead to similar results, but

https://anonymous.4open.science/r/GrangerPCA-3B7E/
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Figure 3: Extracted components for the considered methods
(d = 10) together with the average of the first two coordi-
nates of X(t). All processes are centered and scaled.

exacerbated the issues observed previously for the compet-
ing methods: lack of causal meaning or causal ordering in
the decomposition (see Figs. 5 and 6 in Appendix B.2). In
particular, the proposed Granger-rotated PCA is the only
method to clearly isolate the XA components. In the Ap-
pendix B.2.1 we also report results with a non-linear kernel
PCA version in the same simulated example. We show that
linear methods are not capable of fully extracting meaning-
ful representations.

4.2 EFFECTS OF ENSO ON VEGETATION

Studying long-range spatio-temporal relations (‘teleconnec-
tions’) in the Earth system is paramount for understanding
and modeling processes and interactions, but also to antic-
ipate and forecast extreme events, finally attributing their
causes. We consider here a classical example from Earth
system science: the study of the long-range teleconnection
between the El Niño Southern Oscillation (ENSO) -in par-
ticular the ENSO3.4 index- and vegetation greenness rep-
resented with the Normalized Difference Vegetation Index
(NDVI) over Africa.

The NDVI was computed from MODIS reflectance data de-
rived from the MCD43A4.006 BRDF- Adjusted Reflectance
16-Day L3 Global 500m product Schaaf and Wang [2015],
Schaaf et al. [2002], which are disseminated from the Land
Processes Distributed Active Archive Center (LP DAAC)
also available at Google Earth Engine (GEE). We computed
the NDVI at 8 d temporal and 0.5° spatial scales over 2007-
2017 (11 years) and missing values were filled with linear
interpolation. ENSO34 climate index was obtained from the
Royal Netherlands Meteorological Institute (KNMI), the
index is calculated daily based on Sea Surface Temperature
(SST) anomalies averaged across the central equatorial Pa-
cific Ocean (5N-5S, 170W-120W). ENSO3.4 time series
were resampled to match NDVI temporal resolution by a
sliding-window average filter.

We apply standard PCA, kernel PCA, and the correspond-

ing Granger-rotated versions to the NDVI observations
(n = 506 time points for each of the d = 11719 non-water
pixels). We consider a maximum lag of 10 (equivalent to
80 days) and retain only 10 components for each method.
All methods consider normalized data with centered vari-
ables and unit variances. From the complete p-values of the
Granger causality test for each component (see Table 4) we
observe that standard principal component analysis obtain
various components which are probably causally related
with ENSO: PC3 (p-value 8.04× 10−4), PC6 and PC7 (p-
values less then 0.1). The Granger rotated PCA manage to
concentrate the causally related components into the first
two: GPCA1 (p-value 3.73× 10−3) and GPCA2 (p-value
5.81×10−3), while the rest of the components are not found
to be causally related with the ENSO index.

Table 2: Granger causality test p-values for each of the first
five components (d = 500).

PCA GPCA TLCCA TLPLS

C1 5.46e-78 0.00e+00 0.00e+00 1.49e-156
C2 6.21e-04 8.64e-03 1.08e-207 7.52e-154
C3 5.39e-146 3.11e-01 2.35e-32 9.52e-60
C4 3.15e-02 3.59e-01 3.26e-25 1.16e-130
C5 1.74e-128 3.06e-01 6.48e-31 2.05e-08

To visualize the spatial pattern associated with each compo-
nent, we map in Fig. 4 the coefficients of the linear model
for regressing the NDVI observations at each spatial loca-
tion against the components estimated with a given method.
Such maps depict the relationship between each component
and NDVI at different locations. We can observe known
patterns of vegetation response to NDVI, especially in East
Africa and Sudan. Recent works have argued that El Niño
led to drier than the average conditions in these regions,
which impacted crop production in subsequent years. GPCA
captures such patterns in a more meaningful and spatially
coherent way [Kogan and Guo, 2017, Philippon et al., 2014,
Kalisa et al., 2019].

5 CONCLUSIONS

We proposed a simple procedure to obtain a rotation that
maximizes the Granger causality statistic between a fixed
known cause and a projected principal mode of a high-
dimensional temporal process. Such rotation can, in general,
be applied as a post-processing step after ordinary PCA
is used to reduce the observations to a lower-dimensional
space. The Granger-rotated PCA concentrates in the first
components the ones maximally related to the given cause
signal. We derived an efficient procedure to compute the
full Granger rotation and demonstrated its wide applicability
with both simulated data and a real-world example involving
high-dimensional spatio-temporal data.

https://developers.google.com/earth-engine/datasets/catalog/modis
https://www.knmi.nl/home
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Figure 4: Relationship between the extracted components and the original NDVI data. The strength and sign are estimated
by the corresponding coefficient in the linear regression of the NDVI values against the estimated components. Coefficients
are normalized in each map and each component is sign-corrected to be positively correlated with the ENSO3.4 index.

The proposed GPCA is both simple and effective in re-
covering causally aligned principal components from high-
dimensional data. Moreover, its similarity with established
rotated PCA methods would suggest its possible applica-
bility in a wide range of applications. Besides, it has not
escaped our notice that alternative dimensionality reduction
methods could benefit from the introduced methodology.
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A GRANGER COMPONENTS

We denote with X(j) the j-th column of matrix X . To de-
scribe and fit auto-regressive (AR) models we define the
following lagged sub-matrices of observations:

R(n−m)×d ∋ Xℓ =

Xm−ℓ+1

...
Xn−ℓ

 for ℓ = 0, 1, . . . ,m.

And similarly for Y . Moreover we define

Xpast =
[
X1 . . . Xm

]
, Ypast =

[
Y 1 . . . Y m

]
,

and
[XY ]past = [Xpast Ypast] .

For each of the above definitions we define the correspond-
ing ones for the transformed variables X̃ , e.g. X̃ℓ = XℓU
and X̃past =

[
X1U . . . XmU

]
.

First component. For the first component X̃(1), the RSSs
of the two models are defined as follows:

RSS0 =

∥∥∥∥X̃0
(1) − X̃past

(
X̃T

pastX̃past

)−1

X̃T
pastX̃

0
(1)

∥∥∥∥2

2

RSS1 =

∥∥∥∥X̃0
(1) − [X̃Y ]past

(
[X̃Y ]Tpast[X̃Y ]past

)−1

[X̃Y ]TpastX̃
0
(1)

∥∥∥∥2

2

Since U is an orthogonal transformation we have that the
residuals can be computed using the untransformed data ma-
trix Xpast instead, and thus we can write them as a function
of the first column of U as,

RSS0 =
∥∥∥(I −Xpast

(
XT

pastXpast
)−1

XT
past

)
X0U(1)

∥∥∥2
2

= UT
(1)(X

0)TWTWX0U(1)

RSS1 = UT
(1)(X

0)TV TV X0U(1)

where W = I − Xpast
(
XT

pastXpast
)−1

XT
past and V =

I − [XY ]past
(
[XY ]Tpast[XY ]past

)−1
[XY ]Tpast. We thus de-

fine the first column of U as the solution of the following
optimization problem for RSS0 −RSS1,

U(1) = arg max
||u||=1

uT (X0)T
(
WTW − V TV

)
X0u.

Similarly to classical PCA, we ca recognize a Rayleigh quo-
tient if we divide by uTu = 1. And thus the maximum value
is the leading eigenvalue of (X0)T

(
WTW − V TV

)
X0 at-

tained at the corresponding eigenvector.

The first Granger causal component is thus defined as
X(t)U(1) and by definition it is the linear combination of
the multi-dimensional process X(t) for which Y is most
Granger causal.

Additional components. As in PCA we can subtract the
first k components and repeat the process above to obtain the
k+1 column of U . The resulting U is composed of columns
which are the eigenvectors of (X0)T

(
WTW − V TV

)
X0

ordered by the corresponding eigenvalues.

Simplification We show here that the relatively complex
expression for W and V can be simplified and the Granger
components can be obtained similarly to PCA with an addi-
tional cost of a QR decomposition of the matrix [XY ]past.

Let QR = [XY ]past be the QR decomposition 1 of [XY ]past,
with Q orthogonal and R upper triangular. Assume n −
m > md+mp, then we have that Q = [Q1 Q2 Q3]; where
Q1 ∈ R(n−m)×md and Q2 ∈ R(n−m)×mp. Thus,

[XY ]past =[Q1 Q2 Q3]

R1 R21

0 R2

0 0


=[Q1R1 Q2R2 +Q1R21].

That is, Q1R1 is the compact QR decomposition for Xpast.

It is easy to see now that W = Q2Q
⊤
2 + Q3Q

⊤
3 and V =

Q3Q
⊤
3 . Thus, by the orthogonality of Q = [Q1Q2Q3] we

have that,
W⊤W − V ⊤V = Q2Q

⊤
2

Proof. First we prove that W = Q2Q
⊤
2 +Q3Q

⊤
3 ,

W = I −Xpast
(
XT

pastXpast
)−1

XT
past

= QQ⊤ −Q1R1

(
R⊤

1 Q
⊤
1 Q1R1

)−1
R⊤

1 Q
⊤
1

= Q1Q
⊤
1 +Q2Q

⊤
2 +Q3Q

⊤
3 −Q1R1R

−1
1 R−t

1 R⊤
1 Q

⊤
1

= Q2Q
⊤
2 +Q3Q

⊤
3

Similarly V = Q3Q
⊤
3 . Now we just need to observe that

W⊤W =Q2Q
⊤
2 Q2Q

⊤
2 +Q2Q

⊤
2 Q3Q

⊤
3

+Q3Q
⊤
3 Q2Q

⊤
2 +Q3Q

⊤
3 Q3Q

⊤
3

=Q2Q
⊤
2 +Q3Q

⊤
3

since Q⊤
i Qi = I and Q⊤

i Qj = 0 for i ̸= j. Similarly
V ⊤V = Q3Q

⊤
3 .

Solving with SVD For numerical stability it is preferable
not to compute the spectral decomposition directly, but in-
stead rely on the singular value decomposition (SVD). To
do so, we can simply obtain the SVD of the transformed
data matrix Q⊤

2 X
0.

1without using pivoting



B EXPERIMENTS DETAILS

B.1 IMPLEMENTATION AND PACKAGES

We used the PCA and CCA implementations available in the
stats package distributed with R [R Core Team, 2022].
For PLS we used the implementation available in the ropls
package [Thevenot et al., 2015]. The kernel PCA was
computed via the implementation in the kernlab pack-
age [Karatzoglou et al., 2004]. Additional packages used
were: ggplot2 [Wickham, 2016] and ggspatial [Dun-
nington, 2021] for plotting; raster [Hijmans, 2022] and
ncdf4 [Pierce, 2021] for data handling.

B.2 SIMULATED DATA

We detail here the complete structural equations of the dy-
namical system used to simulate the data in Section 4.1.
We consider the following data generating process where
X ∈ Rd and |A| = . . . = |E| = d/5,

Z1(t) = cos

(
4

t
10

)
+ η1,

Z2(t) = cos

(
5t

100
t

)
+ η2,

Y (t) = sin

(
2

10
t

)
+ cos

(
t

10

)
+ ε,

XA(t) =
2

10
XA(t− 2) +

4Y (t− 1) + 3Y (t− 2) + 2Y (t− 3)

10

+
2

10
(Z1(t− 1) + Z1(t− 2)) + εA,

XB(t) =
4

10
XB(t− 1) +

5

10
Z1(t− 1) + εB ,

XC(t) =
1

10
XC(t− 2) +

8

10
Z1(t− 2)

+
8

10
XA(t− 1) +

4

10
XA(t− 2) + εC ,

XD(t) =
1

10
XD(t− 2)− 7

10
Z2(t− 3) +

8

10
XC(t− 2) + εD,

XE(t) =
1

10
XE(t− 1) +

8

10
Z1(t− 2)

+
6

10
Z2(t− 1) +

2

10
Z2(t− 2) + εE ,

where η1, η2, ε, εi are all independent standard Gaussian
noise.

B.2.1 Non-Linear Simulated Data

We also consider a non-linear version of the same dynamical
structural equation models depicted in Figure 1. We simply
replace the linear functions for trigonometric polynomials
of degree two.

We apply the same methods plus the kernelized version kG-
PCA. Results of the Granger causality test for each learned
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Figure 5: Causally related components for the considered
methods together with the average of the first two coordi-
nates of X(t) (d = 500). All processes are centered and
scaled.
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Figure 6: Rotations learned with the various methods over
the simulated data (d = 500).

components are reported in Table 3 and the rotation matrix
for the linear case is depicted in Figure 7. We can observe
that the non-linear version is able to recover a more Granger
related component and from the rotation matrices in Figure 7
we see that none of the linear methods is able to correctly
isolate XA components in one of the learned signals.

Table 3: Granger causality test p-values for each component
of the different methods. Non-linear simulated data in the
high-dimensional setting (d = 500).

PCA GPCA kGPCA TLPLS

C1 2.09e-02 4.58e-02 1.25e-02 3.81e-02
C2 5.55e-01 8.44e-01 4.53e-01 3.77e-07
C3 5.70e-01 2.84e-01 1.02e-01 2.14e-21
C4 3.50e-01 9.77e-01 9.51e-01 3.00e-02
C5 5.51e-01 9.92e-01 9.84e-01 3.10e-05

B.3 ENSO - NDVI IN AFRICA

We report here additional results for the application of
Granger-rotated (k)PCA to the study of the effects of ENSO
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Figure 7: Rotations learned with the various methods over
the non-linear simulated data (d = 500).

on vegetation in Africa. In particular, Table 4 shows the
p-values of the Granger causality test using the learned com-
ponents by both linear and nonlinear methods. As in the
simulation experiments, we also observe here that GPCA,
and kGPCA, concentrate the most Granger-causally relevant
components. This addresses the challenge of component se-
lection.

Table 4: Granger causality test p-values for each component
of the different methods, both linear and nonlinear.

PCA GPCA kPCA kGPCA

C1 8.71e-02 3.73e-03 2.92e-01 2.45e-04
C2 6.10e-02 5.81e-03 6.31e-01 3.61e-02
C3 8.04e-04 3.79e-01 7.59e-01 1.43e-01
C4 1.18e-01 4.36e-01 6.02e-01 5.42e-01
C5 1.82e-01 1.86e-01 9.51e-01 8.04e-01
C6 5.09e-02 9.28e-01 3.01e-01 8.61e-01
C7 2.62e-02 9.59e-01 5.85e-03 9.95e-01
C8 7.11e-01 1.00e+00 4.87e-01 9.99e-01
C9 3.42e-01 1.00e+00 1.39e-01 1.00e+00

C10 6.46e-01 1.00e+00 1.09e-01 1.00e+00

The learned components of GPCA along competing meth-
ods are shown in Fig. 8. The top GPCA component is more
correlated with the ENSO signal than the third one from
PCA (actually the first two were related to trivial, non-
informative seasonal and annual cycles).
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Figure 8: Learned components PCA3 (red) and GPCA1
(green) which are found to be causally related with ENSO
(in blue).
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