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ABSTRACT

We derive policy gradient theorem for reinforcement learning (RL) with the ob-
jective which is a general (non-linear and non-convex) function of the occupancy
measure of the policy. This setting incorporates many problems in literature such
as apprenticeship learning, pure exploration and variational intrinsic control, etc.
Our proposed policy gradient theorem shares the same elegance and ease of im-
plementability as the standard policy gradient theorem, can be generalized easily
to model-free settings suitable for large scale problems.

1 INTRODUCTION

Reinforcement Learning (RL) is a sequential decision problem where an agent interacts with an en-
vironment and learns to behave optimally Sutton & Barto (2018). Most of the work, is dedicated
to Linear RL, where the goal is to learn the policy that maximizes the objective that is linear in
occupancy measure of the policy Puterman (1994). However, many supervised and unsupervised
RL problems are not covered in the Linear RL framework, such as apprenticeship learning, pure ex-
ploration, skill discovery and variational intrinsic control Abbeel & Ng (2004); Hazan et al. (2019);
Bagaria et al. (2020); Zahavy et al. (2021), where the objectives are non-linear functions of the
occupancy measures (non-linear RL).

Non-linear RL is tremendously challenging as the standard methods such as dynamic programming,
value iterations, policy gradients, fail to trivially generalize to this setting. To the best of our knowl-
edge, non prior works exist for general non-linear RL. However, there are few works for convex RL
where the objective function is convex in the occupancy measure Zhang et al. (2020); Geist et al.
(2022); Zhang et al. (2020); Zahavy et al. (2021); Mutti et al. (2022). Zhang et al. (2020) proposed
the variational policy gradient for convex RL, Zahavy et al. (2021) reformulated the convex MDP
as a min-max game involving policy-player and the cost player. Both the works use Fenchel duality
that relies heavily on the convexity of the objective function.

This is the first work that directly derives the policy gradient thoerem for non-linear RL. Further, it
proposes the model-free algorithm for the same that can be used in the large scale problems. Further,
this policy gradient converges to global optimal solution, under some condition, in the convex RL
Zhang et al. (2020). This makes this method an attractive methods for large scale problems.
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2 MAIN

A Markov Decision Process (MDP) is defined by a sextuple (S,A, γ, R, P, q), where S is the state
space, A is the action space, γ ∈ [0, 1) is the discount factor, R ∈ RS×A is the reward vector,
P ∈ (∆S)

S×A is the transition kernel, ∆A represents the space of probability distribution over
the set A, and q ∈ ∆S is the initial distribution over the state space S Sutton & Barto (2018).
A stationary policy π ∈ (∆A)

S maps states to probability distributions over actions. Moreover,
P (s′|s, a), π(a|s) represent the probability of transition from state s under action a to state s′ and
probability of taking action a in state s by policy π respectively. Let Π be the set of all stationary
policies. Let µπ ∈ (∆S)

S×A be the occupancy measure of policy π, defined as Puterman (1994)

µπ(s, a) :=

∞∑
n=0

γnE[1(sn = s, an = a)|s0 ∼ q, am ∼ π(·|sm), sm ∼ P (·|sm−1, am−1)]. (1)

Our objective in non-linear RL is
min
µπ∈K

f(µπ) (2)

where f : K → R is a differentiable function, and K := {µπ|π ∈ Π} is set of occupancy measure
of all stationary policies Puterman (1994). In case of linear RL, apprentice learning Abbeel &
Ng (2004) and pure exploration Hazan et al. (2019), objective functions are f(µπ) = −⟨R,µπ⟩,
f(µπ) = ||µπ−µexpert||2 and f(µπ) = µπ · log(µπ) respectively (see Table 1 in Zahavy et al. (2021)
for more ).

Unfortunately value iterations, dynamic programming methods can’t be directly be applied here.
Fortunately, the following gradient method

θk+1 = θk + ηk
df(µπθk )

dθ
,

is proven to converge to global optima, under mild condition Zhang et al. (2020). However, com-
puting the gradient remains an open question, which is the key contribution of this work, discussed
next.

Let Qπ
R be the Q-value function Sutton & Barto (2018) for the policy π and reward vector R, that be

defined as Qπ
R(s, a) :=

∑∞
n=0 γ

nE[R(sn, an)|s0 = s, a0 = a, at ∼ π(·|st), st ∼ P (·|st−1, at−1)].
Further, let µπ(s) =

∑
a π(a|s)µπ(s, a) as a shorthand, then µπ(s, a) = µπ(s)π(a|s) by definition.

We assume the policy πθ is parameterize by the parameter θ ∈ Θ. The following results derives the
gradient of f(µπθ ) w.r.t. θ.

Theorem 1. (Policy Gradient Theorem for non-linear RL)

df(µπθ )

dθ
=

∑
s,a

µπθ (s)Qπθ

Rθ
(s, a)

dπθ(s, a)

dθ
, whereRθ =

df(x)

dx
|x=µπθ . (3)

To compute the above policy gradient, we need to compute the Q-value w.r.t reward function Rθ,
which is the gradient of the objective function f(µπθ ) w.r.t. occupation measure µπθ . The result
below states that the occupation measure can be efficiently computed iteratively.

Proposition 1. For all policy π and kernel P , the iterative sequence given by

µn+1(s) := q(s) + γ
∑
a

π(a|s)
∑
s′

P (s′|s, a)µn(s
′), ∀n ∈ N,

converges linearly to µπ , more precisely, ∥µπ − µπ
n∥1 ≤ γn∥µπ − µπ

0∥1, ∀n ∈ N.

The above results can be combined to design model-free algorithm for non-linear RL, as illustrated
in the algorithm 1. The algorithm 1 can be shown to converge using the techniques of two-time
scale algorithm Borkar (2008). Further, global convergence of the algorithm, can be established for
convex function f , under the similar mild conditions as in Zhang et al. (2020).

We presented policy gradient method for RL with non-linear objective function. The method is
versatile and easily implementable which can used to tackle large scale problems.
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Algorithm 1 Policy Gradient Algorithm for RL with general utilities
while not converged do

Play action at according to the policy πθt and sample the next state st+1.
Update the occupancy measure as µ(st) = µ(st) + ηt

[
µ0(st) + γµ(st+1)− µ(st)

]
Get reward vector R = f ′(µ) and update Q-value as

Q(st, at) = Q(st, at) + ϵt[R(st, at) + γQ(st+1, at+1)−Q(st, at)].

Update policy parameter as θ = θ − ηt
d log(πθ(st,at))

dθ Q(st, at).
end while
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A APPENDIX

A.1 RELATED WORK

There have been many works that aim to solve special cases of General RL such as Apprentenship
Learning, Pure Exploration, etc. Junyu et al. Zhang et al. (2020) were among the first, who
identified these problems as Convex MDP. They showed that Policy Gradient for the Convex MDP
would converge to global minima under certain conditions. However, they were unable to obtain
policy gradient in Convex RL analogous to policy gradient in Linear RL. But instead, they derived
Variational Policy Gradient method using the solution of a stochastic saddle point problem involving
the Fenchel dual of the convex RL objective. In Zahavy et al. (2021), the authors used Frenchel
duality to convert the convex RL problem into a two-player zero-sum game between the agent (
policy player) and an adversary that produces rewards (cost player) that agent must maximize.

We considered a more general objective and derived Policy Gradient Theorem for RL with
general utilities that is as elegant and easily implementable as the Policy Gradient Theorem for
Linear RL by Sutton et al. (2000). We recover the Policy Gradient Theorem for Linear RL by
having Linear RL objective in Policy Gradient Theorem for RL with general utilities. We believe
that it will play the same role in convex RL as Policy Gradient Theorem by Sutton et al. (2000)
played in Linear RL. It gave rise to a very simple algorithm for RL with general utilities.

A.2 PROOF OF POLICY GRADIENT THEOREM 1

To apply gradient descent on policy space (or parameter space), we need the gradient w.r.t policy (or
policy parameter):

∇θf :=
df(µπ)

dθ
. (4)

By the chain rule, we have

∇θf(µ
π) = (∇µπf(µπ))⊤

dµπ

dθ
=

∑
s∈S

∑
a∈A

∂f(µπ)

∂µπ(s, a)
∇θµ

π(s, a). (5)

Let βπ
k (s, a, s

′, a′) = E[1(sk = s′, ak = a′) | s0 = s, a0 = a, at ∼ π(·|st), st ∼
P (·|st−1, at−1),∀t ≤ k] is the probability of transition from state-action (s, a) to state-action
(s′, a′) in exactly k steps following the policy π. In addition, we denote βπ(s′, a′, s, a) =∑∞

k=0 γ
kβπ

k (s
′, a′, s, a). To derive the policy gradient theorem for non-linear RL, let us first look

at the gradient of the occupancy measure w.r.t. the policy parameters. We can obtain the following
equation,

∇θµ
π(s, a) =

∑
(s′,a′)∈S×A

µπ(s′)βπ(s′, a′, s, a)∇θπ(a
′|s′), (6)

Proof of Eqn. 6. Recall that

µπ(s, a) =

∞∑
t=0

γt
∑

(s0,a0,··· ,st−1,at−1)∈(S×A)t

q(s0)

t−1∏
i=0

P (si+1|si, ai)
t∏

j=0

π(aj |sj) (7)

4



Published as a Tiny Paper at ICLR 2024

where st = s and at = a. Taking derivative w.r.t. θ on both sides, we have

∇θµ
π(s, a) =

∞∑
t=0

γt
∑

(s0,a0,··· ,st−1,at−1)∈(S×A)t

q(s0)

t−1∏
i=0

P (si+1|si, ai)∇θ

t∏
j=0

π(aj |sj) (8)

(using product rule) (9)

=

∞∑
t=0

γt
∑

(s0,a0,··· ,st−1,at−1)∈(S×A)t

q(s0)

t−1∏
i=0

P (si+1|si, ai)
t∑

k=0

t∏
j=0
j ̸=k

π(aj |sj)∇θπ(ak|sk) (10)

=

∞∑
t=0

γt
t∑

k=0

∑
(s0,a0,··· ,st−1,at−1)∈(S×A)t

q(s0)

t−1∏
i=0

P (si+1|si, ai)
t∏

j=0
j ̸=k

π(aj |sj)∇θπ(ak|sk) (11)

=

∞∑
t=0

γt
t∑

k=0

∑
sk∈S

∑
(s0,a0,··· ,sk−1,ak−1)∈(S×A)k

q(s0)

k−1∏
i=0

P (si+1|si, ai)π(ai|si)︸ ︷︷ ︸
απ

k (sk)

(12)

∑
ak∈A

∇θπ(ak|sk)
∑

(sk+1,ak+1,··· ,st−1,at−1)∈(S×A)k

t∏
i=k+1

P (si|si−1, ai−1)π(ai|si)︸ ︷︷ ︸
βπ
t−k(sk,ak,st,at)

(13)

=

∞∑
t=0

t∑
k=0

∑
(sk,ak)∈S×A

γkαπ
k (sk)γ

t−kβπ
t−k(sk, ak, st, at)∇θπ(ak|sk) (14)

Note that απ
k (s) is essentially the probability of transiting to state s in exactly k steps from the initial

state s0 ∼ q under policy π, so µπ(s) =
∑∞

k=0 γ
kαπ

k (s). Therefore, we can write

∇θµ
π(s, a) =

∑
(s′,a′)∈S×A

∞∑
m=0

γmαπ
m(s′)

∞∑
n=0

γnβπ
n(s

′, a′, s, a)∇θπ(a
′|s′) (15)

=
∑

(s′,a′)∈S×A

µπ(s′)βπ(s′, a′, s, a)∇θπ(a
′|s′) (16)

which concludes the proof.

A.3 OCCUPATION MEASURE BOOTSTRAPING

Lemma. For all policy π and kernel P , the iterative sequence given by

µn+1 := q + γPπµn, ∀n ∈ N,

converges linearly to dπ .

Proof. We first prove, µπ ∈ RS can be written as

µπ = qT (I − γPπ)−1 = qT
∞∑

n=0

(Pπ)n

=⇒ γµπPπ =
(
qT

∞∑
n=0

(γPπ)n
)
γPπ = µπ − q.

We conclude that we have
µπ = q + γµπPπ.
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Now, we have

∥µπ − µπ
n+1∥1 = ∥q + γµπPπ − q − γµnP

π∥1, (from definition)
= γ∥(µπ − µn)P

π∥1
≤ γ

∑
s′

∑
s

|µπ(s)− µn(s)|P (s′|s)

= γ
∑
s

|µπ(s)− µn(s)|

= γ∥µπ − µπ
n∥1.

This proves the claim. Note that convergence in not in L∞ norm but L1 norm instead.

Under appropriate step size sequence {ηt}, the update rule µ(st) = µ(st)+ηt

[
q(st)+γµ(st+1)−

µ(st)
]

convergence to dπP when state sequence {st} is generated under policy π, kernel P and initial
state distribution µ Borkar (2008).
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