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Abstract

Reinforcement learning (RL) algorithms for
large language models (LLMs) safety align-
ment, such as Direct Preference Optimization
(DPO), encounter the challenge of distribution
shift. Current strategies typically mitigate
this challenge by sampling from the target
policy, an approach that demands substantial
computational resources. In this paper, we
hypothesize that during DPO training, the
ranking of top items changes while their
distribution remains largely unchanged, which
allows us to transform the sampling process
from the target policy into a re-ranking
of the preference data.  Based on this
hypothesis, we propose a new framework that
leverages the model’s internal safety judgment
capability to extract reward signals and use
label confidence to efficiently simulate the
sampling process. Theoretical analysis and
experimental results on multiple public safety
test sets and open-source safety evaluation
models demonstrate that our method effectively
reduces the incidence of harmful responses
while having significantly lower training costs.

Warning: This Paper Contains Content That
Can Be Offensive or Upsetting.

1 Introduction

Large Language Models (LLMs) have achieved
significant advancements in various domains,
accompanied by growing safety concerns (Tan and
Celis, 2019; Sheng et al., 2019). The primary
objective of safety alignment in LLMs is to ensure
that these large models consistently adhere to
human values, thereby mitigating the potential for
harmful outputs as much as possible. Recently,
off-policy methods such as Direct Preference
Optimization (DPO, Rafailov et al. (2023)) achieve
great success. Despite this, DPO faces distribution
shift issues due to the lack of sampling from target
policy (Xu et al., 2024; Xiong et al., 2024). A
typical way to address this issue is to estimate target
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Figure 1: The probing classifier’s precision of each
layer of Llama-2-7b-base on the test split of PKU-
SafeRLHF dataset (Blue) and reward score accuracy of
each layer after the alignment ( ). The horizontal
line signifies the reward signal proposed by our method.

policy by online sampling with a trained reward
model (Xiong et al., 2024). However, this solution
requires substantial computational resources due to
the additional sampling cost in each iteration.

To address this issue, we propose a hypothesis
that during the training process of vanilla DPO,
while the ranking of the top items generated
by the policy alters, their distribution remains
largely unchanged. This assumption permits the
conversion of the sampling process from the target
policy into a more computationally efficient re-
ranking of the current training data. In this way,
the issue of distribution shift can be addressed
by employing a cost-efficient reward model that
reorders training data during DPO training to
simulate sampling from the target policy.

In this paper, we begin by proposing cost-
efficient reward model that leverages the internal
representations of the model to extract reward
signals. We first conduct safety probing
experiments on each layer of policy model. As
illustrated in Figure 1, certain layers exhibit higher
probe classification precision, outperforming the
final layer. This indicates that the model’s internal



representations possess a strong ability to model
safety rewards.

Based on the above observation, we propose a
novel alignment framework that extracts reward
signals from the internal representations of the
policy model. The reward signal is then used
to estimate target policy preferences based on
preference confidence. Finally, we optimize the
DPO loss with preference confidence to achieve
reorders during training. Theoretical analysis and
experimental results demonstrate that the proposed
framework effectively aligns the policy model’s
preferences with the target policy while has a a
notable decrease in training costs compared with
vanilla DPO. Further analysis demonstrates that the
policy model’s preferences progressively aligned
with the safety preferences dictated by the reward
signals throughout the training process.

In summary, our contributions are as follows:

* We propose a hypothesis to convert sampling
from the target policy into the re-ranking
of preferences, which avoids the substantial
computational costs associated with policy
sampling.

* We identify the potential of LLMSs’ internal
representations for efficient reward modeling
and present a lightweight reward modeling
technique.

* Based on the proposed hypothesis and the
light-weight reward model, we develop a
new framework that dynamically computes
the preference confidence from the estimated
target policy, and aligns the policy by
optimizing the DPO loss with preference
confidence. Experimental results validate the
effectiveness of the proposed methods.

2 Preliminary

In this section, we briefly review concepts related
to safety preference alignment. Given a oracle
safety reward r*, the goal of safety alignment is to
ensure that for any response pair y;, y; generated
by aligned policy 7 with prompt z, it holds that

mo(yilz) > mo(yjle) only if 7*(y;) > r*(y;).

In practice, obtaining the exact value of r* is
challenging. The primary method for estimating
the reward involves using a human preference
dataset D to fit a preference model, such as B-T
model, for reward modeling. Then align the policy
model by maximize the reward score.

2.1 Preference modeling

Preference modeling involves extracting preference
signals from human preference data D, with most
methods primarily based on the Bradley-Terry
preference model,
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Where p(i > j) represents the probability of i is
preferred to j. Explicit preference modeling using
an reward model 74 (y, ) through optimization of
the negative log-likelihood loss,

Lr(re, D) = —Eplloga(rs(z,ye) — rs(z,y:))] ()

The loss is equivalent to maximizing the preference
probability p(y. > vyr) . DPO posits that the
language model itself inherently functions as a
reward model, deriving a closed-form expression
for the reward function r(x,y) based on the
optimal solution of the KL-constrained reward
maximization objective in the RL process,

7o (ylz)
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r(z,y) = Blog

Where 7, ¢(y|z) is the reference policy constrain-
ing the policy model from deviating the original
policy too far and [ is a parameter controlling the
deviation from the reference policy. The partition
function Z(z) is only related to = and can be
canceled after substituting the reward function into
the preference model in Equation 1, then we get
the DPO object,

ACDPO (m, Ye, y'r) = _]E'D [lOgO'(T(.’L', yC) - 7'(.’1}, yr))] (4)

Notice that optimizing the above object 4 is
equivalent to optimizing toward p(i > j) = 1.
Thereby the policy model directly learns human
preferences from the preference data D.

2.2 Preference Noise

The previous works (Mitchell, 2023) consider
preference data may inherently contain noise and
model this noise by flipping preference labels with
some small probability € € (0,0.5), and provides
novel BCE loss,

['EDPO(xvyC?yT) :(1 - E)ﬁDPO(fC,yc,yr)‘i’
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The object described above is equivalent to optimiz-
ing towards a conservative target distribution p(i >~
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Figure 2: Kernel density estimate plots show the hidden states of unsafe output (blue) and safe output (red) pairs in
different layers of Llama-7B after projection onto the top-2 principal directions. The plot includes 600 samples for
each of the four layers, displayed from top left to bottom right.

j) = 1—e. In our context, we interpret the noise as
preference confidence from the target policy, and
we model this confidence using reward signals in
the form of a B-T model. The noise distribution
reflects the confidence in data preferences derived
from the reward signal, enabling optimal policy
sampling by utilizing preference confidence during
tuning.

3 Methodology

In this section, we first propose our hypothesis.
Based on this hypothesis, we propose a cost-
efficiency alignment framework including extract-
ing safety rewards from safety representations,
dynamic preference sampling based on preference
confidence, and iterative reward updating.

3.1 Preference Sampling Assumption

Firstly, we hypothesize that during the DPO
training process, changes in the policy g
distribution are mainly reflected in generation
preferences, while changes in content distribution
are minimal. To confirm our hypothesis, we
rearranged Equation 3 and obtained:

exp (4r(e.)
Z(x)

In this way, the target optimal policy takes the

form of an energy-based model (EBM), and the

preference alignment is transformed into an MLE

problem. Since only 7, ¢(y|z) and r(x,y) in the

7o (ylr) = Tref (y]T) (6)

are functions of y, the distribution of 7;(y|x) can
be approximated as a re-ranking of the 7, ¢(y|z)
based on reward r. Since z, y are sampled from the
reference policy, the training process consistently
follows the distribution 7,.f(y|z). To simulate
the distribution 77 (y|x), we only need to sample
preferences based on the reward r.

3.2 Safety Reward Signal Extraction

To obtain cost-efficiency reward signals for
sampling from the target policy during training, we
propose a novel reward modeling method using
the internal representations of the model. We
employ principal component analysis to investigate
the distributional differences in the hidden states
of LLMs between safe and unsafe outputs, as
illustrated in Figure 2. These distributional
differences were observed across various layers,
from shallow to deep, in the Llama-7b model
and were even more significant in the 13b model
(Appendix Figure 8).

Based on the above findings, we construct a
hybrid reward model based on probing for reward
extraction. As shown in Figure 3, the hybrid reward
model is composed of L linear SVMs and a softmax
layer, L is the number of layers of the language
model. Notably, the hybrid reward model classifies
only by utilizing the representational differences
in the model, the maintenance cost is negligible
compared to general reward models.

Given a safety preference dataset D =
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Figure 3: Illustration of reward modeling with inner representation and the target policy sampling from both

generation and preference distribution.

(@i, Yeis Yr.i)i—y of size n, where y, is the chosen
response and y, is the rejected response for
the same prompt z;, and a policy LLM g
parameterized by 6, we individually input y. and
y, concatenated with x; into 9. We collect the
hidden states at the end of each sentence for chosen
and rejected samples, creating a dataset D), =
(hc,is hri)?—y, which encapsulates information
from the sentence’s causal attention mask(Vaswani,
2017). Here h. and h, are concatenations of the
hidden states from each layer for the chosen and
rejected samples, respectively. For each layer,
linear SVMs identify safety-related features and
provide classification results. These results are
then dynamically integrated by a weighted softmax
gate (Jordan and Jacobs, 1994) to serve as the final
reward signal. The hybrid reward model, R, is
initialized by training on Dj, using a negative log-
likelihood loss with margin,

Lr, = —Ep, [lOgU(Rh(hc) — Ri(hr) — “)] O

The margin p is for smoothing the classification
boundaries.

3.3 Preference Confidence Sampling

According to the analysis in Section 3.1, we need
to use the reward signals from the hybrid reward
model to perform preference sampling on the
training data during the DPO training process.
Specifically, we calculate the preference confidence

Vz,y.,y. Of the preference data x, y., y, using these
reward signals,

exp (a - Rn(he))
exp (- Rp(he)) + exp (o - Ry (hr))

Vo ,ye,yr = 3)
Where Ry, (h.) and Ry (h,) are the reward score
from the hybrid reward model and « is the scale
factor. In this way we characterize the preference
distribution of the target policy model in current
state, enabling preference sampling.

3.4 Alignment Process

We first rejection sample from the reference policy
using safety-related prompts and then construct
preference data pairs based on the hybrid reward.
For each training batch B = (x, y., y,), we first
calculate the preference confidence 7 4., for
the batch according to Equation 8, then optimize
the objective function in Equation 5, where € =
Ve yr-

Simultaneously, updates to the policy model
may cause shifts in representations, we update the
hybrid reward model by optimize object in 2 for
each batch to maintain its ability to distinguish
differences of inner representations.

We use DPO reward accuracies and hybrid
reward accuracies as training metrics to monitor
the training status of the policy model. The DPO
reward is calculated by Equation 3, ignoring the
partition function Z(x) and the hybrid reward is
the output of the hybrid reward model Rj,.



4 Experiment

In this section, we conduct experiments that
evaluate our method and baselines, we use Llama-
2-7b-base (Touvron et al., 2023) as the base model,
which has not undergone safety alignment such as
RLHF. We also evaluate the reward accuracies of
the hybrid reward. We use PKU-SafeRLHF and
select safety-related prompt as our training set. We
use the Antropic hh-rlhf red-teaming prompts from
Antropic (Bai et al., 2022), the Do-Not-Answer
dataset (Wang et al., 2024b) and Salad Bench
(Li et al., 2024b) as benchmark. The safety of
the model’s generated content is evaluated using
Llama-Guard-2 (Inan et al., 2023) and MD-judge
(Li et al., 2024b). All reward model are trained on
the training set of PKU-SafeRLHF.

4.1 Datasets

We use the PKU-SafeRLHF dataset (Dai et al.,
2023) as a training set to initialize the hybrid
reward model. We evaluate the safety of our
method on three existing security datasets: The hh-
rlhf red-teaming dataset (Bai et al., 2022), Do-Not-
Answer(Wang et al., 2024b) datasets and Salad-
Bench (Li et al., 2024b).

PKU-SafeRLHF (Dai et al., 2023) contains 83.4k
preference entries, each entry includes a question
and two responses, labeled by 28 human annotators
assisted by GPT-4.

Antropic hh-rlhf Red-teaming (Bai et al., 2022)
contains 38,961 red team attacks across four
different types of language models. Every item
contains a multi-round dialogue that contains
unsafe behaviors from both users and LLMs.
Do-Not-Answer (Wang et al., 2024b) is an open-
source dataset designed to evaluate the safety
and has been curated and filtered to include only
prompts to which responsible language models
should not respond.

Salad Bench (Li et al., 2024b) contains 21k
safety test samples in 6 domains, 16 tasks, and
66 categories. The data comes from publicly
available benchmarks and self-instructed data from
generative models. We use base set for evaluation.

4.2 Experiment Setting

Our baseline includes SFT and vanilla DPO on
PKU-SafeRLHF training dataset, as well as model
tuning by vanilla DPO. Model safety is evaluated
by toxic rate.

Our method includes three settings: hybrid

reward-based best-of-N sampling, vanilla DPO
training with reject preference data, and DPO
training with safety preference confidence. The
base model is Llama2-7B (Touvron et al., 2023),
with the hybrid reward model initialized using
safety data from the training set of PKU-SafeRLHF.
The result is shown in Table 1.

4.3 Metrics

We assess safety through toxicity rate, using red-
team prompts as model inputs. Llama-guard-2
(Inan et al., 2023) model and MD-Judge (Li et al.,
2024b) are chosen as the evaluation models.

Meta Llama Guard 2 (Inan et al., 2023) is an 8B
parameter Llama 3-based LLM safeguard model,
which can classify content in both LLM inputs and
in LLM responses. The outputs indicating whether
a given prompt or response is safe or unsafe and
content categories violated.

MD-Judge (Li et al., 2024b) is an LLM-based
safety guard, fine-tuned on a dataset comprising
both standard and attack-enhanced pairs based on
Mistral 7B (Jiang et al., 2023). MD-Judge serves
as a classifier to evaluate the safety of question-
answer pairs.

4.4 Main Results

Table 1 compares the performance of the proposed
method with several baseline systems. Firstly,
it can be observed that our method significantly
reduces the average toxicity of model outputs
compared to the vanilla DPO algorithm on
the Llama2-7B-base model. Notably, best-of-
N sampling regular DPO with sampled data
also significantly reduced the model’s toxicity
without additional reward signals, demonstrating
the safety reward modeling ability. To compare
with the online sampling method, we trained
a 7B-sized reward model and used iterative
sampling for each epoch to train an online DPO,
establishing the theoretical upper bound of our
method. Our approach closely aligns with online
methods, effectively narrowing the distribution
shift, however there are still gaps in certain metrics.

4.5 Preference Distribution

To validate that our preference sampling method
can mitigate distribution shift, we compared the
toxic rate and distribution of unsafe categories
sampled using our reward signal and the 7b reward
model before and after training. The results are
shown in Table 2.



Model Antropic Do-Not-Answer Salad-Bench Avgl
SG MJ SG MJ SG MJ
Llama2-7B-base 325% 56.6% 31.9% 222% 352% 683% 41.1%
Llama2-7B+SFT 192% 292% 31.7% 14.0% 29.6% 443% 28.0%
Llama2-7B+DPO 17.5% 295% 28.0% 9.70% 273% 427% 25.7%
Llama2-13B-base 349% 548% 20.7% 19.0% 35.1% 66.1% 38.4%
Llama2-7B+RS* 18.7% 357% 221% 134% 17.7% 43.4% 25.1%
Llama2-7B+DPO* 149% 335% 161% 7.50% 223% 429% 22.8%
Llama2-7B+cDPO* 13.7% 27.6% 253% 10.8% 18.0% 32.8% 21.4%
Llama2-7B-Online 6.9%  26.6%  8.6% 81% 135% 389% 17.1%
Llama2-13B+RS* 299% 494% 250% 16.8% 36.7% 602% 36.3%

Table 1: Comparison of our method with baseline methods across three different test sets and two different safety
evaluation models. SG and MJ represent evaluation by Llama Guard 2 and MD-Judge, respectively. RS represents
best of N, where N is 8 in our setting. cDPO indicates tuning with preference confidence sampling. The online
method uses the trained 7B reward model to sample every 100 steps, serving as the theoretical upper bound of our

method.

Although our reward signal is slightly less
effective than the 7B reward model in safety
classification, both reward show high consistency
in overall safety classification before and after our
alignment. Notably, post-training, the distribution
gap in some unsafe categories increased in the
top 2 and top 1 settings. We believe this is due
to the reduction in the total number of unsafe
outputs amplifying the original differences. Given
that the maintenance cost of our reward model is
negligible compared to the 7B reward model, this
performance difference is acceptable.

4.6 Exaggerated Safety

To detect exaggerated safety phenomena in the
alignment process, we tested the method and
baselines on the overly conservative test set Xstest
(Rottger et al., 2024). We tested the behavior of
the policy model in response to both safe prompts
and unsafe prompts, and the results are shown in
Figure 4.

As shown in the figure 4, our alignment method
increases the model’s rejection rate of unsafe
responses.  Notably, using either an trained
reward model or our reward signal for best-of-
N sampling significantly enhances the model’s
proportion of "partial refusal”. On the other hand,
fixed label confidence, compared to our method’s
dynamic label confidence, tends to increase the
proportion of "partial refusal". This could be
due to the preference noise introduced by the
fixed label confidence during tuning, making the

model more inclined towards ambiguous responses.

Additional alignment experiments can be found in
the appendix 3.
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Figure 5: The trend of reward scores during the
alignment process. The hybrid reward (Orange) and
the confidence DPO reward (Blue) are calculated by Eq
3 and Eq 8. The vanilla DPO reward (Green) is also
shown in the same setting.

4.7 Analysis

According to (Mitchell, 2023), the gradient of
object L%, p in Equation 5 is,

VoLDro = (Po — Ya,ye,u.) [Vologmo(ye) — Vologmo (yr)]
9

In which py equals to o(r(x,y.) — r(z,y,)) and
1 — e is replaced with ;... . Considering that
r is the reward signal DPO uses, this is exactly
the current policy’s preference in the form of B-T
model. The term Vylogmy(y.) — Vglogme(yr) is
the difference between the optimization directions
of the chosen and the rejected responses, which
maintains consistency. The gradient is equal to
zero when py Voo AS Vayey, 1S the
preference confidence of the target optimal policy,
which indicates the current policy preference will



0 epoch

Model S1 S2 S3 S4 S5 Sé6 S7 S8 S9 S10  S11 Toxic rate
top-1-ours 20.41% 39.25% 5.64% 0.12% 2.88% 12.85% 0.60% 0.24% 12.24% 1.20% 4.56% 20.82%
top-1-rm  20.09% 40.18% 6.03% 0 2.63% 15.15% 0.46% 0.15% 9.43% 1.24% 4.64% 16.18%
top-2-ours 18.95% 39.93% 5.64% 0.05% 2.50% 12.35% 0.64% 0.27% 13.90% 1.06% 4.69% 23.48%
top-2-rm  20.33% 40.36% 5.87% 0.06% 2.10% 13.84% 0.49% 0.12% 11.19% 0.99% 4.64% 20.23%
top-4-ours 18.40% 39.75% 6.24% 0.02% 2.42% 12.23% 0.64% 0.23% 14.10% 1.05% 4.91% 27.34%
top-4-rm  19.20% 40.63% 5.90% 0.023% 2.22% 13.04% 0.56% 0.19% 12.67% 1.17% 4.41% 26.79%
sample-8 17.45% 40.38% 6.47% 0.01% 2.16% 11.91% 0.50% 0.17% 13.64% 1.17% 4.47% 33.36%
1 epoch
Model S1 S2 S3 S4 S5 Sé6 S7 S8 S9 S10  S11 Toxic rate
top-1-our 10.00% 33.33% 8.33% 5.00% 25.00% 1.67% 0% 10.00% 0% 5.00% 5.00% 12.00%
top-1-rm  14.29% 34.29% 8.57% 0% 0% 20.00% 0% 0% 11.43% 2.86% 8.57% 7.00%
top-2-our 10.40% 30.40% 9.60% 0.80% 2.40% 27.20% 0.80% 0% 9.60% 0.80% 8.00% 12.50%
top-2-rm  13.86% 32.67% 8.91% 0% 0.99% 19.80% 0.99% 0% 13.86% 0.99% 7.92% 10.10%
top-4-ours 13.73% 30.28% 8.45% 0.35% 2.11% 24.30% 0.35% 0% 11.27% 1.06% 8.10% 14.20%
top-4-rm  12.10% 31.21% 8.28% 0.32% 2.23% 25.48% 0.31% 0% 11.46% 1.59% 7.80% 15.70%
sample-8 12.87% 32.92% 8.17% 0.12% 2.10% 23.64% 0.25% 0% 12.25% 1.36% 6.31% 20.20%

Table 2: The safety taxonomy distribution compared between hybrid reward model and trained 7B reward model
sampling from reference policy and aligned policy. S1 to S11 represent different unsafe categories based on the
MLCommons hazard classification, with each category indicating its proportion among all unsafe outputs. We

present the overall Toxic rate for each sampling setting.
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Figure 4: The evaluation result of exaggerated safety behaviours on XStest benchmark. On the left and right are the
response behaviors of the aligned model to safe prompts and unsafe prompts, respectively. The red part indicates
refusal to reply, the yellow part indicates partial refusal, and the green part indicates full compliance, evaluated by

GPT-4o.

eventually converge on the target optimal policy
preference.

As depicted in Figure 5, our reward signal and
DPO reward increase gradually, which show that
the sampling preference remains stable throughout
the training process, while the policy preference
gradually aligns with this stable preference.
Notably, after approximately 1000 steps, the
vanilla DPO reward experiences a significant surge
and sustains a high value, which suggests the
occurrence of reward hacking (Ibarz et al., 2018).

4.8 Reward Strategy

We evaluated the reward signal under different
strategies by using the top-4 sampling from
prompts of PKU-SafeRLHF test set and the hh-
rlhf red-team. Since Our method weights reward
signals from all layers, which implies a theoretical

upper limit: for each sample, one layer most
accurately reflects the oracle reward score. As
Figure 6 illustrates, Best strategy selects the
oracle reward from best layer, representing the
upper bound of our reward modeling method
and the worst strategy selects the worst reward,
representing the lower bound. We compared using
the last layer for reward extraction and found higher
toxicity across categories compared to our method,

validating the initial probing result. For each unsafe
category, our method performs strictly worse than

using reward signals extracted from the final layer’s
output, but it remains close to the optimal strategy.
The gap between our method and the optimal
reward indicates that there is still room for
improvement in the performance of this reward
modeling approach.
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Figure 6: Toxic rate across different reward strategies.
Best: selecting signals from the layer with the best
performance (Oracle); Worst: choosing the signals
from the worst layer; Last: using the last layer to extract
reward signals; Random and Ours.

4.9 Computational Efficiency

We estimated the additional computational over-
head, excluding policy model updates, for a 7B-
sized model using a reward model of the same size
and our method across different sequence lengths,
including sampling and reward model update(Ours)
costs. As shown in Figure 7, Our method is 5-6
orders of magnitude lower than the online method,
and does not increase with the sequence length

Additional computational overhead
17 ///_—

Ours
Online, seq len=2k
—— Online, seq len=4k
14 Online, seq len=8k

Epoch

Figure 7: Computational Efficiency compared with
online sampling method on 7B model.

5 Related Work

5.1 Preferences Alignment

Preference alignment aims to align the policy with
human preferences. On-policy RLHF (Ouyang
et al., 2022; Christiano et al., 2017) fits a reward
model from human feedback preference data by
optimizing a B-T preference model.Leike et al.
(2018) aligns systems with human performance
using a reward model; Stiennon et al. (2020)
fine-tuned language models for summarization
tasks by training a reward model to fit human
preferences; Bai et al. (2022) trained a reward

model to align LLMs like GPT-3 towards honesty,
helpfulness, and harmlessness. Off-policy methods,
such as DPO, bypass reward modeling and directly
align LLMs on preference data. Mitchell (2023);
Chowdhury et al. (2024) notes that preference data
may be noisy and over-confident. Online data
sampling from the reference policy often yields
better results (Xiong et al., 2024). Our work uses
the B-T model to estimate preference confidence,
which mitigates distribution shift.

5.2 Language Model Probing

Probing examines internal model representations
by training linear classifiers (probes) on hidden
states to identify specific input(Alain and Bengio,
2016; Tenney, 2019; Belinkov, 2022). Research by
Gurnee and Tegmark (2023) indicate that language
models acquire real-world representations during
training. Li et al. (2024a) notes a significant gap
between generation accuracy and probe accuracy
in QA tasks. Fan et al. (2024) uses a linear SVM
to extract internal signals for early stopping in
early layers. Other findings highlight the rich
information in internal representations(Zou et al.,
2023). Wang et al. (2024a) shows the potential
of safety representations in model alignment
by editing internal representations to detoxify
LLMs. Kong et al. (2024) aligns LL.Ms through
representation editing from a control perspective.
These studies highlight the rich information in
internal representations.

6 Conclusion

Reinforcement learning for large language models
(LLMs) encounters significant challenges related
to distribution shift in safety alignment, often
necessitating substantial computational costs to
address. In this paper, we hypothesize that
during DPO training, while the rankings of top
items change, their overall distribution remains
largely unchanged. Base on it we transform the
sampling process from the target policy into a
re-ranking of the preference data. Specifically,
we leverage the model’s internal safety judgment
capability to extract reward signals and use label
confidence to simulate the sampling process and
optimize the DPO loss with preference confidence.
Our theoretical analysis and experimental results
demonstrate that this method significantly reduces
policy toxicity, enhancing the alignment of policy
models with safety preferences.



Limitations

Although we have analyzed the general per-
formance changes of the model, we have not
conducted further analysis of potential distribution
shift unrelated to safety. Due to experimental costs
and there is a lack of validation on larger-scale
models. Additionally, our method exhibits a gap
compared to vanilla online methods, this is further
evident in the divergence between our reward signal
and its theoretical upper bound, which we attribute
to the simplicity of our reward extraction method.
This reflects a trade-off between computational
efficiency and the accuracy of performance.
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A Appendix

A.1 Over-alignment

To evaluate the over-alignment, we test the
aligned model on MMLU(Hendrycks et al., 2020).
Additionally, we selected prompts from the Alpaca-
Eval (Dubois et al., 2024) and used two existing
reward model to score the outputs, particularly
FsfairX3 and deberta-v3-large-v2, both are used
or RLHFE. The result in Table 3 show that there is
a slight decline in general capabilities, which is
acceptable Considering the conflict between safety
alignment and general capabilities.

Model RM-deberta FsfairX MMLU
Base -4.309 -2.911 0.45898
Vanilla-dpo  -4.518 -2.909 0.45947
Ours -4.410 -2.747 0.43476

Table 3: Response score for aligned policy, as well as
the MMLU scores.

A.2 PCA Result of Llama2-13B

Figure 8: Kernel density estimate plots show the hidden
states of unsafe output (blue) and safe output (red) pairs
in different layers of Llama-13B after projection onto
the top-2 principal directions.

A.3 Parameter Setting

In our experiments, the DPO algorithm employs
8 = 1.5,)r = 1le — b5, batch size is 4. In
our approach, the optimization margin p = 1
in Equation 2. The scaling factor for preference
confidence o = 7.5 in Equation 1.
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