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Abstract

Offline reinforcement learning (RL) methodologies enforce constraints on the1

policy to adhere closely to the behavior policy, thereby stabilizing value learning2

and mitigating the selection of out-of-distribution (OOD) actions during test time.3

Conventional approaches apply identical constraints for both value learning and test4

time inference. However, our findings indicate that the constraints suitable for value5

estimation may in fact be excessively restrictive for action selection during test time.6

To address this issue, we propose a Mildly Constrained Evaluation Policy (MCEP)7

for test time inference with a more constrained target policy for value estimation.8

Since the target policy has been adopted in various prior approaches, MCEP can9

be seamlessly integrated with them as a plug-in. We instantiate MCEP based on10

TD3-BC [Fujimoto and Gu, 2021] and AWAC [Nair et al., 2020] algorithms. The11

empirical results on MuJoCo locomotion tasks show that the MCEP significantly12

outperforms the target policy and achieves competitive results to state-of-the-art13

offline RL methods. The codes are open-sourced at link.14

1 Introduction15

Offline reinforcement learning (RL) extracts a policy from data that is pre-collected by unknown16

policies. This setting does not require interactions with the environment thus it is well-suited for tasks17

where the interaction is costly or risky. Recently, it has been applied to Natural Language Process-18

ing [Snell et al., 2022], e-commerce [Degirmenci and Jones] and real-world robotics [Kalashnikov19

et al., 2021, Rafailov et al., 2021, Kumar et al., 2022, Shah et al., 2022] etc. Compared to the standard20

online setting where the policy gets improved via trial and error, learning with a static offline dataset21

raises novel challenges. One challenge is the distributional shift between the training data and the data22

encountered during deployment. To attain stable evaluation performance under the distributional shift,23

the policy is expected to stay close to the behavior policy. Another challenge is the "extrapolation24

error" [Fujimoto et al., 2019, Kumar et al., 2019] that indicates value estimate error on unseen25

state-action pairs or Out-Of-Distribution (OOD) actions. Worsely, this error can be amplified with26

bootstrapping and cause instability of the training, which is also known as deadly-triad [Van Hasselt27

et al., 2018]. Majorities of model-free approaches tackle these challenges by either constraining the28

policy to adhere closely to the behavior policy [Wu et al., 2019, Kumar et al., 2019, Fujimoto and Gu,29

2021] or regularising the Q to pessimistic estimation for OOD actions [Kumar et al., 2020, Lyu et al.,30

2022]. In this work, we focus on policy constraints methods.31

Policy constraints methods minimize the disparity between the policy distribution and the behavior32

distribution. It is found that policy constraints introduce a tradeoff between stabilizing value estimates33

and attaining better performance. While previous approaches focus on developing various constraints34

for the learning policy to address this tradeoff, the tradeoff itself is not well understood. Current35

solutions have confirmed that an excessively constrained policy enables stable values estimate36
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but degrades the evaluation performance [Kumar et al., 2019, Singh et al., 2022, Yu et al., 2023].37

Nevertheless, it is not clear to what extent this constraint fails to stabilize value learning and to38

what extent this constraint leads to a performant evaluation policy. It is essential to investigate these39

questions as their answers indicate how well a solution can be found under the tradeoff. However,40

the investigation into the latter question is impeded by the existing tradeoff, as it requires tuning the41

constraint without influencing the value learning. We circumvent the tradeoff and seek solutions for42

this investigation through the critic. For actor-critic methods, [Czarnecki et al., 2019] has shed light43

on the potential of distilling a student policy that improves over the teacher using the teacher’s critic.44

Inspired by this work, we propose to derive an extra evaluation policy from the critic to avoid solving45

the above-mentioned tradeoff. The actor is now called target policy as it is used only to stabilize the46

value estimation.47

Based on the proposed framework, we empirically investigate the constraint strengths for 1) stabilizing48

value learning and 2) better evaluation performance. The results find that a milder constraint improves49

the evaluation performance but may fall beyond the constraint space of stable value estimation.50

This finding indicates that the optimal evaluation performance may not be found under the tradeoff,51

especially when stable value learning is the priority. Consequently, we propose a novel approach of52

using a Mildly Constrained Evaluation Policy (MCEP) derived from the critic to avoid solving the53

above-mentioned tradeoff and to achieve better evaluation performance.54

As the target policy is commonly used in previous approaches, our MCEP can be integrated with55

them seamlessly. In this paper, we first validate the finding of [Czarnecki et al., 2019] in the offline56

setting by a toy maze experiment, where a constrained policy results in bad evaluation performance57

but its off-policy Q estimation indicates an optimal policy. After that, our experiments on D4RL [Fu58

et al., 2020] MoJoCo locomotion tasks showed that in most tasks milder constraint achieves better59

evaluation performance while more restrictive constraint stabilizes the value estimate. Finally, we60

instantiated MCEP on both TD3BC and AWAC algorithms. The empirical results find that the MCEP61

significantly outperforms the target policy and achieves competitive results to state-of-the-art offline62

RL methods.63

2 Related Work64

Policy constraints method (or behavior-regularized policy method) [Wu et al., 2019, Kumar et al.,65

2019, Siegel et al., 2020, Fujimoto and Gu, 2021] forces the policy distribution to stay close to the66

behavior distribution. Different discrepancy measurements such as KL divergence [Jaques et al., 2019,67

Wu et al., 2019], reverse KL divergence Cai et al. [2022] and Maximum Mean Discrepancy [Kumar68

et al., 2019] are applied in previous approaches. [Fujimoto and Gu, 2021] simply adds a behavior-69

cloning (BC) term to the online RL method Twin Delayed DDPG (TD3) [Fujimoto et al., 2018]70

and obtains competitive performances in the offline setting. While the above-mentioned methods71

calculate the divergence from the data, [Wu et al., 2022] estimates the density of the behavior72

distribution using VAE, and thus the divergence can be directly calculated. Except for explicit policy73

constraints, implicit constraints are achieved by different approaches. E.g. [Zhou et al., 2021] ensures74

the output actions stay in support of the data distribution by using a pre-trained conditional VAE75

(CVAE) decoder that maps latent actions to the behavior distribution. In all previous approaches, the76

constraints are applied to the learning policy that is queried during policy evaluation and is evaluated77

in the environment during deployment. Our approach does not count on this learning policy for the78

deployment, instead, it is used as a target policy only for the policy evaluation.79

While it is well-known that a policy constraint can be efficient to reduce extrapolation errors, its80

drawback is not well-studied yet. [Kumar et al., 2019] reveals a tradeoff between reducing errors in81

the Q estimate and reducing the suboptimality bias that degrades the evaluation policy. A constraint is82

designed to create a policy space that ensures the resulting policy is under the support of the behavior83

distribution for mitigating bootstrapping error. [Singh et al., 2022] discussed the inefficiency of policy84

constraints on heteroskedastic dataset where the behavior varies across the state space in a highly85

non-uniform manner, as the constraint is state-agnostic. A reweighting method is proposed to achieve86

a state-aware distributional constraint to overcome this problem. Our work studies essential questions87

about the tradeoff [Kumar et al., 2019] and overcomes this drawback [Singh et al., 2022] by using an88

extra evaluation policy.89
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There are methods that extract an evaluation policy from a learned Q estimate. One-step RL [Brand-90

fonbrener et al., 2021] first estimates the behavior policy and its Q estimate, which is later used91

for extracting the evaluation policy. Although its simplicity, one-step RL is found to perform badly92

in long-horizon problems due to a lack of iterative dynamic programming [Kostrikov et al., 2022].93

[Kostrikov et al., 2022] proposed Implicity Q learning (IQL) that avoids query of OOD actions94

by learning an upper expectile of the state value distribution. No explicit target policy is mod-95

eled during their Q learning. With the learned Q estimate, an evaluation policy is extracted using96

advantage-weighted regression [Wang et al., 2018, Peng et al., 2019]. Our approach has a similar97

form of extracting an evaluation from a learned Q estimate. However, one-step RL aims to avoid98

distribution shift and iterative error exploitation during iterative dynamic programming. IQL avoids99

error exploitation by eliminating OOD action queries and abandoning policy improvement (i.e. the100

policy is not trained against the Q estimate). Our work instead tries to address the error exploitation101

problem and evaluation performance by using policies of different constraint strengths.102

3 Background103

We model the environment as a Markov Decision Process (MDP) ⟨S,A,R, T, p0(s), γ, ⟩, where S is104

the state space, A is the action space, R is the reward function, T (s′|s, a) is the transition probability,105

p0(s) is initial state distribution and γ is a discount factor. In the offline setting, a static dataset106

Dβ = {(s, a, r, s′)} is pre-collected by a behavior policy πβ . The goal is to learn a policy πϕ(s) with107

the dataset D that maximizes the discounted cumulated rewards in the MDP:108

ϕ∗ = argmax
ϕ

Es0∼p0(·),at∼πϕ(st),st+1∼T (·|st,at)[

∞∑
t=0

γtR(st, at)] (1)

Next, we introduce the general policy constraint method, where the policy πϕ and an off-policy Q109

estimate Qθ are updated by iteratively taking policy improvement steps and policy evaluation steps,110

respectively. The policy evaluation step minimizes the Bellman error:111

LQ(θ) = Est,at∼D,at+1∼πϕ(st+1)

[(
Qθ(st, at)− (r + γQθ′(st, at+1))

)2]
. (2)

where the θ′ is the parameter for a delayed-updated target Q network. The Q value for the next state is112

calculated with actions at+1 from the learning policy that is updated through the policy improvement113

step:114

Lπ(ϕ) = Es∼D,a∼πϕ(s)[−Qθ(s, a) + wC(πβ , πϕ)], (3)

whereC is a constraint measuring the discrepancy between the policy distribution πϕ and the behavior115

distribution πβ . The w ∈ (0,∞] is a weighting factor. Different kinds of constraints were used such116

as Maximum Mean Discrepancy (MMD), KL divergence, and reverse KL divergence.117

4 Method118

In this section, we first introduce the generic algorithm that can be integrated with any policy119

constraints method. Next, we introduce two examples based on popular offline RL methods TD3BC120

and AWAC. With a mildly constrained evaluation policy, we name these two instances as TD3BC121

with MCEP (TD3BC-MCEP) and AWAC with MCEP (AWAC-MCEP).122

4.1 Offline RL with mildly constrained evaluation policy123

The proposed method is designed for overcoming the tradeoff between a stable policy evaluation and124

a performant evaluation policy. In previous constrained policy methods, a restrictive policy constraint125

is applied to obtain stable policy evaluation. We retain this benefit but use this policy (actor) π̃ as126

a target policy only to obtain stable policy evaluation. To achieve better evaluation performance,127

we introduce an MCEP πe that is updated by taking policy improvement steps with the critic Qπ̃.128

Different from π̃, πe does not participate in the policy evaluation procedure. Therefore, a mild policy129

constraint can be applied, which helps πe go further away from the behavior distribution without130

influencing the stability of policy evaluation. We demonstrate the policy spaces and policy trajectories131

for π̃ and πe in the l.h.s. diagram of Figure 1, where πe is updated in the wider policy space using Qπ̃ .132
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Figure 1: Left: diagram depicts policy trajectories for target policy π̃ and MCEP πe. Right: policy
evaluation steps to update Qπ̃ and policy improvement steps to update π̃ and πe.

Algorithm 1 MCEP Training

1: Hyperparameters: LR α, EMA η, w̃ and we
2: Initialize: θ, θ′, ψ, and ϕ
3: for i=1, 2, ..., N do
4: θ ← θ − αLQ(θ) (Equation 2)
5: θ′ ← (1− η)θ′ + ηθ
6: ψ ← ψ − αLπ̃(ψ; w̃) (Equation 3)
7: ϕ← ϕ− αLπe(ϕ;we) (Equation 3)

The overall algorithm is shown as pseudo-codes133

(Alg. 1). At each step, the Qπ̃, π̃ψ and πeϕ are134

updated iteratively. A policy evaluation step up-135

dates Qπ̃ by minimizing the TD error (line 7),136

i.e. the deviation between the approximate Q137

and its target value. Next, a policy improve-138

ment step updates π̃ψ (line 6. These two steps139

form the actor-critic algorithm. After that, πeϕ140

is extracted from the Qπ̃ , by taking a policy im-141

provement step with a policy constraint that is142

likely milder than the constraint for π̃ψ (line 7).143

Many approaches can be taken to obtain a milder144

policy constraint. For example, tuning down the weight factor we for the policy constraint term or145

replacing the constraint measurement with a less restrictive one. Note that the constraint for πeϕ is146

necessary (the constraint term should not be dropped) as the Qπ̃ has large approximate errors for147

state-action pairs that are far from the data distribution.148

4.2 Two Examples: TD3BC-MCEP and AWAC-MCEP149

TD3BC with MCEP TD3BC takes a minimalist modification on the online RL algorithm TD3. To150

keep the learned policy to stay close to the behavior distribution, a behavior-cloning term is added to151

the policy improvement objective. TD3 learns a deterministic policy therefore the behavior cloning is152

achieved by directly regressing the data actions. For TD3BC-MCEP, the target policy π̃ψ has the153

same policy improvement objective as TD3BC:154

Lπ̃(ψ) = E(s,a)∼D[−λ̃Qθ(s, π̃ψ(s)) +
(
a− π̃ψ(s)

)2
], (4)

where the λ̃ = α̃
1
N

∑
si,ai

|Qθ(si,ai)|
is a normalizer for Q values with a hyper-parameter α̃: The Qθ155

is updated with the policy evaluation step similar to Eq. 2 using π̃ψ. The MCEP πeϕ is updated by156

policy improvement steps with the Qπ̃ taking part in. The policy improvement objective function for157

πeϕ is similar to Eq. 4 but with a higher-value αe for the Q-value normalizer λe. The final objective158

for πeϕ is159

Lπe(ϕ) = E(s,a)∼D[−λeQ(s, πeϕ(s)) +
(
a− πeϕ(s)

)2
]. (5)

AWAC with MCEP AWAC [Nair et al., 2020] is an advantage-weighted behavior cloning method.160

As the target policy imitates the actions from the behavior distribution, it stays close to the behavior161

distribution during learning. In AWAC-MCEP, the policy evaluation follows the Eq. 2 with the target162
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(a) Toy maze MDP (b) V ∗, π∗ (c) Vπ̃, π̃ (d) Vπ̃, argmaxQπ̃

Figure 2: Evaluation of policy constraint method on a toy maze MDP 2a. In other figures, the color
of a grid represents the state value and arrows indicate the actions from the corresponding policy. 2b
shows the optimal value function and one optimal policy. 2c shows a constrained policy trained from
the above-mentioned offline data, with its value function calculated by Vπ = EaQ(s, π(a|s)). The
policy does not perform well in the low state-value area but its value function is close to the optimal
value function. 2d indicates that an optimal policy is recovered by deriving the greedy policy from
the off-policy Q estimate (the critic).

policy π̃ψ that updates with the following objective:163

Lπ̃(ψ) = Es,a∼D

[
− exp

(
1

λ̃
A(s, a)

)
log π̃ψ(a|s)

]
, (6)

where the advantageA(s, a) = Qθ(s, a)−Qθ(s, π̃ψ(s)). This objective function solves an advantage-164

weighted maximum likelihood. Note that the gradient will not be passed through the advantage term.165

As this objective has no policy improvement term, we use the original policy improvement with KL166

divergence as the policy constraint and construct the following policy improvement objective:167

Lπe(ϕ) = Es,a∼D,â∼πe(·|s)[−Q(s, â) + λeDKL

(
πβ(·|s)||πeϕ(·|s)

)
] (7)

= Es,a∼D,â∼πe(·|s)[−Q(s, â)− λe log πeϕ(a|s)], (8)
where the weighting factor λe is a hyper-parameter. Although the Eq. 6 is derived by solving Eq. 8168

in a parametric-policy space, the original problem (Eq. 8) is less restrictive even with λ̃ = λe as it169

includes a −Q(s, πe(s)) term. This difference means that even with a λe > λ̃, the policy constraint170

for πe could still be more relaxed than the policy constraint for π̃.171

5 Experiments172

In this section, we set up 4 groups of experiments to illustrate: 1) the policy constraint might degrade173

the evaluation performance by forcing the policy to stay close to low-state-value transitions. 2) The174

suitable constraint for the final inference could be milder than the ones for safe Q estimates. 3) Our175

method shows significant performance improvement compared to the target policy and achieves176

competitive results to state-of-the-art offline RL methods on MuJoCo locomotion tasks. 4) the MCEP177

generally gains a higher estimate Q compared to the target policy. Additionally, we adopt 2 groups of178

ablation studies to verify the benefit of an MCEP and to investigate the constraint strengths of MCEP.179

Environments D4RL [Fu et al., 2020] is an offline RL benchmark consisting of many task sets.180

Our experiments involve MuJoCo locomotion tasks (-v2) and two tasks from Adroit (-v0). For181

MuJoCo locomotion tasks, we select 4 versions of datasets: data collected by a uniformly-random182

agent (random), collected by a medium-performance policy (medium), a 50%− 50% mixture of the183

medium data and the replay buffer during training a medium-performance policy (medium-replay), a184

50% − 50% mixture of the medium data and expert demonstrations (medium-expert). For Adroit,185

we select pen-human and pen-cloned, where the pen-human includes a small number of human186

demonstrations, and pen-cloned is a 50%− 50% mixture of demonstrations and data collected by187

rolling out an imitation policy on the demonstrations.188

5.1 Target policy that enables safe Q estimate might be overly constrained189

To investigate the policy constraint under a highly suboptimal dataset, we set up a toy maze MDP that190

is similar to the one used in [Kostrikov et al., 2022]. The environment is depicted in Figure 2a, where191
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Figure 4: The training process of TD3BC and AWAC. Left: TD3BC
on hopper-medium-v2. Middle: TD3BC on walker2d-medium-replay-
v2. Right: AWAC on hopper-medium-replay-v2.

Figure 5: α values in
TD3BC for value estimate
and test time inference in
MuJoCo locomotion tasks.

the lower left yellow grid is the starting point and the upper left green grid is the terminal state that192

gives a reward of 10. Other grids give no reward. Dark blue indicates un-walkable areas. The action193

space is defined as 4 direction movements (arrows) and staying where the agent is (filled circles).194

There is a 25% probability that a random action is taken instead of the action from the agent. For the195

dataset, 99 trajectories are collected by a uniformly random agent and 1 trajectory is collected by an196

expert policy. Fig. 2b shows the optimal value function (colors) and one of the optimal policies.197

We trained a constrained policy using Eq. 2 and Eq. 8 in an actor-critic manner, where the actor is198

constrained by a KL divergence with a weight factor of 1. Figure 2c shows the value function and the199

policy. We observe that the learned value function is close to the optimal one in Figure 2b. However,200

the policy does not make optimal actions in the lower left areas where the state values are relatively201

low. As the policy improvement objective shows a trade-off between the Q and the KL divergence,202

when the Q value is low, the KL divergence term will obtain higher priority. i.e. in low-Q-value203

areas, the KL divergence takes the majority for the learning objective, which makes the policy stays204

closer to the transitions in low-value areas. However, we find that the corresponding value function205

indicates an optimal policy. In Figure 2d, we recover a greedy policy underlying the learned critic206

that shows an optimal policy. In conclusion, the constraint might degrade the evaluation performance207

although the learned critic may indicate a better policy. Although such a trade-off between the Q208

term and the KL divergence term can be alleviated in previous work [Fujimoto and Gu, 2021] by209

normalizing the Q values, in the next section, we will illustrate that the constraint required to obtain210

performant evaluation policy can still cause unstable value estimate.211

5.2 Test-time inference requires milder constraints212

The previous experiment shows that a restrictive constraint might harm the test-time inference, which213

motivates us to investigate what constraints make better evaluation performance. Firstly, we relax the214

policy constraint on TD3BC and AWAC by setting up different hyper-parameter values that control215

the strengths of the policy constraints. For TD3BC, we set α = {1, 4, 10} ([Fujimoto and Gu, 2021]216

recommends α = 2.5). For AWAC, we set λ = {1.0, 0.5, 0.3, 0.1} ([Nair et al., 2020] recommends217

λ = 1). Finally, We visualize the evaluation performance and the learned Q estimates.218

In Figure 4, the left two columns show the training of TD3BC in the hopper-medium-v2 and walker2d-219

medium-replay-v2. In both domains, we found that using a milder constraint by tuning the α from 1 to220

4 improves the evaluation performance, which motivates us to expect better performance with α = 10.221

As shown in the lower row, we do observe higher performances in some training steps. However,222

unstable training is caused by the divergence in value estimate, which indicates the tradeoff between223

the stable Q estimate and the evaluation performance. The rightmost column shows the training224

of AWAC in hopper-medium-replay-v2, we observe higher evaluation performance by relaxing the225

constraint (λ > 1). Although the Q estimate keeps stable during the training in all λ values, higher λ226

results in unstable policy performance and causes the performance crash with λ = 0.1.227

Concluding on all these examples, a milder constraint can potentially improve the performance228

but may cause unstable Q estimates or unstable policy performances. As we find that relaxing the229

constraint on current methods triggers unstable training, which hinders the investigation of constraints230
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Task Name BC CQL IQL TD3BC TD3BC-MCEP AWAC AWAC-MCEP
(ours) (ours)

halfcheetah-r 2.2±0.0 - 10±1.7 11.7±0.4 28.8±1.0 9.6±0.4 34.9±0.8
hopper-r 4.7±0.1 - 8.1±0.4 8.3±0.1 8.0±0.4 5.3±0.4 9.8±0.5
walker2d-r 1.6±0.0 - 5.6±0.1 1.2±0.0 -0.2±0.1 5.2±1.0 3.1±0.4
halfcheetah-m 42.4±0.1 44.0 47.4±0.1 48.7±0.2 55.5±0.4 45.1±0 46.6±0
hopper-m 54.1±1.1 58.5 65±3.6 56.1±1.2 91.8±0.9 58.9±1.9 91.1±1.5
walker2d-m 71±1.7 72.5 80.4±1.7 85.2±0.9 88.8±0.5 79.6±1.5 83.4±0.9
halfcheetah-m-r 37.8±1.1 45.5 43.2±0.8 44.8±0.3 50.6±0.2 43.3±0.1 44.9±0.1
hopper-m-r 22.5±3.0 95.0 74.2±5.3 55.2±10.8 100.9±0.4 64.8±6.2 101.4±0.2
walker2d-m-r 14.4±2.7 77.2 62.7±1.9 50.9±16.1 86.3±3.2 84.1±0.6 84.6±1.3
halfcheetah-m-e 62.3±1.5 91.6 91.2±1.0 87.1±1.4 71.5±3.7 77.6±2.6 76.2±5.5
hopper-m-e 52.5±1.4 105.4 110.2±0.3 91.7±10.5 80.1±12.7 52.4±8.7 92.5±8.3
walker2d-m-e 107±1.1 108.8 111.1±0.5 110.4±0.5 111.7±0.3 109.5±0.2 110.3±0.1
Average 39.3 - 59.0 54.2 64.5 52.9 64.9
pen-human 76.8±4.8 37.5 64.2±10.4 61.6±11 58.6±20.8 34.7±11.8 23.3 ±5.6
pen-cloned 28.5±6.7 39.2 32.1±7.5 49±9.5 43.4±20.3 20.8±7.3 19.0±7.5
Average 52.6 38.3 48.1 55.3 51.0 27.7 21.1

Table 1: Normalized episode returns on D4RL benchmark. The results (except for CQL) are means
and standard errors from the last step of 5 runs using different random seeds. Performances that are
higher than corresponding baselines are underlined and task-wise best performances are bolded.

for better evaluation performance. We instead systematically study the constraint strengths in TD3BC231

and TD3BC with evaluation policy (TD3BC-EP).232

We first tune the α for TD3BC to unveil the range for safe Q estimates. Then in TD3BC-EP, we233

tune the αe for the evaluation policy with a fixed α̃ = 2.5 to approximate the constraint range of234

better test inference performance (i.e. where the evaluation policy outperforms the target policy). The235

α̃ = 2.5 is selected to ensure a stable Q estimate (also the paper-recommended value). The α (αe) is236

tuned within {2.5, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. For each α (αe), we observe the training237

of 5 runs with different random seeds. In Figure 5, we visualize these two ranges for each task from238

MuJoCo locomotion set. The blue area shows α values where the TD3BC Q estimate is stable for all239

seeds. The edge shows the lowest α value that causes Q value explosion. The orange area shows the240

range of αe where the learned evaluation policy outperforms the target policy. Its edge (the orange241

line) shows the lowest αe values where the evaluation policy performance is worse than the target242

policy. For each task, the orange area has a lower bound αe = 2.5 where the evaluation policy shows243

a similar performance to the target policy.244

Note that α weighs the Q term and thus a larger α indicates a less restrictive constraint. Comparing245

the blue area and the orange area, we observe that in 6 out of the 9 tasks, the α for better inference246

performance is higher than the α that enables safe Q estimates, indicating that test-time inference247

requires milder constraints. In the next section, we show that with an MCEP, we can achieve much248

better inference performance without breaking the stable Q estimates.249

5.3 Comparison on MuJoCo locomotion and Adroit250

We compare the proposed method to state-of-the-art offline RL methods CQL and IQL, together with251

our baselines TD3BC and AWAC. Similar hyper-parameters are used for all tasks from the same252

domain. For our baseline methods (TD3BC and AWAC), we use the hyper-parameter recommended253

by their papers. TD3BC uses α = 2.5 for its Q value normalizer and AWAC uses 1.0 for the254

advantage value normalizer. In TD3BC-MCEP, the target policy uses α̃ = 2.5 and the MCEP uses255

αe = 10. In AWAC-MCEP, the target policy has λ̃ = 1.0 and the MCEP has λe = 0.6. The full list256

of hyper-parameters can be found in the Appendix.257

As is shown in Table 1, we observe that the evaluation policies with a mild constraint significantly258

outperform their corresponding target policy. TD3BC-MCEP gains progress on all medium and259

medium-replay datasets. Although the progress is superior, we observe a performance degradation on260

the medium-expert datasets which indicates an overly relaxed constraint for the evaluation policy. To261

overcome this imbalance problem, we designed a behavior-cloning normalizer. The results are shown262

in the Appendix. Nevertheless, the TD3BC-MCEP achieves much better general performance than the263
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target policy. In the AWAC-MCEP, we observe a consistent performance improvement over the target264

policy on most tasks. Additionally, evaluation policies from both TD3BC-MCEP and AWAC-MCEP265

outperform the CQL and IQL while the target policies have relatively low performances. On Adroit266

tasks, the best results are obtained by behavioral cloning agent and TD3BC with a high BC weighting267

factor. Other agents fail to outperform the BC agent. We observe that MCEP does not benefit these268

tasks where behavior cloning is essential for the evaluation performance.269

5.4 Ablation Study270

In this section, we design 2 groups of ablation studies to investigate the effect of the extra evaluation271

policy and its constraint strengths. Reported results are averaged on 5 runs of different random seeds.272

Figure 6: Left: TD3BC with α = 2.5, α = 10 and TD3BC-
MCEP with α̃ = 2.5, αe = 10. Right: AWAC with λ = 1.0,
λ = 0.5 and AWAC-MCEP with λ̃ = 1.0 and λe = 0.5.

Performance of the extra evaluation273

policy. Now, we investigate the per-274

formance of the introduced evalua-275

tion policy πe. For TD3BC, we set276

the parameter α = {2.5, 10.0}. A277

large α indicates a milder constraint.278

After that, we train TD3BC-MCEP279

with α̃ = 2.5 and αe = 10.0. For280

AWAC, we trained AWAC with the281

λ = {1.0, 0.5} and AWAC-MCEP282

with λ̃ = 1.0 and λe = 0.5.283

The results are shown in Figure 6.284

By comparing TD3BC of different α285

values, we found a milder constraint286

(α = 10.0) brought performance im-287

provement in hopper tasks but de-288

grades the performance in walker2d tasks. The degradation is potentially caused by unstable value289

estimates (see experiment at section 5.2). Finally, the evaluation policy trained from the critic learned290

with a target policy with α = 2.5 achieves the best performance in all three tasks. In AWAC, a lower291

λ value brought policy improvement in hopper tasks but degrades performances in half-cheetah and292

walker2d tasks. Finally, an evaluation policy obtains the best performances in all tasks.293

In conclusion, we observe consistent performance improvement brought by an extra MCEP that294

circumvents the tradeoff brought by the constraint.295

Figure 7: Left: TD3BC-EP with α = 1.0, α = 2.5 and
α = 10.0. Right: AWAC-EP with λ = 1.4, λ = 1.0 and
λ = 0.6.

Constraint strengths of the evalua-296

tion policy. We set up two groups of297

ablation experiments to investigate the298

performance of evaluation policy un-299

der different constraint strengths. For300

TD3BC-MCEP, we tune the constraint301

strength by setting the Q normalizer302

hyper-parameter. The target policy303

hyper-parameter is fixed to α = 2.5.304

We pick three strengths for evaluation305

policy αe = {1.0, 2.5, 10.0} to create306

more restrictive, similar, and milder307

constraints, respectively. For AWAC-308

MCEP, the target policy uses λ = 1.0.309

However, it is not straightforward to310

create a similar constraint for the eval-311

uation policy as it has a different policy improvement objective. We set λe = {0.6, 1.0, 1.4} to show312

how performance changes with different constraint strengths.313

The performance improvements over the target policy are shown in Fig. 7. The left column shows a314

significant performance drop when the evaluation policy has a more restrictive constraint (αe = 1.0)315

than the target policy. A very close performance is shown when the target policy and the evaluation316

policy have similar policy constraint strengths (αe = 2.5). Significant policy improvements are317
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(a) medium-expert (b) medium (c) medium-replay (d) random

Figure 9: The distributions of Q(s, π̃(s))−Q(s, a) and Q(s, πe(s))−
Q(s, a) on MuJoCo locomotion tasks. First row: policies of TD3BC-
MCEP learned in walker2d tasks. Second row: policies of AWAC-MCEP
learned in half cheetah tasks. See the Appendix for full results.

env π̃ (%) πe (%)
TD3BC-MCEP

wa-me 69.8 87.2
wa-m 66.2 82.7
wa-mr 71.8 88.7
wa-r 89.6 99.0

AWAC-MCEP
ha-me 63.4 70.8
ha-m 64.7 68.3
ha-mr 68.6 73.1
ha-r 75.3 95.6

Table 2: Proportion of
Q(s, π(s)) > Q(s, a)
for target policies and
evalution policies in dif-
ferent tasks.

obtained with the target policy having a milder constraint (αe = 10). The right column presents the318

results of AWAC-MCEP. Generally, the performance in hopper tasks keeps increasing with milder319

constraints while the half-cheetah and walker2d tasks show performances that increase from λ = 1.4320

to λ = 1 and similar performances between λ = 1 and λ = 0.6. Compared to the target policy, the321

evaluation policy consistently outperforms in half-cheetah and hopper tasks. On the walker2d task, a322

strong constraint (λ = 1.4) causes a performance worse than the target policy but milder constraints323

(λ = {1, 0.6}) obtain similar performance to the target policy.324

In conclusion, for both algorithms, we observe that on evaluation policy, a milder constraint obtains325

higher performance than the target policy while a restrictive constraint may harm the performance.326

5.5 Estimated Q values for the learned evaluation policies327

To compare the performance of the policies learned in Section 5.3 on the learning objective (max-328

imizing the Q values), we counted Q differences between the policy action and the data action329

Q(s, π(s)) − Q(s, a) in the training data (visualized in Figure 9). Proportions of data points that330

show positive differences are listed in Table 2, where we find that on more than half of the data, both331

the target policy and the MCEP have larger Q estimation than the behavior actions. Additionally,332

the proportions for the MCEP are higher than the proportions for the target policy in all datasets,333

indicating that the MCEP is able to move further toward large Q values.334

6 Conclusion335

This work focuses on the policy constraints methods where the constraint addresses the tradeoff336

between stable value estimate and evaluation performance. While to what extent the constraint337

achieves the best results for each end of this tradeoff remains unknown, we first investigate the338

constraint strength range for a stable value estimate and for evaluation performance. Our findings339

indicate that test time inference requires milder constraints that can go beyond the range of stable340

value estimates. We propose to use an auxiliary mildly constrained evaluation policy to circumvent341

the above-mentioned tradeoff and derive a performant evaluation policy. The empirical results show342

that MCEP obtains significant performance improvement compared to target policy and achieves343

competitive results to state-of-the-art offline RL methods. Our ablation studies show that an auxiliary344

evaluation policy and a milder policy constraint are essential for the proposed method. Additional345

empirical analysis demonstrates higher estimated Q values are obtained by the MCEP.346

Limitations. Although the MCEP is able to obtain a better performance, it depends on stable value347

estimation. Unstable value learning may crash both the target policy and the evaluation policy. While348

the target policy may recover its performance by iterative policy improvement and policy evaluation,349

we observe that the evaluation policy may fail to do so. Therefore, a restrictive constrained target350

policy that stabilizes the value learning is essential for the proposed method.351
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