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ABSTRACT

Quantifying the impact of training data is essential for understanding model behav-
ior and optimizing the training process. Despite extensive research into influence
estimation, existing methods often rely on repeated training or gradient analysis,
which results in prohibitive computational and memory costs and limits their ap-
plicability to large-scale models and datasets. In this paper, we explore a new
perspective on influence estimation by distilling influence signals from training
dynamics, i.e., the model’s predictions on individual examples throughout training.
We propose INFTRACE , an influence estimation approach that uses contrastive
learning to project the observed influence into a representation space, where the
proximity between data points reflects their influence strength. Our approach
is simple, efficient, and scalable, requiring neither gradient computation nor as-
sumptions about the optimizers. We validate our approach across various tasks
and datasets, demonstrating its ability to estimate influence effectively, scalability
to large models, and utility in downstream applications, such as mislabeled data
identification, influential data selection, and data attribution.

1 INTRODUCTION

Training data play a crucial role in shaping the capabilities and behaviors of language models. Recent
studies have shown that even a small amount of training data may affect model behavior in nontrivial
ways. For example, thousands of training examples can effectively align LLM outputs (Zhou et al.,
2023), while a few adversarial examples can induce unexpected outputs Qi et al. (2023); Ji et al.
(2024). In practice, training datasets are often large and of complex compositions, particularly with
the growing use of synthetic corpora. This raises a crucial question: How can we efficiently measure
the impact of specific training data points on model behavior?

Influence analysis aims to answer this question by estimating how the learning of one or a set of
examples affects the model’s prediction on others. This not only provides insights into understanding
model behaviors (Ren & Sutherland, 2025; Zhang et al., 2023) but also can improve the training
process (Xia & Henao, 2023; Xia et al., 2024). Existing approaches mainly rely on repeated retraining
(Feldman & Zhang, 2020; Kandpal et al., 2022), which exclude specific examples from training
to observe the model’s performance change, or are gradient-based (Koh & Liang, 2017; Pruthi
et al., 2020), which measure influence via gradient analysis. These approaches suffer from high
computational and storage costs. Although various efficient alternatives have been proposed (Lin
et al., 2024; Kwon et al., 2024), they are still far from ideal for large models of billions of parameters.
Moreover, these alternatives usually depend on specific optimizers or stronger assumptions, which
also limit their broader applicability.

In this paper, we propose a novel approach to influence analysis that is simple, efficient, and both
gradient- and optimizer-independent. Inspired by knowledge tracing (Corbett & Anderson, 1994),
a technique used to predict human learners’ performance on new problems based on their learning
history, we estimate the influence of training data points by tracing the model’s training dynamics,
i.e., the changes in its predictions on individual examples throughout training. We hypothesize these
training dynamics intrinsically encode influence relationships among data points. For instance, if a
model’s performance on one example improves more than on another after a certain training step, the
batch of examples in step should exert a stronger influence on the former. Our goal is to extract such
influence signals. Specifically, we propose learning influence representations for data points that
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Figure 1: We pair each training batch B ⊂ Dtrain with a subset of sampled validation examples
V ⊂ Dval (Step 1). During training, we track how the model’s predictions on these validation
examples change (∆p) across mini-batch updates (Step 2). Finally, we distill influence from these
dynamics via contrastive learning, where the representations of validation examples with larger ∆p
are encouraged to be closer to those of their corresponding training batch (Step 3).

capture their training impact. We optimize these representations using contrastive learning, such that
the distance between representations reflects the influence strength between the corresponding data.

To validate our approach, we first experiment with RoBERTa (Zhuang et al., 2021) on two widely
used datasets: SNLI (Bowman et al.) and SST-2 (Socher et al.). Results show that our method
produces influence estimates that correlate strongly with the actual influence. Next, we demonstrate
the practical utility of our approach on two tasks: mislabeled data identification and coreset selection
(§ 3.2). Finally, we extend our method to larger models for data attribution in instruction tuning,
showcasing its scalability to large models and robustness across diverse task formats (§ 3.3).

In summary, our contributions are as follows:

• We explore a new direction for influence estimation by tracing the model’s training dynamics,
offering a fresh perspective beyond retraining- or gradient-based methods.

• We develop this idea by proposing a contrastive learning based approach to capture influence
relationships between examples in a representation space, which is simple, efficient, and
scalable.

• We evaluate our approach through extensive experiments. The results demonstrate its fidelity
in influence estimation, its practical utility in downstream applications, and its generality
across different models and tasks.

2 METHODOLOGY

Preliminaries Let X and Y be the input and label space for a given task, and let Dtrain =
{z1, ..., zn} be a training dataset, where zi = (xi, yi), xi ∈ X , yi ∈ Y . We denote a model with
parameters θ by Mθ : X → Y , and a loss function by ℓ : Y × Y → R. Given a validation set
Dval, prior studies (Koh & Liang, 2017; Pruthi et al., 2020) usually define the influence of a training
example zi ∈ Dtrain on a validation example zj ∈ Dval as the change in the model’s loss on zi after
Mθ is trained on zi:

I(loss)
θ (zi, zj) = ℓ(yj ,Mθ(xj))− ℓ(yj ,Mθ′(xj)), θ

′ = argmax
θ

ℓ(yi,Mθ(xi)). (1)

Different from them, we describe influence in another way — as the change in the model’s confidence
on yj :

Iθ(zi, zj) = pθ(zj)− pθ′(zj), θ
′ = argmax

θ
ℓ(yi,Mθ(xi)), (2)

where p(zj) = pθ(yj |xj) is the probability predicted by Mθ. Both ∆ℓ and ∆p describe how training
examples influence another. In addition, ∆p has a concrete probabilistic meaning in reality, making it
more straightforward and interpretable.
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Motivation Previous influence analysis methods typically rely on gradient-based closed-form
expressions. However, we note that ∆p (as well as ∆ℓ) can be extensively observed during training.
Therefore, the core idea of our approach is to learn the influence relationships among data points
from these observed ∆p, leveraging only training logs and avoiding costly gradient analysis. An
illustration is shown in Figure 1.

2.1 COLLECTING TRAINING DYNAMICS

We refer to the training dynamics of a model as its (change in) predictions on individual examples
pθ(z) during training(Swayamdipta et al., 2020; Ren & Sutherland, 2025). Specifically, to train the
model, the training set Dtrain is first partitioned into mini batches with a batch size B: Dtrain →
{B1, ...,BT }, and then an optimizer A performs gradient descent iteratively to update the parameters:
A(M, θt,Bt) → θt+1. During training, it is common to evaluate the model on the validation
set Dval regularly to monitor the model’s performance and adjust the training process. Therefore,
we can collect the probabilities of each validation example across different steps {pθt(zi)|t ∈
{v1, v2, ...}, zi ∈ Dval}, where {v1, v2, ...} denotes the steps at which validation is performed, and
furthermore, the change in these probabilities {∆pθt(zi) = pθt(zi)− pθt−1

(zi)|t ∈ {v2, v3, ...}}.

By definition, each ∆pθt(z) reflects the influence on z caused by all the training examples between
adjacent validation steps: Iθ(

⋃vt
i=vt−1

Bi, z). Our goal is to decompose the collective influence into
individual influence, i.e., {Iθ(z′, z)|∀z′ ∈

⋃vt
i=vt−1

Bi}.

However, because validation is usually performed infrequently, the size of
⋃vt

i=vt−1
Bi is usually

large, making it hard to disentangle individual influences. To overcome this issue, we pair each batch
Bt with a subset of validation examples, denoted by Vt, which is sampled from Dval. Then, we
monitor the model’s prediction on Vt at each training step t:

{∆pθt(z) = pθt(z)− pθt−1(z)|∀z ∈ Vt} (3)

In other words, we distribute the centralized validation to each batch, allowing us to observe finer-
grained influence relationship between Bt with Vt. The process is described in Algorithm 1 (Stage 1),
and more details about data collection can be found in Appendix B. Note that with a proper sample
size |V|, this will not introduce significant computational cost. We will discuss the cost in Section 3.

2.2 DISTILLING INFLUENCE REPRESENTATIONS FROM TRAINING DYNAMICS

We now describe our approach to learn influence representations from the collected training dynamics,
detailed in Algorithm 1 (Stage 2). The core idea is to leverage contrastive learning to distinguish
between more and less influential data. Specifically, we begin by associating each training and
validation example an embedding, resulting in two embedding matrices Et ∈ R|Dtrain|×h and
Ev ∈ R|Dval|×h, where h is the dimension. These embeddings are expected to capture the influence
relationship between data points in a way that if a training example zi ∈ Dtrain has a strong influence
on a target example zj ∈ Dval, their embeddings eti and evj should be close in the embedding space:

−||eti − evj || ∝ Iθ(zi, zj). (4)

In other words, we project influence into the embedding space, where proximity reflects influence
strength. To achieve this goal, we adopt a triplet-based contrastive learning approach. In concrete, at
each training step t, we treat the batch examples Bt as the anchor, which causes the changes in the
model’s prediction on validation examples {∆pθt(z)|z ∈ Vt}. Among these, examples with large
∆p are considered to be more strongly influenced by Bt; accordingly, their embeddings should be
closer to the anchors’ embeddings. Conversely, embeddings of examples with smaller ∆p should
be farther from the anchor. Thus, for any two examples in Vt, we use the one with larger ∆p as the
positive example zpos, and the other as the negative zneg:

{(zpos, zneg) ∈ Vt × Vt, ∀∆p(zpos) > ∆p(zneg)}. (5)

Then, we learn the embeddings using the following objective:

L = max(0, ∥eanc − epos∥−∥eanc − eneg∥+ γ), (6)
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Table 1: Complexity and dependency of different methods. Training denotes the one-time cost of
model training. Computation represents the time to compute the influence of training examples on a
single validation or test example. Space is the memory required for computation. Storage refers to
the space for persistently saving additional model parameters. D: size of training data. M(= |θ|):
size of model. h(≪ M) : dimension of embeddings learned by INFTRACE . λ: normalized cost
factor. We list the complexity in the general situation and refer readers to (Hammoudeh & Lowd,
2024) for a detailed discussion.

Complexity Dependency

Training Computation Space Storage Optimizer Gradient

Retraining-based O(DDM) O(DM) O(D +M) O(DM) No No
Influence Functions O(DM) O(DM) O(D +M) 0 ∼ O(DM) Partial Yes
INFTRACE O(DM) +O(λDM) O(Dh) O(D + h) O(Dh) No No

where eanc is the weighted sum of the anchor embeddings: eanc =
∑

zi∈Bt
wiei, with the weights

computed by: w = softmax([pθt(z)
−1, ∀z ∈ Bt]). The motivation is that examples with lower

confidence would produce larger gradients and therefore have a higher impact on the model.

To encourage embedding distance to reflect finer-grained influence strength, we set the margin γ in
Eq. (6) in a dynamic manner:

γ = τ + β ∗ (∆p(zpos)−∆p(zneg)), (7)

where τ is the base margin and β scales it according to the gap between zpos and zneg. Finally, after
obtaining learned embeddings, we measure the influence of zi ∈ Dtrain on zj ∈ Dval using the
Euclidean distance, consistent with the training objective:

Iθ(zi, zj) = −||ei − ej ||. (8)

2.3 COMPLEXITY OF INFTRACE

The computational cost of INFTRACE includes two parts: (1) the additional cost for batch-wise
validation on {V1 · · · VT }, and (2) the cost to train influence representations. In practice, the cost of
the second part is negligible since these representations converge very fast1. For the first part, we
normalize it with respect to the training cost using λ, which is the ratio of the number of sampled
validation examples per batch to the batch size, i.e., λ = V/B. This roughly quantifies the extra cost
introduced by integrating INFTRACE into the training process, independent of the model or data size.

Table 1 lists the algorithmic complexities of different methods. INFTRACE significantly reduces
computation and space complexity by many orders of magnitude (h = 1024 ≪ M ), as it does not rely
on gradients O(M) but instead measures influence using learned representations O(h). Furthermore,
the efficiency only comes at a negligible one-time training cost O(λDM) where λ usually suffices at
a low value (Section 3).

2.4 FURTHER DISCUSSIONS

Rationale for choosing contrastive learning. An alternative to our contrastive learning approach
is to use a regression model to predict the exact confident change, i.e., f : (zi, zj) 7→ ∆p(zj). We
explored this method in our initial experiments and found that the model struggles to converge and
yields poor performance. We conjecture that the reason lies in the stochastic and noisy nature of the
training process, which makes it challenging to directly fit the exact ∆p. In contrast, the contrastive
learning approach only requires distinguishing the relative strength of influences among data, making
the task much easier to learn.

Absolute and Relative influence. As a limitation of the contrastive learning, our influence estima-
tion does not provide an exact value, though we use a dynamic margin to help align the distance with

1With d = 1024 and a single RTX 4090, it takes 20 minutes for one epoch, and converges within 2 epochs
on both datasets.
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Figure 2: t-SNE visualizations of initial and learned representations on the SST-2 (P: Positive; N:
Negative) and SNLI (C: Contradiction; N: Neutral; E: Entailment) datasets.

influence strength. Nevertheless, we argue that this does not affect the practical utility of INFTRACE ,
since in most scenarios we are concerned with relative influence among training data, for example,
identifying the most influential examples. Moreover, experimental results (§ 3.1) show that the
influence estimated by INFTRACE has a strong linear correlation with the actual ∆p, implying that
one can fit a post-hoc regression model to predict the exact ∆ from the estimated one if needed.

Rationale for learning ∆p. It is worth noting that our approach is compatible with learning ∆ℓ,
since both ∆ℓ and ∆p are available during training. However, ∆p offers several advantages: (1) ∆p
is more straightforward and interpretable. (2) ∆ℓ is unbounded, which may lead to trivial scaling of
the representation space. In contrast, ∆p ∈ [−1, 1] serves as an implicit normalization, encouraging
compact representations. (3) Computing ∆p only requires a forward pass, whereas ∆ℓ requires a
backward pass, which is considerably more costly. Therefore, we opt for learning ∆p in this study.

3 EXPERIMENTS

In this section, we conduct comprehensive experiments to assess INFTRACE across different model
sizes and tasks. We first validate its effectiveness using a small language model, RoBERTa (Zhuang
et al., 2021), on two NLP classification datasets: SNLI (Bowman et al.) for natural language inference
and SST-2 (Socher et al.) for sentiment classification (§ 3.1). Building on these results, we then
evaluate INFTRACE on two downstream applications: mislabeled data identification and coreset
selection (§ 3.2). Finally, we scale up to a larger model, LLaMA-3-8B (Grattafiori et al., 2024), and
test INFTRACE on a harmful data detection task for instruction tuning (§ 3.3). Implementation details
for this section can be found in Appendix C.

3.1 EFFECTIVENESS OF INFTRACE

Visualizing the learned representations. To obtain an intuitive understanding of the learned
representations, we visualize them using t-SNE (van der Maaten & Hinton, 2008) in Figure 2.
Compared to the initial state, representations learned by INFTRACE exhibit clear clusters that align
with the data classes. This suggests that our method captures meaningful relationships among data
points, since samples from the same class tend to exert stronger mutual influence and therefore appear
closer in the representation space, consistent with our learning objective.

Figure 3: Estimated influence and the empirical
influence (∆p) on unseen data.

Correlation between estimated and actual in-
fluence. We use Pearson correlation ρ to eval-
uate the alignment between estimated influence,
which is the negative distance between represen-
tations, and the actual influence, which is the
observed ∆p. The evaluation is performed on a
held-out set, which is not used for INFTRACE
training. We present the results in Figure 3. IN-
FTRACE achieves a strong correlation of 0.87
on SNLI and 0.84 on SST-2, both with p−value
close to 0. This proves that it can effectively
estimate relative influence. In addition, we ob-
serve that there are some outliers clustered around the central horizontal line, especially on SST-2.
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Figure 4: Pearson correlation ρ across different hyperparameters: embedding size d (left), sample
ratio with respect to batch size λ (middle), and marginal scaling factor β (right).

Such small ∆ likely do not reflect true influence, but rather result from noise or randomness in the
training process, making them hard to estimate.

Efficiency of INFTRACE . In Figure 4 (left and middle), we compare the performance of INFTRACE
across different embedding sizes d and sampling ratios λ (with respect to the batch size). Both
parameters directly reflect the computational cost of our method (see § 2.3 and Table 1). Increasing d
generally improves performance, but it saturates around 1024, which offers a good balance between
efficiency and effectiveness—still substantially smaller than the gradient dimension even under
efficient training. For λ, performance peaks at 0.5, while already reaching near-optimal levels at 0.1,
indicating that INFTRACE only adds a fraction of the training cost. These results demonstrate that
INFTRACE can estimate influence efficiently.

Impact of the margin scaling β. In Figure 4 (right), we report the correlation under different
values of the margin scaling factor β. We find that INFTRACE is sensitive to this hyperparameter,
with the best results achieved when β = 2. A possible reason is that most ∆p values are relatively
small, and thus appropriately scaling up the gap helps the representations become more separable in
the embedding space.

3.2 USE CASES

In this section, we demonstrate two use cases of our method: Influential Data Selection for efficient
training and Mislabeled Data Identification.

Baselines. We compare INFTRACE with representative methods from different categories of
influence estimation approaches, including:

• Hessian-based influence functions: The influence function introduced by Koh & Liang
(2017) is computationally expensive, and subsequent work has proposed various efficient
variants. We adopt DataInf, a state-of-the-art method. It leverages LoRa training and Hessian
approximations to improve efficiency.

• Hessian-free methods: Recent studies have also found that the Hessian offers little gain
for LLMs. We consider two Hessian-free methods: a static one GRADDOT (Charpiat et al.,
2019) and a dynamic one TRACIN (Pruthi et al., 2020). Both methods quantify the influence
between two data points via the dot product of their gradients: the former directly uses
gradients from a fully trained model, whereas the latter aggregates estimates across multiple
checkpoints during training.

• Representation-based methods: In addition to gradient-based methods, we also include
a representation-based method, which computes the model representation similarity of
examples, denoted as REPSIM. Although REPSIM measures relevance more than influence,
it has shown strong performance in various tasks (Li et al., 2024). We choose the final layer
hidden state of the first token (i.e., the [CLS] token), which is used for final prediction in
RoBERTa and is expected to encode task-relevant information.

Implementation details for baselines can be found in Appendix C.2.
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Figure 5: Model performance with varying proportions of training data selected by different ap-
proaches. Results are averaged over three runs with standard deviations indicated by the error bars.
For reference, the gray line denotes the performance obtained when training on the full dataset.

3.2.1 INFLUENTIAL DATA SELECTION

The goal of this task is to select a subset of the training data, such that training a model on this
subset yields comparable performance as training on the full dataset. The problem is also known as
coreset selection (Guo et al., 2022), and influence function has been proved an effective approach to
it (San Joaquin et al., 2024; Wang et al., 2023; Yang et al., 2023).

Following Xia et al. (2024), we select training examples by their overall influence on the validation
set:

Iθ(zi,Dval) =
1

|Dval|
∑

1≤j≤|Dval|

Iθ(zi, zj). (9)

In addition to the above-mentioned baselines, we also include a RANDOM selection baseline. We
first train the model on 3, 000 randomly sampled examples as a warm-up stage. Then, we continue to
fine-tune the model using examples selected by different methods, where the warm-up examples are
excluded from the selection pool.

The results are presented in Figure 5. Overall, our method outperforms the baselines. Surprisingly,
the random baseline already achieves strong performance, while most existing approaches fail to
surpass it. It is worth noting that our method performs particularly well under small proportions (10%
or 20%) of the data. As the proportion of training data increases, the performance gap across different
methods gradually narrows, and all methods eventually converge to the results obtained with the full
dataset. A plausible reason is that the marginal benefit of individual training example decreases as the
dataset grows larger. Nevertheless, these results highlight the superiority of our method in low-data
regimes.

3.2.2 MISLABELED DATA IDENTIFICATION

Prior work has shown that influence functions can help identify mislabeled examples, as these
examples often exhibit abnormal gradient behavior (Pruthi et al., 2020; Koh & Liang, 2017). We
evaluate our method in this task. Specifically, we flip the labels of a small fraction of the training set
as the ground-truth mislabeled data. Then, we detect these mislabeled data using different approaches.

For gradient-based methods GRADDOT, TRACIN, and DATAINF, we identify mislabeled data as the
examples with the highest self-influence score, since prior work has shown that mislabeled samples
tend to strongly support themselves.

For REPSIM, we compute the average cosine similarity of each example to others within the same
class and regard those with the lowest average similarity as mislabeled data, analogous to outliers.

For INFTRACE , we first retrain the RoBERTa classifier with the dataset containing mislabeled
examples and then learn influence representations from its training dynamics. Similar to REPSIM, we

7
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Table 2: AUC of mislabel identification. Best results
are bold and second best results are underlined.

SNL SST-2
1% 5% 10% 1% 5% 10%

GRADDOT 88.3 90.9 93.4 91.6 93.5 96.2
TRACIN 88.6 90.9 93.5 91.4 93.4 96.0
DATAINF 88.9 91.5 93.7 92.2 94.0 96.8
REPSIM 88.0 91.2 93.1 93.2 94.7 97.2

INFTRACE 89.3 92.1 93.5 91.8 94.9 97.5

Table 3: Results (recall@k) of harmful
data detection.

AdvBench
R@10 R@50 R@100

GRADDOT 9.11 28.2 40.9
TRACIN 8.46 27.7 41.0
DATAINF 9.35 30.3 43.8
REPSIM 7.96 27.0 34.7

INFTRACE 9.37 35.9 54.2

treat the samples with the lowest similarity to their class peers as mislabeled data, but here we use
Euclidean distance as the similarity measure to remain consistent with the training of INFTRACE .

In this way, each method assigns a score to every example indicating its tendency of being mislabeled.
For evaluation, we follow (Hammoudeh & Lowd, 2024) to compute the area under curve (AUC)
between the generated scores and the binary annotations of mislabeled data. This AUC measures
the probability that a randomly chosen mislabeled example receives a higher score than a randomly
chosen clean example. The results are presented in Table 2. In particular, we experiment with
different proportions of mislabeled data to comprehensively evaluate how the methods perform under
varying dataset quality. For example, we use 1% and 5% to simulate human-curated datasets, while
10% simulates synthetic datasets. Our method shows strong performance, achieving the best or
second-best results in most cases.

3.3 SCALING TO LARGE MODELS

Finally, we scale our experiments to a larger model, LLaMA-3-8B-Instruct (Grattafiori et al., 2024),
and evaluate our method on a harmful data detection task. Given a harmful prompt, a safe model
should refuse to respond. However, recent studies (Qi et al., 2023; Ji et al., 2024) have shown that
even a small amount of harmful training data can undermine safety alignment. This makes it crucial
to identify and filter such harmful data from the training dataset.

Experimental Setting. We collect harmful data from AdvBench (Zou et al., 2023). Since AdvBench
only provides prompts, we first prompt a LLaMA-3-8B-Instruct to generate responses by appending
an adversarial suffix (e.g., “Sure, here is a script that can . . . ”) designed to subvert the model’s
alignment. This yields 176 harmful <prompt, response> pairs. We randomly select 100 pairs for
training data and use the remaining 76 for evaluation. In addition, we sample 400 benign examples
from Alpaca (Taori et al., 2023). Then, we fine-tune two LLaMA-3-8B-Instruct: one on the 400
benign instructions (Control model), and one on the mixture of 100 harmful and 400 benign examples
(Intervention model). Training set up can be found in Appendix C.3.

After training, we compare the outputs of the two models on the held-out 76 harmful data. We
identify instructions for which the Control model refused to answer while the Intervention model did.
Since the 100 harmful examples are the only difference between the two models, we can attribute the
inappropriate behavior to these harmful examples, i.e., they are the ground-truth influential examples.
Next, we compute the influence scores of the 500 training examples using INFTRACE as well as the
baselines introduced before. Different from the classification tasks in previous experiments, this task
involves multiple ∆p from the generated tokens. We use the average of ∆p to train INFTRACE .

Results In this task, the goal is to identify as many harmful training examples as possible. Thus,
we use Recall@k as the evaluation metric. The results are shown in Table 3. Note that there
are 100 harmful data in total, therefore the upper bound recall results for k = {10, 50, 100} are
{10%, 50%, 100%}, respectively. We make the following observations from the results. First, our
model achieves the best overall performance, demonstrating both its superiority on this task and
its applicability across different task formats. In addition, all models perform very well at k = 10,
suggesting that identifying the top influential examples is relatively easy. However, the more critical
challenge in this task is the comprehensive recall of harmful data, since even a small amount of
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such data can lead to undesirable behavior. Our method shows clear advantages in this regard and
outperforms the baselines at larger values of k, indicating its ability to uncover more subtle or
harder-to-identify influential examples. Notably, at k = 100, it achieves a 24% relative improvement
(41.0% → 54.2%) over the best-performing baseline, DATAINF. Finally, we note that although
RepSim delivers competitive results on the mislabeled data identification task and appears to be
another gradient-free alternative, in this task its performance is noticeably weaker than influence
analysis—especially at R@100—highlighting its limitations.

4 RELATED WORK

Influence Analysis. Early approaches to influence analysis are mostly retraining-based, where
models are repeatedly retrained on subsets of the training data to observe performance changes
caused by missing examples (Ling, 1984; Rousseeuw & Leroy, 2003; Feldman & Zhang, 2020).
These methods are computationally expensive and usually face high variance due to the stochastic
nature of training. Modern approaches for deep neural networks are mainly gradient-based, which
use a closed-form expression derived from Taylor-series expansions or risk stationarity, assuming
some degree of differentiability (Koh & Liang, 2017). While they avoid repeated training, these
methods remain costly due to gradient computation and storage, especially the calculation of inverse
Hessian-vector products (iHVP). Therefore, subsequent research has proposed various methods to
approximate the iHVP in more efficient ways (Hammoudeh & Lowd, 2024; Agarwal et al.; Chen
et al., 2021). Some studies further explored Hessian-free methods, which measure the influence
between data points directly based on the dot product of their gradients (Charpiat et al., 2019; Pruthi
et al., 2020). In addition to these gradient-based methods, recent work has attempted to use the
similarity of task-specific representations learned by the model to measure data influence, and has
achieved promising results on related tasks (Zheng et al., 2024; Li et al., 2024). In this paper, we
compare our INFTRACE with representative approaches from each category.

Applications of Influence Analysis Influence has been applied in various scenarios, for example,
interpreting various model behaviors (Ren & Sutherland, 2025; Zhang et al., 2023), identifying
mislabeled data (Pruthi et al., 2020; Koh & Liang, 2017), data attribution (Lin et al., 2024; Choe
et al.), selecting influential data to improve training efficiency (Xia et al., 2024; San Joaquin et al.,
2024), etc. Recent studies have started to apply influence analysis to large-scale models. As larger
parameter sizes pose greater challenges to efficiency, the focus of acceleration strategies has shifted
from approximating the iHVP to reducing the parameter dimensionality in order to shrink the gradient
size. Examples include efficient parameter tuning ?Hammoudeh & Lowd (2024), selecting only
specific parameter layers of the model Pruthi et al. (2020); Yeh et al. (2022), and applying random
projections to the gradientsPark et al. (2023).

Training Dynamics. Training dynamics, which describe how a model’s behavior evolves during
the training process, have been leveraged as an informative signal for analyzing both models and
data. For example, Swayamdipta et al. (2020) used the model’s confidence trajectories over training
epochs for dataset diagnosis; Jia et al. (2023) used the traces left by iterations of the optimizer to
detect mislabeled examples; and He et al. (2024) used dynamic uncertainty to guide dataset pruning.
Different from them, we propose a learning algorithm that distills influence relationships from training
dynamics, which provides a new direction for influence estimation.

5 CONCLUSION

This paper proposes a novel perspective on influence estimation by distilling influence signals from
model training dynamics. We implement this idea using contrastive learning to project influence
relationships between data points into a representation space. Our method effectively estimates
influence while offering improved efficiency over gradient-based and retraining-based alternatives.
Furthermore, we evaluate our method across a variety of tasks, datasets, and model scales, showcasing
its broad applicability.
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6 ETHICS STATEMENT

We foresee no serious ethical concerns with the work. In fact, our method aims to analyze the
influence of training data, which can potentially aid in identifying inappropriate training data and
improving model safety, as demonstrated in § 3.3.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we include all necessary details. Method descriptions and experimental
setups are discussed in the main text § 2 and § 3, and practical implementations are provided in
Appendix C. Code will be made publicly available upon publication.

8 STATEMENT ON LLM USE

This paper did not involve any substantive use of LLMs, such as idea development, experimental
design, analysis, coding, etc. LLMs were used solely in a limited capacity to assist with minor
language editing and polishing.
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A ALGORITHM

Algorithm 1 INFTRACE Learning Algorithm
Input: ModelM parameterized by θ, training set Dtrain, validation set Dval, optimizer A.

1: Stage 1: Collecting training dynamics C
2: C ← ∅
3: Split Dtrain to mini batch: {B1, · · · ,BT }
4: Sample subsets from Dval: {V1, · · · ,VT }
5: for 1 ≤ t ≤ T do
6: P

(t)
val = {pθt(z),∀z ∈ Vt}

7: θt+1 ←A(M, θt,Bt), Ptrain = {pθt(z), z ∈ Bt}
8: P

(t+1)
val = {pθt+1(z), z ∈ Vt}

9: ∆P
(t)
val = {pθt+1(z)− pθt(z), z ∈ Vt}

10: C ← C ∪ (∆P
(t)
val , P

(t)
train)

11: end for

12: Stage 2: Distilling influence from C
13: Initialize: Et = {et

i,∀zi ∈ Dtrain}, Ev = {et
j ,∀zj ∈ Dval}

14: for 1 ≤ t ≤ T do
15: for (zp, zn) ∈ Vt × Vt, ∆pθt(zp) > ∆pθt(zn) do
16: eanc =

∑
ei∈B wiei, where wi ∝ 1

pθt (zi)

17: Update Et,Ev w.r.t: Max(0, ∥eanc − ep∥ − ∥eanc − en∥ + γ )
18: end for
19: end for
20: return Et,Ev

B MORE DETAILS OF THE METHOD

Sampling strategy. For INFTRACE to effectively learn influence relationships among data points,
it is essential that their training dynamics are adequately observed throughout training. Therefore, at
each timestep t, we sample Vt according to its frequency sampled in previous steps:

w(zi)
(t) =

a
(t)
i∑|Dval|

j=1 a
(t)
j

, (10)

a
(t)
i =

1

1 +
∑t−1

j=1 1{zi ∈ Bj}
. (11)

where w(z)(t) is the sampling weight for z at a certain step t, which is inversely proportional to how
many times it has been sampled before.

Data Filtering. In Eq. 5, we collect positive and negative examples according to the gap between
their prediction change ∆p. In our experiments, we discard pairs with a small gap between ∆p, as
such data are more likely to reflect training noise rather than true influence. Including these pairs
often results in poorer performance. Specifically, we rank the collected pairs by the gap in ∆p and
retain only the top 20% with the largest values.

C IMPLEMENTATION DETAILS

C.1 IMPLEMENTATION OF INFTRACE

To learn INFTRACE , we first fine-tune RoBERTa on SNLI and SST-2 for 2 epochs using AdamW
(Loshchilov & Hutter, 2019) with the same hyperparameters, where the learning rate is 1e− 5 and
batch size is 32. While our method is scalable to larger datasets, baseline methods are computationally
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expensive. Therefore, we reduce the data size by randomly sampling 32, 000 training examples from
each dataset so that we can compare our method with baselines on the same data in an efficient
way. Both datasets are licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License and are used for their intended purpose. Using |V| = 16, we collect 16× 15× 1

2 × 2000 =
240, 000 triplets from 2, 000 training steps. All the experiments with RoBERTa are done on a single
RXT 4090 with 24GB of Memory.

Then, we split the collected triplets into 80% for training, 10% for validation, and 10% for testing.
We train INFTRACE on the training set using AdamW with a learning rate of 5e − 5 and a batch
size of 32. The embedding dimension h is set to 1024, and the margin scaling factor β is set to 2
(Eq. 7). Training is conducted for up to 10 epochs. During training, we evaluate the model on the
validation set every 500 steps using Pearson correlation. We apply early stopping based on validation
performance. INFTRACE typically converges quickly, often reaching the best performance within 2
or 3 epochs.

C.2 IMPLEMENTATION OF BASELINES

During the training of RoBERTa, we stored the model every 500 steps, resulting in four checkpoints.
For the static influence function GRADDOT, we obtain gradients from the final checkpoint and use
the gradient dot product to compute influence. While for the dynamic influence function, we follow ?
to aggregate the influence from all the checkpoints:

Iθ(z, z′) =
k∑

i=1

ηi∇ℓ(θi; z) · ∇ℓ(θi, z
′), (12)

where ηi is the learning rate for the corresponding checkpoint. Since gradient vectors are typically
high-dimensional, even for models like RoBERTa, we extract gradients only from the last five layers,
including four encoder layers and the final classifier. The gradients are concatenated and then com-
pressed to a 1024-dimensional vector using sparse random projection, matching the dimensionality
of our learned influence embeddings. This dimensionality reduction strategy is widely adopted in
prior work on influence functions to improve efficiency (Xia et al., 2024; Kwon et al., 2024; Lin et al.,
2024).

C.3 LLAMA FINETUNING

In § 3.3, we fine-tune LLaMA-3-8B-Instruct using LoRA with the rank of r = 16, resulting in
≈ 0.52% trainable parameters. We set the learning rate to 2e− 4, use a batch size of 4, and train it
for 3 epochs.
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