
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT DATA INFLUENCE ANALYSIS BY TRACING
MODEL TRAINING DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantifying the impact of training data is essential for understanding model behav-
ior and optimizing the training process. Despite extensive research into influence
estimation, existing methods often rely on repeated training or gradient analysis,
which results in prohibitive computational and memory costs and limits their ap-
plicability to large-scale models and datasets. In this paper, we explore a new
perspective on influence estimation by distilling influence signals from training
dynamics, i.e., the model’s predictions on individual examples throughout training.
We propose INFTRACE , an influence estimation approach that uses contrastive
learning to project the observed influence into a representation space, where the
proximity between data points reflects their influence strength. Our approach
is simple, efficient, and scalable, requiring neither gradient computation nor as-
sumptions about the optimizers. We validate our approach across various tasks
and datasets, demonstrating its ability to estimate influence effectively, scalability
to large models, and utility in downstream applications, such as mislabeled data
identification, influential data selection, and data attribution.

1 INTRODUCTION

Training data play a crucial role in shaping the capabilities and behaviors of language models. Recent
studies have shown that even a small amount of training data may affect model behavior in nontrivial
ways. For example, thousands of training examples can effectively align LLM outputs (Zhou et al.,
2023), while a few adversarial examples can induce unexpected outputs Qi et al. (2023); Ji et al.
(2024). In practice, training datasets are often large and of complex compositions, particularly with
the growing use of synthetic corpora. This raises a crucial question: How can we efficiently measure
the impact of specific training data points on model behavior?

Influence analysis aims to answer this question by estimating how the learning of one or a set of
examples affects the model’s prediction on others. This not only provides insights into understanding
model behaviors (Ren & Sutherland, 2025; Zhang et al., 2023) but also can improve the training
process (Xia & Henao, 2023; Xia et al., 2024). Existing approaches mainly rely on repeated retraining
(Feldman & Zhang, 2020; Kandpal et al., 2022), which exclude specific examples from training
to observe the model’s performance change, or are gradient-based (Koh & Liang, 2017; Pruthi
et al., 2020), which measure influence via gradient analysis. These approaches suffer from high
computational and storage costs. Although various efficient alternatives have been proposed (Lin
et al., 2024; Kwon et al., 2024), they are still far from ideal for large models of billions of parameters.
Moreover, these alternatives usually depend on specific optimizers or stronger assumptions, which
also limit their broader applicability.

In this paper, we propose a novel approach to influence analysis that is simple, efficient, and both
gradient- and optimizer-independent. Inspired by knowledge tracing (Corbett & Anderson, 1994),
a technique used to predict human learners’ performance on new problems based on their learning
history, we estimate the influence of training data points by tracing the model’s training dynamics,
i.e., the changes in its predictions on individual examples throughout training. We hypothesize these
training dynamics intrinsically encode influence relationships among data points. For instance, if a
model’s performance on one example improves more than on another after a certain training step, the
batch of examples in step should exert a stronger influence on the former. Our goal is to extract such
influence signals. Specifically, we propose learning influence representations for data points that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Representation Space

∆𝐩

𝑥1 𝑥2 𝑥3 𝑥4…

∆𝐩

𝑥1 𝑥2 𝑥3 𝑥4…

∆𝐩

𝑥~𝐷train 𝑥~𝐷val

Step 3: Distilling influencce

𝐷train

𝐷val

……Sample

Split

Batch data

Step 2: Collecting training dynamicsStep 1: Batch-wise train-val pairing

More influential

Less influential

Figure 1: We pair each training batch B ⊂ Dtrain with a subset of sampled validation examples
V ⊂ Dval (Step 1). During training, we track how the model’s predictions on these validation
examples change (∆p) across mini-batch updates (Step 2). Finally, we distill influence from these
dynamics via contrastive learning, where the representations of validation examples with larger ∆p
are encouraged to be closer to those of their corresponding training batch (Step 3).

capture their training impact. We optimize these representations using contrastive learning, such that
the distance between representations reflects the influence strength between the corresponding data.

To validate our approach, we first experiment with RoBERTa (Zhuang et al., 2021) on two widely
used datasets: SNLI (Bowman et al.) and SST-2 (Socher et al.). Results show that our method
produces influence estimates that correlate strongly with the actual influence. Next, we demonstrate
the practical utility of our approach on two tasks: mislabeled data identification and coreset selection
(§ 3.2). Finally, we extend our method to larger models for data attribution in instruction tuning,
showcasing its scalability to large models and robustness across diverse task formats (§ 3.3).

In summary, our contributions are as follows:

• We explore a new direction for influence estimation by tracing the model’s training dynamics,
offering a fresh perspective beyond retraining- or gradient-based methods.

• We develop this idea by proposing a contrastive learning based approach to capture influence
relationships between examples in a representation space, which is simple, efficient, and
scalable.

• We evaluate our approach through extensive experiments. The results demonstrate its fidelity
in influence estimation, its practical utility in downstream applications, and its generality
across different models and tasks.

2 METHODOLOGY

Preliminaries Let X and Y be the input and label space for a given task, and let Dtrain =
{z1, ..., zn} be a training dataset, where zi = (xi, yi), xi ∈ X , yi ∈ Y . We denote a model with
parameters θ by Mθ : X → Y , and a loss function by ℓ : Y × Y → R. Given a validation set
Dval, prior studies (Koh & Liang, 2017; Pruthi et al., 2020) usually define the influence of a training
example zi ∈ Dtrain on a validation example zj ∈ Dval as the change in the model’s loss on zi after
Mθ is trained on zi:

I(loss)
θ (zi, zj) = ℓ(yj ,Mθ(xj))− ℓ(yj ,Mθ′(xj)), θ

′ = argmax
θ

ℓ(yi,Mθ(xi)). (1)

Different from them, we describe influence in another way — as the change in the model’s confidence
on yj :

Iθ(zi, zj) = pθ(zj)− pθ′(zj), θ
′ = argmax

θ
ℓ(yi,Mθ(xi)), (2)

where p(zj) = pθ(yj |xj) is the probability predicted by Mθ. Both ∆ℓ and ∆p describe how training
examples influence another. In addition, ∆p has a concrete probabilistic meaning in reality, making it
more straightforward and interpretable.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Motivation Previous influence analysis methods typically rely on gradient-based closed-form
expressions. However, we note that ∆p (as well as ∆ℓ) can be extensively observed during training.
Therefore, the core idea of our approach is to learn the influence relationships among data points
from these observed ∆p, leveraging only training logs and avoiding costly gradient analysis. An
illustration is shown in Figure 1.

2.1 COLLECTING TRAINING DYNAMICS

We refer to the training dynamics of a model as its (change in) predictions on individual examples
pθ(z) during training(Swayamdipta et al., 2020; Ren & Sutherland, 2025). Specifically, to train the
model, the training set Dtrain is first partitioned into mini batches with a batch size B: Dtrain →
{B1, ...,BT }, and then an optimizer A performs gradient descent iteratively to update the parameters:
A(M, θt,Bt) → θt+1. During training, it is common to evaluate the model on the validation
set Dval regularly to monitor the model’s performance and adjust the training process. Therefore,
we can collect the probabilities of each validation example across different steps {pθt(zi)|t ∈
{v1, v2, ...}, zi ∈ Dval}, where {v1, v2, ...} denotes the steps at which validation is performed, and
furthermore, the change in these probabilities {∆pθt(zi) = pθt(zi)− pθt−1

(zi)|t ∈ {v2, v3, ...}}.

By definition, each ∆pθt(z) reflects the influence on z caused by all the training examples between
adjacent validation steps: Iθ(

⋃vt
i=vt−1

Bi, z). Our goal is to decompose the collective influence into
individual influence, i.e., {Iθ(z′, z)|∀z′ ∈

⋃vt
i=vt−1

Bi}.

However, because validation is usually performed infrequently, the size of
⋃vt

i=vt−1
Bi is usually

large, making it hard to disentangle individual influences. To overcome this issue, we pair each batch
Bt with a subset of validation examples, denoted by Vt, which is sampled from Dval. Then, we
monitor the model’s prediction on Vt at each training step t:

{∆pθt(z) = pθt(z)− pθt−1(z)|∀z ∈ Vt} (3)

In other words, we distribute the centralized validation to each batch, allowing us to observe finer-
grained influence relationship between Bt with Vt. The process is described in Algorithm 1 (Stage 1),
and more details about data collection can be found in Appendix B. Note that with a proper sample
size |V|, this will not introduce significant computational cost. We will discuss the cost in Section 3.

2.2 DISTILLING INFLUENCE REPRESENTATIONS FROM TRAINING DYNAMICS

We now describe our approach to learn influence representations from the collected training dynamics,
detailed in Algorithm 1 (Stage 2). The core idea is to leverage contrastive learning to distinguish
between more and less influential data. Specifically, we begin by associating each training and
validation example an embedding, resulting in two embedding matrices Et ∈ R|Dtrain|×h and
Ev ∈ R|Dval|×h, where h is the dimension. These embeddings are expected to capture the influence
relationship between data points in a way that if a training example zi ∈ Dtrain has a strong influence
on a target example zj ∈ Dval, their embeddings eti and evj should be close in the embedding space:

−||eti − evj || ∝ Iθ(zi, zj). (4)

In other words, we project influence into the embedding space, where proximity reflects influence
strength. To achieve this goal, we adopt a triplet-based contrastive learning approach. In concrete, at
each training step t, we treat the batch examples Bt as the anchor, which causes the changes in the
model’s prediction on validation examples {∆pθt(z)|z ∈ Vt}. Among these, examples with large
∆p are considered to be more strongly influenced by Bt; accordingly, their embeddings should be
closer to the anchors’ embeddings. Conversely, embeddings of examples with smaller ∆p should
be farther from the anchor. Thus, for any two examples in Vt, we use the one with larger ∆p as the
positive example zpos, and the other as the negative zneg:

{(zpos, zneg) ∈ Vt × Vt, ∀∆p(zpos) > ∆p(zneg)}. (5)

Then, we learn the embeddings using the following objective:

L = max(0, ∥eanc − epos∥−∥eanc − eneg∥+ γ), (6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Complexity and dependency of different methods. Training denotes the one-time cost of
model training. Computation represents the time to compute the influence of training examples on a
single validation or test example. Space is the memory required for computation. Storage refers to
the space for persistently saving additional model parameters. D: size of training data. M(= |θ|):
size of model. h(≪ M) : dimension of embeddings learned by INFTRACE . λ: normalized cost
factor. We list the complexity in the general situation and refer readers to (Hammoudeh & Lowd,
2024) for a detailed discussion.

Complexity Dependency

Training Computation Space Storage Optimizer Gradient

Retraining-based O(DDM) O(DM) O(D +M) O(DM) No No
Influence Functions O(DM) O(DM) O(D +M) 0 ∼ O(DM) Partial Yes
INFTRACE O(DM) +O(λDM) O(Dh) O(D + h) O(Dh) No No

where eanc is the weighted sum of the anchor embeddings: eanc =
∑

zi∈Bt
wiei, with the weights

computed by: w = softmax([pθt(z)
−1, ∀z ∈ Bt]). The motivation is that examples with lower

confidence would produce larger gradients and therefore have a higher impact on the model.

To encourage embedding distance to reflect finer-grained influence strength, we set the margin γ in
Eq. (6) in a dynamic manner:

γ = τ + β ∗ (∆p(zpos)−∆p(zneg)), (7)

where τ is the base margin and β scales it according to the gap between zpos and zneg. Finally, after
obtaining learned embeddings, we measure the influence of zi ∈ Dtrain on zj ∈ Dval using the
Euclidean distance, consistent with the training objective:

Iθ(zi, zj) = −||ei − ej ||. (8)

2.3 COMPLEXITY OF INFTRACE

The computational cost of INFTRACE includes two parts: (1) the additional cost for batch-wise
validation on {V1 · · · VT }, and (2) the cost to train influence representations. In practice, the cost of
the second part is negligible since these representations converge very fast1. For the first part, we
normalize it with respect to the training cost using λ, which is the ratio of the number of sampled
validation examples per batch to the batch size, i.e., λ = V/B. This roughly quantifies the extra cost
introduced by integrating INFTRACE into the training process, independent of the model or data size.

Table 1 lists the algorithmic complexities of different methods. INFTRACE significantly reduces
computation and space complexity by many orders of magnitude (h = 1024 ≪ M), as it does not rely
on gradients O(M) but instead measures influence using learned representations O(h). Furthermore,
the efficiency only comes at a negligible one-time training cost O(λDM) where λ usually suffices at
a low value (Section 3).

2.4 FURTHER DISCUSSIONS

Rationale for choosing contrastive learning. An alternative to our contrastive learning approach
is to use a regression model to predict the exact confident change, i.e., f : (zi, zj) 7→ ∆p(zj). We
explored this method in our initial experiments and found that the model struggles to converge and
yields poor performance. We conjecture that the reason lies in the stochastic and noisy nature of the
training process, which makes it challenging to directly fit the exact ∆p. In contrast, the contrastive
learning approach only requires distinguishing the relative strength of influences among data, making
the task much easier to learn.

Absolute and Relative influence. As a limitation of the contrastive learning, our influence estima-
tion does not provide an exact value, though we use a dynamic margin to help align the distance with

1With d = 1024 and a single RTX 4090, it takes 20 minutes for one epoch, and converges within 2 epochs
on both datasets.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: t-SNE visualizations of initial and learned representations on the SST-2 (P: Positive; N:
Negative) and SNLI (C: Contradiction; N: Neutral; E: Entailment) datasets.

influence strength. Nevertheless, we argue that this does not affect the practical utility of INFTRACE ,
since in most scenarios we are concerned with relative influence among training data, for example,
identifying the most influential examples. Moreover, experimental results (§ 3.1) show that the
influence estimated by INFTRACE has a strong linear correlation with the actual ∆p, implying that
one can fit a post-hoc regression model to predict the exact ∆ from the estimated one if needed.

Rationale for learning ∆p. It is worth noting that our approach is compatible with learning ∆ℓ,
since both ∆ℓ and ∆p are available during training. However, ∆p offers several advantages: (1) ∆p
is more straightforward and interpretable. (2) ∆ℓ is unbounded, which may lead to trivial scaling of
the representation space. In contrast, ∆p ∈ [−1, 1] serves as an implicit normalization, encouraging
compact representations. (3) Computing ∆p only requires a forward pass, whereas ∆ℓ requires a
backward pass, which is considerably more costly. Therefore, we opt for learning ∆p in this study.

3 EXPERIMENTS

In this section, we conduct comprehensive experiments to assess INFTRACE across different model
sizes and tasks. We first validate its effectiveness using a small language model, RoBERTa (Zhuang
et al., 2021), on two NLP classification datasets: SNLI (Bowman et al.) for natural language inference
and SST-2 (Socher et al.) for sentiment classification (§ 3.1). Building on these results, we then
evaluate INFTRACE on two downstream applications: mislabeled data identification and coreset
selection (§ 3.2). Finally, we scale up to a larger model, LLaMA-3-8B (Grattafiori et al., 2024), and
test INFTRACE on a harmful data detection task for instruction tuning (§ 3.3). Implementation details
for this section can be found in Appendix C.

3.1 EFFECTIVENESS OF INFTRACE

Visualizing the learned representations. To obtain an intuitive understanding of the learned
representations, we visualize them using t-SNE (van der Maaten & Hinton, 2008) in Figure 2.
Compared to the initial state, representations learned by INFTRACE exhibit clear clusters that align
with the data classes. This suggests that our method captures meaningful relationships among data
points, since samples from the same class tend to exert stronger mutual influence and therefore appear
closer in the representation space, consistent with our learning objective.

Figure 3: Estimated influence and the empirical
influence (∆p) on unseen data.

Correlation between estimated and actual in-
fluence. We use Pearson correlation ρ to eval-
uate the alignment between estimated influence,
which is the negative distance between represen-
tations, and the actual influence, which is the
observed ∆p. The evaluation is performed on a
held-out set, which is not used for INFTRACE
training. We present the results in Figure 3. IN-
FTRACE achieves a strong correlation of 0.87
on SNLI and 0.84 on SST-2, both with p−value
close to 0. This proves that it can effectively
estimate relative influence. In addition, we ob-
serve that there are some outliers clustered around the central horizontal line, especially on SST-2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.73

0.78

0.83

0.88

0.5 1 1.5 2 4

Marginal Scaling

SNLI SST-2

C
or

re
la

tio
n

0.82

0.84

0.86

0.88

256 512 1024 2048
Embedding Size

SNLI SST-2

0.68

0.73

0.78

0.83

0.88

0.05 0.1 0.25 0.5 1 2

Sampling Ratio

SNLI SST-2

Figure 4: Pearson correlation ρ across different hyperparameters: embedding size d (left), sample
ratio with respect to batch size λ (middle), and marginal scaling factor β (right).

Such small ∆ likely do not reflect true influence, but rather result from noise or randomness in the
training process, making them hard to estimate.

Efficiency of INFTRACE . In Figure 4 (left and middle), we compare the performance of INFTRACE
across different embedding sizes d and sampling ratios λ (with respect to the batch size). Both
parameters directly reflect the computational cost of our method (see § 2.3 and Table 1). Increasing d
generally improves performance, but it saturates around 1024, which offers a good balance between
efficiency and effectiveness—still substantially smaller than the gradient dimension even under
efficient training. For λ, performance peaks at 0.5, while already reaching near-optimal levels at 0.1,
indicating that INFTRACE only adds a fraction of the training cost. These results demonstrate that
INFTRACE can estimate influence efficiently.

Impact of the margin scaling β. In Figure 4 (right), we report the correlation under different
values of the margin scaling factor β. We find that INFTRACE is sensitive to this hyperparameter,
with the best results achieved when β = 2. A possible reason is that most ∆p values are relatively
small, and thus appropriately scaling up the gap helps the representations become more separable in
the embedding space.

3.2 USE CASES

In this section, we demonstrate two use cases of our method: Influential Data Selection for efficient
training and Mislabeled Data Identification.

Baselines. We compare INFTRACE with representative methods from different categories of
influence estimation approaches, including:

• Hessian-based influence functions: The influence function introduced by Koh & Liang
(2017) is computationally expensive, and subsequent work has proposed various efficient
variants. We adopt DataInf, a state-of-the-art method. It leverages LoRa training and Hessian
approximations to improve efficiency.

• Hessian-free methods: Recent studies have also found that the Hessian offers little gain
for LLMs. We consider two Hessian-free methods: a static one GRADDOT (Charpiat et al.,
2019) and a dynamic one TRACIN (Pruthi et al., 2020). Both methods quantify the influence
between two data points via the dot product of their gradients: the former directly uses
gradients from a fully trained model, whereas the latter aggregates estimates across multiple
checkpoints during training.

• Representation-based methods: In addition to gradient-based methods, we also include
a representation-based method, which computes the model representation similarity of
examples, denoted as REPSIM. Although REPSIM measures relevance more than influence,
it has shown strong performance in various tasks (Li et al., 2024). We choose the final layer
hidden state of the first token (i.e., the [CLS] token), which is used for final prediction in
RoBERTa and is expected to encode task-relevant information.

Implementation details for baselines can be found in Appendix C.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: Model performance with varying proportions of training data selected by different ap-
proaches. Results are averaged over three runs with standard deviations indicated by the error bars.
For reference, the gray line denotes the performance obtained when training on the full dataset.

3.2.1 INFLUENTIAL DATA SELECTION

The goal of this task is to select a subset of the training data, such that training a model on this
subset yields comparable performance as training on the full dataset. The problem is also known as
coreset selection (Guo et al., 2022), and influence function has been proved an effective approach to
it (San Joaquin et al., 2024; Wang et al., 2023; Yang et al., 2023).

Following Xia et al. (2024), we select training examples by their overall influence on the validation
set:

Iθ(zi,Dval) =
1

|Dval|
∑

1≤j≤|Dval|

Iθ(zi, zj). (9)

In addition to the above-mentioned baselines, we also include a RANDOM selection baseline. We
first train the model on 3, 000 randomly sampled examples as a warm-up stage. Then, we continue to
fine-tune the model using examples selected by different methods, where the warm-up examples are
excluded from the selection pool.

The results are presented in Figure 5. Overall, our method outperforms the baselines. Surprisingly,
the random baseline already achieves strong performance, while most existing approaches fail to
surpass it. It is worth noting that our method performs particularly well under small proportions (10%
or 20%) of the data. As the proportion of training data increases, the performance gap across different
methods gradually narrows, and all methods eventually converge to the results obtained with the full
dataset. A plausible reason is that the marginal benefit of individual training example decreases as the
dataset grows larger. Nevertheless, these results highlight the superiority of our method in low-data
regimes.

3.2.2 MISLABELED DATA IDENTIFICATION

Prior work has shown that influence functions can help identify mislabeled examples, as these
examples often exhibit abnormal gradient behavior (Pruthi et al., 2020; Koh & Liang, 2017). We
evaluate our method in this task. Specifically, we flip the labels of a small fraction of the training set
as the ground-truth mislabeled data. Then, we detect these mislabeled data using different approaches.

For gradient-based methods GRADDOT, TRACIN, and DATAINF, we identify mislabeled data as the
examples with the highest self-influence score, since prior work has shown that mislabeled samples
tend to strongly support themselves.

For REPSIM, we compute the average cosine similarity of each example to others within the same
class and regard those with the lowest average similarity as mislabeled data, analogous to outliers.

For INFTRACE , we first retrain the RoBERTa classifier with the dataset containing mislabeled
examples and then learn influence representations from its training dynamics. Similar to REPSIM, we

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: AUC of mislabel identification. Best results
are bold and second best results are underlined.

SNL SST-2
1% 5% 10% 1% 5% 10%

GRADDOT 88.3 90.9 93.4 91.6 93.5 96.2
TRACIN 88.6 90.9 93.5 91.4 93.4 96.0
DATAINF 88.9 91.5 93.7 92.2 94.0 96.8
REPSIM 88.0 91.2 93.1 93.2 94.7 97.2

INFTRACE 89.3 92.1 93.5 91.8 94.9 97.5

Table 3: Results (recall@k) of harmful
data detection.

AdvBench
R@10 R@50 R@100

GRADDOT 9.11 28.2 40.9
TRACIN 8.46 27.7 41.0
DATAINF 9.35 30.3 43.8
REPSIM 7.96 27.0 34.7

INFTRACE 9.37 35.9 54.2

treat the samples with the lowest similarity to their class peers as mislabeled data, but here we use
Euclidean distance as the similarity measure to remain consistent with the training of INFTRACE .

In this way, each method assigns a score to every example indicating its tendency of being mislabeled.
For evaluation, we follow (Hammoudeh & Lowd, 2024) to compute the area under curve (AUC)
between the generated scores and the binary annotations of mislabeled data. This AUC measures
the probability that a randomly chosen mislabeled example receives a higher score than a randomly
chosen clean example. The results are presented in Table 2. In particular, we experiment with
different proportions of mislabeled data to comprehensively evaluate how the methods perform under
varying dataset quality. For example, we use 1% and 5% to simulate human-curated datasets, while
10% simulates synthetic datasets. Our method shows strong performance, achieving the best or
second-best results in most cases.

3.3 SCALING TO LARGE MODELS

Finally, we scale our experiments to a larger model, LLaMA-3-8B-Instruct (Grattafiori et al., 2024),
and evaluate our method on a harmful data detection task. Given a harmful prompt, a safe model
should refuse to respond. However, recent studies (Qi et al., 2023; Ji et al., 2024) have shown that
even a small amount of harmful training data can undermine safety alignment. This makes it crucial
to identify and filter such harmful data from the training dataset.

Experimental Setting. We collect harmful data from AdvBench (Zou et al., 2023). Since AdvBench
only provides prompts, we first prompt a LLaMA-3-8B-Instruct to generate responses by appending
an adversarial suffix (e.g., “Sure, here is a script that can . . . ”) designed to subvert the model’s
alignment. This yields 176 harmful <prompt, response> pairs. We randomly select 100 pairs for
training data and use the remaining 76 for evaluation. In addition, we sample 400 benign examples
from Alpaca (Taori et al., 2023). Then, we fine-tune two LLaMA-3-8B-Instruct: one on the 400
benign instructions (Control model), and one on the mixture of 100 harmful and 400 benign examples
(Intervention model). Training set up can be found in Appendix C.3.

After training, we compare the outputs of the two models on the held-out 76 harmful data. We
identify instructions for which the Control model refused to answer while the Intervention model did.
Since the 100 harmful examples are the only difference between the two models, we can attribute the
inappropriate behavior to these harmful examples, i.e., they are the ground-truth influential examples.
Next, we compute the influence scores of the 500 training examples using INFTRACE as well as the
baselines introduced before. Different from the classification tasks in previous experiments, this task
involves multiple ∆p from the generated tokens. We use the average of ∆p to train INFTRACE .

Results In this task, the goal is to identify as many harmful training examples as possible. Thus,
we use Recall@k as the evaluation metric. The results are shown in Table 3. Note that there
are 100 harmful data in total, therefore the upper bound recall results for k = {10, 50, 100} are
{10%, 50%, 100%}, respectively. We make the following observations from the results. First, our
model achieves the best overall performance, demonstrating both its superiority on this task and
its applicability across different task formats. In addition, all models perform very well at k = 10,
suggesting that identifying the top influential examples is relatively easy. However, the more critical
challenge in this task is the comprehensive recall of harmful data, since even a small amount of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

such data can lead to undesirable behavior. Our method shows clear advantages in this regard and
outperforms the baselines at larger values of k, indicating its ability to uncover more subtle or
harder-to-identify influential examples. Notably, at k = 100, it achieves a 24% relative improvement
(41.0% → 54.2%) over the best-performing baseline, DATAINF. Finally, we note that although
RepSim delivers competitive results on the mislabeled data identification task and appears to be
another gradient-free alternative, in this task its performance is noticeably weaker than influence
analysis—especially at R@100—highlighting its limitations.

4 RELATED WORK

Influence Analysis. Early approaches to influence analysis are mostly retraining-based, where
models are repeatedly retrained on subsets of the training data to observe performance changes
caused by missing examples (Ling, 1984; Rousseeuw & Leroy, 2003; Feldman & Zhang, 2020).
These methods are computationally expensive and usually face high variance due to the stochastic
nature of training. Modern approaches for deep neural networks are mainly gradient-based, which
use a closed-form expression derived from Taylor-series expansions or risk stationarity, assuming
some degree of differentiability (Koh & Liang, 2017). While they avoid repeated training, these
methods remain costly due to gradient computation and storage, especially the calculation of inverse
Hessian-vector products (iHVP). Therefore, subsequent research has proposed various methods to
approximate the iHVP in more efficient ways (Hammoudeh & Lowd, 2024; Agarwal et al.; Chen
et al., 2021). Some studies further explored Hessian-free methods, which measure the influence
between data points directly based on the dot product of their gradients (Charpiat et al., 2019; Pruthi
et al., 2020). In addition to these gradient-based methods, recent work has attempted to use the
similarity of task-specific representations learned by the model to measure data influence, and has
achieved promising results on related tasks (Zheng et al., 2024; Li et al., 2024). In this paper, we
compare our INFTRACE with representative approaches from each category.

Applications of Influence Analysis Influence has been applied in various scenarios, for example,
interpreting various model behaviors (Ren & Sutherland, 2025; Zhang et al., 2023), identifying
mislabeled data (Pruthi et al., 2020; Koh & Liang, 2017), data attribution (Lin et al., 2024; Choe
et al.), selecting influential data to improve training efficiency (Xia et al., 2024; San Joaquin et al.,
2024), etc. Recent studies have started to apply influence analysis to large-scale models. As larger
parameter sizes pose greater challenges to efficiency, the focus of acceleration strategies has shifted
from approximating the iHVP to reducing the parameter dimensionality in order to shrink the gradient
size. Examples include efficient parameter tuning ?Hammoudeh & Lowd (2024), selecting only
specific parameter layers of the model Pruthi et al. (2020); Yeh et al. (2022), and applying random
projections to the gradientsPark et al. (2023).

Training Dynamics. Training dynamics, which describe how a model’s behavior evolves during
the training process, have been leveraged as an informative signal for analyzing both models and
data. For example, Swayamdipta et al. (2020) used the model’s confidence trajectories over training
epochs for dataset diagnosis; Jia et al. (2023) used the traces left by iterations of the optimizer to
detect mislabeled examples; and He et al. (2024) used dynamic uncertainty to guide dataset pruning.
Different from them, we propose a learning algorithm that distills influence relationships from training
dynamics, which provides a new direction for influence estimation.

5 CONCLUSION

This paper proposes a novel perspective on influence estimation by distilling influence signals from
model training dynamics. We implement this idea using contrastive learning to project influence
relationships between data points into a representation space. Our method effectively estimates
influence while offering improved efficiency over gradient-based and retraining-based alternatives.
Furthermore, we evaluate our method across a variety of tasks, datasets, and model scales, showcasing
its broad applicability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

We foresee no serious ethical concerns with the work. In fact, our method aims to analyze the
influence of training data, which can potentially aid in identifying inappropriate training data and
improving model safety, as demonstrated in § 3.3.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we include all necessary details. Method descriptions and experimental
setups are discussed in the main text § 2 and § 3, and practical implementations are provided in
Appendix C. Code will be made publicly available upon publication.

8 STATEMENT ON LLM USE

This paper did not involve any substantive use of LLMs, such as idea development, experimental
design, analysis, coding, etc. LLMs were used solely in a limited capacity to assist with minor
language editing and polishing.

REFERENCES

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-Order Stochastic Optimization for Machine
Learning in Linear Time.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference. In Lluís Màrquez, Chris Callison-Burch, and Jian Su
(eds.), Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pp. 632–642. Association for Computational Linguistics. doi: 10.18653/v1/D15-1075. URL
https://aclanthology.org/D15-1075/.

Guillaume Charpiat, Nicolas Girard, Loris Felardos, and Yuliya Tarabalka. Input Similarity from the
Neural Network Perspective. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. HyDRA: Hypergradient
Data Relevance Analysis for Interpreting Deep Neural Networks. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(8):7081–7089, May 2021. ISSN 2374-3468, 2159-5399.
doi: 10.1609/aaai.v35i8.16871.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya
Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to gpt?
llm-scale data valuation with influence functions, 2024. URL https://arxiv. org/abs/2405.13954.

Albert T Corbett and John R Anderson. Knowledge tracing: Modeling the acquisition of procedural
knowledge. User modeling and user-adapted interaction, 4:253–278, 1994.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long
tail via influence estimation. Advances in Neural Information Processing Systems, 33:2881–2891,
2020.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem
Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya
Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang
Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song,
Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina
Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang,

10

https://aclanthology.org/D15-1075/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire
Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron,
Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat
Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya
Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman
Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang,
Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic,
Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira
Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain
Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale,
Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,
Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,
Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin
Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide
Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei,
Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan,
Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey,
Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma,
Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo,
Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew
Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola,
Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence,
Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu,
Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris
Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel
Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich,
Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine
Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban
Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang,
Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha,
Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan
Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai
Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya,
Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica
Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan
Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal,
Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran
Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca
Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally,
Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov,

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat,
Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White,
Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,
Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang,
Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra,
Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ
Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh,
Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji
Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe,
Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny
Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou,
Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish
Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian
Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu
Yang, Zhiwei Zhao, and Zhiyu Ma. The Llama 3 Herd of Models, November 2024.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. DeepCore: A Comprehensive Library for Coreset
Selection in Deep Learning. In Database and Expert Systems Applications: 33rd International
Conference, DEXA 2022, Vienna, Austria, August 22–24, 2022, Proceedings, Part I, pp. 181–195,
Berlin, Heidelberg, August 2022. Springer-Verlag. ISBN 978-3-031-12422-8. doi: 10.1007/
978-3-031-12423-5_14.

Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A sur-
vey. Machine Learning, 113(5):2351–2403, May 2024. ISSN 1573-0565. doi: 10.1007/
s10994-023-06495-7.

Muyang He, Shuo Yang, Tiejun Huang, and Bo Zhao. Large-scale dataset pruning with dynamic
uncertainty. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7713–7722, 2024.

Jiaming Ji, Kaile Wang, Tianyi Qiu, Boyuan Chen, Jiayi Zhou, Changye Li, Hantao Lou, and Yaodong
Yang. Language models resist alignment. arXiv preprint arXiv:2406.06144, 2024.

Qingrui Jia, Xuhong Li, Lei Yu, Jiang Bian, Penghao Zhao, Shupeng Li, Haoyi Xiong, and Dejing
Dou. Learning from training dynamics: Identifying mislabeled data beyond manually designed
features. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 8041–
8049, 2023.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks
in language models. In International Conference on Machine Learning, pp. 10697–10707. PMLR,
2022.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
pp. 1885–1894, Sydney, NSW, Australia, August 2017. JMLR.org.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
in loRA-tuned LLMs and diffusion models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=9m02ib92Wz.

Zhe Li, Wei Zhao, Yige Li, and Jun Sun. Do influence functions work on large language models?
arXiv preprint arXiv:2409.19998, 2024.

12

https://openreview.net/forum?id=9m02ib92Wz

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Huawei Lin, Jikai Long, Zhaozhuo Xu, and Weijie Zhao. Token-wise influential training data
retrieval for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 841–860, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.48. URL https://aclanthology.org/2024.
acl-long.48/.

Robert F Ling. Residuals and influence in regression, 1984.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. TRAK:
Attributing Model Behavior at Scale. In Proceedings of the 40th International Conference on
Machine Learning, pp. 27074–27113. PMLR, July 2023.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating Training Data
Influence by Tracing Gradient Descent. In Advances in Neural Information Processing Systems,
volume 33, pp. 19920–19930. Curran Associates, Inc., 2020.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
Fine-tuning aligned language models compromises safety, even when users do not intend to! arXiv
preprint arXiv:2310.03693, 2023.

Yi Ren and Danica J. Sutherland. Learning dynamics of LLM finetuning. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=tPNHOoZFl9.

Peter J Rousseeuw and Annick M Leroy. Robust regression and outlier detection. John wiley & sons,
2003.

Ayrton San Joaquin, Bin Wang, Zhengyuan Liu, Nicholas Asher, Brian Lim, Philippe Muller, and
Nancy F. Chen. In2Core: Leveraging influence functions for coreset selection in instruction
finetuning of large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida,
USA, November 2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive Deep Models for Semantic Compositionality Over a Senti-
ment Treebank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and
Steven Bethard (eds.), Proceedings of the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 1631–1642. Association for Computational Linguistics. URL
https://aclanthology.org/D13-1170/.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A.
Smith, and Yejin Choi. Dataset Cartography: Mapping and Diagnosing Datasets with Training
Dynamics. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9275–
9293, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.746.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9(86):2579–2605, 2008. ISSN 1533-7928.

Xiao Wang, Weikang Zhou, Qi Zhang, Jie Zhou, SongYang Gao, Junzhe Wang, Menghan Zhang,
Xiang Gao, Yun Wen Chen, and Tao Gui. Farewell to aimless large-scale pretraining: Influential
subset selection for language model. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp. 555–568, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.
35. URL https://aclanthology.org/2023.findings-acl.35/.

13

https://aclanthology.org/2024.acl-long.48/
https://aclanthology.org/2024.acl-long.48/
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=tPNHOoZFl9
https://openreview.net/forum?id=tPNHOoZFl9
https://aclanthology.org/D13-1170/
https://aclanthology.org/2023.findings-acl.35/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Meng Xia and Ricardo Henao. Reliable active learning via influence functions. Transactions on
Machine Learning Research, 2023.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. In ICML, 2024. URL https://
openreview.net/forum?id=PG5fV50maR.

Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reduc-
ing training data by examining generalization influence. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
4wZiAXD29TQ.

Chih-Kuan Yeh, Ankur Taly, Mukund Sundararajan, Frederick Liu, and Pradeep Ravikumar. First is
better than last for language data influence. Advances in Neural Information Processing Systems,
35:32285–32298, 2022.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr, and Nicholas
Carlini. Counterfactual memorization in neural language models. Advances in Neural Information
Processing Systems, 36:39321–39362, 2023.

Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie Zhou, Kai-Wei Chang, Minlie Huang, and
Nanyun Peng. On prompt-driven safeguarding for large language models. In Proceedings of the
41st International Conference on Machine Learning, volume 235 of ICML’24, pp. 61593–61613,
Vienna, Austria, July 2024. JMLR.org.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36:55006–55021, 2023.

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. A robustly optimized BERT pre-training approach
with post-training. In Sheng Li, Maosong Sun, Yang Liu, Hua Wu, Kang Liu, Wanxiang Che,
Shizhu He, and Gaoqi Rao (eds.), Proceedings of the 20th Chinese National Conference on
Computational Linguistics, pp. 1218–1227, Huhhot, China, August 2021. Chinese Information
Processing Society of China. URL https://aclanthology.org/2021.ccl-1.108/.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
and transferable adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043,
2023.

14

https://openreview.net/forum?id=PG5fV50maR
https://openreview.net/forum?id=PG5fV50maR
https://openreview.net/forum?id=4wZiAXD29TQ
https://openreview.net/forum?id=4wZiAXD29TQ
https://aclanthology.org/2021.ccl-1.108/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ALGORITHM

Algorithm 1 INFTRACE Learning Algorithm
Input: ModelM parameterized by θ, training set Dtrain, validation set Dval, optimizer A.

1: Stage 1: Collecting training dynamics C
2: C ← ∅
3: Split Dtrain to mini batch: {B1, · · · ,BT }
4: Sample subsets from Dval: {V1, · · · ,VT }
5: for 1 ≤ t ≤ T do
6: P

(t)
val = {pθt(z),∀z ∈ Vt}

7: θt+1 ←A(M, θt,Bt), Ptrain = {pθt(z), z ∈ Bt}
8: P

(t+1)
val = {pθt+1(z), z ∈ Vt}

9: ∆P
(t)
val = {pθt+1(z)− pθt(z), z ∈ Vt}

10: C ← C ∪ (∆P
(t)
val , P

(t)
train)

11: end for

12: Stage 2: Distilling influence from C
13: Initialize: Et = {et

i,∀zi ∈ Dtrain}, Ev = {et
j ,∀zj ∈ Dval}

14: for 1 ≤ t ≤ T do
15: for (zp, zn) ∈ Vt × Vt, ∆pθt(zp) > ∆pθt(zn) do
16: eanc =

∑
ei∈B wiei, where wi ∝ 1

pθt (zi)

17: Update Et,Ev w.r.t: Max(0, ∥eanc − ep∥ − ∥eanc − en∥ + γ)
18: end for
19: end for
20: return Et,Ev

B MORE DETAILS OF THE METHOD

Sampling strategy. For INFTRACE to effectively learn influence relationships among data points,
it is essential that their training dynamics are adequately observed throughout training. Therefore, at
each timestep t, we sample Vt according to its frequency sampled in previous steps:

w(zi)
(t) =

a
(t)
i∑|Dval|

j=1 a
(t)
j

, (10)

a
(t)
i =

1

1 +
∑t−1

j=1 1{zi ∈ Bj}
. (11)

where w(z)(t) is the sampling weight for z at a certain step t, which is inversely proportional to how
many times it has been sampled before.

Data Filtering. In Eq. 5, we collect positive and negative examples according to the gap between
their prediction change ∆p. In our experiments, we discard pairs with a small gap between ∆p, as
such data are more likely to reflect training noise rather than true influence. Including these pairs
often results in poorer performance. Specifically, we rank the collected pairs by the gap in ∆p and
retain only the top 20% with the largest values.

C IMPLEMENTATION DETAILS

C.1 IMPLEMENTATION OF INFTRACE

To learn INFTRACE , we first fine-tune RoBERTa on SNLI and SST-2 for 2 epochs using AdamW
(Loshchilov & Hutter, 2019) with the same hyperparameters, where the learning rate is 1e− 5 and
batch size is 32. While our method is scalable to larger datasets, baseline methods are computationally

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

expensive. Therefore, we reduce the data size by randomly sampling 32, 000 training examples from
each dataset so that we can compare our method with baselines on the same data in an efficient
way. Both datasets are licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License and are used for their intended purpose. Using |V| = 16, we collect 16× 15× 1

2 × 2000 =
240, 000 triplets from 2, 000 training steps. All the experiments with RoBERTa are done on a single
RXT 4090 with 24GB of Memory.

Then, we split the collected triplets into 80% for training, 10% for validation, and 10% for testing.
We train INFTRACE on the training set using AdamW with a learning rate of 5e − 5 and a batch
size of 32. The embedding dimension h is set to 1024, and the margin scaling factor β is set to 2
(Eq. 7). Training is conducted for up to 10 epochs. During training, we evaluate the model on the
validation set every 500 steps using Pearson correlation. We apply early stopping based on validation
performance. INFTRACE typically converges quickly, often reaching the best performance within 2
or 3 epochs.

C.2 IMPLEMENTATION OF BASELINES

During the training of RoBERTa, we stored the model every 500 steps, resulting in four checkpoints.
For the static influence function GRADDOT, we obtain gradients from the final checkpoint and use
the gradient dot product to compute influence. While for the dynamic influence function, we follow ?
to aggregate the influence from all the checkpoints:

Iθ(z, z′) =
k∑

i=1

ηi∇ℓ(θi; z) · ∇ℓ(θi, z
′), (12)

where ηi is the learning rate for the corresponding checkpoint. Since gradient vectors are typically
high-dimensional, even for models like RoBERTa, we extract gradients only from the last five layers,
including four encoder layers and the final classifier. The gradients are concatenated and then com-
pressed to a 1024-dimensional vector using sparse random projection, matching the dimensionality
of our learned influence embeddings. This dimensionality reduction strategy is widely adopted in
prior work on influence functions to improve efficiency (Xia et al., 2024; Kwon et al., 2024; Lin et al.,
2024).

C.3 LLAMA FINETUNING

In § 3.3, we fine-tune LLaMA-3-8B-Instruct using LoRA with the rank of r = 16, resulting in
≈ 0.52% trainable parameters. We set the learning rate to 2e− 4, use a batch size of 4, and train it
for 3 epochs.

16

	Introduction
	Methodology
	Collecting Training Dynamics
	Distilling Influence Representations from Training Dynamics
	Complexity of InfTrace
	Further Discussions

	Experiments
	Effectiveness of InfTrace
	Use Cases
	Influential Data Selection
	Mislabeled Data Identification

	Scaling to Large Models

	Related Work
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Statement on LLM Use
	Algorithm
	More Details of the Method
	Implementation Details
	Implementation of InfTrace
	Implementation of Baselines
	LLaMA Finetuning

