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Abstract

Magnetic resonance (MR) images from multiple sources often show differences in image
contrast related to acquisition settings or the used scanner type. For long-term studies,
longitudinal comparability is essential but can be impaired by these contrast differences,
leading to biased results when using automated evaluation tools. This study presents a
diffusion model-based approach for contrast harmonization. We use a data set consisting of
scans of 18 Multiple Sclerosis patients and 22 healthy controls. Each subject was scanned
in two MR scanners of different magnetic field strengths (1.5T and 3T), resulting in a
paired data set that shows scanner-inherent differences. We map images from the source
contrast to the target contrast for both directions, from 3T to 1.5T and from 1.5T to 3T.
As we only want to change the contrast, not the anatomical information, our method uses
the original image to guide the image-to-image translation process by adding structural
information. The aim is that the mapped scans display increased comparability with scans
of the target contrast for downstream tasks. We evaluate this method for the task of
segmentation of cerebrospinal fluid, grey matter and white matter. Our method achieves
good and consistent results for both directions of the mapping.

Keywords: Diffusion models, contrast harmonization, image-to-image translation

1. Introduction

In medical studies using magnetic resonance (MR) images, data acquisition from multiple
centers and different scanners is a common scenario, especially regarding comprehensive or
long-term studies (Krüger et al., 2020). However, challenges arise when we compare data
acquired with different MR scanners since the obtained MR images often display differ-
ences related to the acquisition settings and scanner variability (Dadar et al., 2020). For
instance, as the magnetic field strength alters the level of contrast between different tissue
types (Maubon et al., 1999; Ba-Ssalamah et al., 2003), the location of borders between
different tissues can vary in images acquired with MR scanners of different field strength
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Figure 1: Overview of our contrast harmonization method. We train a diffusion model
using paired data from source contrast S and target contrast T . We translate
scan B ∈ S to scan Btransformed that appears in contrast T , allowing better

comparability with B̂ ∈ T in subsequent tasks, such as segmentation.

(Keihaninejad et al., 2010). Therefore, direct comparison of scans from different scanners
with automated tools such as SIENA (Smith et al., 2002, 2004) is highly difficult. Conse-
quently, a scanner change in the middle of a long-term study affects the automatic evaluation
and longitudinal comparability of scans (Sinnecker et al., 2022). Longitudinal studies are
important to monitor progressive diseases such as Multiple Sclerosis (MS), a demyelinating
central nervous system disease (Mahad et al., 2015). It is essential that subsequent scans
allow reliable interpretation of the disease progression without a bias related to a scan-
ner change between the image acquisitions. In this work, we focus on a scanner change
from 1.5T to 3T magnetic field strength that took place within a longitudinal MS study
(Disanto et al., 2016). The goal of this work is to restore the comparability of the images
by mapping all images to the same target contrast. A data set was acquired by (Sinnecker
et al., 2022), for which healthy subjects as well as MS patients were scanned in the 1.5T
and the 3T scanner within approximately 3.5 months. Due to the short time span between
the acquisitions, we assume that the differences in the images of the same participant are
only related to the different scanner types. We therefore have paired 1.5T and 3T data for
each participant.

Contribution By adapting a Denoising Diffusion Probabilistic Model (DDPM) (Ho et al.,
2020; Wolleb et al., 2022b) for contrast harmonization, we translate images from a source
contrast S to a target contrast T . Considering a pair B ∈ S, B̂ ∈ T , we map scan B
slice-by-slice to scan Btransformed, appearing in the contrast of T , as shown in Figure 1. We
generate consistent three-dimensional (3D) volumes by stacking two-dimensional (2D) slices,
allowing us to save memory during image-to-image translation. Compared to the original
B, Btransformed presents better comparability with B̂ from T , with respect to downstream
tasks such as segmentation of grey matter (GM), white matter (WM) and cerebrospinal
fluid (CSF) using FAST (Zhang et al., 2001). We achieve good results for both directions
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of the mapping, i.e., from 3T to 1.5T and from 1.5T to 3T. Our code is available at
https://github.com/AliciaDurrer/dm_moni_mr.

Related Work Tracking brain volume changes over different scanners is prone to an error
related to the scanner change (Lee et al., 2019). (Sinnecker et al., 2022) showed that given
a paired data set, a corrective term for the volume computation can be calculated. To
achieve a higher level of generalizability, images should be mapped to the target contrast.
DeepHarmony (Dewey et al., 2019), builds on the U-Net architecture (Ronneberger et al.,
2015) and was developed for MR image contrast harmonization across protocol or scanner
changes. For almost a decade, GANs (Goodfellow et al., 2014) have been the state of the
art for image generation and image-to-image translation (Karras et al., 2021; Emami et al.,
2020; Zhu et al., 2017; Isola et al., 2017). GANs such as (Dar et al., 2019; Liu et al., 2020; Luo
et al., 2021; Peng et al., 2021) were created for multi-modal MR image synthesis, for instance
T1- to T2-contrast. (Nie et al., 2017, 2018) performed cross-modal and cross-scanner image
synthesis using GANs. Lately, DDPMs (Sohl-Dickstein et al., 2015; Ho et al., 2020) became
the focus of attention. (Nichol and Dhariwal, 2021; Dhariwal and Nichol, 2021) further
improved DDPMs, resulting in a transition of the state of the art for image generation
from GANs to diffusion models. Their application includes text-to-image generation as in
(Rombach et al., 2022; Saharia et al., 2022b), image-to-image translation (Saharia et al.,
2022a; Seo et al., 2022; Wolleb et al., 2022c), inpainting (Saharia et al., 2022a; Lugmayr
et al., 2022; Wolleb et al., 2022c) and deformable image registration (Kim et al., 2022). The
recently introduced diffusion models are also used in medical image analysis. For instance
for cross-modal (Lyu and Wang, 2022) and multi-modal MR image synthesis (Özbey et al.,
2022), anomaly detection (Wolleb et al., 2022a) and synthetic image generation (Pinaya
et al., 2022). In medical studies, processing of 3D data is often required. (Dorjsembe et al.,
2022) showed the applicability of diffusion models to 3D data, but frequently, memory
restrictions affect the processing of large volumes.

2. Method

DDPMs as described in (Nichol and Dhariwal, 2021) form the basis for the proposed method.
They are a class of generative models based on an iterative noising process q and denosing
process pθ. In the forward process q, Gaussian noise is added to an input image x for T
time steps t. As the noise level is increased from a minimum at t = 0 to a maximum at
t = T , each image x0, x1, ..., xT displays a higher amount of noise compared to the previous
one. The forward noising process q is defined as

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (1)

where I is the identity matrix and β1, ..., βT are the forward process variances. With
αt := 1− βt and αt :=

∏t
s=1 αs and using the reparametrization trick, xt can be written as

xt =
√
αtx0 +

√
1− αtϵ, with ϵ ∼ N (0, I). (2)

For the denoising process pθ, the aim is to reverse the forward process, hence to predict
xt−1 from xt for t ∈ {T, ..., 1}. The learned model parameters θ define the reverse process

pθ(xt−1|xt) := N
(
xt−1;µθ(xt, t),Σθ(xt, t)

)
. (3)
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To map images of the source contrast S to the target contrast T , we use the generative
process of DDPMs. We adapt the method of (Wolleb et al., 2022b), originally created
for DDPM-based image segmentation using paired data, to translate an image B ∈ S to
Btransformed, which appears in the target contrast T . The used data set provides for each of
the m participants one 3D scan B of the source contrast S and one corresponding 3D scan
B̂ of the target contrast T . Due to memory restrictions, we implement our model in 2D
and slice each of the m scans of both contrasts into n slices and obtain for each participant
B = {bi}ni=1 and B̂ = {b̂i}ni=1 slices. We translate the slices {bi}ni=1 originating from a scan
B ∈ S such that they resemble the contrast of the slices {b̂i}ni=1 originating from B̂ ∈ T ,
whereby each baseline slice bi has its corresponding ground truth b̂i.

Figure 2: Overview of the training. Anatomical information is given through the concate-
nation of image bi from B ∈ S with noisy image xbi,t. Xt is used by the diffusion
model to predict a slightly denoised image xbi,t−1 from xbi,t using Equation (4).

During training, depicted in Figure 2, we pick a random timestep t ∈ {1, ..., T} and apply
Equation (2) with x0 = b̂i to compute a noisy image xbi,t from b̂i. Since we only want
to change the scanner-related image contrast and not any anatomical features, we add
anatomical information of our baseline image bi through concatenation. We define the
concatenated image as Xt := bi ⊕ xbi,t which serves as input for our diffusion model. We
can compute xbi,t−1 using Equation (4), which summarizes a denoising step as

xbi,t−1 =
1

√
αt

(
xbi,t −

1− αt√
1− αt

ϵθ(Xt, t)

)
+ σtz, with z ∼ N (0, I), (4)

whereby ϵθ(Xt, t) is the output of the diffusion model at time step t, σt describes the variance
scheme and z denotes the stochastic component of the process. The loss used to train the
diffusion model ϵθ can be written as

|| ϵ− ϵθ(Xt, t) ||2 = || ϵ− ϵθ(bi ⊕ (
√
ātb̂i +

√
(1− āt)ϵ), t) ||

2
, with ϵ ∼ N (0, I). (5)

For the two directions of the image mapping, 3T to 1.5T and 1.5T to 3T, two separate
models need to be trained, as source and target contrast change. To translate a scan volume
B = {bi}ni=1 ∈ S to the target contrast T during sampling, we translate every slice bi to
the synthetic slice xbi,0 in the contrast of T . Figure 3 summarizes the sampling process
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starting from xbi,T ∼ N (0, I). The previously trained denoising model is now applied for
every denoising step t ∈ {T, ..., 1} using Equation (4). Anatomical information is also added
for every step t of the denoising process through the concatenation of bi and xbi,t. We then
stack the n output slices xbi,0 to create our final 3D output volume Btransformed = {xbi,0}ni=1,
displaying the whole brain in target contrast.

Figure 3: Translation from B ∈ S to Btransformed. Each slice bi of B ∈ S is iteratively
denoised by applying Equation (4) for steps t ∈ {T, ..., 1}, whereby slice bi is used
to add anatomical information through concatenation. The 2D output slices
{xbi,0}ni=1 get stacked to Btransformed, showing the input scan B translated to T .

3. Data Set and Training Details

We used a data set exclusively created to track a scanner change from a 1.5T Siemens Mag-
netom Avanto to a 3T Siemens Magnetom Skyrafit whole-body scanner in 2016 (Sinnecker
et al., 2022). Scanner details can be found in Appendix A. The participants’ data is not
public due to data privacy protection. Written consent was obtained from all participants.
The data was coded (i.e., pseudoanonymized) at the time of the enrollement of the patients
and includes scans of 22 healthy controls and 18 MS patients. All participants were scanned
first in the 1.5T scanner and after a median time interval of 3.5 months in the 3T scanner.
The relatively short time span between the scans ensures that no major disease progres-
sion happened in the MS patients, allowing a direct comparison of the scans and thereby
forming a paired data set. Data set details can be found in Appendix B. Pre-processing of
the original 3D data includes skull-stripping using HD-BET (Isensee et al., 2019), biasfield
correction (Tustison et al., 2010), resampling of voxel spacing to 1 x 1 x 1 mm3 removal
of the top and bottom 0.1 percentile of voxel intensities and normalization to voxel values
between 0 and 1. With the ANTsPyx package, the paired images were registered based on
affine and deformable transformation, using mutual information as similarity metric and an
elastic regularization (Avants et al., 2014). We sliced each pre-prepocessed 3D scan into
160 sagittal slices of shape [246, 262] that were then cropped to a size of [224, 224]. The
cropping only affected background pixels. We trained our models for 300,000 iterations
with a batch size of four on a NVIDIA GeForce RTX 2080 Ti GPU, taking about 60 hours.
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As in (Wolleb et al., 2022b), the number of channels in the first layer of the model is 128,
and one attention head is used at resolution 16, resulting in 11,402,370 model parameters.
The learning rate used is 10−4 for the Adam optimizer. T is set as 1000. Details on hyper-
parameters and architecture can be found in (Nichol and Dhariwal, 2021). In addition to
MSE calculation and histogram analysis, we evaluated CSF, GM and WM segmentations
using FAST (Zhang et al., 2001) for the original images and the generated images. We did a
four-fold cross-validation, combining data of healthy controls and MS patients in each fold.
For each fold, the slices of 30 scans were used for training and those of 10 scans for testing.

4. Results and Discussion

For the evaluation, we compare our diffusion model (DM ) with DeepHarmony (DH ) (Dewey
et al., 2019) and pGAN (Dar et al., 2019). Implementation details of the comparing meth-
ods can be found in Appendix C. Each method takes an image B ∈ S and generates the
image Btransformed appearing in target contrast. The direct comparison of B versus B̂ is
denoted as Original.

Figure 4: An exemplary coronal slice of a scan B ∈ S, the corresponding ground truth (GT)
slice of B̂ ∈ T and slices of its mappings Btransformed in contrast T generated by
DH, pGAN and our DM are shown for both mapping directions. The red circles
indicate hyperintense regions generated by DH. The blue arrows point at stripe
artifacts produced by pGAN. Further examples are provided in Appendix F.

Figure 4 contains examples of generated images and the corresponding input and ground
truth slices. The original 1.5T and 3T images differ in contrast. While pGAN and our
DM generate convincing mappings of the input images to target contrast, DH blurs the
image and increases the brightness excessively for both directions of the image mapping.
The examples shown are coronal slices from a 3D volume that was built by stacking sagittal
slices. While images mapped to 3T contrast by pGAN contain some stripe artifacts, mostly
in the border regions of the brain, our DM does not create any stripe artifacts, indicating
that processing the data in a slice-wise fashion is a valuable simplification.
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Table 1: MSE and AHD scores (formulas in Appendix D) for both directions of the mapping.
This table shows the average scores on the test set over a four-fold cross-validation,
the variances are listed in Appendix D. The best results are bold.

3 T to 1.5 T 1.5 T to 3 T
Method MSE AHD MSE AHD

Original 1.85× 10−3 6.15× 105 1.85× 10−3 6.15× 105

DH 2.30× 10−3 7.49× 105 1.73× 10−3 8.22× 105

pGAN 1.50× 10−3 1.27× 105 0.94× 10−3 2.07× 105

DM (ours) 1.61× 10−3 1.31× 105 0.76× 10−3 1.48× 105

To compare the different methods, we compute the Mean Squared Error (MSE) between the
ground truth images B̂ and the translated images Btransformed. In Table 1 we report the
MSE as well as the sum of the bin-wise absolute difference between the histograms (AHD),
whereby each histogram consists of 255 bins. Mapping images of 3T to 1.5T contrast, our
DM and the pGAN manage to decrease the MSE and to improve the AHD compared to
Original. DH cannot compete and produces a higher MSE and AHD than the Original.
Mapping 1.5T to 3T contrast, our DM outperforms Original, DH and pGAN regarding
MSE and AHD. The results show that the contrast harmonization shifts the voxel distribu-
tions characteristic for S towards the distributions of T . For both directions of the mapping,
exemplary histograms can be found in Appendix E. The histograms of the samples gener-
ated by pGAN and our DM better align with the histogram of the ground truth B̂ ∈ T
than the histogram of B ∈ S, for both directions of the mapping.

Table 2: Absolute volume differences in mm3 of the segmentations of CSF, GM and WM of
all original images B ∈ S and generated images Btransformed compared to ground

truths B̂ ∈ T for both directions of the mapping. This table shows the average
scores on the test set over a four-fold cross-validation, the variances are listed in
Appendix D. The best result per class is bold.

3 T to 1.5 T 1.5 T to 3 T
Absolute Volume Difference Absolute Volume Difference

Method CSF GM WM CSF GM WM

Original 3.72× 104 9.32× 104 8.88× 104 3.72× 104 9.32× 104 8.88× 104

pGAN 1.12× 104 1.14× 104 1.91× 104 3.11× 104 6.15× 104 2.09× 104

DM (ours) 1.95× 104 1.54× 104 1.59× 104 1.79× 104 3.91× 104 1.49× 104

To obtain further insight about the increased comparability of Btransformed with B̂ ∈ T
for downstream tasks, we segmented the original 3D images as well as the 3D images gener-
ated by our DM and pGAN into the three classes CSF, GM and WM using FAST (Zhang
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et al., 2001). DH could not be considered for this comparison, as the quality of the gener-
ated images was not high enough to create meaningful segmentations using FAST. Examples
of the segmentations can be found in Appendix G. As the voxel size is 1 x 1 x 1 mm3, we
calculate the volume of each class by counting the voxels attributed to each class. For both
directions of the image mapping we then compute the volume differences for each class
between the ground truth segmentation of B̂ and the segmentations of B or Btransformed,
respectively. Table 2 shows that pGAN and our DM decrease the differences between the
segmentation volumes of Btransformed and B̂ compared to the segmentation volume dif-

ference between B and B̂ for both directions of the mapping. pGAN and our DM show
similar performance for the mapping from 3T to 1.5T but our model performs better for
the mapping from 1.5T to 3T. We conclude that harmonizing contrasts before segmenting
allows more coherent assignment of voxels to classes, enabling better comparison of tissue
volumes between scans. We use the Dice score and the Hausdorff distance (HD) to assess
that the contrast harmonization did not negatively affect the location of the segmented
volumes, whereby the ground truth is given by the segmentation of B̂. Table 3 shows that
our DM achieves better HD scores than pGAN and the Original for all classes. The Dice
scores for our DM remain in the ranges of the Original for the mapping from 3T to 1.5T.
For the mapping from 1.5T to 3T, however, our DM improves the Dice scores of GM and
WM considerably compared to the Original. According to Table 1 and Table 2, pGAN
performed better than our DM for the mapping from 3T to 1.5T, but regarding the HD,
our DM seems more reliable for both directions of the mapping. The results indicate that
using our DM, the contrast harmonization and the resulting change in voxel distribution
and segmentation volumes occurs at the desired regions.

Table 3: Dice scores and HD of the segmentations of CSF, GM and WM of all original
images B ∈ S and generated images Btransformed compared to the ground truth

segmentations of B̂ ∈ T for both directions of the mapping. This table shows the
average scores on the test set over a four-fold cross-validation, the variances are
listed in Appendix D. The best result per class is bold.

3 T to 1.5 T 1.5 T to 3 T
Dice HD Dice HD

Method CSF GM WM CSF GM WM CSF GM WM CSF GM WM

Original 0.82 0.82 0.87 10.21 8.68 11.16 0.82 0.82 0.87 10.21 8.68 11.16
pGAN 0.82 0.79 0.87 21.48 13.54 12.14 0.76 0.85 0.92 8.67 7.24 9.48

DM (ours) 0.80 0.79 0.88 9.11 6.73 7.67 0.81 0.88 0.92 8.65 7.01 9.30

5. Conclusion

We present a novel method for contrast harmonization based on DDPMs. Using paired
data from a source contrast S and a target contrast T , our method allows us to translate
a scan B of the source contrast S to scan Btransformed appearing in the contrast of T . For
the image-to-image translation, our diffusion model receives information from the source
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image B, as we only want to adjust the contrast while keeping the anatomical information.
The translation improves comparability between scans from different contrasts for further
evaluation and downstream tasks such as tissue segmentation. Our model outperforms
the comparing methods for the mapping from 1.5T to 3T and generates great results
for the opposite image mapping. Compared to GANs, diffusion models are not trained
in an adversarial manner, making the training straightforward. The input and output of
our model are 2D slices, allowing us to save memory compared to models trained on 3D
volumes. Stacking the 2D images to a 3D volume does not generate any stripe artifacts,
showing us that our method only changes the contrast and not the anatomical structure.
Due to the image generation characteristics of DDPMs, our method has a long sampling
time compared to the other methods, which could be improved by using other sampling
schemes (Song et al., 2020). So far, our model was only trained on skull-stripped data sets,
limiting a more in-depth temporal analysis of brain-volume changes. As our next step, we
will omit the skull-stripping during pre-processing, enabling observing brain-volume changes
relative to the fixed skull size.
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Siegfried Trattnig. Effect of contrast dose and field strength in the magnetic resonance
detection of brain metastases. Investigative radiology, 38(7):415–422, 2003.

Mahsa Dadar, Simon Duchesne, CCNA Group, et al. Reliability assessment of tissue clas-
sification algorithms for multi-center and multi-scanner data. NeuroImage, 217:116928,
2020.

Salman UH Dar, Mahmut Yurt, Levent Karacan, Aykut Erdem, Erkut Erdem, and Tolga
Cukur. Image synthesis in multi-contrast mri with conditional generative adversarial
networks. IEEE transactions on medical imaging, 38(10):2375–2388, 2019.

Blake E Dewey, Can Zhao, Jacob C Reinhold, Aaron Carass, Kathryn C Fitzgerald, Elias S
Sotirchos, Shiv Saidha, Jiwon Oh, Dzung L Pham, Peter A Calabresi, et al. Deepharmony:
A deep learning approach to contrast harmonization across scanner changes. Magnetic
resonance imaging, 64:160–170, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems, 34:8780–8794, 2021.

Giulio Disanto, Pascal Benkert, Johannes Lorscheider, Stefanie Mueller, Jochen Vehoff,
Chiara Zecca, Simon Ramseier, Lutz Achtnichts, Oliver Findling, Krassen Nedeltchev,
et al. The swiss multiple sclerosis cohort-study (smsc): a prospective swiss wide inves-
tigation of key phases in disease evolution and new treatment options. PloS one, 11(3):
e0152347, 2016.

Zolnamar Dorjsembe, Sodtavilan Odonchimed, and Furen Xiao. Three-dimensional medical
image synthesis with denoising diffusion probabilistic models. In Medical Imaging with
Deep Learning. PMLR, 2022.

Hajar Emami, Majid Moradi Aliabadi, Ming Dong, and Ratna Babu Chinnam. Spa-gan:
Spatial attention gan for image-to-image translation. IEEE Transactions on Multimedia,
23:391–401, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Ad-
vances in Neural Information Processing Systems, 33:6840–6851, 2020.

10



Diffusion Models for Contrast Harmonization

Fabian Isensee, Marianne Schell, Irada Pflueger, Gianluca Brugnara, David Bonekamp, Ulf
Neuberger, Antje Wick, Heinz-Peter Schlemmer, Sabine Heiland, Wolfgang Wick, et al.
Automated brain extraction of multisequence mri using artificial neural networks. Human
brain mapping, 40(17):4952–4964, 2019.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation
with conditional adversarial networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1125–1134, 2017.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehti-
nen, and Timo Aila. Alias-free generative adversarial networks. Advances in Neural
Information Processing Systems, 34:852–863, 2021.

Shiva Keihaninejad, Rolf A Heckemann, Gianlorenzo Fagiolo, Mark R Symms, Joseph V
Hajnal, Alexander Hammers, Alzheimer’s Disease Neuroimaging Initiative, et al. A robust
method to estimate the intracranial volume across mri field strengths (1.5 t and 3t).
Neuroimage, 50(4):1427–1437, 2010.

Boah Kim, Inhwa Han, and Jong Chul Ye. Diffusemorph: Unsupervised deformable image
registration using diffusion model. In European Conference on Computer Vision, pages
347–364. Springer, 2022.
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Appendix A. Scanner Details

Table 4: MR Scanners used for the data acquisition (Sinnecker et al., 2022)

Previous Scanner Current Scanner

Manufacturer Siemens Healthineers Siemens Healthineers
Erlangen, Germany Erlangen, Germany

Model Name Magnetom Avanto Magnetom Skyrafit

Magnetic Field Strength 1.5T 3T
Repetition Time 2080 ms 2300 ms
Inversion Time 1100 ms 900 ms
Echo Time 3.1 ms 2.94 ms

Imaging Matrix 240 x 256 240 x 256
Field of View (FOV) 234 x 250 mm2 240 x 256 mm2

Pixel Bandwidth 130 Hz per Pixel 240 Hz per Pixel
Flip Angle 15 degrees 9 degrees

Scanner Image Filter Prescan-Normalization Prescan-Normalization and
Distortion Correction in 3D

Software Version syngo MR B17 syngo MR VE11C
Sequence used for Data Set MPRAGE MPRAGE

Appendix B. Data Set Details

The MS patients are part of a longitudinal MS study (Disanto et al., 2016). Both, MS
patients and healthy controls were scanned first in the 1.5T scanner and after the scanner
change in the 3T scanner (median time interval 3.5 months, range 1.7 – 5.2 months).

Table 5: Details about the participants included in the data set, provided by (Sinnecker
et al., 2022)

Multiple Sclerosis Patients Healthy Controls

Number of Female Participants 14 11
Number of Male Participants 4 11
Age in Years, Mean [SD] 51.7 [±12.7] 28.9 [±7.6]
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Appendix C. Implementation Details

We compared our models against DeepHarmony (DH ) and pGAN. For both comparing
methods, we used the same four train and test folds as for our model to perform cross-
validation.

Implementation details:

• DH : to make it more comparable to our method, we used 2D sagittal slices with
shape [256, 256] as input, instead of the 2.5 dimensional implementation proposed
in the paper. We cropped the output to [224, 224] and stacked the slices to a 3D
volume of shape [160, 224, 224]. We trained the model for 300 epochs. We used a
batch size of eight as in the original implementation and adjusted the learning rate
to 10−4 as the original learning rate was not compatible with our images. For further
implementation details refer to (Dewey et al., 2019).

• pGAN : we trained the models for 300 epochs (150 with normal learning rate, 150 with
the learning rate decayed to zero) with a batch size of four. We used no neighbouring
slices. The cycle loss weight as well as the perceptual loss weight were set to 100. The
processed slices were of shape [256, 256], we cropped and stacked the output slices
to shape [160, 224, 224] for comparison with our model. For further implementation
details refer to (Dar et al., 2019) and https://github.com/icon-lab/pGAN-cGAN.
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Appendix D. Detailed Metrics

The MSE was calculated using

MSE =
N∑
i=1

(ai − bi)
2 (6)

with a and b being the images to compare and i iterating over all voxels N . The squared
differences are summed. To calculate the AHD we used the following formula

AHD =
bins∑
i=1

| h1(xi)− h2(xi) | (7)

with h1 and h2 being the histograms to compare for all bins xi, with i ranging from one to
the total number of bins.

Table 6: MSE and AHD averages including variances over four-fold cross-validation for the
mapping from 3T to 1.5T contrast.

Method MSE AHD

Original 1.85[±0.03]× 10−3 6.15[±0.12]× 105

DH 2.30[±0.07]× 10−3 7.49[±0.09]× 105

pGAN 1.50[±0.03]× 10−3 1.27[±0.07]× 105

DM (ours) 1.61[±0.03]× 10−3 1.31[±0.16]× 105

Table 7: MSE and AHD averages including variances over four-fold cross-validation for the
mapping from 1.5T to 3T contrast.

Method MSE AHD

Original 1.85[±0.03]× 10−3 6.15[±0.12]× 105

DH 1.73[±0.07]× 10−3 8.22[±0.14]× 105

pGAN 0.94[±0.11]× 10−3 2.07[±0.34]× 105

DM (ours) 0.76[±0.008]× 10−3 1.48[±0.16]× 105
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Table 8: Average CSF, GM and WM segmentation differences and variances over the four-
fold cross-validation in mm3. Differences between B̂ and B as well as between B̂
and Btransformed for the mapping from 3T to 1.5T contrast.

Method CSF GM WM

Original 3.72[±0.43]× 104 9.32[±0.93]× 104 8.88[±0.58]× 104

pGAN 1.12[±0.17]× 104 1.41[±0.23]× 104 1.91[±0.19]× 104

DM (ours) 1.95[±0.24]× 104 1.54[±0.40]× 104 1.59[±0.24]× 104

Table 9: Average CSF, GM and WM segmentation differences and variances over the four-
fold cross-validation in mm3. Differences between B̂ and B as well as between B̂
and Btransformed for the mapping from 1.5T to 3T contrast.

Method CSF GM WM

Original 3.72[±0.43]× 104 9.32[±0.93]× 104 8.88[±0.58]× 104

pGAN 3.11[±0.55]× 104 6.15[±0.51]× 104 2.10[±0.27]× 104

DM (ours) 1.79[±0.06]× 104 3.91[±0.19]× 104 1.49[±0.65]× 104

Table 10: Average Dice scores and variances over the four-fold cross-validation of segmen-
tations of CSF, GM and WM of B and of Btransformed compared to ground truth

segmentation of B̂ for the mapping from 3T to 1.5T contrast.

Method CSF GM WM

Original 0.8188[±0.0095] 0.8180[±0.0041] 0.8715[±0.0031]
pGAN 0.8205[±0.0075] 0.7925[±0.0040] 0.8745[±0.0029]

DM (ours) 0.7980[±0.0052] 0.7918[±0.0029] 0.8762[±0.0027]

Table 11: Average Dice scores and variances over the four-fold cross-validation of segmen-
tations of CSF, GM and WM of B and of Btransformed compared to ground truth

segmentation of B̂ for the mapping from 1.5T to 3T contrast.

Method CSF GM WM

Original 0.8188[±0.0095] 0.8180[±0.0041] 0.8715[±0.0031]
pGAN 0.7607[±0.0113] 0.8521[±0.0049] 0.9163[±0.0034]

DM (ours) 0.8094[±0.0101] 0.8760[±0.0045] 0.9232[±0.0031]
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Table 12: Average Hausdorff distances and variances over the four-fold cross validation of
segmentations of CSF, GM andWM of B and of Btransformed compared to ground

truth segmentation of B̂ for the mapping from 3T to 1.5T contrast.

Method CSF GM WM

Original 10.21[±1.03] 8.68[±0.83] 11.16[±0.99]
pGAN 21.48[±5.88] 13.54[±3.53] 12.14[±2.98]

DM (ours) 9.11[±1.05] 6.73[±1.02] 7.67[±1.02]

Table 13: Average Hausdorff distances and variances over the four-fold cross validation of
segmentations of CSF, GM andWM of B and of Btransformed compared to ground

truth segmentation of B̂ for the mapping from 1.5T to 3T contrast.

Method CSF GM WM

Original 10.21[±1.03] 8.68[±0.83] 11.16[±0.99]
pGAN 8.67[±0.80] 7.24[±0.90] 9.48[±1.04]

DM (ours) 8.65[±0.91] 7.01[±0.81] 9.30[±1.33]
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Appendix E. Histogram Examples

In Figures 5, 6, 7 and 8 we show exemplary histograms of both, healthy control and MS
patient scans for both directions of the image mapping. Each histogram consists of 255
bins. Each figure contains the histograms of B, B̂ and the generated volumes Btransformed.
The histograms of DH are shifted towards the brightest voxels for both directions of the
mapping. Due to this comparatively high amount of white voxels, the histograms of the
DH samples are cropped in Figures 5 - 8. The initial 1.5T and 3T histograms show big
differences. Both show two peaks, but for the 3T images, these are further apart, letting us
perceive images of higher contrast compared to the 1.5T images. In Figures 5 - 8, our DM
and pGAN manage to align the histograms of the generated samples much closer with these
of the ground truths B̂ ∈ T than the initial histograms of B ∈ S. Therefore we assume
that for both methods, the contrast harmonization is proving effective, for healthy control
as well as for MS patient scans.

Figure 5: Exemplary histograms of one healthy control for the mapping from 3T to 1.5T.
The histograms of Btransformed generated by pGAN and our DM align the ground

truth histogram of B̂ well compared to the histogram of the input image B.
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Figure 6: Exemplary histograms of one healthy control for the mapping from 1.5T to 3T.
The histograms of Btransformed generated by pGAN and our DM align the ground

truth histogram of B̂ well compared to the histogram of the input image B.
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Figure 7: Exemplary histograms of one MS patient for the mapping from 3T to 1.5T. The
histograms of Btransformed generated by pGAN and our DM align the ground

truth histogram of B̂ well compared to the histogram of the input image B.
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Figure 8: Exemplary histograms of one MS patient for the mapping from 1.5T to 3T. The
histogram of Btransformed generated by pGAN aligns the ground truth histogram

of B̂ well compared to the histogram of the input image B, while our DM manages
to almost perfectly match the peaks of B̂.
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Appendix F. Image Examples

Figure 9: Exemplary images for the translation from 3T source contrast to 1.5T target
contrast. The methods generate sagittal slices (right column), which are stacked
to create a 3D volume. The red circles indicate hyperintense regions generated
by DH.
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Figure 10: Exemplary images for the translation from 1.5T source contrast to 3T target
contrast. The methods generate sagittal slices (right column), which are stacked
to create a 3D volume. The red circles indicate hyperintense regions generated
by DH. The blue arrows point at stripe artifacts due to the stacking of 2D slices
produced by the pGAN.
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Appendix G. Segmentation Examples

Figure 11: Exemplary segmentations for the translation from 3T source contrast to 1.5T
target contrast. Green indicates CSF, yellow is GM and red is WM.
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Figure 12: Exemplary segmentations for the translation from 1.5T source contrast to 3T
target contrast. Green indicates CSF, yellow is GM and red is WM.
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