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Abstract

Aspect-Based Sentiment Analysis (ABSA) en-
compasses seven distinct subtasks, each focus-
ing on different extracted elements. Despite
the proven success of generative models in
unified aspect sentiment analysis, existing ap-
proaches often rely on autoregressive token-by-
token generation without grasping the whole
information of the aspect and opinion terms, re-
sulting in boundary insensitivity, particularly in
context of multi-word aspect and opinion terms.
To address these issues, we present DiffuSent,
a non-autoregressive diffusion framework that
systematically formulates all ABSA subtasks
as boundary denoising diffusion processes, pro-
gressively refining boundaries over noisy states.
Furthermore, we introduce a contrastive denois-
ing training strategy which effectively address
duplicate predictions with subtle variations in-
troduced by diffusion process. Extensive ex-
periments on four datasets for seven subtasks
demonstrate that DiffuSent achieves state-of-
the-art performances. !

1 Introduction

Aspect-Based Sentiment Analysis (ABSA) stands
as a fine-grained branch of sentiment analysis, fo-
cusing on evaluating sentiment at the entity level
(Pontiki et al., 2016). ABSA comprises three key
components: aspect term (a), opinion term (o), and
sentiment polarity (s). To illustrate, consider the re-
view sentence in Figure 1: "New hamburger with
special sauce is ok - at least better than big mac.",
"New hamburger with special sauce" and "big mac"
are aspect terms, while "ok" and "better than" are
the corresponding opinion terms linked to "posi-
tive" and "negative" sentiment polarities. These
elements underlie various ABSA subtasks, each
with distinct extraction and classification goals.
Conventional approaches to ABSA have focused
on distinct components such as aspect/opinion term

'The source code is anonymous online at: https://
anonymous . 4open.science/r/DiffuSent-0675/

—2 pos —— 7 NEG o
Sentence: New%:hamburgei:;with special E-_éauce-_._éis ok — at least better than big mac
a,(0,4) 04(6,6) 0,(10,11) ay(12,13)
Ground Truth (eg.ASTE): [ (0, 4, 6,6, POS), (12,13, 10,11, NEG)]

Subtask Input Output Task Type
Aspect Term Extraction (AE) S ay, 0 Extraction
Opinion Term Extraction (OE) S 01, 02 Extraction
Aspect-oriented Opinion S+a o .
Ex:)raction (AOE) i S+ai oi Extraction
Aspect-Opinion Pair Extraction (AOPE) S (a1,01),(a,,02) Extraction
Aspect-level Sentiment S+0; Sy L
Classification (ALSC) S+a, s Classification
Aspect Extraction and Sentiment Extraction &
Classification (AESC) s (ays1)(az,52) Classification
Aspect Sentiment Triplet Extraction Extraction &

S (a1,01,51),(02,0,5))

(ASTE) Classification

Figure 1: Illustration of seven ABSA subtasks

extraction (Ma et al., 2019; Dai and Song, 2019;
Zhao et al., 2020), sentiment classification for a
given aspect (Tang et al., 2015; Liu et al., 2023),
or aspect sentiment triplet extraction (Peng et al.,
2020; Mukherjee et al., 2021; Zhang et al., 2022;
Zhou and Qian, 2023). While these developments
have led to successes in individual subtasks, a uni-
fied ABSA framework remains an elusive goal.

To bridge this gap, recent research has been shift-
ing towards unified approaches within a pipeline
framework (Mao et al., 2021; Fei et al., 2022).
However, such paradigms often suffer from error
accumulation due to their modular approaches (Fei
et al., 2023). Addressing these drawbacks, there is
a growing inclination towards employing genera-
tive models in ABSA. This shift signifies a move to
an end-to-end autoregressive formulation, broaden-
ing the scope to include techniques such as word in-
dex generation (Yan et al., 2021), label augmented
text generation (Zhang et al., 2021), and template
filling (Gao et al., 2022; Gou et al., 2023).

However, the autoregressive decoding approach
tends to concentrate on individual token during
each decoding step. This method restricts the
model’s ability to holistically process and utilize
the full range of context encapsulated within multi-
word aspect/opinion terms, impacting its effective-
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ness in managing intricate structures and poten-
tially leading to a lack of sensitivity in identifying
term boundaries. As illustrated in Figure 1, a model
fixated on token-by-token generation might inaccu-
rately label "hamburger" or "new hamburger" as
independent aspect terms, overlooking their contex-
tual role within the broader term "new hamburger
with special sauce". Furthermore, this autoregres-
sive decoding process can be notably time-intensive
(Fei et al., 2023; Xiao et al., 2023), particularly
when generating longer target sequences.

Build upon these insights, we propose DiffuSent,
a novel unified generative diffusion framework tai-
lored for ABSA. Distinct from traditional token-by-
token generation paradigm, DiffuSent is designed
to explicitly model boundary indices, and dynam-
ically refines its interpretations based on compre-
hensive contextual information. Through a non-
autoregressive boundary denoising diffusion pro-
cess, it delivers predictions for boundary indices
in a single step. Specifically, we systematically
infuse uncertainty via Gaussian noise into the as-
pect/opinion term boundaries using a forward dif-
fusion process. The subsequent reverse diffusion
process then meticulously refines these term bound-
aries from their initially indeterminate states. Addi-
tionally, we introduce a contrastive denoising train-
ing strategy designed to systematically differentiate
between accurate and inaccurate boundary predic-
tions. It adeptly manages the duplicate predictions
with subtle variations in boundary detection, partic-
ularly in distinguishing semantically similar terms
such as "hamburger", "new hamburger", and "new
hamburger with special sauce". We validate Dif-
fuSent on four benchmarks for seven subtasks and
DiffuSent yields state-of-the-art performance. In
summary, our main contributions are as follows:

* We propose DiffuSent, a novel diffusion-
based framework that formulate all ABSA
subtasks as boundary denoising diffusion pro-
cess, offering a unified approach to ABSA. To
the best of our knowledge, we are among the
first to apply diffusion models in ABSA.

* A novel contrastive denoising training strat-
egy is introduced. This strategy is designed
to address duplicate predictions with subtle
variations in predicted boundary indices intro-
duced by diffusion process.

» Extensive experiments are conducted on 28
subtasks (7 x 4 datasets) to evaluate the effec-
tiveness of our approach. Experimental results

demonstrate that our model outperforms the
state-of-the-art methods.

2 Methodology
2.1 Problem Definition

In this section, we introduce the term boundary de-
noising diffusion process within the context of the
ASTE subtask by default, which can be extended to
other subtasks with minor adjustments presented in
Table 5. Given a sentence S = {w1, wa, ..., wyr},
the objective of ASTE is to extract the boundary
indices of all conceivable aspect terms, associated
opinion expression terms, and their correspond-
ing sentiment polarity labels, denoted as T' =
{(a},a$, 0,0, sz)}i\il The superscripts s and e
denote the start and end indices of aspect or opinion
terms within the input text. The sentiment polar-
ity label s; takes values from {P0S, NEU, NEG}, and
N signifies the count of target triples. We define
boundary sequences as T, = {(a;, a$, o, of)}l]\; 1
to facilitate the subsequent presentation.

2.2 Boundary Denoising Diffusion Process

As shown in Figure 2, in our boundary denoising
diffusion process, the boundary sequences 7} are
considered as data samples. During the forward
diffusion phase, Gaussian noise is incrementally
added to indices in these sequences. Conversely,
the reverse diffusion process aims to meticulously
restore the original boundary indices.

Boundary Indices Forward Diffusion In this
phase, we progressively introduce Gaussian noise
to the boundary sequences T}, € RV*4, simulat-
ing the uncertainty inherent in identifying term
boundaries. To facilitate parallel training, we nor-
malize the count N of T} to Ngpqin by duplicat-
ing, with normalized sequences represented as
xo € RNtrainX4 The noisy sequences at any given
timestep ¢ are calculated using a one-step Markov
transition as:

x; = Vayxo + V1 — qye (D

where ¢ ~ N (0,I) denotes the noise sampled
from a standard Gaussian distribution.

Boundary Indices Reverse Diffusion  Start-
ing from a noise-perturbed state, the reverse dif-
fusion process employs the non-Markovian de-
noising strategy DDIM (Song et al., 2021; Shen
et al., 2023). DDIM is for precise reconstruction
of term boundaries. The process involves selecting
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a subsequence 7 from the full timestep sequence
[1,...,T], with a length of . We iteratively re-
fining the boundary sequences x,, using the infor-
mation from the preceding timestep. The iterative
refinement process, utilizing a trainable denoising
network fy conditioned on S at 7;, as follows:
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where X denotes the predicted boundary at
timestep 7;, and €;, denotes the estimated noise.
This noise is determined as the normalized differ-
ence between the perturbed boundary sequences
x., and the predicted boundary sequences X(. The
refined predictions are then combined with the es-
timated noise, adjusted by their respective stan-
dard deviations. This process is iteratively re-
peated, as encapsulated in the expression, X, , =

Var_%Xo++/T = ar,_, &,. Following v iterations
of the DDIM, the perturbed boundary indices un-
dergo a gradual refinement, converging towards
accurate boundary indices.

2.3 Network Architecture

Within our denoising network fp (x¢, S, t;), it takes
the perturbed boundary sequences x; and the sen-
tence S as input, and subsequently predicts the
corresponding term boundary Xo with correspond-
ing sentiment polarity. The architectural design of
this denoising network, as illustrated in Figure 2, is
parameterized by two key components: a sentence
encoder and a boundary indices decoder.

Sentence Encoder The encoder transforms the
input sentence S = {w;,wy,...,wpr}, with a
length of M, into a h-dimensional sentence rep-
resentation Hg = {hy, ha, ..., has} € RM*E Our
implementation involves leveraging pre-trained lan-
guage models (PLMs) with a bi-directional LSTM.

3)

Boundary Indices Decoder The decoder is
tasked with processing the sentence representation
H to derive semantic representations for the cor-
rupted sequence of boundary indices x;, which
denote aspect and opinion terms. Initially, the
noisy sequences are discretized into word indices
through rescaling. Subsequently, the sequence rep—
resentation Hy = {hX}Nrain ¢ RNwrainxh ¢

be computed by mean-pooling over the tokens at
the designated start and end indices of aspect and
opinion term. Each hZX represents the pooled rep-
resentation of the i-th sequence within boundary
sequences, calculated as follows:

Hg = BiLSTM(BERT(S))

“

We further utilize transformer decoder integrated
a self-attention and a cross-attention layer to in-
tricately refine sequence representations. The
self-attention module fosters increased interactions
among sequences by utilizing query, key, and val-
ues derived from the sequence representations H x:

&)

where, H,, € RNtrainxh_In tandem, the cross-
attention mechanism further refines the sequence

hZX = POOlZ.TLg(haf» haf? hol;s’ ho?)

H,, = SelfAttention(Hy)



representation by incorporating the broader seman-
tic context of the sentence. This is achieved by
utilizing the output of the self-attention module
H,, as a query, with the key and value derived
from the sentence representation Hg, denoted as:

H., = CrossAttention(H,, Hg) (6)

where, H,, € RVtrainxh To accommodate the
iterative nature of the diffusion process, sinusoidal
embeddings E; corresponding to each timestep ¢
are integrated into the sequence representations.
The final noisy sequence representations H y are
calculated as follows:

ﬁX = Hca + Et (7)

Moreover, we employ 4 index pointers to
predict boundary indices of aspect and opin-
ion terms, respectively. For each index § €
{a®,a®, 0% 0°}, we create a fused representation
Hés x € RNtrain xMxh which combines the noisy
sequence representation with the sentence repre-
sentation. The likelihood P? € RNtrain XM of each
index being a boundary of term is as follows:

HYy = WiHg + WSHy (8)
P’ — FFN (Hx + E}) ©)

where W%, WS, € R"*" are learnable matrices,
and FFN(-) denotes a feed-forward network (FFN).
Eg € RNirainXMxh iq type embedding to distin-
guishes between aspect or opinion boundaries.
Sentiment Classifier The sentiment classi-
fier processes the sequence representations Hy
through a FEN to output a probability distribution
over sentiment categories, denoted as:
P°=FFN (Hy) (10)
Where, P¢ € RNtrainXC and C' represents the
total number of sentiment polarity categories.
Contrastive Denoising Training In the dif-
fusion process of DiffuSent, a certain degree of
uncertainty is introduced, leading to duplicate pre-
dictions with around the initially predicted bound-
ary indices. It grants the model the flexibility to
explore various possible interpretations of where
a term might begin or end. However, it is impor-
tant to note that while this added uncertainty aids
in handling multi-word term, it also carries the
risk of incorrect predictions of boundary indices

due to subtle variations. To further enhance Dif-
fuSent’s proficiency in the nuanced delineation of
term boundaries and strengthen the sentiment clas-
sification process by reducing false triplet genera-
tion, we introduce a contrastive denoising training
strategy during training phase.

As shown in Figure 2, we generate two types
of samples, positive samples and negative samples
by adding two different scale of noise A\; and Ay
to Nirqin ground-truth boundary sequences, where
A1 < Ag. After diffusion reverse process, the de-
coder additionally takes the two types of samples as
input. Positive samples have a noise scale smaller
than \; and are expected to reconstruct their cor-
responding ground truth. Negative samples have
a noise scale larger than \; and smaller than As.
They are expected to predict “Invalid”, denoted
as ¢. If a sentence has Nqin ground-truth, con-
trastive denoising training will have 2 x Ni.qin
samples with each ground-truth generating a posi-
tive and a negative samples.

Similar to previous calculation process, we can

obtain the boundary probabilities Fj of positive
samples, classification probabilities P* and P¢ for
positive and negative samples, respectively.

2.4 Training Loss

Our training objective consist of a matching loss
and a contrastive denoising loss. We discuss each
component in detail in following part.

Matching Loss In handling Ny, predictions
and corresponding Ny,q;, €xpanded ground-truth
values, we leverage the Hungarian algorithm
(Kuhn, 1955) to establish an optimal matching 0
between the two sets. 1[1(1) represents the ground-
truth corresponding to the ¢-th noisy sequence. The
matching loss encompasses both boundary loss and
sentiment classification loss. Subsequently, the
reverse process is trained by maximizing the likeli-
hood of the prediction:

Nirain

Lo== 3 ( 3 logP! ()

=1 6€{a®,a®,0%,0°} (11)
+logPf (9°(1)))

Contrastive Denoising Loss The contrastive
loss also consists of boundary loss and sentiment
classification loss. Specifically, the boundary loss
is only calculated according to boundary probabili-
ties P° of positive samples. The classification loss
is calculated according to classification probabili-
ties P and P¢ for positive and negative samples,



respectively. Consequently, the contrastive loss is
computed as follows:

Nirain
76 A(;
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We jointly optimize matching loss £,,, and con-
trastive denoising loss L.. The overall training loss
can be represented as:

L=Ly+ L. (13)

2.5 Inference

During the inference stage, DiffuSent initiates
by stochastically sampling N.,,; noisy sequences
from a Gaussian distribution. Subsequently, it un-
dertakes iterative denoising with the learned bound-
ary indices reverse diffusion process based on the
denoising timestep 7. The predicted probabilities,
derived from this denoising process, correspond to
the likelihoods associated with various boundary
indices and their respective sentiment polarities.

Leveraging these predicted probabilities, the
model decodes N, candidate sentiment triplets
(a3, a$, 0}, 0%, si)ff\ief‘”. Following decoding, two
essential post-processing steps are employed: de-
duplication and filtering. For triplets with identical
term boundary indices, the algorithm retains the
one with the highest polarity probability. Addition-
ally, triplets with a cumulative sum of prediction
probabilities falling below the threshold ¢ are sys-
tematically eliminated.

3 Experiments

3.1 Datasets

We evaluate our methods across seven subtasks us-
ing four datasets from SemEval Challenges. The
Dq7 dataset, annotated by Wang et al. (2017),
comprises unpaired opinion terms, while the Dig
dataset, annotated by Fan et al. (2019), pairs opin-
ion terms with corresponding aspects. Annotated
by Peng et al. (2020), the Dog, dataset includes
aspect labels, corresponding opinion labels, and
sentiment polarities. Additionally, the Do, dataset,
refined by Xu et al. (2020), eliminates triples with
inaccurate sentiments and labels missing triples.
We present their statistics in Table 6.

3.2 Baselines

The baselines for evaluating DiffuSent across vari-
ous datasets are categorized into three groups:

e For AE, OE, ALSC on D;7, and AOE on Dg:
The models considered include: BART-GEN
(Yan et al., 2021), SyMux (Fei et al., 2022), SK2
(Li et al., 2022a), MVP (Gou et al., 2023).

e For AESC, AOPE, ASTE on D»,: The baselines
are Peng-two-stage (Peng et al., 2020), Dual-
MRC (Mao et al., 2021), BART-GEN (Yan et al.,
2021), LEGO-ABSA (Gao et al., 2022), SyMux
(Fei et al., 2022), SK2 (Li et al., 2022a), MvP
(Gou et al., 2023).

e For ASTE on Dyg: The baselines are BART-
GEN (Yan et al., 2021), Span-ASTE (Xu et al.,
2021), UIE (Lu et al., 2022), SK2 (Li et al.,
2022a), SBN (Chen et al., 2022), STAGE (Liang
et al., 2023), SimSTAR (Li et al., 2023), SLGM
(Zhou and Qian, 2023), MvP (Gou et al., 2023).

3.3 Main Results

We use Fl-score as the main evaluation metrics
(Gao et al., 2022; Gou et al., 2023). For all ABSA
subtasks, a predicted tuple is considered as correct
only if all elements are the same as the gold tuple.
We evaluate our method for AESC, AOPE, and
ASTE on the Dog, and D, datasets. The com-
parison results are presented in Table 1 and Table
2, respectively. Our boundary denoising diffusion
approach outperforms the state-of-the-art unified
baselines, demonstrating significant improvements
across all three subtasks, with enhancements rang-
ing from +0.07% to +1.8%. These findings under-
score the effectiveness of DiffuSent in accurately
locating term boundaries, attributed to the progres-
sive refinement of term boundaries. Additionally,
our results validate the capability of DiffuSent in
recovering term boundaries from noisy sequences
through the boundary denoising diffusion process.
In comparison to the latest ASTE benchmarks, as
shown in Table 2, DiffuSent demonstrates superior
performance. Specifically, when matched against
models based on Bert-base, DiffuSent records an
average F1-score improvement of +1.04%. In com-
parison to autoregressive generative models such as
UIE, MvP, and SLGM, which utilize T5-base with
twice the parameters of Bert-base, DiffuSent yields
improvements of +0.94%, +0.67%, and +0.81%
on Res14, Res15, and Res16, respectively. These
improvements underscore DiffuSent’s capability
to refine interpretations dynamically with compre-
hension of contextual information, moving beyond
token-by-token generation. Additionally, we evalu-
ate DiffuSent on D17 and D19 for AE, OE, ALSC,
and AOE, with detailed results in Appendix D.



Table 1: Comparison Fl-scores(%) for AESC, AOPE and ASTE on Dy, dataset. The best and the second best
Fl-scores are in bold and underlined, respectively. * denotes the reproduced result using the released code. Results
marked with "*" indicate a statistically significant improvement with p < 0.01 under the bootstrap paired t-test.

Model PLM Lap14 Res14 Res15 Res16
AESC AOPE ASTE AESC AOPE ASTE AESC AOPE ASTE AESC AOPE ASTE
Peng-two-stage - 62.34 5385 4350 74.19 56.10 51.89 65.79 56.23 46.79 71.73 60.04 53.62
Dual-MRC Bert-base  64.59 63.37 55.58 76.57 7493 70.32 65.14 6497 57.21 70.84 7571 67.40
SyMux Roberta-base 70.32 67.64 60.11 78.68 79.42 74.84 69.08 69.82 63.13 77.95 78.82 72.76
SK2 Bert-large 69.42 68.12 60.14 78.72 78.19 73.32 73.30 72.05 6432 77.78 79.89 72.03
BART-GEN Bart-base  68.17 66.11 57.59 7847 77.68 7246 69.95 6798 60.11 75.69 7738 69.98
LEGO-ABSA  T5-base 723 713 622 806 781 73.7 742 729 644 761 776 715
MvPf T5-base  70.55 71.38 6242 78.06 77.95 746 74.84 74.06 6525 77.63 80.46 73.28
DiffuSent Bert-base  73.74" 71.67° 63.31" 81.13" 79.86" 74.91" 75.85" 74.19" 67.05" 79.16" 80.9" 74.14"

Table 2: Comparison F1-scores(%) for ASTE on Dy,
dataset. Symbols have the same meanings as in Table 1.

Model PLM Lapl4 Resl4 Resl5 Resl6
Span-ASTE Bert-base 59.38 71.85 63.27 70.26
SK2 Bert-large 60.56 7327 65.00 72.19
SBN Bert-base 62.65 74.34 64.82 72.08
SimSTAR' Bert-base 59.98 70.15 63.5 7025
STAGE!  Bert-base 59.58 72.58 6349 71.06
BART-GEN Bart-base 58.69 6525 59.26 67.62
UIE-base TS-base 6294 7255 6441 72.86
MvP! T5-base  61.51 73.48 64.65 73.38
SLGM' T5-base  63.28 7339 65.72 7341
DiffuSent  Bert-base 63.03* 74.42* 66.39" 74.22"

Table 3: Ablation results (F1-score,%) on Res15 and
Res16. The best results are marked in bold.

Setting Res15 Res16

Contrastive X 64.16 71.44
Denoising v 66.39 74.22
Duffusion 1000 66.39 74.22
Timoste 1500 64.42 71.4

P 2000 65.57 71.22

30 63.53 72.23

Number of 60 66.39 74.22
Noisy Sequence 90 64.61 72.26

3.4 Ablation Study

To further investigate the impact of each compo-
nent and hyper-parameter in DiffuSent, we conduct
comprehensive ablation studies on ASTE task on
Res15 and Res16 from Dy, in Table 3.
Contastive Denoising We examine the effec-
tiveness of our contrastive denoising training by
removing it from our framework. Results indicate
a decrease of -2.23% and -2.78% on F1-score for
Res15 and Res16, respectively. This substantial

drop in performance underscores the importance of
contrastive denoising training in managing dupli-
cate predictions with subtle variations in predicted
boundary indices, thereby refining predictions and
ensuring valid sentiment polarity classification.

Diffusion Timestep The timestep regulates
the amount of Gaussian noise introduced during the
forward diffusion process. Our analysis indicates
that increasing the timestep leads to a noticeable de-
cline in model performance. This trend highlights
a trade-off between noise intensity and model ac-
curacy, underscoring the need for balancing noise
levels to optimize model performance.

Number of Noisy Sequence The quantity of
noisy sequences during both training and inference
is indicative of the level of uncertainty. Our experi-
ments investigate how DiffuSent performs across
different numbers of noisy sequences. The findings
emphasize the importance of selecting an appro-
priate number of noisy sequences for the model.
Insufficient numbers may result in overlooking the
ground truth, while an excessive amount can lead
to the generation of numerous duplicate predictions
with subtle variations, complicating the identifica-
tion of true targets.

3.5 Performance on Multi-word Triplets

According to statistic data (Zhou and Qian, 2023),
multi-word triplets account for roughly one-third
of all triplets. To assess DiffuSent’s capability with
multi-word terms, we focus on triplets containing
at least one multi-word aspect or opinion term, con-
trasting it with single-word triplets. Our evaluation
includes comparisons with the latest span-based
approach, STAGE (Liang et al., 2023), and a gener-
ative method, SLGM (Zhou and Qian, 2023), on the
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Table 4: Comparison with generative methods on Res16
from Dsg,. P means the number of parameters. All
experiments are conducted on the same setting.

Model P F1 Sents/s  SpeedUp
MvP 223M 7338  0.86 1.00x
SLGM 225M 7341 2441 28.38x
DiffuSent;,—;; 112M 739 15598 181.37x
DiffuSent;,—5; 112M 7422  92.61  106.98x
DiffuSent;,—1oy 112M 743  61.51 71.52%

Res15 and Res16 datasets from Dyg,. As shown
in Figure 3, our model consistently outperforms
others across various metrics. Notably, DiffuSent
exhibits a more substantial improvement, achieving
an average Fl-score increase of 2.48% for multi-
word triplets compared to a 0.52% increase for
single-word triplets. These results underscore Dif-
fuSent’s effectiveness in accurately identifying the
boundaries of multi-word terms, consequently en-
hancing the overall performance.

3.6 Inference Efficiency

To further validate whether our DiffuSent requires
more inference computations, we also conduct ex-
periments to compare the inference efficiency be-
tween DiffuSent and other generative models: MvP
(Gou et al., 2023) and SLGM (Zhou and Qian,
2023). As shown in Table 4, DiffuSent achieves
better performance with a faster inference speed
and minimal parameter scale. Even with a denois-
ing timestep of v = 10, DiffuSent is 71.5x and
2.5x faster than them via generating all triplets
in parallel, which avoids generating the linearized
sequence in autoregressive manner.

Furthermore, We also conduct experiments to
analyze the effect of different denoising timesteps
on model performance and inference speed of Dif-
fuSent. As shown in Figure 4, with an increase of
denoising steps, the model initially achieves incre-
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Figure 4: Analysis of denoising timestep v on Res16

mental performance improvement while sacrificing
inference speed. Subsequently, the model exhibited
a significant degradation in performance beyond
denoising timesteps v = 30, which indicates that
preserving a certain level of noise can enhance
the diversity of generated triplets. Considering the
trade-off between performance and efficiency, we
set v = 5 as the default setting.

3.7 Case Study

Figure 5 illustrates three distinct case studies from
Res15 dataset. In the first example, SLGM wrongly
predict "Smith Street" as aspect while DiffuSent
accurately recovers term boundaries from noisy
sequences through boundary denoising diffusion.
In the second example with multi-word triplet,
SLGM’s failure to identify the broader aspect
term “stuff tilapia” through autoregressive token-
by-token generation highlights its limitation in cap-
turing comprehensive context of multi-word term.
Notably, the absence of contrastive denoising train-
ing strategy in DiffuSent leads to the erroneous
prediction of an redundant triplet, highlighting the
strategy’s importance in mitigating duplicate pre-
dictions introduced by diffusion process. This ob-
servation is reinforced by the third example, where
the lack of contrastive denoising training strategy
in DiffuSent leads to the generation of a spurious
triplet. Such instances validate the strategy’s util-
ity in discerning between precise and imprecise
boundary delineations. We conduct additional case
studies for further demonstration in Appendix F.

4 Related Work

4.1 Aspect-Based Sentiment Analysis

Aspect-Based Sentiment Analysis (ABSA) encom-
passes a suite of interrelated subtasks, each fo-
cusing on specific components or their combina-
tions within a text as illustrated in Figure 1. Pre-
vious studies mainly focus on individual subtasks



Test sentence Worst place on Smith Street The stuff tilapia was horrid ... tasted like never swaying, never a bad meal,
in Brooklyn. cardboard . never bad service ...
, . . . - U (meal, , positive)
Gold triplet (place, , negative) (stuff tilapia, , negative) (service, positive)
(Smith Street, Worst, - . . 5 :

SLGM negative) 3¢ (tilapia, horrid, negative) X (service, never bad, positive)

. P . . al, swaying, iti
leﬁlSe‘l’lf (place, Worst, negative) (stuff tilapia, horrid, negative) Ezz:l :Z:Z; :L:iim;;goggil:)ve)x

w/o CD (stuff tilapia, cardboard, negative) 3¢ (service, never bad, positive)

. . - . . (meal, never a bad, positive)

ac s 3 £t til h /i . .
DiffuSent (place, Worst, negative) (stuff tilapia, horrid, negative) (service, never bad, positive)

Figure 5: Results of case study by different models. DiffuSent w/o CD denotes DiffuSent without contrastive
denoising. Triplets crossed out by the red line indicate missing predictions.

(Tang et al., 2016; Li and Lam, 2017; Wang et al.,
2017), including AE, OE, ALSC. Subsequent re-
search shifted towards integrated models that si-
multaneously extract aspects, opinions, and their
corresponding sentiments (Fan et al., 2019; Gao
et al., 2021; Hu et al., 2019), such as AOE, AOPE
and AESC. Marking a significant shift in the field,
Peng et al. (2020) introduced the Aspect Sentiment
Triplet Extraction (ASTE) task, pioneering a uni-
fied approach for extracting aspect, opinion, and
sentiment triplets. This approach led to the devel-
opment of advanced techniques in ABSA, such as
table filling (Jing et al., 2021; Zhang et al., 2022),
sequence tagging (Xu et al., 2020; Li et al., 2023;
Zhou and Qian, 2023), and span-based methods
(Xu et al., 2021; Chen et al., 2022; Liang et al.,
2023). However, these methods focus on individ-
ual tasks, rather than a comprehensive solution.

Recent trends in Aspect-Based Sentiment Anal-
ysis (ABSA) have seen the emergence of unified
methods, such as Mao et al. (2021)’s two-step MRC
approach. However, this method suffers from error
accumulation due to isolated processing. In re-
sponse, a shift towards end-to-end generative meth-
ods has occurred, addressing all ABSA subtasks
more effectively. These include approaches like
word index generation (Yan et al., 2021), label aug-
mented text generation (Zhang et al., 2021), and
template filling (Gao et al., 2022; Gou et al., 2023;
Zhou and Qian, 2023). However, a notable limita-
tion of these generative models is their reliance on
autoregressive, token-by-token decoding. This ap-
proach, while effective, does not fully capitalize on
the information available in multi-word terms and
can be inefficient time-wise. In our work, we utilize
a diffusion model to facilitate progressive refine-
ments of term boundaries and output all predictions
simultaneously in non-autoregressive manner, ef-

fectively addressing complex linguistic structures.

4.2 Diffusion Model

Diffusion models (Sohl-Dickstein et al., 2015), pri-
marily used for continuous data like images and
audio (Kong et al., 2020; Rombach et al., 2022;
Chen et al., 2023), face challenges when applied to
the discrete nature of text in NLP. Innovations by
Hoogeboom et al. (2021) and Austin et al. (2021)
have adapted these models for character-level text
generation, while Li et al. (2022b) and Gong et al.
(2022) further developed methods to bridge the gap
between continuous and discrete domains. Notably,
Shen et al. (2023) frame Named Entity Recognition
as a boundary denoising process, offering insights
into the application of diffusion models in text ex-
traction. Building on this innovation, we have de-
veloped DiffuSent, a unified generative diffusion
framework designed to address all ABSA subtasks.

5 Conclusion

In this paper, we propose DiffuSent, a novel gener-
ative framework for unified aspect-based sentiment
analysis (ABSA) that formulate all ABSA subtasks
as boundary denoising diffusion process. Differ-
ent from autoregressive token-by-token generation,
DiffuSent explicitly models boundary indices and
allows for dynamically refinements in interpret-
ing complex linguistic structures like multi-word
terms. In addition, to address duplicate predictions
with subtle variations arising from diffusion pro-
cess uncertainties, we design a contrastive denois-
ing training that further refine aspect and opinion
term boundaries. Experimental results demonstrate
that DiffuSent yields a new state-of-the-art perfor-
mance, showcasing superior performance in pro-
cessing complex linguistic structures efficiently.



Limitations

Despite the strong performance of DiffuSent, its
design still has the following limitations. As a
latent generative model, DiffuSent relies on sam-
pling from a Gaussian distribution to produce noisy
sequences, which leads to a random and uncer-
tain characteristic of generation. Although we pro-
pose a contrastive denoising strategy to manage
this phenomenon, it inevitably increases some non-
negligible computational cost. Additionally, exper-
iments only verified the consistent improvement on
ABSA tasks, while intuitively, the idea of DiffuSent
can be expanded to any structure prediction tasks,
such as information extraction, emotion-cause pair
extraction, and stance detection.
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A Denoising Diffusion Implicit Model

Diffusion models are a class of generative models
that leverage both forward and reverse processes,
which can be likened to Markov chains with Gaus-
sian transitions. The forward process gradually
adds Gaussian noise to transform sample data xg
to a latent noisy sample x; for ¢t € {0,1,...,T},
which can be defined as:

N (x¢ | Varxo, (1 —a)I) (14)

where a; = HZ:O s = HZ:O (1 — Bs) and S
represents the predefined variance schedule.

The reverse process then attempts to remove the
noise that was added in the forward process and is
parameterized by 6 as:

Q(Xt ’XO) =

po (Xt—1 | Xt,t) = N (x¢—1; g (X, 1) , X (Xt, 1))

5)
where 11g(-) and Xg(-) can be implemented by a U-
Net or a Transformer. When conditioning also on
X0, q (X¢—1 | X¢,Xp) has a closed form so we can
manage to minimize the variational lower bound to
optimize log py (Xo):

Loy, = Ey [Dxr (¢ (x7 | %0) ||pe (x7))] +
T
ZDKL (q (x¢—1 | x¢,%0) [|po (x¢—1 | %, t))]
=2

—log pg (%0 | x1)
(16)

where E,(-) denotes the expectation over the joint
distribution ¢ (xo.7).

B Optimal Matching

Given a fixed-size set of Ny.qi, NOiSy sequences,
DiffuSent infers Ny,.qip, predictions, where Nyqin
is larger than the number of N ground-truth in a
sentence. One of the main difficulties of training is
to score the prediction with respect to the ground
truth. Thus we utilize an optimal bipartite match-
ing between predicted and ground truth and then
optimize the likelihood-based loss.

Assuming Y = {ﬁ}f\;“i‘”" are the set of Niyqin
predictions, where Y; = (P¢", P¢", P¢", P¢", P$).
We denote the ground truth set of N tuples as
{(ai,a$,0},05,s; )}i]\il, where a?, af, 07, of, s; are
the aspect/opinion boundary indices and sentiment
for the ¢-th tuple. Since Nypqir is larger than the
number of NV ground-truth, we pad Y with & (in-
valid). To find a bipartite matching between these
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two sets we search for a permutation of Ny.qin
elements ¢ € Sy, ., With the lowest cost:

Nt'razn

S argmln Z L match

i

where Lmatch (f/,, Yw(i)) is a pair-wise match-

ing cost between the prediction Y; and ground
truth Yy,;) with index (i). With these nota-

tions we define £match(§>i,Y¢(i)) as _ﬂ(yw(i) #

@) Zoe{as,ae,os,oe,s} Pg (YJ(1)>’ where ]l() de-
notes an indicator function. This optimal assign-
ment is computed efficiently with the Hungarian

algorithm, following prior work (Shen et al., 2023).

C Implement Details

Our DiffuSent is trained on the NVIDIA A100 Ten-
sor Core GPU. Following previous works (Liang
et al., 2023), We employ bert-base-uncased® as
the pre-trained model. We train our model using
Adam optimizer with a linear warmup and linear
decay learning rate schedule. The initial learning
rate is 2¢° for AE, OE, ALSC and AOE, 5¢~° for
AESC, AOPE and ASTE. The filtering threshold
@ is 0.6 for ALSC, 1.5 for AE, OE and AOE, 2.5
for AESC, 3.5 for AOPE, 4.5 for ASTE. We set
dropout as 0.1 and batch size as 16. For diffusion
process, the number of noisy sequences Ny q;n and
Neyqy are set as 60, the timestep 7" is 1000, and the
sampling timestep -y is 5. The scale factor \; and
Ag for contrastive denoising training is 1.0 and 2.0,
respectively.

2https: //huggingface.co/bert-base-uncased
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MVvP (Gou et al., 2023) are reproduced by us using the released code.

D Additional Result

We extensively evaluate the capabilities of Dif-
fuSent model on D7 dataset (Wang et al., 2017)
for AE, OE, ALSC and on D9 dataset (Fan et al.,
2019) for AOE. Figure 7 summarizes the perfor-
mance on key benchmarks of DiffuSent compared
to other state-of-the-art unified ABSA methods.
DiffuSent sets new state-of-the-art results on both
extraction and classification ABSA subtasks.

E Performance on Multi-triplet

To verify the effectiveness of our framework in han-
dling sentences with multiple triplets, we conduct a
comprehensive evaluation on the ASTE task, com-
paring our model’s performance against STAGE
and SLGM. Figure 6 showcases our results derived
from a meticulous analysis using the Res15 test
set, which was segregated into sentences with vary-
ing numbers of multi-triplets. In the category of
sentences contain two or three triplets, our model
exhibited outstanding performance, achieving F1-
scores of 65.31% and 65.04%, outperforming the
two baseline models. The efficacy of our model
becomes even more pronounced in sentences con-
taining four or more triplets. In these instances, our
model’s scores significantly surpassed those of the
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leading baseline models. This significant lead un-
derscores the effectiveness of our model’s greater
flexibility in identifying term boundaries, proving
its adeptness in more challenging sentences with
intricate structures.

F Additional Case Study

We present extended intances from Res15 dataset
analyzed by DiffuSent with and without contrastive
denosing training in Figure 8. As illustrated in the
first instance, DiffuSent without contrastive denos-
ing training strategy falls short in handling dupli-
cate predictions with subtle variations introduced
by diffusion process in boundary identification as
it wrongly predicts "bathroom" as the aspect term.
Furthermore, we observe that DiffuSent without
contrastive denoising training strategy typically pre-
dicts extra incorrect triplet which does not exist in
the given sentence. These cases indicate that Dif-
fuSent is adept at distinguishing between accurate
and inaccurate boundary predictions by managing
the inherent uncertainty in language interpretation
with the help of boundary denoising diffusion pro-
cess and contrastive denosing training.



Table 5: Experiment settings on each subtask. The underlined tokens are given during inference in subtask that
depend on a specific aspect term. Noise & ~ A (0, T).

Subtask Xo X7 Sentiment  Contrastive

(Boundary Sequence) (Noisy State) Classifier ~ Deniosing
AE/OE (a®/0°,a®/0%) (&1,&2) X v
ALSC (a,a%) (€1,&2) v X
AOE (a®,a%,0°,0°) (a®,a%, &1,E2) X v
AESC (as, ae) (517 52) v v
AOPE (a®,a%, 0%, 0%) (&1,E2,E3,E4) X v
ASTE (as7ae,os,oe) (51,52,53754) v (4

Table 6: Statistics of the four datasets used in our experiments.

Datasets Lap14 Res14 Res15 Res16 Tasks
#s #a #o #p #s #a.  #o #p #s #a #o #p #s #a #o #p
D train 3048 2373 2504 - 3044 3699 3484 - 1315 1199 1210 - - - - - AE,OE,
17 test 800 654 674 - 800 1134 1008 - 685 542 510 - - - - - ALSC
D train 1158 1634 - - 1627 2643 - - 754 1076 - - 1079 1512 - - AOE
Y test 343 482 - - 500 865 - - 325 436 - - 329 457 - -
train 920 - - 1265 1300 - - 2145 593 - - 923 842 - - 1289 AESC,
Dypq dev 228 - - 337 323 - - 524 148 - - 238 210 - - 316 AOPE,
test 339 - - 490 496 - - 862 318 - - 455 320 - - 465 ASTE
train 906 - - 1460 1266 - - 2338 605 - - 1013 857 - - 1394
Doy dev 219 - - 346 310 - - 577 148 - - 249 210 - - 339 ASTE
test 328 - - 543 492 - - 994 322 - - 485 326 - - 514

-Test sentence: oh speaking of bathroom , the mens bathroom was disgusting

Gold triplet: (mens bathroom, , negative)

DiffuSent: (mens bathroom, disgusting, negative) &/

DiffuSent w/o Contrastive Denoising: (bathroom, disgusting, negative),3¢ (mens bathroom, disgusting, negative)s/

-Test sentence: Paul , the maitre d ', was totally professional and always on top of things .

Gold triplet: (Paul, , positive)

DiffuSent: (Paul, professional, positive) 4/

DiffuSent w/o Contrastive Denoising: (Paul, professional, positive),&/ (maitre d ', professional, positive) 3

-Test sentence: THE SERVICE IS AMAZING , i 've had different waiters and they were all nice , which is a rare thing in NYC .
Gold triplet: (SERVICE, , positive), (waiters, , positive)

DiffuSent: (SERVICE, AMAZING, positive)as (waiters, nice, positive) 4

DiffuSent w/o Contrastive Denoising: (SERVICE, AMAZING, positive),&/ (waiters, nice, positive) s/ (waiters, rare, positive)$¢

-Test sentence: Shame on this place for the horrible rude staff and non-existent customer service .

Gold triplet: (stuff, , hegative), (customer service, , hegative)

DiffuSent: (stuff, rude, negative),n/ (customer service, non-existent, negative) 4/

DiffuSent w/o Contrastive Denoising: (stuff, rude, negative)sn/ (stuff, Shame on this palce for the horrible rude, negative),3¢
(stuff, Shame, negative),9¢ (customer service, non-existent, negative) &

-Test sentence: Food was amazing - I love Indian food and eat it quite regularly , but I can say this is one of the best I 've had .
Gold triplet: (Food, , positive)

DiffuSent: (Food, amazing, postive),/ (Indian food, best, positive)3¢

DiffuSent w/o Contrastive Denoising: (Food, amazing, postive)s/ (Indian food, best, positive),3 (Indian food, love, positive),3¢
(Food, love, positive),3¢ (Food was amazing - I love Indian food, love, positive)3¢

Figure 8: Additional case study.
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