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Abstract

Aspect-Based Sentiment Analysis (ABSA) en-001
compasses seven distinct subtasks, each focus-002
ing on different extracted elements. Despite003
the proven success of generative models in004
unified aspect sentiment analysis, existing ap-005
proaches often rely on autoregressive token-by-006
token generation without grasping the whole007
information of the aspect and opinion terms, re-008
sulting in boundary insensitivity, particularly in009
context of multi-word aspect and opinion terms.010
To address these issues, we present DiffuSent,011
a non-autoregressive diffusion framework that012
systematically formulates all ABSA subtasks013
as boundary denoising diffusion processes, pro-014
gressively refining boundaries over noisy states.015
Furthermore, we introduce a contrastive denois-016
ing training strategy which effectively address017
duplicate predictions with subtle variations in-018
troduced by diffusion process. Extensive ex-019
periments on four datasets for seven subtasks020
demonstrate that DiffuSent achieves state-of-021
the-art performances.1022

1 Introduction023

Aspect-Based Sentiment Analysis (ABSA) stands024

as a fine-grained branch of sentiment analysis, fo-025

cusing on evaluating sentiment at the entity level026

(Pontiki et al., 2016). ABSA comprises three key027

components: aspect term (a), opinion term (o), and028

sentiment polarity (s). To illustrate, consider the re-029

view sentence in Figure 1: "New hamburger with030

special sauce is ok - at least better than big mac.",031

"New hamburger with special sauce" and "big mac"032

are aspect terms, while "ok" and "better than" are033

the corresponding opinion terms linked to "posi-034

tive" and "negative" sentiment polarities. These035

elements underlie various ABSA subtasks, each036

with distinct extraction and classification goals.037

Conventional approaches to ABSA have focused038

on distinct components such as aspect/opinion term039

1The source code is anonymous online at: https://
anonymous.4open.science/r/DiffuSent-0675/

Figure 1: Illustration of seven ABSA subtasks

extraction (Ma et al., 2019; Dai and Song, 2019; 040

Zhao et al., 2020), sentiment classification for a 041

given aspect (Tang et al., 2015; Liu et al., 2023), 042

or aspect sentiment triplet extraction (Peng et al., 043

2020; Mukherjee et al., 2021; Zhang et al., 2022; 044

Zhou and Qian, 2023). While these developments 045

have led to successes in individual subtasks, a uni- 046

fied ABSA framework remains an elusive goal. 047

To bridge this gap, recent research has been shift- 048

ing towards unified approaches within a pipeline 049

framework (Mao et al., 2021; Fei et al., 2022). 050

However, such paradigms often suffer from error 051

accumulation due to their modular approaches (Fei 052

et al., 2023). Addressing these drawbacks, there is 053

a growing inclination towards employing genera- 054

tive models in ABSA. This shift signifies a move to 055

an end-to-end autoregressive formulation, broaden- 056

ing the scope to include techniques such as word in- 057

dex generation (Yan et al., 2021), label augmented 058

text generation (Zhang et al., 2021), and template 059

filling (Gao et al., 2022; Gou et al., 2023). 060

However, the autoregressive decoding approach 061

tends to concentrate on individual token during 062

each decoding step. This method restricts the 063

model’s ability to holistically process and utilize 064

the full range of context encapsulated within multi- 065

word aspect/opinion terms, impacting its effective- 066
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ness in managing intricate structures and poten-067

tially leading to a lack of sensitivity in identifying068

term boundaries. As illustrated in Figure 1, a model069

fixated on token-by-token generation might inaccu-070

rately label "hamburger" or "new hamburger" as071

independent aspect terms, overlooking their contex-072

tual role within the broader term "new hamburger073

with special sauce". Furthermore, this autoregres-074

sive decoding process can be notably time-intensive075

(Fei et al., 2023; Xiao et al., 2023), particularly076

when generating longer target sequences.077

Build upon these insights, we propose DiffuSent,078

a novel unified generative diffusion framework tai-079

lored for ABSA. Distinct from traditional token-by-080

token generation paradigm, DiffuSent is designed081

to explicitly model boundary indices, and dynam-082

ically refines its interpretations based on compre-083

hensive contextual information. Through a non-084

autoregressive boundary denoising diffusion pro-085

cess, it delivers predictions for boundary indices086

in a single step. Specifically, we systematically087

infuse uncertainty via Gaussian noise into the as-088

pect/opinion term boundaries using a forward dif-089

fusion process. The subsequent reverse diffusion090

process then meticulously refines these term bound-091

aries from their initially indeterminate states. Addi-092

tionally, we introduce a contrastive denoising train-093

ing strategy designed to systematically differentiate094

between accurate and inaccurate boundary predic-095

tions. It adeptly manages the duplicate predictions096

with subtle variations in boundary detection, partic-097

ularly in distinguishing semantically similar terms098

such as "hamburger", "new hamburger", and "new099

hamburger with special sauce". We validate Dif-100

fuSent on four benchmarks for seven subtasks and101

DiffuSent yields state-of-the-art performance. In102

summary, our main contributions are as follows:103

• We propose DiffuSent, a novel diffusion-104

based framework that formulate all ABSA105

subtasks as boundary denoising diffusion pro-106

cess, offering a unified approach to ABSA. To107

the best of our knowledge, we are among the108

first to apply diffusion models in ABSA.109

• A novel contrastive denoising training strat-110

egy is introduced. This strategy is designed111

to address duplicate predictions with subtle112

variations in predicted boundary indices intro-113

duced by diffusion process.114

• Extensive experiments are conducted on 28115

subtasks (7 × 4 datasets) to evaluate the effec-116

tiveness of our approach. Experimental results117

demonstrate that our model outperforms the 118

state-of-the-art methods. 119

2 Methodology 120

2.1 Problem Definition 121

In this section, we introduce the term boundary de- 122

noising diffusion process within the context of the 123

ASTE subtask by default, which can be extended to 124

other subtasks with minor adjustments presented in 125

Table 5. Given a sentence S = {w1, w2, ..., wM}, 126

the objective of ASTE is to extract the boundary 127

indices of all conceivable aspect terms, associated 128

opinion expression terms, and their correspond- 129

ing sentiment polarity labels, denoted as T = 130

{(asi , aei , osi , oei , si)}
N
i=1. The superscripts s and e 131

denote the start and end indices of aspect or opinion 132

terms within the input text. The sentiment polar- 133

ity label si takes values from {POS, NEU, NEG}, and 134

N signifies the count of target triples. We define 135

boundary sequences as Tb = {(asi , aei , osi , oei )}
N
i=1 136

to facilitate the subsequent presentation. 137

2.2 Boundary Denoising Diffusion Process 138

As shown in Figure 2, in our boundary denoising 139

diffusion process, the boundary sequences Tb are 140

considered as data samples. During the forward 141

diffusion phase, Gaussian noise is incrementally 142

added to indices in these sequences. Conversely, 143

the reverse diffusion process aims to meticulously 144

restore the original boundary indices. 145

Boundary Indices Forward Diffusion In this 146

phase, we progressively introduce Gaussian noise 147

to the boundary sequences Tb ∈ RN×4, simulat- 148

ing the uncertainty inherent in identifying term 149

boundaries. To facilitate parallel training, we nor- 150

malize the count N of Tb to Ntrain by duplicat- 151

ing, with normalized sequences represented as 152

x0 ∈ RNtrain×4. The noisy sequences at any given 153

timestep t are calculated using a one-step Markov 154

transition as: 155

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (1) 156

where ϵ ∼ N (0, I) denotes the noise sampled 157

from a standard Gaussian distribution. 158

Boundary Indices Reverse Diffusion Start- 159

ing from a noise-perturbed state, the reverse dif- 160

fusion process employs the non-Markovian de- 161

noising strategy DDIM (Song et al., 2021; Shen 162

et al., 2023). DDIM is for precise reconstruction 163

of term boundaries. The process involves selecting 164
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Figure 2: Overview of DiffuSent. "Boundary LookUp" denotes get corresponding word embedding with boundary
as index. The stream identified with "↑" only occurs in the last reverse process. Noise E ∼ N (0, I).

a subsequence τ from the full timestep sequence165

[1, . . . , T ], with a length of γ. We iteratively re-166

fining the boundary sequences xτi using the infor-167

mation from the preceding timestep. The iterative168

refinement process, utilizing a trainable denoising169

network fθ conditioned on S at τi, as follows:170

x̂0 = fθ (xτi , S, τi)

ϵ̂τi =
xτi −

√
ατi x̂0√

1− ατi

(2)171

where x̂0 denotes the predicted boundary at172

timestep τi, and ϵ̂τi denotes the estimated noise.173

This noise is determined as the normalized differ-174

ence between the perturbed boundary sequences175

xτi and the predicted boundary sequences x̂0. The176

refined predictions are then combined with the es-177

timated noise, adjusted by their respective stan-178

dard deviations. This process is iteratively re-179

peated, as encapsulated in the expression, xτi−1 =180
√
ατi−1 x̂0+

√
1− ατi−1 ϵ̂τi . Following γ iterations181

of the DDIM, the perturbed boundary indices un-182

dergo a gradual refinement, converging towards183

accurate boundary indices.184

2.3 Network Architecture185

Within our denoising network fθ (xt, S, ti), it takes186

the perturbed boundary sequences xt and the sen-187

tence S as input, and subsequently predicts the188

corresponding term boundary x̂0 with correspond-189

ing sentiment polarity. The architectural design of190

this denoising network, as illustrated in Figure 2, is191

parameterized by two key components: a sentence192

encoder and a boundary indices decoder.193

Sentence Encoder The encoder transforms the 194

input sentence S = {w1, w2, ..., wM}, with a 195

length of M , into a h-dimensional sentence rep- 196

resentation HS = {h1, h2, ..., hM} ∈ RM×h. Our 197

implementation involves leveraging pre-trained lan- 198

guage models (PLMs) with a bi-directional LSTM. 199

HS = BiLSTM(BERT (S)) (3) 200

Boundary Indices Decoder The decoder is 201

tasked with processing the sentence representation 202

HS to derive semantic representations for the cor- 203

rupted sequence of boundary indices xt, which 204

denote aspect and opinion terms. Initially, the 205

noisy sequences are discretized into word indices 206

through rescaling. Subsequently, the sequence rep- 207

resentation HX = {hXi }
Ntrain
i=1 ∈ RNtrain×h can 208

be computed by mean-pooling over the tokens at 209

the designated start and end indices of aspect and 210

opinion term. Each hXi represents the pooled rep- 211

resentation of the i-th sequence within boundary 212

sequences, calculated as follows: 213

hXi = Pooling(hasi , haei , hosi , hoei ) (4) 214

We further utilize transformer decoder integrated 215

a self-attention and a cross-attention layer to in- 216

tricately refine sequence representations. The 217

self-attention module fosters increased interactions 218

among sequences by utilizing query, key, and val- 219

ues derived from the sequence representations HX : 220

Hsa = SelfAttention(HX) (5) 221

where, Hsa ∈ RNtrain×h. In tandem, the cross- 222

attention mechanism further refines the sequence 223
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representation by incorporating the broader seman-224

tic context of the sentence. This is achieved by225

utilizing the output of the self-attention module226

Hsa as a query, with the key and value derived227

from the sentence representation HS , denoted as:228

Hca = CrossAttention(Hsa,HS) (6)229

where, Hca ∈ RNtrain×h. To accommodate the230

iterative nature of the diffusion process, sinusoidal231

embeddings Et corresponding to each timestep t232

are integrated into the sequence representations.233

The final noisy sequence representations HX are234

calculated as follows:235

HX = Hca +Et (7)236

Moreover, we employ 4 index pointers to237

predict boundary indices of aspect and opin-238

ion terms, respectively. For each index δ ∈239

{as, ae, os, oe}, we create a fused representation240

Hδ
SX ∈ RNtrain×M×h, which combines the noisy241

sequence representation with the sentence repre-242

sentation. The likelihood Pδ ∈ RNtrain×M of each243

index being a boundary of term is as follows:244

Hδ
SX = Wδ

SHS +Wδ
XHX (8)245

246

Pδ = FFN
(
Hδ
SX +Eδp

)
(9)247

where Wδ
S ,W

δ
X ∈ Rh×h are learnable matrices,248

and FFN(·) denotes a feed-forward network (FFN).249

Eδp ∈ RNtrain×M×h is type embedding to distin-250

guishes between aspect or opinion boundaries.251

Sentiment Classifier The sentiment classi-252

fier processes the sequence representations HX253

through a FFN to output a probability distribution254

over sentiment categories, denoted as:255

Pc = FFN
(
HX

)
(10)256

Where, Pc ∈ RNtrain×C , and C represents the257

total number of sentiment polarity categories.258

Contrastive Denoising Training In the dif-259

fusion process of DiffuSent, a certain degree of260

uncertainty is introduced, leading to duplicate pre-261

dictions with around the initially predicted bound-262

ary indices. It grants the model the flexibility to263

explore various possible interpretations of where264

a term might begin or end. However, it is impor-265

tant to note that while this added uncertainty aids266

in handling multi-word term, it also carries the267

risk of incorrect predictions of boundary indices268

due to subtle variations. To further enhance Dif- 269

fuSent’s proficiency in the nuanced delineation of 270

term boundaries and strengthen the sentiment clas- 271

sification process by reducing false triplet genera- 272

tion, we introduce a contrastive denoising training 273

strategy during training phase. 274

As shown in Figure 2, we generate two types 275

of samples, positive samples and negative samples 276

by adding two different scale of noise λ1 and λ2 277

to Ntrain ground-truth boundary sequences, where 278

λ1 < λ2. After diffusion reverse process, the de- 279

coder additionally takes the two types of samples as 280

input. Positive samples have a noise scale smaller 281

than λ1 and are expected to reconstruct their cor- 282

responding ground truth. Negative samples have 283

a noise scale larger than λ1 and smaller than λ2. 284

They are expected to predict “Invalid”, denoted 285

as ε. If a sentence has Ntrain ground-truth, con- 286

trastive denoising training will have 2 × Ntrain 287

samples with each ground-truth generating a posi- 288

tive and a negative samples. 289

Similar to previous calculation process, we can 290

obtain the boundary probabilities P
δ of positive 291

samples, classification probabilities Pc and P̃c for 292

positive and negative samples, respectively. 293

2.4 Training Loss 294

Our training objective consist of a matching loss 295

and a contrastive denoising loss. We discuss each 296

component in detail in following part. 297

Matching Loss In handling Ntrain predictions 298

and corresponding Ntrain expanded ground-truth 299

values, we leverage the Hungarian algorithm 300

(Kuhn, 1955) to establish an optimal matching ψ̂ 301

between the two sets. ψ̂(i) represents the ground- 302

truth corresponding to the i-th noisy sequence. The 303

matching loss encompasses both boundary loss and 304

sentiment classification loss. Subsequently, the 305

reverse process is trained by maximizing the likeli- 306

hood of the prediction: 307

Lm = −
Ntrain∑
i=1

(
∑

δ∈{as,ae,os,oe}

logPδ
i

(
ψ̂δ(i)

)
+ logPc

i

(
ψ̂c(i)

)
)

(11) 308

Contrastive Denoising Loss The contrastive 309

loss also consists of boundary loss and sentiment 310

classification loss. Specifically, the boundary loss 311

is only calculated according to boundary probabili- 312

ties Pδ of positive samples. The classification loss 313

is calculated according to classification probabili- 314

ties Pc and P̃c for positive and negative samples, 315
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respectively. Consequently, the contrastive loss is316

computed as follows:317

Lc = −
Ntrain∑
i=1

(
∑

δ∈{as,ae,os,oe}

logP
δ
i

(
Ŷ δ
i

)
+ logP

c
i

(
Ŷ c
i

)
+ log P̃c

i (ε))

(12)318

We jointly optimize matching loss Lm and con-319

trastive denoising loss Lc. The overall training loss320

can be represented as:321

L = Lm + Lc (13)322

2.5 Inference323

During the inference stage, DiffuSent initiates324

by stochastically sampling Neval noisy sequences325

from a Gaussian distribution. Subsequently, it un-326

dertakes iterative denoising with the learned bound-327

ary indices reverse diffusion process based on the328

denoising timestep τ . The predicted probabilities,329

derived from this denoising process, correspond to330

the likelihoods associated with various boundary331

indices and their respective sentiment polarities.332

Leveraging these predicted probabilities, the333

model decodes Neval candidate sentiment triplets334

(asi , a
e
i , o

s
i , o

e
i , si)

Neval
i=1 . Following decoding, two335

essential post-processing steps are employed: de-336

duplication and filtering. For triplets with identical337

term boundary indices, the algorithm retains the338

one with the highest polarity probability. Addition-339

ally, triplets with a cumulative sum of prediction340

probabilities falling below the threshold φ are sys-341

tematically eliminated.342

3 Experiments343

3.1 Datasets344

We evaluate our methods across seven subtasks us-345

ing four datasets from SemEval Challenges. The346

D17 dataset, annotated by Wang et al. (2017),347

comprises unpaired opinion terms, while the D19348

dataset, annotated by Fan et al. (2019), pairs opin-349

ion terms with corresponding aspects. Annotated350

by Peng et al. (2020), the D20a dataset includes351

aspect labels, corresponding opinion labels, and352

sentiment polarities. Additionally, theD20b dataset,353

refined by Xu et al. (2020), eliminates triples with354

inaccurate sentiments and labels missing triples.355

We present their statistics in Table 6.356

3.2 Baselines357

The baselines for evaluating DiffuSent across vari-358

ous datasets are categorized into three groups:359

• For AE, OE, ALSC on D17, and AOE on D19: 360

The models considered include: BART-GEN 361

(Yan et al., 2021), SyMux (Fei et al., 2022), SK2 362

(Li et al., 2022a), MvP (Gou et al., 2023). 363

• For AESC, AOPE, ASTE onD20a: The baselines 364

are Peng-two-stage (Peng et al., 2020), Dual- 365

MRC (Mao et al., 2021), BART-GEN (Yan et al., 366

2021), LEGO-ABSA (Gao et al., 2022), SyMux 367

(Fei et al., 2022), SK2 (Li et al., 2022a), MvP 368

(Gou et al., 2023). 369

• For ASTE on D20b: The baselines are BART- 370

GEN (Yan et al., 2021), Span-ASTE (Xu et al., 371

2021), UIE (Lu et al., 2022), SK2 (Li et al., 372

2022a), SBN (Chen et al., 2022), STAGE (Liang 373

et al., 2023), SimSTAR (Li et al., 2023), SLGM 374

(Zhou and Qian, 2023), MvP (Gou et al., 2023). 375

3.3 Main Results 376

We use F1-score as the main evaluation metrics 377

(Gao et al., 2022; Gou et al., 2023). For all ABSA 378

subtasks, a predicted tuple is considered as correct 379

only if all elements are the same as the gold tuple. 380

We evaluate our method for AESC, AOPE, and 381

ASTE on the D20a and D20b datasets. The com- 382

parison results are presented in Table 1 and Table 383

2, respectively. Our boundary denoising diffusion 384

approach outperforms the state-of-the-art unified 385

baselines, demonstrating significant improvements 386

across all three subtasks, with enhancements rang- 387

ing from +0.07% to +1.8%. These findings under- 388

score the effectiveness of DiffuSent in accurately 389

locating term boundaries, attributed to the progres- 390

sive refinement of term boundaries. Additionally, 391

our results validate the capability of DiffuSent in 392

recovering term boundaries from noisy sequences 393

through the boundary denoising diffusion process. 394

In comparison to the latest ASTE benchmarks, as 395

shown in Table 2, DiffuSent demonstrates superior 396

performance. Specifically, when matched against 397

models based on Bert-base, DiffuSent records an 398

average F1-score improvement of +1.04%. In com- 399

parison to autoregressive generative models such as 400

UIE, MvP, and SLGM, which utilize T5-base with 401

twice the parameters of Bert-base, DiffuSent yields 402

improvements of +0.94%, +0.67%, and +0.81% 403

on Res14, Res15, and Res16, respectively. These 404

improvements underscore DiffuSent’s capability 405

to refine interpretations dynamically with compre- 406

hension of contextual information, moving beyond 407

token-by-token generation. Additionally, we evalu- 408

ate DiffuSent on D17 and D19 for AE, OE, ALSC, 409

and AOE, with detailed results in Appendix D. 410
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Table 1: Comparison F1-scores(%) for AESC, AOPE and ASTE on D20a dataset. The best and the second best
F1-scores are in bold and underlined, respectively. † denotes the reproduced result using the released code. Results
marked with "*" indicate a statistically significant improvement with p < 0.01 under the bootstrap paired t-test.

Model PLM Lap14 Res14 Res15 Res16

AESC AOPE ASTE AESC AOPE ASTE AESC AOPE ASTE AESC AOPE ASTE

Peng-two-stage - 62.34 53.85 43.50 74.19 56.10 51.89 65.79 56.23 46.79 71.73 60.04 53.62
Dual-MRC Bert-base 64.59 63.37 55.58 76.57 74.93 70.32 65.14 64.97 57.21 70.84 75.71 67.40

SyMux Roberta-base 70.32 67.64 60.11 78.68 79.42 74.84 69.08 69.82 63.13 77.95 78.82 72.76
SK2 Bert-large 69.42 68.12 60.14 78.72 78.19 73.32 73.30 72.05 64.32 77.78 79.89 72.03

BART-GEN Bart-base 68.17 66.11 57.59 78.47 77.68 72.46 69.95 67.98 60.11 75.69 77.38 69.98
LEGO-ABSA T5-base 72.3 71.3 62.2 80.6 78.1 73.7 74.2 72.9 64.4 76.1 77.6 71.5

MvP† T5-base 70.55 71.38 62.42 78.06 77.95 74.6 74.84 74.06 65.25 77.63 80.46 73.28

DiffuSent Bert-base 73.74∗ 71.67∗ 63.31∗ 81.13∗ 79.86∗ 74.91∗ 75.85∗ 74.19∗ 67.05∗ 79.16∗ 80.9∗ 74.14∗

Table 2: Comparison F1-scores(%) for ASTE on D20b

dataset. Symbols have the same meanings as in Table 1.

Model PLM Lap14 Res14 Res15 Res16

Span-ASTE Bert-base 59.38 71.85 63.27 70.26
SK2 Bert-large 60.56 73.27 65.00 72.19
SBN Bert-base 62.65 74.34 64.82 72.08

SimSTAR† Bert-base 59.98 70.15 63.5 70.25
STAGE† Bert-base 59.58 72.58 63.49 71.06

BART-GEN Bart-base 58.69 65.25 59.26 67.62
UIE-base T5-base 62.94 72.55 64.41 72.86

MvP† T5-base 61.51 73.48 64.65 73.38
SLGM† T5-base 63.28 73.39 65.72 73.41

DiffuSent Bert-base 63.03∗ 74.42∗ 66.39∗ 74.22∗

Table 3: Ablation results (F1-score,%) on Res15 and
Res16. The best results are marked in bold.

Setting Res15 Res16

Contrastive
Denoising

✗ 64.16 71.44
✓ 66.39 74.22

Duffusion
Timestep

1000 66.39 74.22
1500 64.42 71.4
2000 65.57 71.22

Number of
Noisy Sequence

30 63.53 72.23
60 66.39 74.22
90 64.61 72.26

3.4 Ablation Study411

To further investigate the impact of each compo-412

nent and hyper-parameter in DiffuSent, we conduct413

comprehensive ablation studies on ASTE task on414

Res15 and Res16 from D20b in Table 3.415

Contastive Denoising We examine the effec-416

tiveness of our contrastive denoising training by417

removing it from our framework. Results indicate418

a decrease of -2.23% and -2.78% on F1-score for419

Res15 and Res16, respectively. This substantial420

drop in performance underscores the importance of 421

contrastive denoising training in managing dupli- 422

cate predictions with subtle variations in predicted 423

boundary indices, thereby refining predictions and 424

ensuring valid sentiment polarity classification. 425

Diffusion Timestep The timestep regulates 426

the amount of Gaussian noise introduced during the 427

forward diffusion process. Our analysis indicates 428

that increasing the timestep leads to a noticeable de- 429

cline in model performance. This trend highlights 430

a trade-off between noise intensity and model ac- 431

curacy, underscoring the need for balancing noise 432

levels to optimize model performance. 433

Number of Noisy Sequence The quantity of 434

noisy sequences during both training and inference 435

is indicative of the level of uncertainty. Our experi- 436

ments investigate how DiffuSent performs across 437

different numbers of noisy sequences. The findings 438

emphasize the importance of selecting an appro- 439

priate number of noisy sequences for the model. 440

Insufficient numbers may result in overlooking the 441

ground truth, while an excessive amount can lead 442

to the generation of numerous duplicate predictions 443

with subtle variations, complicating the identifica- 444

tion of true targets. 445

3.5 Performance on Multi-word Triplets 446

According to statistic data (Zhou and Qian, 2023), 447

multi-word triplets account for roughly one-third 448

of all triplets. To assess DiffuSent’s capability with 449

multi-word terms, we focus on triplets containing 450

at least one multi-word aspect or opinion term, con- 451

trasting it with single-word triplets. Our evaluation 452

includes comparisons with the latest span-based 453

approach, STAGE (Liang et al., 2023), and a gener- 454

ative method, SLGM (Zhou and Qian, 2023), on the 455
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Figure 3: F1-scores of DiffuSent on multi-word and
single-word triplets compared with SLGM and STAGE.

Table 4: Comparison with generative methods on Res16
from D20b. P means the number of parameters. All
experiments are conducted on the same setting.

Model P F1 Sents/s SpeedUp

MvP 223M 73.38 0.86 1.00×
SLGM 225M 73.41 24.41 28.38×

DiffuSent[γ=1] 112M 73.9 155.98 181.37×
DiffuSent[γ=5] 112M 74.22 92.61 106.98×
DiffuSent[γ=10] 112M 74.3 61.51 71.52×

Res15 and Res16 datasets from D20b. As shown456

in Figure 3, our model consistently outperforms457

others across various metrics. Notably, DiffuSent458

exhibits a more substantial improvement, achieving459

an average F1-score increase of 2.48% for multi-460

word triplets compared to a 0.52% increase for461

single-word triplets. These results underscore Dif-462

fuSent’s effectiveness in accurately identifying the463

boundaries of multi-word terms, consequently en-464

hancing the overall performance.465

3.6 Inference Efficiency466

To further validate whether our DiffuSent requires467

more inference computations, we also conduct ex-468

periments to compare the inference efficiency be-469

tween DiffuSent and other generative models: MvP470

(Gou et al., 2023) and SLGM (Zhou and Qian,471

2023). As shown in Table 4, DiffuSent achieves472

better performance with a faster inference speed473

and minimal parameter scale. Even with a denois-474

ing timestep of γ = 10, DiffuSent is 71.5× and475

2.5× faster than them via generating all triplets476

in parallel, which avoids generating the linearized477

sequence in autoregressive manner.478

Furthermore, We also conduct experiments to479

analyze the effect of different denoising timesteps480

on model performance and inference speed of Dif-481

fuSent. As shown in Figure 4, with an increase of482

denoising steps, the model initially achieves incre-483

Figure 4: Analysis of denoising timestep γ on Res16

mental performance improvement while sacrificing 484

inference speed. Subsequently, the model exhibited 485

a significant degradation in performance beyond 486

denoising timesteps γ = 30, which indicates that 487

preserving a certain level of noise can enhance 488

the diversity of generated triplets. Considering the 489

trade-off between performance and efficiency, we 490

set γ = 5 as the default setting. 491

3.7 Case Study 492

Figure 5 illustrates three distinct case studies from 493

Res15 dataset. In the first example, SLGM wrongly 494

predict "Smith Street" as aspect while DiffuSent 495

accurately recovers term boundaries from noisy 496

sequences through boundary denoising diffusion. 497

In the second example with multi-word triplet, 498

SLGM’s failure to identify the broader aspect 499

term “stuff tilapia” through autoregressive token- 500

by-token generation highlights its limitation in cap- 501

turing comprehensive context of multi-word term. 502

Notably, the absence of contrastive denoising train- 503

ing strategy in DiffuSent leads to the erroneous 504

prediction of an redundant triplet, highlighting the 505

strategy’s importance in mitigating duplicate pre- 506

dictions introduced by diffusion process. This ob- 507

servation is reinforced by the third example, where 508

the lack of contrastive denoising training strategy 509

in DiffuSent leads to the generation of a spurious 510

triplet. Such instances validate the strategy’s util- 511

ity in discerning between precise and imprecise 512

boundary delineations. We conduct additional case 513

studies for further demonstration in Appendix F. 514

4 Related Work 515

4.1 Aspect-Based Sentiment Analysis 516

Aspect-Based Sentiment Analysis (ABSA) encom- 517

passes a suite of interrelated subtasks, each fo- 518

cusing on specific components or their combina- 519

tions within a text as illustrated in Figure 1. Pre- 520

vious studies mainly focus on individual subtasks 521

7



Figure 5: Results of case study by different models. DiffuSent w/o CD denotes DiffuSent without contrastive
denoising. Triplets crossed out by the red line indicate missing predictions.

(Tang et al., 2016; Li and Lam, 2017; Wang et al.,522

2017), including AE, OE, ALSC. Subsequent re-523

search shifted towards integrated models that si-524

multaneously extract aspects, opinions, and their525

corresponding sentiments (Fan et al., 2019; Gao526

et al., 2021; Hu et al., 2019), such as AOE, AOPE527

and AESC. Marking a significant shift in the field,528

Peng et al. (2020) introduced the Aspect Sentiment529

Triplet Extraction (ASTE) task, pioneering a uni-530

fied approach for extracting aspect, opinion, and531

sentiment triplets. This approach led to the devel-532

opment of advanced techniques in ABSA, such as533

table filling (Jing et al., 2021; Zhang et al., 2022),534

sequence tagging (Xu et al., 2020; Li et al., 2023;535

Zhou and Qian, 2023), and span-based methods536

(Xu et al., 2021; Chen et al., 2022; Liang et al.,537

2023). However, these methods focus on individ-538

ual tasks, rather than a comprehensive solution.539

Recent trends in Aspect-Based Sentiment Anal-540

ysis (ABSA) have seen the emergence of unified541

methods, such as Mao et al. (2021)’s two-step MRC542

approach. However, this method suffers from error543

accumulation due to isolated processing. In re-544

sponse, a shift towards end-to-end generative meth-545

ods has occurred, addressing all ABSA subtasks546

more effectively. These include approaches like547

word index generation (Yan et al., 2021), label aug-548

mented text generation (Zhang et al., 2021), and549

template filling (Gao et al., 2022; Gou et al., 2023;550

Zhou and Qian, 2023). However, a notable limita-551

tion of these generative models is their reliance on552

autoregressive, token-by-token decoding. This ap-553

proach, while effective, does not fully capitalize on554

the information available in multi-word terms and555

can be inefficient time-wise. In our work, we utilize556

a diffusion model to facilitate progressive refine-557

ments of term boundaries and output all predictions558

simultaneously in non-autoregressive manner, ef-559

fectively addressing complex linguistic structures. 560

4.2 Diffusion Model 561

Diffusion models (Sohl-Dickstein et al., 2015), pri- 562

marily used for continuous data like images and 563

audio (Kong et al., 2020; Rombach et al., 2022; 564

Chen et al., 2023), face challenges when applied to 565

the discrete nature of text in NLP. Innovations by 566

Hoogeboom et al. (2021) and Austin et al. (2021) 567

have adapted these models for character-level text 568

generation, while Li et al. (2022b) and Gong et al. 569

(2022) further developed methods to bridge the gap 570

between continuous and discrete domains. Notably, 571

Shen et al. (2023) frame Named Entity Recognition 572

as a boundary denoising process, offering insights 573

into the application of diffusion models in text ex- 574

traction. Building on this innovation, we have de- 575

veloped DiffuSent, a unified generative diffusion 576

framework designed to address all ABSA subtasks. 577

5 Conclusion 578

In this paper, we propose DiffuSent, a novel gener- 579

ative framework for unified aspect-based sentiment 580

analysis (ABSA) that formulate all ABSA subtasks 581

as boundary denoising diffusion process. Differ- 582

ent from autoregressive token-by-token generation, 583

DiffuSent explicitly models boundary indices and 584

allows for dynamically refinements in interpret- 585

ing complex linguistic structures like multi-word 586

terms. In addition, to address duplicate predictions 587

with subtle variations arising from diffusion pro- 588

cess uncertainties, we design a contrastive denois- 589

ing training that further refine aspect and opinion 590

term boundaries. Experimental results demonstrate 591

that DiffuSent yields a new state-of-the-art perfor- 592

mance, showcasing superior performance in pro- 593

cessing complex linguistic structures efficiently. 594
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Limitations595

Despite the strong performance of DiffuSent, its596

design still has the following limitations. As a597

latent generative model, DiffuSent relies on sam-598

pling from a Gaussian distribution to produce noisy599

sequences, which leads to a random and uncer-600

tain characteristic of generation. Although we pro-601

pose a contrastive denoising strategy to manage602

this phenomenon, it inevitably increases some non-603

negligible computational cost. Additionally, exper-604

iments only verified the consistent improvement on605

ABSA tasks, while intuitively, the idea of DiffuSent606

can be expanded to any structure prediction tasks,607

such as information extraction, emotion-cause pair608

extraction, and stance detection.609
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A Denoising Diffusion Implicit Model882

Diffusion models are a class of generative models883

that leverage both forward and reverse processes,884

which can be likened to Markov chains with Gaus-885

sian transitions. The forward process gradually886

adds Gaussian noise to transform sample data x0887

to a latent noisy sample xt for t ∈ {0, 1, . . . , T},888

which can be defined as:889

q (xt | x0) = N
(
xt |

√
ᾱtx0, (1− ᾱt) I

)
(14)890

where ᾱt :=
∏t
s=0 αs =

∏t
s=0 (1− βs) and βs891

represents the predefined variance schedule.892

The reverse process then attempts to remove the893

noise that was added in the forward process and is894

parameterized by θ as:895

pθ (xt−1 | xt, t) = N (xt−1;µθ (xt, t) ,Σθ (xt, t))
(15)896

where µθ(·) and Σθ(·) can be implemented by a U-897

Net or a Transformer. When conditioning also on898

x0, q (xt−1 | xt,x0) has a closed form so we can899

manage to minimize the variational lower bound to900

optimize log pθ (x0):901

Lvlb = Eq [DKL (q (xT | x0) ∥pθ (xT ))] +

Eq

[
T∑
t=2

DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt, t))

]
− log pθ (x0 | x1)

(16)902

where Eq(·) denotes the expectation over the joint903

distribution q (x0:T ).904

B Optimal Matching905

Given a fixed-size set of Ntrain noisy sequences,906

DiffuSent infers Ntrain predictions, where Ntrain907

is larger than the number of N ground-truth in a908

sentence. One of the main difficulties of training is909

to score the prediction with respect to the ground910

truth. Thus we utilize an optimal bipartite match-911

ing between predicted and ground truth and then912

optimize the likelihood-based loss.913

Assuming Ŷ = {Ŷi}Ntrain
i=1 are the set of Ntrain914

predictions, where Ŷi =
(
Pas
i ,P

ae
i ,P

os
i ,P

oe
i ,P

s
i

)
.915

We denote the ground truth set of N tuples as916

{(asi , aei , osi , oei , si)}Ni=1, where asi , a
e
i , o

s
i , o

e
i , si are917

the aspect/opinion boundary indices and sentiment918

for the i-th tuple. Since Ntrain is larger than the919

number of N ground-truth, we pad Y with ∅ (in-920

valid). To find a bipartite matching between these921
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Figure 6: F1-scores of DiffuSent on multi-triplet sen-
tence compared with SLGM and STAGE.

two sets we search for a permutation of Ntrain 922

elements ψ ∈ SNtrain with the lowest cost: 923

ψ̂ = argmin
ψ∈SNtrain

Ntrain∑
i

Lmatch

(
Ŷi, Yψ(i)

)
(17) 924

where Lmatch

(
Ŷi, Yψ(i)

)
is a pair-wise match- 925

ing cost between the prediction Ŷi and ground 926

truth Yψ(i) with index ψ(i). With these nota- 927

tions we define Lmatch(Ŷi, Yψ(i)) as −1(Yψ(i) ̸= 928

∅)
∑

σ∈{as,ae,os,oe,s}P
σ
i

(
Y σ
ψ(i)

)
, where 1(·) de- 929

notes an indicator function. This optimal assign- 930

ment is computed efficiently with the Hungarian 931

algorithm, following prior work (Shen et al., 2023). 932

C Implement Details 933

Our DiffuSent is trained on the NVIDIA A100 Ten- 934

sor Core GPU. Following previous works (Liang 935

et al., 2023), We employ bert-base-uncased2 as 936

the pre-trained model. We train our model using 937

Adam optimizer with a linear warmup and linear 938

decay learning rate schedule. The initial learning 939

rate is 2e−5 for AE, OE, ALSC and AOE, 5e−5 for 940

AESC, AOPE and ASTE. The filtering threshold 941

φ is 0.6 for ALSC, 1.5 for AE, OE and AOE, 2.5 942

for AESC, 3.5 for AOPE, 4.5 for ASTE. We set 943

dropout as 0.1 and batch size as 16. For diffusion 944

process, the number of noisy sequences Ntrain and 945

Neval are set as 60, the timestep T is 1000, and the 946

sampling timestep γ is 5. The scale factor λ1 and 947

λ2 for contrastive denoising training is 1.0 and 2.0, 948

respectively. 949

2https://huggingface.co/bert-base-uncased
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Figure 7: Comparison F1-scores for AE, OE, ALSC on the D17 dataset, and AOE on the D19 dataset. The results of
MvP (Gou et al., 2023) are reproduced by us using the released code.

D Additional Result950

We extensively evaluate the capabilities of Dif-951

fuSent model on D17 dataset (Wang et al., 2017)952

for AE, OE, ALSC and on D19 dataset (Fan et al.,953

2019) for AOE. Figure 7 summarizes the perfor-954

mance on key benchmarks of DiffuSent compared955

to other state-of-the-art unified ABSA methods.956

DiffuSent sets new state-of-the-art results on both957

extraction and classification ABSA subtasks.958

E Performance on Multi-triplet959

To verify the effectiveness of our framework in han-960

dling sentences with multiple triplets, we conduct a961

comprehensive evaluation on the ASTE task, com-962

paring our model’s performance against STAGE963

and SLGM. Figure 6 showcases our results derived964

from a meticulous analysis using the Res15 test965

set, which was segregated into sentences with vary-966

ing numbers of multi-triplets. In the category of967

sentences contain two or three triplets, our model968

exhibited outstanding performance, achieving F1-969

scores of 65.31% and 65.04%, outperforming the970

two baseline models. The efficacy of our model971

becomes even more pronounced in sentences con-972

taining four or more triplets. In these instances, our973

model’s scores significantly surpassed those of the974

leading baseline models. This significant lead un- 975

derscores the effectiveness of our model’s greater 976

flexibility in identifying term boundaries, proving 977

its adeptness in more challenging sentences with 978

intricate structures. 979

F Additional Case Study 980

We present extended intances from Res15 dataset 981

analyzed by DiffuSent with and without contrastive 982

denosing training in Figure 8. As illustrated in the 983

first instance, DiffuSent without contrastive denos- 984

ing training strategy falls short in handling dupli- 985

cate predictions with subtle variations introduced 986

by diffusion process in boundary identification as 987

it wrongly predicts "bathroom" as the aspect term. 988

Furthermore, we observe that DiffuSent without 989

contrastive denoising training strategy typically pre- 990

dicts extra incorrect triplet which does not exist in 991

the given sentence. These cases indicate that Dif- 992

fuSent is adept at distinguishing between accurate 993

and inaccurate boundary predictions by managing 994

the inherent uncertainty in language interpretation 995

with the help of boundary denoising diffusion pro- 996

cess and contrastive denosing training. 997
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Table 5: Experiment settings on each subtask. The underlined tokens are given during inference in subtask that
depend on a specific aspect term. Noise E ∼ N (0, I).

Subtask X0

(Boundary Sequence)
XT

(Noisy State)
Sentiment
Classifier

Contrastive
Deniosing

AE/OE (as/os, ae/oe) (E1, E2) ✗ ✔
ALSC (as, ae) (E1, E2) ✔ ✗
AOE (as, ae, os, oe) (as, ae, E1, E2) ✗ ✔
AESC (as, ae) (E1, E2) ✔ ✔
AOPE (as, ae, os, oe) (E1, E2, E3, E4) ✗ ✔
ASTE (as, ae, os, oe) (E1, E2, E3, E4) ✔ ✔

Table 6: Statistics of the four datasets used in our experiments.

Datasets Lap14 Res14 Res15 Res16 Tasks#s #a #o #p #s #a #o #p #s #a #o #p #s #a #o #p

D17
train 3048 2373 2504 - 3044 3699 3484 - 1315 1199 1210 - - - - - AE,OE,

ALSCtest 800 654 674 - 800 1134 1008 - 685 542 510 - - - - -

D19
train 1158 1634 - - 1627 2643 - - 754 1076 - - 1079 1512 - - AOEtest 343 482 - - 500 865 - - 325 436 - - 329 457 - -

D20a

train 920 - - 1265 1300 - - 2145 593 - - 923 842 - - 1289 AESC,
AOPE,
ASTE

dev 228 - - 337 323 - - 524 148 - - 238 210 - - 316
test 339 - - 490 496 - - 862 318 - - 455 320 - - 465

D20b

train 906 - - 1460 1266 - - 2338 605 - - 1013 857 - - 1394
ASTEdev 219 - - 346 310 - - 577 148 - - 249 210 - - 339

test 328 - - 543 492 - - 994 322 - - 485 326 - - 514

Figure 8: Additional case study.

14


