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Abstract In recent years, Machine Learning (ML) has been changing the landscape of many industries,

demanding companies to incorporate ML solutions to stay competitive. In response to this

imperative, and with the aim of making this technology more accessible, the emergence of

“no-code” AutoML assumes critical significance. This paper introduces HoNCAML (Holistic
No-Code Auto Machine Learning), a new AutoML library designed to provide an extensive

and user-friendly resource accommodating individuals with varying degrees of coding

proficiency and diverse levels of ML expertise, inclusive of non-programmers. The no-

code principles are implemented through a versatile interface offering distinct modalities

tailored to the proficiency of the end user. The efficacy of HoNCAML is comprehensively

assessed through qualitative comparisons with analogous libraries, as well as quantitative

performance benchmarks on several public datasets. The results from our experiments

affirm that HoNCAML not only stands as an accessible and versatile tool, but also ensures

competitive performance across a spectrum of ML tasks.

1 Introduction
In the last few decades, the rise of Machine Learning (ML) applications has revolutionized industry

and academia in a wide variety of domains [1]. However, organizations still grapple with challenges

in the ML life-cycle [2]. Automated Machine Learning (AutoML) has emerged to address these

challenges, offering benefits such as freeing data scientists from tedious tasks and empowering

domain experts without requiring them to understand technical complexities. However, democrati-

zation of ML is not complete, as most AutoML libraries demand coding proficiency (this is the case,

for example, of AutoGluon[3], AutoKeras[4], auto-sklearn[5], Auto-PyTorch[6] and FLAML[7]).

This necessity leads to the emergence of the “no-code” and “low-code” paradigms, aiming to make

software development more accessible to people with minimal coding skills, particularly in the ML

domain [8, 9].

With these principles in mind, we developed an open-source AutoML tool called HoNCAML

(Holistic No-Code Auto Machine Learning) that aims to provide an extensive and easily-accessible

resource to users with varying degrees of coding proficiency and different levels of ML expertise.

The term “holistic” stems from the underlying belief that the AutoML problem needs to be addressed

as a whole, considering the strict interconnections existing between its sub-problems, rather than

treating each task in isolation. This characteristic differentiates HoNCAML from other highly spe-

cialized libraries, such as, for example, SMAC [10], which only offers hyper-parameter optimization,

NePS[11] and NASLib[12], which focus solely on neural architecture search. Besides, with the term

“no-code” we wanted to stress the possibility to execute HoNCAML without writing a single line of

code, thus representing a valuable resource for non-programmers or for ML practitioners who seek

for quick model prototyping. In this way, HoNCAML lowers the entry barrier for a wide range of

users that would be excluded by libraries such as the ones mentioned above.

HoNCAML has been implemented as an open-source Python library and has been released on

the Python Package Index (PyPI), from where it can be easily installed. We performed a quantitative
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evaluation of our tool, consisting in a benchmark on 12 public datasets on classification and

regression tasks. Our analysis shows that our library is competitive w.r.t. other open-source AutoML

tools, in terms of both performance and efficiency, in many cases surpassing its competitors. In

addition to this, we present a qualitative comparison, to highlight the advantages and the limitations

of HoNCAML as far as functionalities and user experience are concerned.

The main contributions of this paper are the following: (i) we present HoNCAML, a new

no-code AutoML tool that addresses the needs of diverse types of users; (ii) we make the library

publicly available on the Python Package Index (PyPI) and release the source code on a GitHub

repository, under BSD License
1
; (iii) we provide both a benchmark on an extensive set of public

datasets and a qualitative evaluation in comparative terms w.r.t. other AutoML libraries.

2 Related work

The numerous surveys and benchmarks published in recent years on AutoML are a proof of the

increasing importance of this field. Yao et al. [13] offer a formal definition of AutoML, drawing

inspiration from both realms of automation and ML. Zoller et al. [14] start from a rigorous

mathematical formulation of the AutoML problem in general and of all the individual tasks that

it includes. Karkamer et al. [15] convey an insightful motivation of AutoML by describing in full

detail the responsibilities of the data scientist and those of the domain expert, and their interaction

within a typical enterprise environment. Barbudo et al. [16] offer one of the most recent surveys,

at the time of writing, highlighting the evolution of the field in the last eight years and detecting

trends for the future. For more surveys, benchmarks and general perspectives on AutoML, we refer

the reader to [17, 18, 19, 20, 21].

Another interesting perspective on AutoML is offered by user studies, that tend to convey a

rather qualitative assessment of existing solutions and suggest directions for future research. Sun

et al. [22] collected evidence from 19 users revealing that the three major concerns around the

AutoML domain are customizability, transparency and privacy, and showing common workarounds

to overcome these limitations. In an analogous study, Wang et al. [23] highlight benefits and

challenges of AutoML. The authors recommend that AutoML systems should be designed with a

mindset of augmenting, rather than automating, the work ML practitioners. Xin et al. [24] carried

out a study involving users with varying profiles and degrees of expertise. Their results suggest

that AutoML tools should adapt to the proficiency level of the intended user, instead of taking a

one-size-fits-all approach. Another important take-home lesson is that an end-to-end solution that

handles all stages of the ML workflow in a single environment is the optimal design choice for

Auto-ML tools. These theses significantly inspired us in the design of HoNCAML.

Although a great number of specific libraries could be mentioned that play an important role

in the AutoML game, we decided to limit the scope of this section to those that fully implement

the no-code paradigm. In fact, this characteristic places them as the most direct competitors of

HoNCAML. NNI [25, 26] is an open-source toolkit providing functionalities in hyper-parameter

optimization, neural architecture search, model compression and feature engineering. H2o [27] is a

distributed ML platform including a fully-automated AutoML module. This offers a wide variety of

algorithms yielding a healthy amount of diversity across candidate models, which can be exploited

by stacked ensembles to produce a powerful final model. TPOT (Tree-Based Pipeline Optimization

Tool) [9, 28] represents an original solution w.r.t. the rest of AutoML tools, as it uses genetic

programming to optimize ML pipelines [29]. A more detailed comparison of these resources will be

presented in Section 4, where they will be compared with HoNCAML under a series of qualitative

dimensions. The same Section will also give information about other AutoML libraries that do not

follow the no-code paradigm.

1https://en.wikipedia.org/wiki/BSD_licenses
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3 HoNCAML

HoNCAML is a declarative AutoML framework developed as a Python library with the following

fundamental principles in mind: (i) AutoML should be accessible to all kinds of users, from the

expert ML practitioners to individuals without any programming skills; (ii) the AutoML problem

should be treated in its entirety, taking into account the interdependence between its sub-problems;

(iii) to actually foster the democratization of ML, the library should be modular and extensible, and

its source code should be open. Several papers in the literature support and provide evidence in

favor of the utility of these principles [2, 23, 24].

The tool is designed to accept data in tabular format and provides optimization for a wide

range of ML and DL models for regression and classification. It has been developed and tested

on UNIX operating system and released as an open-source Python library. The links to the page

on the Python Package Index (PyPI), to the GitHub repository and to the full documentations are

provided in Appendix A. The rest of this section describes in detail the design, the interface, the

tasks and the models provided by HoNCAML.

3.1 Design

Under the hood, HoNCAML was designed in a modular and extensible fashion, according to the

software design principles of modularity whose benefits have been studied by several works in

the literature [30, 31, 32]. In HoNCAML, these principles are realized in that each module is

independent of the others and new pieces can be plugged in as desired in a relatively easy way.

Besides simplifying the development of the library, this approach is intended to lower the entry

barrier for ML engineers who want to customize it or extend its functionalities (e.g., by adding new

types of models, new metrics, etc.).

It should be noted that, even in its base version, HoNCAML allows relatively easy integration

with other popular ML resources. In fact, the implementation of many of its functionalities is

based on open-source libraries scikit-learn
2
and PyTorch

3
. As a consequence, the parameters of the

pipelines that can be executed within HoNCAML reflect in most part the interface of the classes

provided by these libraries. Furthermore, the models that are trained and returned by HoNCAML

are instances of scikit-learn and PyTorch models, which enables an almost seamless integration

with those toolkits. These models are saved locally to files and can be loaded through the Python

package pickle to be used in external programs.

The main components of the library are the following: Execution, Pipeline and Steps. In this

hierarchy, Execution is at the top level, as it controls the flow of the whole experiment. In fact, this

module specifies which pipelines will be run and can include several pipelines at once (for example,

run a benchmark and then train the best model with all the data). Lower in the hierarchy, the

Pipelinemodule defines each single pipeline, which can be either train (train a model with specific

parameters), predict (predict values using a trained model) or benchmark (evaluate several models

and parameters to find the one with the best performance). Finally, each pipeline can be composed

of one or more Steps, which can be of three different types: DataStep specifies parameters for data

ingestion, pre-processing and storage; ModelStep regards model configuration, optimization and

handling; finally, BenchmarkStep includes settings for benchmark management. Figure 1 illustrates

a conceptual diagram that resumes the typical workflow of the tool.

3.2 Interface

Inspired by the principles of the no-code paradigm, HoNCAML’s interface was designed with

the idea to address the necessities of diverse types of users, from the non-programmers to the

ML practitioners, and to represent a valid option for quick model prototyping. Three different

2https://scikit-learn.org/
3https://pytorch.org/
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Figure 1: Conceptual diagram illustrating the typical workflow of HoNCAML, from the definition of

the configuration up to the output of the pipeline.

modalities of user interaction are available: command-line interface (CLI), graphical user interface

(GUI) and source code.

GUI. This is the more visually-appealing of the three modalities. This usage is intended for

users with limited coding skills or that simply prefer a more graphical approach. It consists of a

web-based interface implemented with Streamlit
4
, in which the user can upload a dataset, choose

the type of task (classification or regression), set up the configuration of the ML pipeline, run

the models and evaluate their performance, all in an interactive manner. Different options and

configurations are displayed depending on whether the users decide to run a pipeline of type train,
predict or benchmark. For users without expertise in ML, a basic default configuration is provided.

Configurations are saved to facilitate the reproducibility of the experiments. Appendix A illustrates

several captures of the GUI and provides instructions on how to launch it, together with an example

of execution.

CLI. This interface mode, together with the GUI, is what puts the “no-code” principles into practice

in HoNCAML. Compared to the GUI, however, CLI is a more suitable option for slightly more

advanced users, who are familiar with the UNIX shell. This modality provides a higher degree of

control and customization over the pipeline. A configuration file in YAML format allows the user

to choose the type of task, indicate the path to the input data, select the features, define data pre-

processing operations such as feature normalization and one-hot encoding, set the hyper-parameter

search for a series of ML and DL models with a customized search space, choose a loss function,

personalize the optimizer and the evaluation metric, among other things. Trained models are saved

in files for later use; reproducibility is ensured by design thanks to configuration files (which store

also information about the random seed). In the Appendix A, the reader will find a step-by-step

guide on how to get started with HoNCAML through CLI and two examples of configuration files.

Source code. Developers and ML practitioners who desire to extend HoNCAML’s functionalities or

integrate the library into their own applications have open access to the source code of the library

in the GitHub repository (link in Appendix A). Once HoNCAML is installed, functionalities can be

imported like normal Python modules. However, at the time of writing, a thoroughly documented

API for developers has not been published yet, as we prioritized the former two modalities of

interface which enable the no-code paradigm.

3.3 Tasks

In terms of standard ML pipeline, HoNCAML is able to solve three fundamental tasks:

• Hyper-parameter Optimization (HPO), which refers to the search of the optimal configuration

of hyper-parameters for a given model, defined as the one that leads to the best generalization

results on unseen data [33].

• Algorithm selection, which, closely related to the former one, consists in choosing the algorithm,

among a list of candidates (each trained with its own optimized configuration), that leads to the

best performance [34]. This can be considered a meta-learning problem according to [35].

4https://streamlit.io/
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• Neural architecture search (NAS), which can be considered as a special case of the former two

tasks, where the configuration to be optimized is the architecture of a neural network [36].

These three problems are strictly interrelated. In fact, the selection of an algorithm over another

depends heavily on the selection of hyper-parameters for the two algorithms. This is true for both

classic ML and DL models. As a consequence, in accordance with the holistic approach, HoNCAML

addresses these three tasks as a more general, unique problem, allowing the user to include both

ML and DL models into a single benchmark pipeline. Like many existing AutoML solutions, also

HoNCAML addresses algorithm selection and HPO in a joint approach, usually referred to as CASH

(Combined Algorithm and Hyper-parameter Selection) [37, 38]. The library offers a wide range

of state-of-the-art methods to solve this challenge, including, but not limited to, Tree-structured

Parzen Estimator (TPE) [39], CMA-ES [40] and Bayesian Optimization [41]. TPE is the default

option, although the user can switch to a different algorithm by editing a configuration file (as

showed in Appendix A). In addition, there are multiple available stopper and pruner methods, that

can be activated to control the behavior of the optimization methods. Options include Hyperband

[42] (which is the default option), BOHB [43] and Population-Based Training [44]. Like for the

search algorithm, it is the user’s responsibility to pick the preferred optimizer in the configuration,

in case they wish to change the default setting. All search algorithms and optimizers are imported

from Ray Tune
5
, a Python library focused on model optimization.

From a general standpoint, the NAS problem can be decomposed in three parts [45]: (i) search

space, consisting in the search of the model architecture; (ii) search strategy, which consists in the

way in which the search space is explored; (iii) performance estimation strategy, addressing how to

evaluate the performance of candidate architectures. In HoNCAML, the search space of candidate

neural network architectures is generated through an abstraction called block, which can be defined

by the user. Each block is a predefined combination of layers, which can be sequentially structured

to form deeper networks. For instance, a block can be composed of a dense layer stacked with a

drop-out layer. Each layer within a block may have a series of hyper-parameters to optimize, as well

(e.g., number of neurons, drop-out rate, etc., depending on the type of layer). Since the NAS problem

is treated within CASH, the search strategies reflect the ones mentioned above (Tree-structured

Parzen Estimator, CMA-ES and Bayesian Optimization) and are defined a priori by the user (or

set to the default option) in the configuration file. This feature is what enables HoNCAML to

leverage both ML and DL models in an homogeneous way within the same execution. An additional

internal logic has been developed for NAS, which guarantees that useless combinations of layers are

discarded (e.g., a series of drop-out layers stacked together). The performance estimation strategy

follows the same logic as the one used for CASH. Cross-validation parameters, including number of

folds and metrics to compute, are defined through the configuration file. The candidate architecture

and weights obtaining the best results are selected. It should be noted that, since HoNCAML, at

the time of writing, only focuses on tabular data, the NAS problem at hand is, in fact, a simplified

one. For this reason, more advanced strategies, such as DARTS [46], have not been integrated in

the current solutions. However, they will be taken into account in the future developments, when

textual and multimedia data are included in the pipeline. The implementation of the NAS module

is based on the DL library PyTorch.

3.4 Models

A wide range of ML models is available in HoNCAML for classification and regression, including,

but not limited to, Random Forests [47], AdaBoost [48], Gradient Boosting [49], Support Vector

Machines [50], etc. The implementation of these models relies on the Python library scikit-learn.

As far as DL is concerned, different types of layers can be combined to form neural architectures.

5https://docs.ray.io/
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(a) List of selected libraries, ranked according to their

number of GitHub stars.

Framework GitHub link Papers
NNI /microsoft/nni/ [25, 26]

TPOT /epistasislab/tpot [28]

Auto-Sklearn /automl/auto-sklearn [55, 5]

Autogluon /autogluon/autogluon [3]

H2O /h2oai/h2o-3 [27]

FLAML /microsoft/FLAML [7]

Auto-PyTorch /automl/Auto-PyTorch [6]

LightAutoML /sb-ai-lab/LightAutoML [56]

(b) List of selected datasets, split by task type.

Dataset Type
Abalone Regression

Diamonds Regression

House sales Regression

Moneyball Regression

Online news popularity Regression

Sensory Regression

Ada Classification

Adult Classification

Australian credit Classification

Diabetes Classification

German credit risk Classification

Ozone level 8hr Classification

Table 1: Libraries and datasets included in the comparative study.

Available options include dense layers [51], recurrent layers [52], LSTM [53], dropouts [54] and

others. The complete list reflects the layers provided by PyTorch
6
.

4 Evaluation

The objective of this section is twofold: on one hand, we want to assess HoNCAML’s characteristics,

functionalities and user experience from a qualitative standpoint, by comparing it with other

open-source AutoML libraires; on the other hand, since a positive qualitative assessment is of little

use without competitive performance, we start by evaluating HoNCAML in a quantitative way, by

benchmarking it against the same set of competitors on a series of classification and regression

tasks. First and foremost, we will describe the methodology and setup employed in our experiments.

Then, we will proceed to illustrate the results of both types of evaluations.

4.1 Methodology and experimental setup

In order to select the initial set of candidate libraries to be compared against HoNCAML, we revised

AutoML surveys and benchmarks (see Section 2). Not to miss recently released tools, we searched

Google with the following query: automl open source frameworks and libraries. To guarantee

accessibility and reproducibility, we filtered the list of candidates by retaining only libraries that (i)

are available as actively maintained open-source software and (ii) have a scientific paper associated

to it. The list of AutoML frameworks that, at the time of writing and to the best of our knowledge,

comply with the stated requisites, is illustrated in Table 1a.
7

We compared HoNCAML with all selected frameworks, both in the quantitative benchmark

and in the qualitative evaluation. The former is based on a set of classification and regression

datasets, which have been selected for being publicly available and for reflecting tasks which are

coherent with HoNCAML’s objectives. The list of datasets, publicly available on OpenML platform
8
,

is presented in Table 1b. All datasets can be easily found by inserting their names in the platform’s

dataset search
9
; each page offers a description of the data and additional meta-information. None

6https://pytorch.org/docs/stable/nn.html. Although the library already supports the integration of all these

PyTorch layers, some of them, like Recurrent Layers, require a previous preparation of the data into sequences, which

is not implemented yet at the time of writing.

7
We invite the reader to note that, since AutoML is a rapidly growing field, it is possible that some new frameworks

matching our selection criteria might have appeared or become popular since the publication of the present work.

Moreover, many of these frameworks are currently under development, therefore some new features might have appeared

meanwhile.

8https://www.openml.org/
9https://www.openml.org/search?type=data&sort=runs
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Figure 2: Results of the regression task on the respective datasets. The x-axis of each plot shows the

average time, in seconds, that each library took to execute; the y-axis reports the MAPE

score. HoNCAML performance is highlighted by the dotted lines.

of the datasets has a license that prevents its usage in a research context like the present study,

nor contains personally identifiable information or offensive content. For each dataset, we used a

3-fold cross-validation approach, using the same train and test splits for all libraries, and repeating

the execution on each fold with 5 different random seeds, to guarantee robustness of results
10
.

Regression results are reported via Mean Absolute Percentage Error (MAPE), while classification

has been assessed with macro F1-score, two standard and well-established metrics in their respective

domains [57, 58]. Both metrics are expressed as the mean obtained across all folds and random

seeds. In addition, we measure the average time that each library takes to complete the execution

on each dataset, within a maximum pre-defined time-budget of 600 seconds (inclusive of training

and prediction time)
11
. All frameworks have been tested with their default settings, as the idea

behind this analysis is to provide a direct, out-of-the-box performance estimation, without any prior

settings modifications. Experiments were run on a machine with a 16-core Intel Xeon Processor

and 32GB of RAM.

4.2 Quantitative benchmark

In interpreting the results of the quantitative benchmark, the reader should bear in mind that our

objective was not to develop the best performing AutoML library, but to offer an accessible and

versatile tool that guarantees competitive results compared to other available solutions. The code for

running the experiment, together with requirements, instructions, and raw results, is available on

HoNCAML’s repository: https://github.com/Data-Science-Eurecat/HoNCAML/tree/feature/
paper/paper.

Results on both regression and classification tasks indicate that, overall, HoNCAML stands in a

competitive position w.r.t. the other libraries, both in terms of accuracy and efficiency. In Figure

2, illustrating the regression results for each respective dataset, HoNCAML tends to place itself

10
Due to internal technical complexities, it was not possible to execute NNI in a cross-validation setting. For this

reasons, results for this library will not be reported in the quantitative benchmark

11
Some executions of auto-PyTorch and TPOT, due to their internal functioning, exceed the time limit.
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Figure 3: Results of the classification task on the respective datasets. The x-axis of each plot shows the

average time, in seconds, that each library took to execute; the y-axis reports the F1-score.

HoNCAML performance is highlighted by the dotted lines.

around the lower-left corner of the plots, which means that it is able to obtain low MAPE scores

in a relatively short time (low MAPE indicates good results). This is especially true for Abalone,
House sales, Sensory, and Moneyball; on these datasets, in fact, MAPE scores are aligned with the

best ones and are obtained in a significantly shorter time. Even on Diamonds and Online news
popularity, which are the datasets on which HoNCAML struggles the most, its performance is close

to the competitors’ average both for speed and accuracy. This finding highlights the solidness of

our solution. Classification results put HoNCAML in an even better light (Figure 3). Our library

lies in the upper-left corner of the plot for all datasets, as both its F1-scores and running times are

among the best ones in all cases (high F1-scores indicate good results). The direct comparison with

the other no-code tools, namely TPOT and H2o, indicates for HoNCAML a similar performance in

terms of MAPE and F1-score. However, when it comes to speed, our library clearly outperforms

the other two libraries on all 12 datasets, while achieving metrics in a comparable range.

Another positive finding is the relatively low variance observed across folds and random

seeds, which suggests the stability of the training and optimization components (Tables 2 and 3 of

Appendix B). We tested statistical significance of these results through the Friedman’s test, which

is a non-parametric statistical test used to determine whether there are statistically significant

differences between the means of three or more paired groups [59]. In our case, each set of MAPE

and F1-scores, respectively, obtained by a library corresponds to a group. The two tests on regression

and classification reported p-values of 0.002 and 0.001, respectively. Therefore, we can claim with

sufficient confidence that the difference in performance obtained by each library across datasets is

statistically significant.

4.3 Qualitative comparison

Now that we have demonstrated that HoNCAML’s performance is competitive w.r.t. other well-

established AutoML libraries, in this section we set out to present a qualitative comparison. HoN-

CAML and the other libraries will be analyzed under a series of dimensions relative to user

8



experience and offered functionalities. The comparison is supported by supplementary tables

attached in Appendix B.

4.3.1 Interface. The interface dimension marks a split between frameworks that focus on interactive and

visual interfaces and others that prioritize the access through developers’ API. As stated above, CLI

and GUI are the two ways that empower the no-code paradigm. Only HoNCAML, NNI, TPOT, and

H2o implement at least one of these two interface types (Table 4, in Appendix B). HoNCAML is the

only library that offers both, thus standing out as the most accessible and versatile resource in the

no-code category
12
. The most evident limitation of HoNCAML, under the interface dimension, is its

lack of a developers’ API. This feature, which is a work in progress at the time of writing, has been

under-prioritized so far to the advantage of functionalities that allow the no-code paradigm. The

most complete framework, in terms of API variety, is H2o, which provides its services through a

Python, R and Java API and, in addition, as a REST service. All others libraries, except Auto-PyTorch,

provide a Python API.

4.3.2 Models. In studying the models implemented by the frameworks under analysis, we decided to

create a distinction between DL and ML models. In spite of the remarkable success of DL in many

areas and tasks [60], traditional ML still represents a valid option in many scenarios, for example,

when the data is structured (tabular) and/or limited [61]. Furthermore, ML has the advantage that,

normally, it is significantly less time- and hardware-consuming compared to DL. For these reasons,

we believe it is important not to discard older ML models even in modern AutoML tools. As it

can be observed in the two right-most columns of Table 4 (Appendix B), HoNCAML is one of the

most complete libraries, as it covers both areas. Almost all competitors include ML models in their

workflow, with the exception of AutoKeras and Auto-PyTorch, which are solely focused on DL. On

the other hand, only Auto-Sklearn does not provide algorithms in the DL domain, if we exclude the

Multi-layer Perceptron class, belonging to the scikit-learn library.

4.3.3 Steps. Hereby we study which steps of the typical ML pipelines are covered by each library,

considering pre-processing, feature engineering, model selection, HPO (these latter two often

addressed jointly as CASH) and NAS (Table 5 in Appendix B). It can be claimed that the inclusion

of several ML steps within the same library strongly affects usability and accessibility. In fact, this

represents an advantage for basic users who are interested in a black-box usage, as they do not

have full conscience of all the steps involved in the typical ML pipeline. At the same time, expert

users may benefit from a unified resource reducing the overhead generated by switching between

different tools specialized on specific tasks (such as the aforementioned SMAC, NePS or NASLib).

Several works in the literature further support the benefits of this holistic approach [24, 19].

Pre-processing and feature engineering are two important parts of any ML-related development,

yet they are covered only by approximately half of the frameworks
13
. On the other hand, it is

notable that all frameworks offer model selection and HPO techniques, which comes to highlight

that these two components of the pipeline enjoy a paramount importance within the AutoML

world. Not surprisingly, all frameworks that implement DL models (see Table 4 in Appendix B) also

provide NAS functionalities, as these are crucial to optimize the hyper-parameter space and the

architecture of DL models. Also in this aspect, HoNCAML is well-positioned w.r.t. its competitors,

as it offers functionalities in all the steps, except for feature engineering, which will be addressed

in the future.

12
Although the general framework of H2o can be executed via command line (as illustrated here https://github.

com/h2oai/h2o-3/blob/master/h2o-docs/src/product/howto/H2O-DevCmdLine.md), this is not true, at the time of

writing, for its AutoML module (https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html.
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5 Broader Impact Statement

The development and deployment of the proposed AutoML library carry both promising benefits and

potential considerations across environmental, ethical, and societal dimensions. On the positive side,

by democratizing ML model creation and deployment, the tool has the potential to significantly

lower the barrier of entry for individuals and organizations to harness the power of Artificial

Intelligence (AI). However, the widespread adoption of such tools also raises ethical concerns

related to the responsible use of AI technology. As far as privacy is concerned, HoNCAML is

completely transparent, since its code is open, it is installed and run on local machines and does not

collect any personal data. On the other hand, it is imperative to address issues such as bias in model

outcomes and potential misuse of automated decision-making. In Section 6 we mention mitigation

strategies that we intend to consider in our future work. Moreover, the environmental footprint of

increased AI model training and deployment should be carefully considered, as resource-intensive

processes could contribute to a rise in energy consumption and electronic waste.

6 Conclusions

In this paper we presented HoNCAML, a new open-source library that addresses the AutoML

problem from a holistic perspective through a no-code approach. After presenting the design

principles underlying the library and describing its technical and theoretical details, we compared

HoNCAML against a set of other open-source libraries, both in qualitative and quantitative terms.

Our evaluation shows that HoNCAML is an accessible, versatile and complete tool, at the same

time ensuring competitive performance across a spectrum of ML tasks. If we limit our comparison

to other no-code libraries, HoNCAML is the only one offering both a CLI and a GUI, thus standing

out as the most complete no-code AutoML tool in terms of user interface. In addition to this,

the quantitative benchmark highlighted that HoNCAML is more efficient than the other no-code

libraries, as it achieves competitive metrics in classification and regression tasks in shorter time.

It should be stressed that versatility has to be intended mostly as far as user types and interfaces

are concerned. Indeed, one of the main limitations of HoNCAML is that, at the time of writing, it is

unable to handle images, texts or time-series data (unless the user previously converts them into a

tabular data structure). In the future, we plan to extend the library so as to provide classification and

regression capabilities also for these types of data. Another important step on our future road-map

is the implementation of an extensive feature engineering module, which would allow the user to

apply common transformations to data, select features based on estimated importance and create

custom features. Another functionality that would further improve HoNCAML’s versatily and

accessibility is a fully-documented developers’ API. Finally, we are aware of the importance that

trustworthiness, transparency, fairness and explainability have in the development and usage of a

tool like HoNCAML [63, 64, 65]. In the future, we plan to integrate algorithms and techniques to

detect and mitigate biases in both the training data and the models generated, drawing inspiration

from promising research that points into the same direction [66, 67, 68]. This could involve measures

such as fairness-aware learning algorithms, bias detection tools, and techniques for de-biasing data

and models [69, 70], as well as visualization tools that allow delving deeper into the functioning of

models [71, 72].
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Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] [After a brief overview of AutoML related work, we present

our library and show the quantitative and qualitative evaluation, as stated in the abstract

and in the Introduction.]

(b) Did you describe the limitations of your work? [Yes] See Sections 4.3 and 6

(c) Did you discuss any potential negative societal impacts of your work? [Yes] [See the Broader

Impact Statement (Section 5)]

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes] [See Section 5]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes] [See Section 4.1]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] [See Section 4.1]

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] [See Section 4.1]

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes] [See Section 4.1]

(e) Did you report the statistical significance of your results? [Yes] [See Section 4.2]

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] [We designed

and executed our own benchmark by running a set of open-source AutoML libraries on a

set of well-established datasets (See Section 4.2). For further evaluation, the user can refer

to the libraries’ papers and other benchmarks published in the literature (referenced in

Section 2)]

(g) Did you compare performance over time and describe how you selected the maximum

duration? [Yes] [See Section 4.1]

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] [See Section 4.1]

(i) Did you run ablation studies to assess the impact of different components of your approach?

[No] [The idea behind our experimental evaluation was to compare our solution with the

competitors in an out-of-the-box fashion, without the necessity to change settings. We

believe that this reflects the main purpose of the library, which is to address the needs of

basic users. Moreover, the presence of many different libraries, each with its own set of

configurations, made it unfeasible to study the impact of single components.]

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] [We provide links to the project’s repository,
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documentation and PyPi page, where the user can find the source code, the instructions to

execute the library, the scripts to run the benchmark, and technical details. In addition, we

concentrated the essential information in the Appendix A of the present paper.]

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes] [Appendix A guides the reader throughout an example execution,

where he can download sample data and run the library on them. In addition, the project’s

repository includes the code to run the benchmark presented in this paper.]

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] [The code is fully documented with comments in pydoc

style. The documentation page offers further details and explanations.]

(d) Did you include the raw results of running your experiments with the given code, data,

and instructions? [Yes] [A .csv file with raw results was added to the project’s repository,

together with the code to run the benchmark.]

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] [The benchmark scripts, available

in the repository, allow generating the results table in .csv format. The tables of results (??
and ?? in Section 4.2 are obtained by simply copying and pasting values reported in the raw

results.]

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] [See Sections 2, 3 and 4.1]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A] [No dataset required special attention, as all

of them were released with a public licence or with CC0 or CC BY 4.0 DEED.]

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] [See Section 4.1]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

[See Sections ?? and 3]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes] [The links to the project’s repository, documentation and

PyPi page were provided in Section 3 and in Appendix A

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] [No crowdsourcing nor research with human subjects was conducted.]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] [No crowdsourcing nor research with human subjects

was conducted.]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] [No crowdsourcing nor research with human subjects

was conducted.]

7. If you included theoretical results. . .
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(a) Did you state the full set of assumptions of all theoretical results? [N/A] [No theoretical

result was presented in the paper.]

(b) Did you include complete proofs of all theoretical results? [N/A] [No theoretical result was

presented in the paper.]
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A How to run HoNCAML

In this appendix we will illustrate how to install HoNCAML and how to execute it through

command-line interface (CLI) and graphical user interface (GUI).

The source code is publicly available in a GitHub repository: https://github.com/
Data-Science-Eurecat/HoNCAML

The library has been published on the Python Package Index (PyPI): https://pypi.org/
project/honcaml/

For an exhaustive explanation of execution modalities and implementation details, we refer the

reader to the official documentation: https://data-science-eurecat.github.io/HoNCAML/

Install

To install HoNCAML, it is required to have Python installed (version 3.10) on a UNIX operating

system. The installation command is the following:

pip install honcaml

GUI

To start the GUI, it is sufficient to run the following command:

honcaml --gui

This will open a web application on the predefined browser, running on localhost (port 8501

by default). In the upper part of the page (Figure 4), the user can choose whether he wants to

introduce configurations manually via the web app, or by pasting or uploading some previously

edited YAML file (in this section, we will show functionalities referring to the manual insertion

of configurations; next sections will illustrate how to generate and edit YAML configuration files

thorugh the CLI). In addition, the user has the option to use basic or advanced configurations, can

select the type of pipeline he want to execute, upload the dataset and select the target variable. A

preview of the dataset will be shown in a tabular format.

Figure 4: Preliminary options of the GUI.

19

https://github.com/Data-Science-Eurecat/HoNCAML
https://github.com/Data-Science-Eurecat/HoNCAML
https://pypi.org/project/honcaml/
https://pypi.org/project/honcaml/
https://data-science-eurecat.github.io/HoNCAML/


In the next step (Figure 5), the user is invited to select the type of problem they want solve

(regression or classification). A warning will be shown in case the chosen problem is not coherent

with the target variable previously indicated (for example, choosing the price variable, of type float,
with a classification problem would lead to a warning). Moreover, the user can select the subset of

variables to include in the training as features and can choose to apply normalization to some of

them.

Figure 5: Basic and advanced pipeline configuration.

Following, the user is guided through the selection of models they desire to include in the

pipeline (Figure 6. In this example, since we are illustrating the execution of a benchmark, it is

possible to include different models at the same time for performance comparison. For each model,

the user can adjust the range of values to be searched in the optimization phase.

Figure 6: Selection of models and hyper-parameters. This figure has been cut for convenience, but

many more options are available for the Neural Network model
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Another section of the GUI lets the user pick the metrics he wants to include in the benchmark

and the one that should guide the tuner in the optimization process (Figure 7).

Figure 7: Selection of metrics for optimization and evaluation

After pressing the Run button, the execution of the pipeline will start. The process will take

more or less time depending on the size of the data, the pipeline type, the selected problem and

the number of models included in the analysis, among other factors. At the end, results will be

presented in a tabular format or through charts, and, in case of running a benchmark, the best

model and set of hyper-parameters will be pointed out (Figure 8). In addition, the user has the

chance to download results as a .csv file.

Figure 8: Presentation of results
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CLI usage

Executing an example with sample data and configurations. To get a glimpse of HoNCAML with

example data and configuration, it is sufficient to run:

honcaml --example <example_directory>

Please replace <example_directory> with the directory name that suites you the most. This

command creates a directory containing sample data and configuration files, which allows the user

to get started with HoNCAML in a straightforward manner. Inside the new folder, the user will

find two sub-directories:

• data, which contains sample training and test datasets for classification and regression, in .csv
format;

• files, providing sample configuration files for both aforementioned ML tasks, in YAML format.

To run a quick example without delving into the details of these two folders, it is enough

to enter the specified directory (cd example_directory) and execute one of the configurations

located in files directory. For example, to execute the benchmark for a classification task, launch

the following command:

honcaml --config files/classification_benchmark.yaml

This instruction will train, optimize and test a series of models on a sample dataset. The CLI

will inform the user of the operations that are being performed and of the results. As a consequence,

a new directory will be generated with relative path honcaml_reports/<execution-id>, where
<execution-id> is a code assigned to the current execution, obtained by concatenating date and

time of the execution. Inside this folder, results.csv will keep trace of the metrics obtained by

each model. Furthermore, a file named best_config_params.yaml will store the settings of the

model that led to the best results, together with its hyperparameters.

Executing pipelines with custom configurations. In a realistic scenario, the user typically wants

to run HoNCAML on their own dataset, specifying a custom configuration. In order to facilitate the

creation of the configuration file, the CLI offers the possibility to generate a template that the user

can fill according to its use case. This can be done through two different alternative commands,

depending on whether a basic or and advanced configuration file is desired:

• Basic: honcaml –generate-basic-config <config-file-name> –pipeline-type
<pipeline-type>

• Advanced: honcaml –generate-advanced-config <config-file-name> –pipeline-type
<pipeline-type>

The parameter <config-file-name> is the name (including the path) of the new template that

will be generated. Allowed values for <pipeline-type> are train, predict and benchmark. The
difference between the output of these two commands lays in the number and kinds of parameters

included in the template. For a detailed description of possible configurations, we refer the reader

to https://data-science-eurecat.github.io/HoNCAML/configuration.html.
Once the YAML template has been generated, the user should edit it with the settings that

best suite their objective. As a next step, it is possible to execute the pipeline defined by the new

configuration:

honcaml --config <config-file-name>
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After running a pipeline of type train, a new model object will be saved in the folder

honcaml_model (at the root of example_directory). At this point, a predict pipeline can be

run to apply the previously trained model on the data specified in the configuration file. The pre-

dictions will be saved in a file named predictions-<execution-id>.csv, in the honcaml_reports
directory.

Configuration files

We hereby illustrate some examples of configuration files, to better understand their structure and

the types of functionalities they enable. A basic YAML for a train pipeline of a classifier looks like
the following:

global:
problem_type: classification

steps:
data:
transform:

encoding:
OHE: True

extract:
filepath: data/classification_train.csv
target: class

model:
transform:
fit:
estimator:
module: sklearn.ensemble.RandomForestClassifier
params:

n_estimators: 100
cross_validation:
module: sklearn.model_selection.KFold
params:

n_splits: 2
shuffle: True
random_state: 90

load:
filepath: honcaml_models/sklearn_classification.sav

The global section is used to specify generic parameters. In this case, a classification task

has been selected. The section steps contains information on the modular steps included in the

pipeline, from data loading and transformation up to model optimization (under the respective

tags). Under data/extract the user can indicate the filepath of the training dataset and the

column to use as target to predict. Under the data/transform tag, it is possible to specify data

pre-processing operations, like, in this case, one-hot encoding (OHE). As for model definition, the
basic YAML allows to specify parameters for training and validation under the transform/fit
tag. In this example, the user has chosen to train a Random Forest classifier from the scikit-learn

library with 100 estimators (i.e., trees of the forest). The optimization of the model is performed

through cross-validation, relying on the KFold module provided by scikit-learn, with the parameters
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specified under the params tag. Finally, it is possible to insert the filepath in which to save the

trained model for later use, in the model/load section.
It is also useful to see an example of configuration file for a pipeline of type benchmark, since this

allows performing hyper-parameter optimization and model selection among a list of candidates.

global:
problem_type: classification

steps:
data:
extract:
filepath: data/classification_train.csv
target: class

benchmark:
transform:
models:
sklearn.ensemble.RandomForestClassifier:
n_estimators:

method: randint
values: [ 2, 110 ]

max_features:
method: choice
values:
- sqrt
- log2
- 1 # It means 'auto'

sklearn.neighbors.KNeighborsClassifier:
n_neighbors:

method: randint
values: [ 1, 100 ]

weights:
method: choice
values:
- uniform
- distance

cross_validation:
module: sklearn.model_selection.KFold
params:
n_splits: 2
shuffle: True
random_state: 90

tuner:
search_algorithm:
module: ray.tune.search.optuna.OptunaSearch
params:

tune_config:
num_samples: 5
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metric: roc_auc_score
mode: max

run_config:
stop:

training_iteration: 2
scheduler:
module: ray.tune.schedulers.HyperBandScheduler
params:

metrics:
- accuracy_score
- f1_score:

average: macro

load:
save_best_config_params: True
path: honcaml_reports

model:
transform:
fit:
cross_validation:
module: sklearn.model_selection.KFold
params:
n_splits: 2
shuffle: True
random_state: 90

load:
filepath: honcaml_models/sklearn_classification_benchmark.sav

In this advanced YAML file, the user has decided to execute a benchmark pipeline to compare

a Random Forest and a K-Neighbors models (defined under benchmark/transform/models for a
classification problem. For each model and each parameter, the user defines the range of values and

the method to use to perform the search. The tuner section specifies a series of settings which are

used by the optimization module (based on Ray Tune library), including the search_algorithm,
the tune_config, the run_config and the scheduler. Under the metrics tag, the user can indicate

the metrics that should be used to guide the optimization. The best model with the best settings

will be stored in the filepath specified under model/load.
More examples of configuration files can be found in the GitHub repository: https://github.

com/Data-Science-Eurecat/HoNCAML/tree/main/honcaml/config/examples/files. The official

documentation provides full details on basic and advanced configuration files for all possible

pipelines: https://data-science-eurecat.github.io/HoNCAML/configuration.html.

B Supplementary tables

Hereby we attach supplementary tables, illustrating the variance of the metrics obtained in the

experiments of Section 4.2 (Tables 2 and 3) and the qualitative comparison of Section 4.3 (Tables 4

and 5).
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Table 2: Variance from the mean MAPE across folds and random seed, for the regression task. Values

smaller than 0.001 are reported as 0.

Dataset
Library Abalone Diamonds House sales Moneyball Online news Sensory

HoNCAML 0.001 0.06 0.01 0 0.06 0.004

TPOT 0.003 0.01 0.001 0 0.02 0.001

AutoKeras 0.003 0.17 0.13 0.24 0.04 0.09

Auto-Sklearn 0.001 0.001 0 0 0.6 0

H20 0.005 0 0.001 0 0.03 0.001

Autogluon 0.001 0 0 0 0.03 0.001

FLAML 0 0.001 0.001 0 0.09 0

Auto-PyTorch 0.23 0.23 0.05 0.01 0.05 0.001

LightAutoML 0.001 0.001 0 0 0.02 0.001

Table 3: Variance from the mean F1-score across folds and random seed, for the classification task.

Dataset
Library Ada Adult Austr. credit Diabetes German credit Ozone level

HoNCAML 0.002 0.004 0.007 0.01 0.02 0.03

TPOT 0.002 0.001 0.004 0.01 0.01 0.01

AutoKeras 0.007 0.002 0.01 0.02 0.02 0.02

Auto-Sklearn 0.002 0.001 0.01 0.004 0.02 0.02

H20 0.003 0.001 0.005 0.008 0.02 0.01

Autogluon 0.005 0.001 0.005 0.01 0.01 0.02

FLAML 0.002 0.003 0.01 0.002 0.01 0.01

Auto-PyTorch 0.16 0.04 0.07 0.05 0.03 0.05

LightAutoML 0.001 0.001 0.001 0.001 0.01 0.001

Table 4: Comparison of the libraries according to their interface functionalities and provided models

(ML = Machine Learning, DL = Deep Learning).

Interface Models
Framework CLI GUI API ML DL
HoNCAML ✓ ✓ in progress ✓ ✓

NNI ✓ ✓ ✓ ✓
TPOT ✓ ✓ ✓ ✓

AutoKeras ✓ ✓
Auto-Sklearn ✓ ✓
Autogluon ✓ ✓ ✓

H2O ✓ ✓ ✓ ✓
FLAML ✓ ✓ ✓

Auto-PyTorch ✓
LightAutoML ✓ ✓ ✓
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Table 5: Comparison of the libraries according to covered steps of the ML pipeline.

Framework Pre-proc. Feature Eng. Model Sel. HPO NAS
HoNCAML ✓ ✓ ✓ ✓

NNI ✓ ✓ ✓ ✓
TPOT ✓ ✓ ✓ ✓

AutoKeras ✓ ✓ ✓
Auto-Sklearn ✓ ✓ ✓ ✓
Autogluon ✓ ✓ ✓ ✓

H2O ✓ ✓ ✓ ✓
FLAML ✓ ✓

Auto-PyTorch ✓ ✓ ✓
LightAutoML ✓ ✓ ✓ ✓
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