
Equation identification for fluid flows via physics-informed neural networks

Alexander New 1 Marisel Villafañe-Delgado 1 Charles Shugert 1

Abstract
Scientific machine learning (SciML) meth-
ods such as physics-informed neural networks
(PINNs) are used to estimate parameters of inter-
est from governing equations and small quantities
of data. However, there has been little work in as-
sessing how well PINNs perform for inverse prob-
lems across wide ranges of governing equations
across the mathematical sciences. We present a
new and challenging benchmark problem for in-
verse PINNs based on a parametric sweep of the
2D Burgers’ equation with rotational flow. We
show that a novel strategy that alternates between
first- and second-order optimization proves su-
perior to typical first-order strategies for estimat-
ing parameters. In addition, we propose a novel
data-driven method to characterize PINN effec-
tiveness in the inverse setting. PINNs’ physics-
informed regularization enables them to leverage
small quantities of data more efficiently than the
data-driven baseline. However, both PINNs and
the baseline can fail to recover parameters for
highly inviscid flows, motivating the need for fur-
ther development of PINN methods.

1. Introduction
Physics-informed neural networks (PINNs) (Raissi et al.,
2019) have emerged as a practical tool for the solution
of partial differential equations (PDEs) in many scientific
applications modeling complex systems. PINNs overcome
some of the limitations of classical PDE solvers, improving
on the expensive computational requirements of generating
grids and developing bespoke solving schemes (Ma et al.,
2021; Raissi et al., 2020; Ning et al., 2023; Haghighat et al.,
2021; Alber et al., 2019; Cai et al., 2021; Hao et al., 2023).

PINNs can be used to solve both forward and inverse prob-

1Johns Hopkins University Applied Physics Laboratory, 11100
Johns Hopkins Rd, Laurel, MD 20723, USA. Correspondence to:
Alexander New <alex.new@jhuapl.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

lems. For the PINN forward problem, a number of chal-
lenges and pathologies have been identified that arise when
training PINNs, and mitigation methods have been sug-
gested (Wang et al., 2021; 2022b;a; Krishnapriyan et al.,
2021; New et al., 2023; Basir & Senocak, 2022; McClenny
& Braga-Neto, 2020; Daw et al., 2022; Maddu et al., 2022;
Lu et al., 2021b; Sukumar & Srivastava, 2022).

In contrast, the inverse problem has seen less systematic
study, although some recent benchmark have included
them (Hao et al., 2023). Inverse problems are of particular
interest because, in practice, the PDEs modeling physical
phenomena are often partially specified. Strategies to mit-
igate some of the challenges specific to the PINN inverse
problem include improved optimization (Yu et al., 2022),
new architectures (Aliakbari et al., 2023), and temporal
methods for time-dependent PDEs (Mattey & Ghosh, 2022).

One challenge arising in the solution of inverse problems
with PINNs is the limited range of evaluated PDEs. Studies
typically consider a single PDE instance and do not vary
parameters or other conditions. However, these parameters
or constants (e.g. Reynolds number in fluid flow) that PDEs
include may vary across application areas.

Additionally, the estimation of PDE parameters with PINNs
presents particular challenges not encountered in the for-
ward setting. While the forward setting requires fitting
neural network (NN) parameters, in the inverse problem,
the challenge is to fit both the NN and the PDE parameters,
which differ significantly in their dimensionality. This re-
sults in limitations for methods such as Adam (Kingma &
Ba, 2014) in the solution of inverse problems with PINNs.

Our contributions to the inverse problem for PINNs are
three-fold. First, we propose a novel strategy for estimating
PDE parameters using PINNs that alternates between using
stochastic gradient descent (SGD) to update NN weights
and using Newton’s method to estimate PDE parameters.
Second, we introduce a 2D Burgers’ equation benchmark
problem with varying parameter coefficients across 10 so-
lutions, including highly viscous and inviscid flows. Third,
we propose an approach for estimating the benefit of using
physics-informed regularization in PDE estimation prob-
lems. We show that the PINNs’ use of physics-based regu-
larization enhances its effectiveness in parameter estimation
problems, although PINNs can still struggle to simultane-

1

Equation identification for fluid flows via physics-informed neural networks

ously minimize loss criteria involving PDEs and data.

The rest of this paper is organized as follows: In Sections 2.1
to 2.3, we introduce the PDE inverse problem and explain
how it applies to the 2D Burgers’ equation, and in Sec-
tion 2.4, we present an overview of PINNs. Section 2.5,
Section 2.6, and Section 2.7 describe our main contribu-
tions in this work, highlighting the unique challenges that
occur in the PINN inverse problem. Finally, in Sections 3.1
to 3.3, we evaluate methods on the 2D Burgers’ equation.

2. Methods
2.1. Problem formulation

We consider a function u : Ω → Rm defined on Ω ⊆ Rn.
The function u satisfies a set of differential operators
Ni(·;ϕ) for i ∈ IN . The domain Ω has r boundaries Γj ,
j = 1, . . . , r (including, possibly, the beginning of a tempo-
ral dimension). The function u satisfies boundary condition
(BC) or initial condition (IC) operators Bj(·;ϕ) on bound-
aries Γj , for a set of indices j ∈ Ib. Here, ϕ is one or more
scalar parameters defining the operators Ni and Bj . Then
the PDE may be written as:

Ni(u;ϕ)(x) = 0 x ∈ Ω, i ∈ IN

Bj(u;ϕ)(x) = 0 x ∈ Γj , j ∈ IB . (1)

The type of BC can include Dirichlet BCs (Bj(u;ϕ)(x) =
u(x) − fj(x;ϕ) for a function fj), Neumann BCs
(Bj(u;ϕ)(x) = (n̂ · ∇u)(x)− gj(x;ϕ) for a function gj),
periodic BCs, or another type. The differential operators Ni

might be linear or nonlinear. A BC could be parameterized
by the speed of an inflow BC (Collins et al., 2023), or the
domain Ω could be parameterized by the size and shape of
a defect in its interior (Zhang et al., 2023).

Given samples D = {(un,xn)}Nn=1 from the solution, the
inverse problem’s goal is to (i) obtain a function that can
fill in u for the remainder of the domain, and (ii) identify
values for ϕ consistent with the training data and BCs.

2.2. The 2D Burgers’ equation

In this work, we focus on the sourceless time-varying Burg-
ers’ equation. It has two solution components (u = (u, v)),
two spatial inputs and one temporal input (x = (x, y, t))
defined on the domain [0, 1]× [0, 1]× [0, 0.5]:

ut + αu · ∇u− ν∆u = 0 (2)
u(x, y, 0) = sin(6πy)x(1− x) (3)
v(x, y, 0) = − sin(6πx)y(1− y)

u(x, 0, t) = u(x, 1, t) = 0 (4)
u(0, y, t) = u(1, y, t) = 0.

Figure 1. We show a few temporal snapshots of the u-component
of a Burgers’ equation solution. At t = 0, the solution exhibits
variation only in the y-direction; as time progresses (e.g., for
t = 0.14 and t = 0.35), rotational flow develops.

The parameters ϕ = {α, ν} characterize the convection α
and diffusion ν components of the solution. When α = 0,
eq. 2 reduces to a series of uncoupled heat equations. When
ν = 0, eq. 2 reduces to an inviscid Burgers’ equation.

Eq. 2 can be reparameterized into the usual Burgers’ equa-
tion by rescaling the domain with the variable transforma-
tion x → αx:

ut + αu · ∇u− ν∆u → ut + u · ∇u− ν

α2
∆u.

After this reparameterization, the Cole-Hopf transforma-
tion (Cole, 1951; Hopf, 1950) can be used to analytically
solve the Burgers’ equation, so long as the solution does
not admit irrotational flow (i.e., if ∇ × u = 0). Thus, we
choose ICs that vanish at the boundaries but have nonzero
curl. In this way, the data we generate is an example of the
simplest nontrivial (rotational) Burgers’ flow.

2.3. Existing uses of PINNs for Burgers’ equation

To the best of our knowledge, there has not been a previous
study of the 2D Burgers’ equation that uses two solution
components and varies its parameters. In general, the 1D
Burgers’ equation is a common benchmark problem for
forward PINNs Ren et al. (2022); Carniello et al. (2022);
Mathias et al. (2022); Rosofsky et al. (2023), but there has
been less work studying the 2D Burgers’ equation, espe-
cially in the inverse problem setting for varying parameters
Alkhadhr & Almekkawy (2021); Xu et al. (2023).

In the forward setting, Ren et al. (2022) proposed a
convolutional-recurrent architecture and evaluated its per-

2

Equation identification for fluid flows via physics-informed neural networks

formance in an extrapolation setting on the 2D Burgers’
problem with two components and fixed viscosity. Carniello
et al. (2022) proposed a PINN to solve the scalar 2D inviscid
Burgers’ with data from a Riemann problem, which exhibits
discontinuities and refraction and shock waves. Mathias
et al. (2022) proposed a data augmentation strategy and
evaluated its performance in the 2D Burgers’ forward prob-
lem with two components. Kim et al. (2022) proposed a
nonlinear manifold reduced order model (ROM) for estimat-
ing the two components of the viscous Burgers’ with large
Reynolds numbers. Rosofsky et al. (2023) evaluated various
settings of the Burgers’ equation in 1D and 2D: 2D scalar,
2D inviscid, 2D vector Burgers’ using a physics-informed
neural operator. In the inverse problem setting, Alkhadhr &
Almekkawy (2021) proposed PINNs to solve the 1D and 2D
Burgers’ in the forward and inverse problems, however, their
solution has a single component, and they only consider a
single set of PDE parameters. Xu et al. (2023) also solved
the 2D Burgers’ inverse problem for equation discovery, but
with one component.

2.4. Physics-informed neural networks

In the inverse problem PINN approach (Raissi et al., 2019),
a neural network uθ parameterized by weights θ is trained
to satisfy both the PDE and the data:

θ∗, ϕ∗ = argmin
θ

L(θ;ϕ), (5)

where

L(θ;ϕ) = LPDE(θ;ϕ) + LBC(θ;ϕ)

+LData(θ) (6)

LPDE(θ;ϕ) =
∑
i∈IN

λi

∑
xΩ∈Ω

||Ni(uθ;ϕ)(xΩ)||2 (7)

LBC(θ) =
∑
j∈IB

λj

∑
xj∈Γj

||Bj(uθ;ϕ)(xj)||2 (8)

LData(θ) = λData

N∑
n=1

||un − uθ(xn)||2. (9)

Here, λi, λj , and λData are nonnegative weights for each
component of the loss function, {xΩ} is a set of points
sampled from the domain Ω, and {xj} is a set of points
sampled from each boundary Γj . The set of points can either
be chosen at the start of training (via random sampling or
a chosen discretization), or it can change or grow during
training (Daw et al., 2022; Lu et al., 2021a).

A noted challenge in training PINNs is that their loss func-
tion can contain many components that must all be mini-
mized for the problem to be solved. To reduce the complex-
ity of the PINN training process and focus on the underlying
inverse problem, we use an NN that vanishes by construction

at the domain’s boundaries:

uθ(x, y, t) = x(1− x)y(1− y)NNu(x, y, t; θ)

vθ(x, y, t) = x(1− x)y(1− y)NNv(x, y, t; θ). (10)

Here NN is a multi-layer perceptron (MLP) or encoder-
decoder multi-layer perceptron (ED-MLP) (Wang et al.,
2021) with two output nodes (NNu and NNv). Similar
strategies use periodic MLPs (Dong & Ni, 2021; Wang
et al., 2022a) when solving PDEs on periodic domains.

2.5. Estimating PDE parameters using neural networks

In the forward problem, PINNs are often trained with a com-
bination of first-order optimization methods like SGD com-
bined with Adam (Kingma & Ba, 2014) and approximate
second-order methods like L-BFGS (Liu & Nocedal, 1989).
However, estimating PDE parameters from a partially-
specified set of governing equations and some amount of
data differs in several key respects from the typical training
done to fit NN parameters.

In particular, ϕ’s dimensionality is much lower than θ’s.
Here, ϕ has only two components, while the typical NN
may have between 105 and 107 weights. Furthermore, the
scale of the components of ϕ has a physical meaning based
on the governing equations and domain size. These fac-
tors combine to make techniques like Adam (Kingma &
Ba, 2014) or MultiAdam (Yao et al., 2023) inefficient for
estimating PDE parameters using PINNs. For example, mis-
specified step sizes for ϕ can cause its iterates to diverge.

In this work, we use Newton’s method to estimate ϕ but rely
on Adam for fitting θ. To motivate this, observe that, for
the Burgers’ equation, each governing equation (eq. 2) is a
linear function of its parameters ϕ = {α, ν}. This makes
the PINN loss (eq. 6) convex and quadratic in ϕ, meaning
that, for fixed θ, a single Newton step yields the optimal ϕ.1

To the best of our knowledge, this observation has not been
widely discussed in the inverse PINN literature.

2.6. Data-driven PDE parameter estimation

An understudied challenge in the use of PINNs is the ques-
tion of how much labeled data is needed to reconstruct the
full solution and accurately estimate the PDE parameters.
For example, the Poisson and diffusion inverse problems
studied in (Hao et al., 2023) use a fixed labeled dataset
size of 2500 points. Especially for problems involving non-
linear PDEs, existing theory may not be sufficient to give
conditions for a problem to be identifiable.

Thus, here we propose a novel baseline for assessing the
data efficiency benefits gained by using PINNs for inverse

1It is not generally the case that the PINN learning problem
will be linear in its parameters.

3

Equation identification for fluid flows via physics-informed neural networks

Algorithm 1 Estimating PDE parameters using a data-
driven NN
Require: Sample of PDE solutions {(un,xn)}Nn
Require: Differential operators Ni and boundary condition

operators Bj

Require: Neural network architecture uθ

1: Minimize θ̂ = argminθ LBC(θ)+LData(θ) with SGD
2: Minimize ϕ̂ = argminϕ LPDE(θ̂;ϕ) with Newton’s

method
3: Return PDE parameter estimates ϕ̂

problems. It is summarized in Algorithm 1. For a fixed
sample of labeled data, we train a PINN to minimize the
sum of the BC loss (eq. 8) and the data loss (eq. 9). We
then use Newton’s method to estimate the optimal PDE
parameters that minimize the PDE residual (eq. 7) while
holding the NN weights constant. Algorithm 1 relies on
the BC loss LBC being independent of the parameters ϕ. If
this were not the case, then the first step would train the NN
using only Ldata.

For a sufficiently large quantity of labeled data and a suffi-
ciently expressive NN, we expect the NN to interpolate the
full discretized solution. If the discretization error is not too
high, this should enable the parameters ϕ to be accurately
recovered. The benefit of a PINN may be observed in the
data quantity regime where a physics-unaware NN cannot
fit the entire solution, but a PINN can.

2.7. Data generation

ν α
10−4 1.0, 1.5, 2.0
10−3 1.0, 1.5, 2.0
10−2 0.5, 1.0, 1.5, 2.0

Table 1. The parameter values of the Burgers’ equation (eq. 2) used
to generate ground truth solutions.

Solutions to the Burgers’ equation were obtained by using
FiPy: A Finite Volume PDE Solver (Guyer et al., 2009). We
use a 256×256 uniform discretization of [0, 1]×[0, 1] for the
spatial domain. There are 72 timesteps that cover t = 0 to
t = 0.499, which means that solutions have 256 ·256 ·72 =
4,718,592 points total per simulation.

The diffusive term in the Burgers’ equation was handled us-
ing an implicit scheme. To handle the nonlinear convective
term, the Burgers’ Equation was solved in its conservative
form. The convective u · ∇u terms were solved using an
implicit discretization scheme, and the ∆u terms were han-
dled using a Power-Law discretization scheme (Versteeg
& Malalasekera, 2007). At each time step, the PDE used
a linear LU solver with an Algebraic Multigrid Precondi-

tioner (Bell et al., 2023).

Using the parameter values in Table 1, we generate 10
ground truth solutions to the Burgers’ equation. We
view α/ν as an effective-order parameter for the system’s
Reynolds number. By varying ν logarithmically, we study
how effective the PINNs are in both highly viscous and
highly inviscid regimes. In contrast, we vary α linearly to
study how sensitive PINNs are at learning parameters that
have smaller effects on the governing fluid equations.

3. Results
3.1. Implementation and evaluation procedure

For each PDE parameter value and amount of training data
(2048, 8192, 32768 points), we train PINNs using both
Adam and Newton’s method for parameter value estimation.
Similarly, for each PDE parameter and amount of training
data (128, 512, 2048, 8192, 32768, 131072 points), we
apply Algorithm 1 for data-driven parameter estimation.

We implement PINNs with pinn-jax (New et al., 2023)2,
which uses jax (Bradbury et al., 2018), flax (Heek et al.,
2023), and optax (Babuschkin et al., 2020). PDE deriva-
tives are calculated with the forward-mode jacfwd func-
tion (Baydin et al., 2017). All computations use double
precision. See Appendix A for details on hyperparameters.
For training PINNs, we use Adam (Kingma & Ba, 2014).

We initialize the convection coefficient α by sampling
from [0, 5] uniformly, and we initialize the diffusion co-
efficient ν by sampling from [0, 0.5] uniformly. This choice
is analogous to, in Bayesian methods for inverse prob-
lems, imposing a uniform prior on the unknown parameters
(e.g., (Christopher et al., 2018; Doronina et al., 2020)).

For a ground truth solution u, a trained solution uθ, and a
set of points X ⊆ Ω, we evaluate model predictions with
the relative error Erel:

Erel(u,uθ;X) =

(∑
x∈X ||u(x)− uθ(x)||2

)1/2(∑
x∈X ||u(x)||2

)1/2 , (11)

where X is a uniform discretization of the domain and its
boundaries. For reporting error in estimating α, we use
the scalar relative error |α̂− α|/α. Because ν takes values
across different orders of magnitudes, we report relative
error of logs: | log10(ν̂+ ϵ)− log10(ν+ ϵ)|/| log10(ν+ ϵ)|,
where ϵ = 10−8 prevents numerical overflow in the case
that ν̂ = 0. We follow Hao et al. (2023) and consider a
relative error that is 10% or less to be sufficiently accurate
for the estimation problem to be solved.

For PINNs, our results are from the model checkpoint that
attained the lowest loss (eq. 6). For the data-driven estima-

2https://github.com/newalexander/pinn-jax

4

https://github.com/newalexander/pinn-jax

Equation identification for fluid flows via physics-informed neural networks

tion, our results are from the model checkpoint that attained
the lowest error on the data (eq. 9).

3.2. Methods assessment

Figure 2. For given quantities of data, we compare the estimation
accuracy of PINNs (using Newton’s method) and the data-driven
strategy (Algorithm 1). Needing to minimize both the PDE residual
and data losses makes PINNs less effective at fitting the solution
directly, yielding typically higher relative errors. However, the
PINNs are generally better at fitting the PDE parameters α and ν.

In Figure 2, we summarize the results for PINNs and the
data-driven strategy in Figure 2, where 2048, 8192, or 32768
training points were supplied.

PINNs are trained using a multi-objective loss function
based on data and PDEs. This can make their convergence
noisy and each criteria difficult to simultaneously satisfy.
Thus, the data-driven approach can be better at fitting the
supplied training data and attaining low relative error on the
full solution.

However, fitting only the data to between 1% and 10%
relative error generally does not guarantee that the PDE
parameters are estimated to within 10% error or less. In
contrast, PINNs are able to more consistently estimate ν
and α given the amount of data provided. PINN parameter
estimation can be successful with only 8192 training points,
i.e., approximately 0.2% of the solution.

Both methods are less accurate in the regime where α/ν is
large. This is unsurprising, as the fluid flow changes rapidly
across temporal and spatial scales in that parameter regime.

This echoes work in PINN forward modeling highlighting
that model predictions can be inaccurate as parameters driv-
ing system complexity vary (Krishnapriyan et al., 2021;
New et al., 2023).

3.3. Analysis of results

Figure 3 contains further details about the performance of
the data-driven estimation strategy, in the settings where
8192 or more data points are supplied. Results with fewer
training points are in Figures 6 and 7, and Figure 8 in Ap-
pendix B. In Figure 4, as well as in Figure 5 in Appendix B,
we show further results in terms of parameter estimation
and accuracy for the PINNs.

With low amounts of labeled data, Algorithm 1 unsurpris-
ingly performs poorly, but even in high-data settings (e.g.,
131072 training points, ten times as many as the PINNs
have), parameter estimation often still fails. We note that the
largest number of supplied training points we use, 131072,
is still less than 3% of the total number of points in the solu-
tion. Training on larger datasets could enable more reliable
parameter estimation.

Although the PINNs are more accurate than Algorithm 1,
similar trends to Figure 3 hold, namely that performance
degrades in the regime where α/ν is large. Increasingly,
increasing the amount of data supplied does not consistently
improve PINN accuracy, in comparison to Algorithm 1.
This is likely a consequence of the underlying complexity
and ill-conditionedness of the PINN optimization problem.

PDE optimizer # data α error Relative error ν error
Adam 2048 0.080 0.152 0.093
Newton 2048 0.086 0.150 0.056
Adam 8192 0.085 0.139 0.097
Newton 8192 0.085 0.130 0.065
Adam 32768 0.067 0.139 0.101
Newton 32768 0.088 0.126 0.071

Table 2. We show relative errors and estimation errors for PINNs,
averaged over the parameter space, comparing using Adam and
Newton’s method for the PDE estimation component. Newton’s
enables better estimation of ν and better fitting of the solution,
while Adam yields superior estimation of α.

4. Conclusion
We have presented a novel PINNs benchmark for the vector
2D Burgers’ equation with varying equation parameters in
the inverse problem setting. Our strategy combines SGD
and Newton’s method to learn the NN and PDE parameters,
respectively. This is a first step towards completion of a
major gap in the PINNs literature. First we demonstrated
the recovery of PDE parameters in inverse problems across
several viscous and inviscid flow conditions. Second, we

5

Equation identification for fluid flows via physics-informed neural networks

Figure 3. For varying amounts of training data, we plot the relative errors in estimating the Burgers’ solution (top), convection coefficient
α (middle) and diffusion coefficient ν (bottom), using the data-driven NN (Algorithm 1) strategy across different Burgers’ parameters. The
black dashed line indicates 10% or less error, our threshold for success. With 131072 points, the NN can achieve less than 10% solution
relative error for every parameter configuration. However, even with 131072 data points, it struggles to estimate parameters, failing at
estimating α for every configuration other than ν = 0.01 and failing at estimating ν in five out of the ten parameter configurations.

addressed the limitations of optimizers such as Adam in
estimating PDE parameters via the use of Newton’s method.

As future work, we advocate for further development of
challenging inverse problems, including those that include
partially-known BCs or ICs (Mattey & Ghosh, 2022), or sys-
tematic application of noise to data solution data (e.g., (Hao
et al., 2023)). For these and more challenging settings,
we expect that additional training strategies should be em-
ployed, such as improved sampling (Wang et al., 2024).

In the forward problem PINN literature, breaking time
domains into smaller subsets and training PINNs sequen-
tially on each subset is a common strategy (Krishnapriyan
et al., 2021; Wang et al., 2022a), and predicting phenom-
ena across large time domains is a known challenge for
PINNs (Meng et al., 2020; Wang et al., 2022a; Daw et al.,
2022). Here, we estimated parameters from solutions con-
fined to t ∈ [0, 0.499], but using either a smaller or large
time domain could have enabled generally better parameter
estimation. Thus, we suggest deeper exploration into the
impact of time domain size on the parameter estimation
problem, especially when the data feature discontinuities or

sudden changes.

Acknowledgments
This work was supported by internal research and develop-
ment funding from the Research and Exploratory Develop-
ment Mission Area of the Johns Hopkins University Applied
Physics Laboratory.

References
Alber, M., Buganza Tepole, A., Cannon, W. R., De, S.,

Dura-Bernal, S., Garikipati, K., Karniadakis, G., Lyt-
ton, W. W., Perdikaris, P., Petzold, L., and Kuhl, E. In-
tegrating machine learning and multiscale modeling—
perspectives, challenges, and opportunities in the bio-
logical, biomedical, and behavioral sciences. npj Dig-
ital Medicine, 2(1):115, Nov 2019. ISSN 2398-6352.
doi: 10.1038/s41746-019-0193-y. URL https://
doi.org/10.1038/s41746-019-0193-y.

Aliakbari, M., Soltany Sadrabadi, M., Vadasz, P., and
Arzani, A. Ensemble physics informed neural networks:

6

https://doi.org/10.1038/s41746-019-0193-y
https://doi.org/10.1038/s41746-019-0193-y

Equation identification for fluid flows via physics-informed neural networks

Figure 4. For varying amounts of training data (columns) and different PDE optimizers (rows), we plot the relative errors in estimating the
diffusion coefficient ν (left) and convection coefficient α (right), using PINNs. The black dashed line indicates 10% or less error, our
threshold for success. Compared to the data-driven baseline (Figure 3), PINNs are more successful in recovering parameters at a given
quantity of labeled training data. They can correctly estimate ν across values of α except when ν = 0.0001 (i.e., when the fluid is highly
inviscid). They are also successful in estimating α, except in the ν = 0.01 regime.

A framework to improve inverse transport modeling in
heterogeneous domains. Physics of Fluids, 35(5), 2023.

Alkhadhr, S. and Almekkawy, M. A combination of deep
neural networks and physics to solve the inverse prob-
lem of burger’s equation. In 2021 43rd Annual Interna-
tional Conference of the IEEE Engineering in Medicine
& Biology Society (EMBC), pp. 4465–4468, 2021. doi:
10.1109/EMBC46164.2021.9630259.

Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S.,
Bruce, J., Buchlovsky, P., Budden, D., Cai, T., Clark,
A., Danihelka, I., Dedieu, A., Fantacci, C., Godwin, J.,
Jones, C., Hemsley, R., Hennigan, T., Hessel, M., Hou,
S., Kapturowski, S., Keck, T., Kemaev, I., King, M.,
Kunesch, M., Martens, L., Merzic, H., Mikulik, V., Nor-
man, T., Papamakarios, G., Quan, J., Ring, R., Ruiz,
F., Sanchez, A., Schneider, R., Sezener, E., Spencer, S.,
Srinivasan, S., Stokowiec, W., Wang, L., Zhou, G., and
Viola, F. The DeepMind JAX Ecosystem, 2020. URL
http://github.com/deepmind.

Basir, S. and Senocak, I. Physics and equality constrained
artificial neural networks: Application to forward and in-
verse problems with multi-fidelity data fusion. Journal of
Computational Physics, 463:111301, 2022. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2022.111301.
URL https://www.sciencedirect.com/
science/article/pii/S0021999122003631.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind,
J. M. Automatic Differentiation in Machine Learning:
A Survey. J. Mach. Learn. Res., 18(1):5595–5637, Jan
2017. ISSN 1532-4435.

Bell, N., Olson, L. N., Schroder, J., and Southworth, B.
PyAMG: Algebraic multigrid solvers in python. Jour-
nal of Open Source Software, 8(87):5495, 2023. doi:
10.21105/joss.05495. URL https://doi.org/10.
21105/joss.05495.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Cai, S., Wang, Z., Wang, S., Perdikaris, P., and Karniadakis,
G. E. Physics-Informed Neural Networks for Heat Trans-
fer Problems. Journal of Heat Transfer, 143(6), 04 2021.
ISSN 0022-1481. doi: 10.1115/1.4050542. URL https:
//doi.org/10.1115/1.4050542. 060801.

Carniello, R., Florindo, J. B., and Abreau, E. A PINN com-
putational study for a scalar 2d inviscid Burgers model
with Riemann data. In Manuscrito de conferência em
revisao, 2022.

Christopher, J. D., Wimer, N. T., Lapointe, C., Hayden, T.
R. S., Grooms, I., Rieker, G. B., and Hamlington, P. E.
Parameter estimation for complex thermal-fluid flows
using approximate bayesian computation. Phys. Rev. Flu-
ids, 3:104602, Oct 2018. doi: 10.1103/PhysRevFluids.3.
104602. URL https://link.aps.org/doi/10.
1103/PhysRevFluids.3.104602.

Cole, J. D. On a quasi-linear parabolic equation oc-
curring in aerodynamics. Quarterly of Applied Math-
ematics, 9:225–236, 1951. URL https://api.
semanticscholar.org/CorpusID:39662248.

7

http://github.com/deepmind
https://www.sciencedirect.com/science/article/pii/S0021999122003631
https://www.sciencedirect.com/science/article/pii/S0021999122003631
https://doi.org/10.21105/joss.05495
https://doi.org/10.21105/joss.05495
http://github.com/google/jax
https://doi.org/10.1115/1.4050542
https://doi.org/10.1115/1.4050542
https://link.aps.org/doi/10.1103/PhysRevFluids.3.104602
https://link.aps.org/doi/10.1103/PhysRevFluids.3.104602
https://api.semanticscholar.org/CorpusID:39662248
https://api.semanticscholar.org/CorpusID:39662248

Equation identification for fluid flows via physics-informed neural networks

Collins, G., New, A., Darragh, R. A., Damit, B. E., and
Stiles, C. D. Rapid prediction of two-dimensional
airflow in an operating room using scientific machine
learning. In NeurIPS 2023 AI for Science Workshop,
2023. URL https://openreview.net/forum?
id=mUQrw0rIZN.

Daw, A., Bu, J., Wang, S., Perdikaris, P., and Karpatne, A.
Mitigating propagation failures in pinns using evolution-
ary sampling, 2022.

Dong, S. and Ni, N. A method for representing periodic
functions and enforcing exactly periodic boundary
conditions with deep neural networks. Journal of
Computational Physics, 435:110242, 2021. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2021.110242.
URL https://www.sciencedirect.com/
science/article/pii/S0021999121001376.

Doronina, O. A., Murman, S. M., and Hamlington, P. E. Pa-
rameter estimation for RANS models using approximate
bayesian computation, 2020.

Guyer, J. E., Wheeler, D., and Warren, J. A. Fipy: Partial
differential equations with python. Computing in Science
& Engineering, 11(3):6–15, 2009. doi: 10.1109/MCSE.
2009.52.

Haghighat, E., Raissi, M., Moure, A., Gomez, H., and
Juanes, R. A physics-informed deep learning frame-
work for inversion and surrogate modeling in solid
mechanics. Computer Methods in Applied Mechanics
and Engineering, 379:113741, 2021. ISSN 0045-
7825. doi: https://doi.org/10.1016/j.cma.2021.113741.
URL https://www.sciencedirect.com/
science/article/pii/S0045782521000773.

Hao, Z., Yao, J., Su, C., Su, H., Wang, Z., Lu, F., Xia,
Z., Zhang, Y., Liu, S., Lu, L., and Zhu, J. Pinnacle: A
comprehensive benchmark of physics-informed neural
networks for solving pdes, 2023.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre,
B., Steiner, A., and van Zee, M. Flax: A neural network
library and ecosystem for JAX, 2023. URL http://
github.com/google/flax.

Hopf, E. The partial differential equation ut + uux
= µxx. Communications on Pure and Applied
Mathematics, 3:201–230, 1950. URL https:
//api.semanticscholar.org/CorpusID:
121837938.

Kim, Y., Choi, Y., Widemann, D., and Zohdi, T. A fast
and accurate physics-informed neural network reduced
order model with shallow masked autoencoder. Journal
of Computational Physics, 451:110841, 2022.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization, 2014. doi:10.48550/ARXIV.1412.6980.

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and
Mahoney, M. W. Characterizing Possible Failure Modes
in Physics-Informed Neural Networks. Advances Neural
Inf. Process. Syst., 34, 2021.

Liu, D. C. and Nocedal, J. On the Limited Memory BFGS
Method for Large Scale Optimization. Mathematical
Programming, 45(1):503–528, Aug 1989. ISSN 1436-
4646. doi: 10.1007/BF01589116.

Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E. Deep-
XDE: A Deep Learning Library for Solving Differential
Equations. SIAM Review, 63(1):208–228, 2021a.

Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., and
Johnson, S. G. Physics-informed neural networks with
hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, 2021b. doi:
10.1137/21M1397908. URL https://doi.org/10.
1137/21M1397908.

Ma, W., Liu, Z., Kudyshev, Z. A., Boltasseva, A.,
Cai, W., and Liu, Y. Deep learning for the design
of photonic structures. Nature Photonics, 15(2):77–
90, Feb 2021. ISSN 1749-4893. doi: 10.1038/
s41566-020-0685-y. URL https://doi.org/10.
1038/s41566-020-0685-y.

Maddu, S., Sturm, D., Müller, C. L., and Sbalzarini, I. F.
Inverse Dirichlet Weighting Enables Reliable Training of
Physics Informed Neural Networks. Machine Learning:
Science and Technology, 3(1):015026, feb 2022. doi:
10.1088/2632-2153/ac3712.

Mathias, M. S., de Almeida, W. P., Coelho, J. F., de Fre-
itas, L. P., Moreno, F. M., Netto, C. F., Cozman, F. G.,
Reali Costa, A. H., Tannuri, E. A., Gomi, E. S., et al.
Augmenting a physics-informed neural network for the
2d burgers equation by addition of solution data points. In
Brazilian Conference on Intelligent Systems, pp. 388–401.
Springer, 2022.

Mattey, R. and Ghosh, S. A novel sequential method to
train physics informed neural networks for allen cahn and
cahn hilliard equations. Computer Methods in Applied
Mechanics and Engineering, 390:114474, 2022.

McClenny, L. and Braga-Neto, U. Self-Adaptive Physics-
Informed Neural Networks using a Soft Attention Mech-
anism, 2020. doi:10.48550/ARXIV.2009.04544.

Meng, X., Li, Z., Zhang, D., and Karniadakis, G. E. PPINN:
Parareal Physics-Informed Neural Network for Time-
Dependent PDEs. Comput. Methods Appl. Mechan-
ics Eng., 370:113250, 2020. ISSN 0045-7825. doi:
https://doi.org/10.1016/j.cma.2020.113250.

8

https://openreview.net/forum?id=mUQrw0rIZN
https://openreview.net/forum?id=mUQrw0rIZN
https://www.sciencedirect.com/science/article/pii/S0021999121001376
https://www.sciencedirect.com/science/article/pii/S0021999121001376
https://www.sciencedirect.com/science/article/pii/S0045782521000773
https://www.sciencedirect.com/science/article/pii/S0045782521000773
http://github.com/google/flax
http://github.com/google/flax
https://api.semanticscholar.org/CorpusID:121837938
https://api.semanticscholar.org/CorpusID:121837938
https://api.semanticscholar.org/CorpusID:121837938
https://doi.org/10.1137/21M1397908
https://doi.org/10.1137/21M1397908
https://doi.org/10.1038/s41566-020-0685-y
https://doi.org/10.1038/s41566-020-0685-y

Equation identification for fluid flows via physics-informed neural networks

New, A., Eng, B., Timm, A. C., and Gearhart, A. S. Tunable
complexity benchmarks for evaluating physics-informed
neural networks on coupled ordinary differential equa-
tions. In 2023 57th Annual Conference on Informa-
tion Sciences and Systems (CISS), pp. 1–8, 2023. doi:
10.1109/CISS56502.2023.10089728.

Ning, L., Cai, Z., Dong, H., Liu, Y., and Wang,
W. A peridynamic-informed neural network for
continuum elastic displacement characterization.
Computer Methods in Applied Mechanics and En-
gineering, 407:115909, 2023. ISSN 0045-7825.
doi: https://doi.org/10.1016/j.cma.2023.115909.
URL https://www.sciencedirect.com/
science/article/pii/S0045782523000324.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
Informed Neural Networks: A Deep Learning Framework
for Solving Forward and Inverse Problems Involving Non-
linear Partial Differential Equations. J. Comp. Phys., 378:
686–707, 2019.

Raissi, M., Yazdani, A., and Karniadakis, G. E. Hid-
den fluid mechanics: Learning velocity and pres-
sure fields from flow visualizations. Science, 367
(6481):1026–1030, 2020. doi: 10.1126/science.
aaw4741. URL https://www.science.org/
doi/abs/10.1126/science.aaw4741.

Ren, P., Rao, C., Liu, Y., Wang, J.-X., and Sun, H. Phycr-
net: Physics-informed convolutional-recurrent network
for solving spatiotemporal pdes. Computer Methods in
Applied Mechanics and Engineering, 389:114399, 2022.

Rosofsky, S. G., Al Majed, H., and Huerta, E. Applications
of physics informed neural operators. Machine Learning:
Science and Technology, 4(2):025022, 2023.

Sukumar, N. and Srivastava, A. Exact imposition
of boundary conditions with distance functions
in physics-informed deep neural networks. Com-
puter Methods in Applied Mechanics and Engi-
neering, 389:114333, 2022. ISSN 0045-7825.
doi: https://doi.org/10.1016/j.cma.2021.114333.
URL https://www.sciencedirect.com/
science/article/pii/S0045782521006186.

Versteeg, H. K. and Malalasekera, W. An introduction to
computational fluid dynamics: the finite volume method.
Pearson education, 2007.

Wang, S., Teng, Y., and Perdikaris, P. Understanding
and Mitigating Gradient Flow Pathologies in Physics-
Informed Neural Networks. SIAM Journal on Scientific
Computing, 43(5):A3055–A3081, 2021.

Wang, S., Sankaran, S., and Perdikaris, P. Re-
specting Causality is all you Need for Train-
ing Physics-Informed Neural Networks, 2022a.
doi:10.48550/ARXIV.2203.07404.

Wang, S., Yu, X., and Perdikaris, P. When and Why PINNs
Fail to Train: A Neural Tangent Kernel Perspective. Jour-
nal of Computational Physics, 449:110768, 2022b.

Wang, S., Li, B., Chen, Y., and Perdikaris, P. Piratenets:
Physics-informed deep learning with residual adaptive
networks. arXiv preprint arXiv:2402.00326, 2024.

Xu, H., Zeng, J., and Zhang, D. Discovery of partial dif-
ferential equations from highly noisy and sparse data
with physics-informed information criterion. Research,
6:0147, 2023.

Yao, J., Su, C., Hao, Z., Liu, S., Su, H., and Zhu, J.
MultiAdam: Parameter-wise scale-invariant optimizer
for multiscale training of physics-informed neural net-
works. In Krause, A., Brunskill, E., Cho, K., En-
gelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 39702–39721. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/yao23c.html.

Yu, J., Lu, L., Meng, X., and Karniadakis, G. E. Gradient-
enhanced physics-informed neural networks for forward
and inverse pde problems. Computer Methods in Applied
Mechanics and Engineering, 393:114823, 2022.

Zhang, X., Wang, L., Helwig, J., Luo, Y., Fu, C., Xie, Y.,
Liu, M., Lin, Y., Xu, Z., Yan, K., Adams, K., Weiler, M.,
Li, X., Fu, T., Wang, Y., Yu, H., Xie, Y., Fu, X., Strasser,
A., Xu, S., Liu, Y., Du, Y., Saxton, A., Ling, H., Lawrence,
H., Stärk, H., Gui, S., Edwards, C., Gao, N., Ladera,
A., Wu, T., Hofgard, E. F., Tehrani, A. M., Wang, R.,
Daigavane, A., Bohde, M., Kurtin, J., Huang, Q., Phung,
T., Xu, M., Joshi, C. K., Mathis, S. V., Azizzadenesheli,
K., Fang, A., Aspuru-Guzik, A., Bekkers, E., Bronstein,
M., Zitnik, M., Anandkumar, A., Ermon, S., Liò, P., Yu,
R., Günnemann, S., Leskovec, J., Ji, H., Sun, J., Barzilay,
R., Jaakkola, T., Coley, C. W., Qian, X., Qian, X., Smidt,
T., and Ji, S. Artificial intelligence for science in quantum,
atomistic, and continuum systems, 2023.

9

https://www.sciencedirect.com/science/article/pii/S0045782523000324
https://www.sciencedirect.com/science/article/pii/S0045782523000324
https://www.science.org/doi/abs/10.1126/science.aaw4741
https://www.science.org/doi/abs/10.1126/science.aaw4741
https://www.sciencedirect.com/science/article/pii/S0045782521006186
https://www.sciencedirect.com/science/article/pii/S0045782521006186
https://proceedings.mlr.press/v202/yao23c.html
https://proceedings.mlr.press/v202/yao23c.html

Equation identification for fluid flows via physics-informed neural networks

A. Hyperparameters

Hyperparameter Value
Number of hidden units 256

Number of layers 10
Activation function tanh

Batch size (Data loss) 2048
Batch size (IC loss) 2048

Batch size (PDE loss) 8192
λData 1
λIC 1

Optimizer Adam
Number of epochs 50000
Initial learning rate 5 · 10−3

Minimum learning rate 10−6

Exponential decay rate 0.925
Exponential decay interval 5000

Table 3. Hyperparameters used for the data-driven estimation strategy (Algorithm 1). For the data loss, we use a batch size of the minimum
of the number of labeled data points and 2048. Models use the ED-MLP (Wang et al., 2021), modified to exactly satisfy the BCs (eqs. 10).

Hyperparameter Value
Number of hidden units 256

Number of layers 10
Activation function tanh

Batch size (Data loss) Varies
Batch size (IC loss) 1024

Batch size (PDE loss) 2048
λPDE 1
λData 10
λIC 10

NN Optimizer Adam
PDE Optimizer {Adam, Newton}

Number of gradient steps 100000
Parameter estimation interval {10 (Adam), 100 (Newton)}

Initial NN learning rate 5 · 10−3

Minimum NN learning rate 10−5

Exponential decay rate 0.925
Exponential decay interval 5000
PDE parameter step size 10−3

Table 4. Hyperparameters used for PINNs. For the data loss, we use all available labeled data points for each gradient update. Models use
the ED-MLP (Wang et al., 2021), modified to exactly satisfy the BCs (eqs. 10). When training, we only update the PDE parameters every
n epochs, where n = 10 if the PDE optimizer is Adam, and n = 100 if the PDE parameter optimizer is Newton’s method.

10

Equation identification for fluid flows via physics-informed neural networks

B. Supplementary Figures

Figure 5. For varying amounts of training data (columns) and different PDE optimizers (rows), we plot the relative errors in the predicted
solutions to the Burgers’ equation.

Figure 6. For varying amounts of training data, we plot the relative errors in estimating the Burgers’ solution using the data-driven NN
(Algorithm 1) strategy across different Burgers’ parameters. The black dashed line indicates 10% or less error, our threshold for success.

11

Equation identification for fluid flows via physics-informed neural networks

Figure 7. For varying amounts of training data, we plot the relative errors in estimating the convection coefficient α using the data-driven
NN (Algorithm 1) strategy across different Burgers’ parameters. The black dashed line indicates 10% or less error, our threshold for
success.

Figure 8. For varying amounts of training data, we plot the relative errors in estimating the diffusion coefficient ν, using the data-driven
NN (Algorithm 1) strategy across different Burgers’ parameters. The black dashed line indicates 10% or less error, our threshold for
success.

12

