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Abstract
Scaling has been a major driver of recent ad-
vancements in deep learning. Numerous empirical
studies have found that scaling laws often follow
the power-law and proposed several variants of
power-law functions to predict the scaling behav-
ior at larger scales. However, existing methods
mostly rely on point estimation and do not quan-
tify uncertainty, which is crucial for real-world
applications involving decision-making problems
such as determining the expected performance
improvements achievable by investing additional
computational resources. In this work, we ex-
plore a Bayesian framework based on Prior-data
Fitted Networks (PFNs) for neural scaling law
extrapolation. Specifically, we design a prior dis-
tribution that enables the sampling of infinitely
many synthetic functions resembling real-world
neural scaling laws, allowing our PFN to meta-
learn the extrapolation. We validate the effec-
tiveness of our approach on real-world neural
scaling laws, comparing it against both the ex-
isting point estimation methods and Bayesian ap-
proaches. Our method demonstrates superior per-
formance, particularly in data-limited scenarios
such as Bayesian active learning, underscoring
its potential for reliable, uncertainty-aware ex-
trapolation in practical applications. The code
and models are available at https://github.
com/DongWooLee-Eli/nslpfn.

1. Introduction
Recent advancements in both the vision (Tan, 2019; Alexey,
2020; Kolesnikov et al., 2020; Dai et al., 2021; Zhai et al.,
2022) and natural language processing (NLP) (Devlin, 2018;
Brown, 2020; Achiam et al., 2023; Touvron et al., 2023a;b;
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Dubey et al., 2024) have largely been driven by scaling.
Numerous studies have rigorously explored neural scaling
laws (Hestness et al., 2017; Johnson et al., 2018; Rosenfeld
et al., 2019; Kaplan et al., 2020; Rosenfeld, 2021; Ghor-
bani et al., 2021; Bansal et al., 2022; Hoffmann et al., 2022;
Chung et al., 2024), finding that performance metrics, such
as error rate or loss, frequently follow the power law func-
tion, as key factors such as size of data and model or training
duration increase. The problem is that scaling up those key
factors for modern neural architectures requires high costs
(e.g., collecting more labeled data or consuming more train-
ing resources for larger models), and it would be beneficial
to foresee the behavior of neural scaling laws from observa-
tions at small-scale, before scaling up.

Fortunately, recent studies (Hoffmann et al., 2022; Bansal
et al., 2022; Alabdulmohsin et al., 2022; Caballero et al.,
2022) have shown that the neural scaling laws can be pre-
dicted empirically in modern neural architectures with care-
fully crafted functional forms. As typically done in regres-
sion, after predefining a reasonable functional form, the
parameters of the function can be estimated with maximum
likelihood given the partial observations in a neural scaling
law. After the estimation, extrapolation is done to predict
the future behavior of each curve. Such neural scaling law
extrapolation not only provides the understanding of mod-
ern neural architectures (Abnar et al., 2021; Bansal et al.,
2022; Bahri et al., 2024), but is also applicable to a range of
fields; such as determining the proper amount of samples in
data-scarce domains, e.g., medicine (Mukherjee et al., 2003;
Figueroa et al., 2012; Beleites et al., 2013; Cho et al., 2015),
enabling the early-stopping of the hyperparameter optimiza-
tion (Domhan et al., 2015; Hestness et al., 2017; Johnson
et al., 2018), or neural architecture search (Hestness et al.,
2017; Elsken et al., 2019; Klein et al., 2022).

However, despite the recent success on the neural scaling
law extrapolation (Hoffmann et al., 2022; Bansal et al., 2022;
Alabdulmohsin et al., 2022; Caballero et al., 2022), the ex-
isting works are inherently limited as they do not consider
estimating uncertainty. Considering that the true potential
of neural scaling law extrapolation comes from utilizing it to
make important decisions such as whether to spend compu-
tational costs further or not, naively relying on simple point
estimation is too risky, as depicted in Fig. 1. Therefore, in
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this paper, we stress the need for a Bayesian approach to
capture uncertainty and quantify the reliability of neural scal-
ing law extrapolation. However, typical Bayesian methods,
like directly applying Markov Chain Monte Carlo (MCMC)
on existing functional forms, struggle to handle chaotic
behaviors—such as non-monotonicity—that are prevalent
in real-world neural scaling laws (Nakkiran et al., 2021).
This is because not only are these optimization landscapes
non-convex or multi-modal (Caballero et al., 2022) but also
setting a practical prior distribution that can cover these
chaotic behaviors is challenging.

To overcome this challenge, we investigate the potentials
of Prior-data Fitted Networks (PFNs; Müller et al., 2021)
for neural scaling law extrapolation. PFNs are an in-context
approximate Bayesian inference method, which is meta-
learned with the training data sampled from the prior distri-
bution. PFNs provide several benefits over MCMC. Specif-
ically, it is very flexible in defining any complex prior dis-
tributions as long as we can efficiently sample from them.
Further, the speed of inference is faster by multiple orders
of magnitudes since PFN is an in-context inference method.
We empirically validate the efficacy and efficiency of our
approach, which we name as Neural Scaling Law PFN
(NSL-PFN), on an extensive set of datasets by comparing it
not only with the recent point estimation methods but also
their MCMC variants. We also show that our NSL-PFN reli-
ably predicts chaotic behaviors of real-world neural scaling
laws even with a few observations at a small scale.

We summarize the contribution of our paper as follows:

• To our knowledge, we introduce a Bayesian method for
extrapolating neural scaling laws for the first time.

• We propose a novel prior distribution for PFN which is
specifically tailored to neural scaling law extrapolation.

• We empirically validate that our method provides better
point estimate fits with the ability to automatically infer
the best functional form and the number of breaks.

• We empirically show that our method provides better un-
certainty than the non-specialized PFNs and other MCMC
baselines, on many real-world neural scaling law exam-
ples as well as Bayesian active learning settings.

2. Background and Related Work
2.1. Point Estimation of Neural Scaling Laws

M1, M2, and M3. Most existing methods for estimat-
ing neural scaling laws rely on point estimation. The power
law function is the most representative function used for
extrapolation and is known to work well for a wide set of
neural scaling laws, including many vision and natural lan-
guage processing tasks (Hestness et al., 2017; Johnson et al.,
2018; Rosenfeld et al., 2019; Kaplan et al., 2020; Rosenfeld,
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Figure 1: Extrapolation results of each method on a neural
scaling law from the double descent dataset (Nakkiran et al.,
2021). Here, the context and target denote the observations and
the target points we want to correctly estimate, respectively.

2021; Ghorbani et al., 2021; Bansal et al., 2022; Hoffmann
et al., 2022; Chung et al., 2024). Let y denote the perfor-
mance such as prediction error or cross-entropy, and x the
quantity that is being scaled such as the size of dataset or
the number of parameters in the neural network. The power
law function in its simplest form is given by:

M1 : y = ax−b, (1)

M2 : y = ax−b + c, (2)

where a, b, c ≥ 0 are the coefficients we want to estimate.
The only difference betweenM1 andM2 is whether there is
a bias c or not for capturing saturating performance (Mukher-
jee et al., 2003; Figueroa et al., 2012; Domhan et al., 2015;
Hestness et al., 2017; Johnson et al., 2018; Rosenfeld et al.,
2019; Gordon et al., 2021). For neural machine translation,
Bansal et al. (2022) propose a slightly more expressive form
by adding a shifting term d ≥ 0 toM1:

M3 : y = a(x−1 + d)b. (3)

Note thatM3 reduces toM1 when d = 0.

M4. However, those M1, M2, and M3 functions do
not have any inflection points, which frequently appear in
many scaling law examples—initially the scaling law curve
is flat, i.e., close to the initial performance y0, then gradually
starts following a power law function. Alabdulmohsin et al.
(2022) propose the following function family to express
such inflection points:

M4 : y = g−1(x), where

x = g(y) =

(
y − c

a(y0 − y)α

)− 1
b

,
(4)

where a, b, α ≥ 0 and y0 ≥ c ≥ 0. Similarly toM3, this
M4 function reduces toM2 when α = 0 (since we have
y = ax−b + c). Therefore, the role of α is to control the
degree to which the scaling law initially sticks to y0.

Broken Neural Scaling Laws (BNSL). While M4 is
more flexible thanM1,M2, andM3, it still has a limita-
tion that the function is defined as an inverse—the function
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should be bijective. However, some real-world scaling law
examples exhibit more complicated behaviors such as dou-
ble descent (Nakkiran et al., 2021)—the curve initially de-
creases, then suddenly increases, and then decreases again
eventually following a power law function. Thus, Caballero
et al. (2022) propose the following function family:

BNSL: y = c+ ax−b
n∏

i=1

(
1 +

(
x

ei

)1/si
)−∆bi·si

. (5)

Eq. (5) is nothing but the smooth piece-wise concatena-
tion of power law functions, where n is the number of
breaks, making the corresponding curve consists of n+ 1
segments smoothly concatenated sequentially. a, b, c ≥ 0
are the power law function coefficients at the initial seg-
ment, ∆b1, . . . ,∆bn ∈ R are the changes in slope in the
log-y space, e1, . . . , en > 0 are the location of the breaks
to be estimated, and s1, . . . , sn > 0 control the smooth-
ness of the transitions between two consecutive segments.
Note that the j-th segment is an increasing function when
b +

∑j−1
i=1 ∆bi < 0. The number of breaks n is selected

with cross-validation since it is non-differentiable.

Limitation of the point estimation methods. Although
M4 (Alabdulmohsin et al., 2022) and BNSL (Caballero
et al., 2022) show reasonable prediction performances on a
wide set of neural scaling laws, their study also implies that
those extrapolations are inherently uncertain. Let the con-
text denote the observations. For instance, when the context
part of the curve is flat, it can either imply that the curve is
already at the saturating stage of the power law function, or
is before the inflection point and will sharply decrease fur-
ther, following the intuition ofM4. Also, when the context
part of the curve is given with its last segment increasing,
the BNSL function family cannot reflect the empirical fact
that in most cases the curve will eventually start decreasing
at some uncertain future point, but will predict that the curve
will monotonically increase indefinitely (Fig. 1). Therefore,
the natural question is how we can incorporate those uncer-
tainties into the neural scaling law extrapolation to obtain
better prediction performance as well as reasonable uncer-
tainties that could be used later for many decision-making
problems, e.g., to trade off the cost of collecting and training
on more data and the believed associated performance gains.

2.2. Prior-data Fitted Networks

In this paper, we propose using Prior-data Fitted Net-
works (PFNs; Müller et al., 2021), a recently introduced
in-context Bayesian prediction method based on the Trans-
former architecture (Vaswani, 2017). Unlike the conven-
tional Bayesian inference methods that attempt to approx-
imate the posterior distribution of some latent (e.g., the
network parameters or the function itself), PFNs directly
learn a single transformer that maps a context set to the

posterior predictive distribution (PPD). Learning such a
transformer is done with a meta-learning framework. The
meta-training data is generated from a prior distribution as
synthetic data, allowing for a potentially infinite supply of
examples. The data is then split into a context (training) and
a target (test) set, and the transformer model is trained to
maximize the likelihood of the target given the context:

f ∼ p(f), (6)
(C, T ) = D ∼ p(D|f), (7)

max
θ

EC,T ∼p(D) [ log qθ(Y
∗|X∗, C) ] , (8)

where f is a function, p(f) and p(D|f) are the functional
prior and the likelihood for generating the synthetic data
D = {(xi, yi)}M+N

i=1 , respectively. D is then randomly split
into the context C = (X,Y ) = {(xi, yi)}Mi=1 and the target
T = (X∗, Y ∗) = {(xi, yi)}M+N

i=M+1. qθ is the in-context
amortized inference machine such as a Transformer param-
eterized by θ. Note that Eq. (8) is equivalent to minimizing
the following expected KL divergence:

min
θ

Ep(C,X∗)[ KL[p(Y ∗|X∗, C)∥qθ(Y ∗|X∗, C)] ], (9)

where p(Y ∗|X∗, C) = Ep(f |C)[ p(Y
∗|X∗, f) ] is the true

posterior predictive distribution (PPD) marginalized over
the true functional posterior p(f |C). In this way, the learning
objective of PFN in Eq. (8) minimizes the discrepancy be-
tween qθ and the true PPD, in expectation over the sampling
distribution p(C, X∗). Consequently, after meta-training,
given any context C, qθ can learn to recover the true PPD
at any target points x∗ ∈ X∗, as long as a sufficiently large
architecture and enough training time are given.

Flexible prior. The main strength of PFNs is that we
only need to sample the synthetic data from p(D). This
implies that the functional prior p(f) does not need to be
expressed in a tractable form at all since we do not need
to measure its density at both the training and evaluation
phases. This property is different from the conventional
Bayesian inference methods such as Monte-Carlo Markov
Chain (MCMC) and variational inference, allowing us to
remove any restrictions on p(f) as long as we can efficiently
sample from it.

PFNs for learning curve extrapolation. Adriaensen et al.
(2023) use PFNs for extrapolating learning curves. Here,
p(f) is functional prior implicitly defined over the parame-
ters for describing the learning curves, such as the parame-
ters of the power law function and the coefficients for lin-
early combining a set of different function families. While
their motivation for using PFNs is similar to ours, their prior
is not tailored to extrapolating the neural scaling law, making
it suboptimal for our purposes, as demonstrated empirically
in §4. In the next section, we introduce our novel way of
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Table 1: The template distributions for each scaling law segment.
Name Direction Function Prior

M3 Down (↓) y = a(x−1 + d)b log a ∼ N (−1, 0.5) log(−b) ∼ N (−2, 1) log d ∼ N (0, 1)

M4 Down (↓) x = g(y) =
(

y
a(1−y)α

)− 1
b

log a ∼ N (−1, 0.5) log(−b) ∼ N (0, 0.5) logα ∼ N (0, 0.5)

BetaCDF Up (↑) y = BetaCDF(x;β, β)γ β ∼ U(0.5, 1) log γ ∼ N (0, 0.1)
Norm - y ← y(ymax − ymin) + ymin ymax ∼ U(0.2, 1.2) ymin ∼ U(0, ymax)
Noise - y ← y + σ log σ ∼ N (−4, 1)
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Figure 2: Visualization of 20 neural scaling laws sampled from each function family before applying the Noise function in Table 1.

defining the functional prior suitable for neural scaling law
extrapolation.

We defer more discussion on the related work to Ap-
pendix A due to the space constraint.

3. Approach
3.1. Neural Scaling Law Prior

Criteria for the functional prior. Our functional prior
should give high density on the reasonable scaling law be-
haviors such as power law functions, but also should be
flexible enough to cover all the functional forms in the real-
world examples. Specifically, we propose the following
criteria for the functional prior over the neural scaling laws:

1. We make use of the previously developed functional
forms such asM3 orM4, but for flexibility we sample
from both of the function families.

2. Based on the observation of BNSL (Caballero et al.,
2022), we allow breaks to randomly occur in each scal-
ing law example with some probability, and randomly
sample the corresponding segments from the diverse
functional families. We highlight that this allows the
trained PFN to adapt to various scaling curves with arbi-
trary breaks, and to automatically infer the appropriate
number of breaks without any validation process.

3. In order to express chaotic behaviors such as double de-
scent (Nakkiran et al., 2021), we let some segments
exhibit upward trends with some probability, with
BetaCDF, i.e., the cumulative distribution function of
the beta distribution.

Defining the function families. We now introduce the
template distributions for sampling a complete scaling curve

D = {(xi, yi)}M+N
i=1 . We define M3, M4, BetaCDF,

Norm, and Noise in Table 1; each can be applied to every
segment. For the downward segments, we choose only
M3 and M4, as M1 and M2 are subsets of them. We
use BetaCDF as upward segments because its S-shape fits
well to our purpose. We use Norm to re-normalize each
segment using the sampled maximum and minimum values.
We use Noise function to apply the observational noise
in the likelihood function. We set the parameters c and y0
in Eq. (4) to 0 and 1 forM4, respectively, as the sampled
curves are re-normalized using Norm.

Based on those basic template distributions, we define the
following function families:

1. Down: This function family considers simple down-
ward trends without any breaks, using eitherM3 orM4.
Specifically, we randomly choose betweenM3 andM4,
sample the parameters, re-normalize each curve with
Norm, and add noise with Noise.

2. Down-Down: This function family also represents down-
ward trends but more complex behaviors with breaks. We
first randomly choose the number of breaks in {1, 2, 3}
(resulting in 2, 3, or 4 segments), and randomly sample
the locations of those breaks along the x-axis. We then
randomly select either M3 or M4 for each segment,
sample the parameters, re-normalize each segment with
Norm, and add noise with Noise. Each segment is
translated along the y-axis to align with the last y value
of the previous segment.

3. Down-Up-Down: This function family is to ex-
press more complicated behaviors such as double de-
scent (Nakkiran et al., 2021). Here, we fix the number
of breaks at 2 (resulting in 3 segments) and randomly
sample their locations along the x-axis. We use either
M3 orM4 for the first and third segments, while the
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upward function BetaCDF is used for the second seg-
ment. After sampling the parameters, we re-normalize
each segment with Norm, add noise with Noise, and
translate the segments along the y-axis to match the last
y value of each preceding segment.

Fig. 2 visualizes the curves sampled from the three function
families, before applying the Noise function. We reject
any curves including negative y values or NaN.

Defining the cutoff distribution. After sampling a com-
plete scaling curveD, we need to decide a cutoff position M
to split D into the context C = {(xi, yi)}Mi=1 and the target
T = {(xi, yi)}M+N

i=M+1 for training. However, in defining
the cutoff position, we need to think carefully about what
kinds of extrapolation problems our model can somehow
solve in a reliable manner, and what other types of problems
we need to consider as inherently difficult.

Suppose the model is given the context part of the curve, i.e.,
up to just before the cutoff, and the model needs to predict
the rest, i.e., after the cutoff. We can consider the two cases.
1. If the last part of the curve is downward, we had better
assume that a similar tendency will be maintained in the
future, e.g., the same power law function. This assumption
comes from the intuition (and our empirical observation)
that in this case, assuming unexpected future breaks are in-
herently too difficult to predict due to the lack of information
(because almost anything could happen), leading to exces-
sive uncertainties with poor predictive performances. On
the other hand, 2. if the last part of the curve is upward,
we already know empirically that the curve will eventually
turn downward at some future points, e.g., as we spend more
computational resources. Therefore, in this case, we can say
that such a downward trend gives the model some useful
information about how to predict the future.

Based on those intuitions, we restrict the cutoff position
for each function family as follows: 1. Down: The cutoff
position can be at any point. 2. Down-Down: The cutoff
position can only be within the last segment. 3. Down-Up-
Down: The cutoff position can only be at the second or
third (last) segments. Note that such restriction does not
violate the PFN framework, as it simply specifies C, T ∼
p(D) in Eq. (8), which defines the procedure of randomly
splitting the context and target points. For instance, LC-
PFN (Adriaensen et al., 2023) restricts the target points T
to be positioned after the context points C, similarly to ours.

3.2. Training Objective

Context regression loss. We use a similar objective func-
tion to Eq. (8) to train our PFN but add an auto-regressive
objective on the context points as follows:

max
θ

EC,T ∼p(D) [ log qθ(Y
∗|X∗, C) + log qθ(Y |X, C) ] ,

(10)

where the second term in the expectation is the auto-
regressive objective. We find that adding it improves the
curve fit around the cutoff position, both in terms of accu-
racy and the quality of uncertainty, as shown in Table 6.

Interpolation loss. Note that Eq. (10) is primarily for ex-
trapolation (i.e., T always follows C) and, therefore, lacks
the ability to interpolate within each curve. On the other
hand, in real-world applications such as Bayesian active
learning (Gal et al., 2017) (in §4.2), improving the qual-
ity of prediction by collecting additional data is often the
main interest, but they require the model to be equipped
with a good interpolation mechanism. To this end, we also
consider training a variant of NSL-PFN that learns both
interpolation and extrapolation at the same time. Simply,
we first sample the context C and target T following §3.1,
and then randomly sample a subset of T to add them to C.
We then use the same objective in Eq. (10) for training.

4. Experiments
Datasets. Following the previous work (Alabdulmohsin
et al., 2022; Caballero et al., 2022), we first validate our
NSL-PFN on the popular benchmark datasets (Alabdul-
mohsin et al., 2022) consisting of scaling curves evalu-
ated on various tasks in both image and natural language
domain. The image classification (IC) dataset includes
72 scaling curves, each of which evaluates few-shot pre-
diction performances of various neural network architec-
tures w.r.t. the number of training datapoints. Specifically,
many popular architectures such as BiT (Kolesnikov et al.,
2020), MiX (Tolstikhin et al., 2021), and ViT (Alexey,
2020) are evaluated on the various image classification
datasets such as ImageNet (Russakovsky et al., 2015), CI-
FAR100 (Krizhevsky et al., 2009), Birds (Welinder et al.,
2010), and Caltech101 (Fei-Fei et al., 2004). The natu-
ral language processing (NLP) dataset contains 20 scaling
curves, each of which evaluates the performance of vari-
ous Transformer architectures (Bansal et al., 2022; Thop-
pilan et al., 2022) w.r.t. the number of training datapoints,
on neural machine translation (NMT), language modeling
(LM), and Big-Bench (BB; bench authors, 2023). We fur-
ther consider the nanoGPT-Bench dataset (Nano; Kadra
et al., 2023) consisting of 24 scaling curves obtained by
training nanoGPT models with varying model sizes on the
OpenWebText dataset (Gokaslan et al., 2019). We also use
ColPret, a recently released huge dataset containing more
than 1000 curves (Choshen et al., 2024), each of which eval-
uates the performance various LLMs w.r.t. the number of
training datapoints. We subsample it into 192 curves such
that the number of points in each curve lies within [10, 1000].
Lastly, we consider double descent (DD) dataset (Nakkiran
et al., 2021) consisting of 16 curves exhibiting double de-
scent behavior, to test each model’s ability to predict more
complex scaling behaviors. See Appendix B for details.
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Table 2: Results on image domain tasks (IC). We report mean and standard deviation (std) over 3 runs for the MCMC baselines and our
method. For the other methods, we do not report std, as the point estimation methods always produce the same results, and for LC-PFN,
we use the single model released by the authors. The best results are in bold, and the second-best results are underlined.

Method Bayes. ImageNet CIFAR100 Birds Caltech101 Average
RMSLE (↓) LL (↑) RMSLE (↓) LL (↑) RMSLE (↓) LL (↑) RMSLE (↓) LL (↑) RMSLE (↓) LL (↑)

M1 ✗ 0.0838 - 0.0803 - 0.0749 - 0.1793 - 0.1046 -
M2 ✗ 0.0830 - 0.0626 - 0.0729 - 0.1105 - 0.0823 -
M3 ✗ 0.0470 - 0.0436 - 0.0555 - 0.1000 - 0.0615 -
M4 ✗ 0.0158 - 0.0315 - 0.0302 - 0.0886 - 0.0415 -

BNSL ✗ 0.0121 - 0.0351 - 0.0242 - 0.0911 - 0.0406 -
MCMC (M1) ✓ 0.0794±0.0011 1.934±0.026 0.0812±0.0010 1.672±0.040 0.0724±0.0048 1.993±0.036 0.1802±0.0057 1.957±0.022 0.1047±0.0010 1.930±0.020

MCMC (M2) ✓ 0.0789±0.0040 1.974±0.041 0.0618±0.0001 2.344±0.012 0.0662±0.0018 2.191±0.008 0.1056±0.0013 2.582±0.029 0.0776±0.0012 2.287±0.013

MCMC (M3) ✓ 0.0421±0.0025 2.655±0.023 0.0424±0.0004 2.663±0.006 0.0572±0.0017 2.348±0.025 0.0978±0.0009 2.627±0.020 0.0595±0.0005 2.568±0.004

MCMC (M4) ✓ 0.0160±0.0006 3.454±0.073 0.0320±0.0008 2.969±0.033 0.0316±0.0015 3.039±0.028 0.0811±0.0022 2.733±0.002 0.0422±0.0006 3.024±0.016

MCMC (BNSL) ✓ 0.0109±0.0002 3.562±0.042 0.0412±0.0002 2.649±0.018 0.0277±0.0032 3.149±0.032 0.1782±0.1023 2.324±0.008 0.0645±0.0253 2.921±0.002

LC-PFN ✓ 0.0096 4.146 0.0373 1.644 0.0233 2.861 0.1009 1.065 0.0428 2.429
NSL-PFN (ours) ✓ 0.0092±0.0009 3.808±0.0172 0.0317±0.0005 2.829±0.0426 0.0202±0.0006 3.464±0.0419 0.0507±0.0032 3.217±0.0472 0.0280±0.0009 3.330±0.0136

Table 3: Results on language domain tasks (NLP and Nano).

Method Bayes. NMT LM BB Nano Average
RMSLE (↓) LL (↑) RMSLE (↓) LL (↑) RMSLE (↓) LL (↑) RMSLE (↓) LL (↑) RMSLE (↓) LL (↑)

M1 ✗ 0.2217 - 0.0140 - 0.0148 - 0.0534 - 0.0593 -
M2 ✗ 0.0341 - 0.0010 - 0.0146 - 0.0549 - 0.0367 -
M3 ✗ 0.0471 - 0.0022 - 0.0087 - 0.0534 - 0.0367 -
M4 ✗ 0.0208 - 0.0009 - 0.0123 - 0.0360 - 0.0249 -

BNSL ✗ 0.0184 - 0.0016 - 0.0164 - 0.0299 - 0.0223 -
MCMC (M1) ✓ 0.2247±0.0055 0.036±0.240 0.0155±0.0008 2.746±0.088 0.0158±0.0006 2.958±0.054 0.0515±0.0008 1.232±0.102 0.0569±0.0006 1.732±0.020

MCMC (M2) ✓ 0.0333±0.0015 2.791±0.020 0.0023±0.0006 3.695±0.046 0.0143±0.0006 2.974±0.057 0.0521±0.0012 0.352±0.387 0.0365±0.0007 1.636±0.219

MCMC (M3) ✓ 0.0471±0.0000 2.592±0.000 0.0023±0.0000 3.072±0.000 0.0086±0.0007 3.065±0.035 0.0537±0.0005 0.411±0.226 0.0368±0.0004 1.716±0.119

MCMC (M4) ✓ 0.0144±0.0017 3.090±0.053 0.0035±0.0005 3.331±0.047 0.0083±0.0004 3.098±0.036 0.0374±0.0006 1.474±0.060 0.0235±0.0004 2.216±0.038

MCMC (BNSL) ✓ 0.0438±0.0207 2.842±0.072 0.0022±0.0002 3.969±0.064 0.0201±0.0006 2.747±0.035 0.0887±0.0282 2.076±0.037 0.0582±0.0134 2.531±0.007

LC-PFN ✓ 0.0471 -0.354 0.1151 2.805 0.0191 1.019 0.0311 1.849 0.0398 1.519
NSL-PFN (ours) ✓ 0.0248±0.0102 2.798±0.0916 0.0013±0.0004 3.740±0.0059 0.0202±0.0006 3.321±0.0391 0.0260±0.0027 2.339±0.1029 0.0194±0.0021 2.773±0.0605

Table 4: Results on ColPret and double descent (DD) dataset.
† indicates that a few trials failed due to overflow error, which were
excluded from the calculation.

Method ColPret DD
RMSLE (↓) LL (↑) RMSLE (↓) LL (↑)

M1 0.0732 - 0.1140 -
M2 0.0545† - 0.1140 -
M3 0.0837 - 0.1333 -
M4 0.0410 - 0.0910 -

BNSL 0.0998 - 0.0468 -
MCMC (M1) 0.0769±0.0022 1.334±0.062 0.1206±0.0054 -10.561±0.181

MCMC (M2) 0.0533±0.0010 1.835±0.033 0.1199±0.0109 -10.842±0.271

MCMC (M3) 0.0504±0.0031 1.798±0.017 0.1222±0.0093 -2.782±2.142

MCMC (M4) 0.0417±0.0302 1.787±0.120 0.0925±0.0061 -0.255±0.606

MCMC (BNSL) 0.0690±0.0127 2.727±0.011 0.0494±0.0017 1.250±0.244

LC-PFN 0.0289 2.804 0.0706 1.321
NSL-PFN (ours) 0.0271±0.0003 2.794±0.025 0.0335±0.0013 2.565±0.023

Baselines. We first consider point estimation meth-
ods, including M1−4 and BNSL, as described in §2.1.
For Bayesian baselines, we compare against a MCMC
method—specifically, EMCEE (Foreman-Mackey et al.,
2013)—following the setup of Domhan et al. (2015). We
evaluate five variants of EMCEE, each corresponding to the
MCMC version of one of the function families:M1−4 and
BNSL. The likelihood function is defined asN (y; f(x), σ2),
where σ2 is a parameter capturing observational noise and f
is one of the models fromM1−4 or BNSL. The number of
MCMC samples (nsamples) is set to 150 (except in Fig. 6)
to ensure that the inference time is comparable to that of
NSL-PFN. We also compare against LC-PFN (Adriaensen
et al., 2023), another Bayesian method originally developed
for extrapolating learning curves. Since LC-PFN assumes

monotonically increasing functions, we horizontally flip the
model output, i.e., ŷ ← 1 − ŷ. See Appendix C for fur-
ther details on the baselines, including prior settings for the
MCMC variants and other hyperparameter configurations
used with EMCEE.

Evaluation metric. We report the root mean squared
log error (RMSLE; Alabdulmohsin et al., 2022; Caballero
et al., 2022), i.e.,

√
1

|T |
∑

y∗∈T (log ŷ − log y∗)2, where T
is the target set, ŷ the prediction1, and y∗ the correspond-
ing label. For the Bayesian methods, we also evaluate the
quality of predictive uncertainties by reporting the average
log-likelihood (LL), i.e., 1

|T |
∑

(x∗,y∗)∈T log q(y∗|x∗, C),
where q is the predictive distribution of each method, and C
and T are the context and target set, respectively. LL and
RMSLE are averaged across all the curves in each dataset.

Implementation. We mostly follow Müller et al. (2021).
We use a Transformer (Vaswani, 2017) and treat each con-
text pair (x, y) and target x∗ as individual tokens while
omitting positional encoding. We discretize the output dis-
tribution into a finite number of bins (1,000). The hyperpa-
rameters of architecture are set as follows: nlayers=12,
nheads=4, and nhidden=512. We train our model on
1.6M synthetic examples sampled from our prior for 100K
iterations. See Appendix C for more details.

1We use mean for the MCMC baselines, and the median for
both LC-PFN and NSL-PFN, following Adriaensen et al. (2023).
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Figure 3: Extrapolation performance (LL) with varying cutoffs.
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Figure 4: Visualization of extrapolation on double descent (DD) (Nakkiran et al., 2021) with varying cutoffs. We visualize the mean
or median as solid lines and show the 90% confidence intervals with shaded areas. All the visualizations are presented in Appendix E.

4.1. Main Experimental Results

Quantitative analysis. We first evaluate our NSL-PFN
on the popular benchmark datasets on both image (IC, in
Table 2) and language domain (NLP and Nano, in Table 3).
On both domains, our NSL-PFN consistently outperforms
the baselines in general, achieving the best RMSLE and
LL on average (on the rightmost column for each table).
Whereas NSL-PFN significantly performs better than the
baselines on almost all the cases, it performs slightly worse
than MCMC (M4) andM4 on NMT and LM, respectively.
We conjecture that this is because the scaling laws on those
cases are rather too simple (see Fig. 12 and Fig. 13 for
the visualization) such that considering complicated cases
such as double descent in our prior design may act as a
distractor and thus lead to worse predictive performance.
Except for such few cases, overall, the results clearly show
the superiority of our NSL-PFN in terms of both predictive
accuracy and the quality of uncertainty. We also test NSL-
PFN on the recently released huge dataset called ColPret,

and the DD dataset in Table 4. The results clearly show
that our NSL-PFN performs better than all the baselines
in terms of both metrics, especially more significantly on
DD, demonstrating the strong ability of NSL-PFN to predict
complex scaling behaviors in a reliable manner.

Effect of context set size. In Fig. 3, we further test the
robustness in prediction against varying context set size,
i.e., the number of observations in each curve, or the cut-
off. We consider only the Bayesian methods since it is
Bayesian that aims to make models more robust against
fewer observations, such as how well the predictive uncer-
tainty (coming from the limited observations) covers the
unseen target points. We thus use LL to evaluate both the
predictive accuracy and quality of uncertainty at the same
time. We can see that our NSL-PFN shows higher LL on all
the datasets and various cutoff percentages, clearly showing
its robustness in prediction over the varying sizes of context
sets. The gap is especially prominent on DD as expected,
primarily because our functional prior already covers di-

7



Bayesian Neural Scaling Law Extrapolation with Prior-Data Fitted Networks

MCMC ( 1) MCMC ( 2) MCMC ( 3) MCMC ( 4) MCMC (BNSL) NSL-PFN (ours)

4 5 6 7 8 9
# Observations

-10

-5

0

5

Av
g.

 L
og

-L
ike

lih
oo

d

IC

4 5 6 7 8 9
# Observations

-3
-2
-1
0
1
2
3
4 NLP

4 5 6 7 8 9
# Observations

-10
-8
-6
-4
-2
0
2
4 ColPret

4 5 6 7 8 9
# Observations

-12
-10

-7
-5
-2
0
2

DD

Figure 5: Results of Bayesian active learning experiments.

verse forms of double descent behavior with varying cutoffs,
with the resultant posterior predictive distribution (PPD)
being more robust against such variation and data scarcity.

Qualitative analysis. In Fig. 4, we visualize the extrapo-
lation on DD to better understand how each model actually
predicts with varying cutoffs. MCMC (M4) struggles when-
ever the context part includes the upward segment (e.g., the
upper row), because its base function familyM4 cannot ex-
press such non-monotonic behavior by definition. MCMC
(BNSL) is able to express such upward trends but strug-
gles to generalize whenever the last segment of the context
part is increasing, predicting that the curve will increase
indefinitely (e.g., the last two panels). On the other hand,
NSL-PFN shows reasonable predictions even in such cases,
predicting that the curve will eventually decrease at some
uncertain future points, as intended. The leftmost panel
can be seen as the only failure case. As explained in §3.1,
we consider such a case as inherently difficult to correctly
predict, assuming that there is no way to infer from the
single decreasing segment that the curve will go upward.
Lastly, LC-PFN shows suboptimal performance than NSL-
PFN because its functional prior is unaware of such complex
behavior. See Appendix E for other visualizations on DD.

4.2. Bayesian Active Learning

Considering that scaling curves are often collected from
training large neural networks with huge amounts of data,
collecting each observation point can be very costly. There-
fore, we must carefully decide where to observe to minimize
the cost, especially in real-world scenarios involving im-
portant decision-making problems such as how much cost
should be spent to achieve the desired performance. We
frame this as a Bayesian active learning (BAL; Houlsby
et al., 2011; Gal et al., 2017) problem—incrementally ob-
serving the unseen point that is expected to maximize the
average likelihood on all the other unseen points, based on
the uncertainty information provided by the given model.

In this experiment, starting from four observations, we iter-
atively select the next unseen point with a specific criterion.
We use variation ratio, i.e., maxx[1−maxy q(y|x, C)] (Free-
man, 1965) as our acquisition function, which prioritizes
the unseen area where the given model is least confident.
For NSL-PFN, we use the model trained to predict interpo-

Table 5: Ablation study on the prior distribution.

Prior Break Up IC NLP, Nano ColPret DD
RMSLE LL RMSLE LL RMSLE LL RMSLE LL

M3 ✗ ✗ 0.064 2.54 0.026 1.57 0.035 1.94 0.131 -1.71
M4 ✗ ✗ 0.050 2.90 0.027 2.83 0.075 2.24 0.058 2.01

M3,4
✗ ✗ 0.038 2.90 0.015 2.92 0.032 2.23 0.071 1.20
✓ ✗ 0.032 3.24 0.015 2.82 0.027 2.74 0.051 2.12

M3,4 ✓ ✓ 0.028 3.33 0.019 2.77 0.027 2.79 0.033 2.57

Table 6: Ablation study on the context regression loss.

Context loss IC NLP, Nano ColPret DD
RMSLE LL RMSLE LL RMSLE LL RMSLE LL

✗ 0.0309 3.236 0.0205 2.630 0.0263 2.769 0.0322 2.377
✓ 0.0280 3.330 0.0194 2.773 0.0271 2.794 0.0335 2.565

lations between context points, as explained in §3.2. Note
that LC-PFN cannot be used in this experiment since it is
not learned to interpolate within each curve.

Fig. 5 shows the results on all the datasets except for Nano,
since each curve in Nano contains only 7 points in total,
which is too few for conducting this experiment. We can
see that the overall performance of NSL-PFN is much better
than the baselines, and also consistently improves as more
observations are collected. The results clearly demonstrate
the superiority of our model in terms of the quality of un-
certainty, positioning NSL-PFN as a valuable tool that can
help make many important decisions in the real world.

4.3. Other Analysis

Ablation study. We validate criteria used for defining our
functional prior explained in §3.1. In Table 5, we see that us-
ing bothM3 andM4 is better than using only one of them
in general (1st and 2nd row vs. 3rd row). The assumption
of random breaks also improves the performance (3rd vs.
4th row). Lastly, including the upward trend improves the
performance slightly on IC and ColPret, largely on DD as
expected, but not on NLP and Nano (4th vs. last row). This
is because, as mentioned in §4.1, the scaling laws in the
NLP dataset are too simple and do not require training with
such unexpected behavior. We further examine in Table 6
the effectiveness of the context regression loss in Eq. (10).
In general, including it improves both metrics, except for a
slight decrease of RMSLE on the ColPret and DD datasets.

Efficiency. We highlight the efficiency of amortized in-
ference compared to non-amortized baselines such as point
estimation and MCMC. As shown in Table 7, the inference
time for both point estimation and MCMC are significantly
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Table 7: Avg. inference time (s) per curve (nsamples=150).
M4 BNSL MCMC (M4) MCMC (BNSL) LC-PFN NSL-PFN (ours)

15.65 98.79 154.64 280.55 0.02 0.02

150 300 750 1500 3000
# MCMC samples

1.0

1.5

2.0

2.5

Av
g.

 L
og

-li
ke

lih
oo

d

Log-likelihood vs. # MCMC samples

102 103

Inference Time (seconds)

1.0

1.5

2.0

2.5

Av
g.

 L
og

-li
ke

lih
oo

d

Log-likelihood vs. Inference Time

MCMC ( 1)
MCMC ( 2)

MCMC ( 3)
MCMC ( 4)

MCMC (BNSL)
LC-PFN

NSL-PFN (ours)

Figure 6: MCMC with an increased number of samples
(nsamples). Convergence failures were observed for some
MCMC (BNSL) runs, and these runs are excluded.

higher than those of amortized approaches like LC-PFN and
our NSL-PFN. This efficiency arises because, once meta-
trained, PFN-based methods require only a single forward
pass per curve to make a prediction. BNSL and its MCMC
variant are particularly slow due to an additional validation
process for selecting the number of breakpoints.

Furthermore, we investigate the effect of increasing the
number of MCMC samples (nsamples = 300, 750, 1500,
3000) on performance. As illustrated in Fig. 6, these exper-
iments show that increasing the number of samples yields
only marginal performance gains, which are not commen-
surate with the additional computational cost. In fact, for
MCMC (M1) and MCMC (BNSL), performance slightly
degrades with longer sampling chains. Crucially, all base-
lines still underperform compared to NSL-PFN, showing
both its effectiveness and efficiency.

BLR and DKGP. Beyond MCMC-based approaches, we
also explore other Bayesian inference baselines for exten-
sive comparison. Specifically, we include Bayesian Linear
Regression (BLR; Bishop, 2006) with neural network (NN)
basis functions and Deep Kernel Gaussian Process (DKGP;
Wilson et al., 2016). For BLR with NN, parameters of
the neural network serving as basis functions, along with
other model parameters, are tuned by maximizing the log
marginal likelihood. While these methods—BLR with ap-
propriate basis functions offering interpretability and DKGP
providing flexible non-parametric modeling—are standard
for 1D regression, they often encounter difficulties in ef-
fectively capturing the distinct inductive biases inherent in
neural scaling laws, as demonstrated in Table 8. This chal-
lenge in embedding specific prior knowledge about scaling
behaviors into their respective basis or kernel functions can
render them less competitive for extrapolating neural scal-
ing laws when compared to models explicitly designed for
this task. Further details regarding the implementation of
BLR and DKGP, as well as a discussion of other BLR vari-
ants utilizing polynomial, RBF, Fourier, sigmoid, and spline

Table 8: Results of BLR and DKGP. ‡ indicates that some
RMSLEs could not be calculated due to negative y-values.

Method IC NLP, Nano ColPret DD
RMSLE LL RMSLE LL RMSLE LL RMSLE LL

BLR (with NN) 0.307 -0.38 0.074 -3.08 0.507 -2.73 0.603 -95.97
DKGP 0.197‡ -1.86 0.067 0.62 0.101‡ 0.10 0.143 -3.29

NSL-PFN (ours) 0.028 3.33 0.019 2.77 0.027 2.79 0.033 2.57

Table 9: Results of calibration using MSCE (↓).
Method IC NLP, Nano ColPret DD

MCMC (M1) 0.1422±0.1365 0.2328±0.0239 0.1349±0.0035 0.1676±0.0315

MCMC (M2) 0.0912±0.0046 0.1922±0.0076 0.1096±0.0047 0.2394±0.0289

MCMC (M3) 0.0538±0.0624 0.2048±0.0070 0.1010±0.0006 0.2641±0.0171

MCMC (M4) 0.0381±0.0534 0.1630±0.0072 0.1169±0.0057 0.1943±0.0078

MCMC (BNSL) 0.0773±0.0016 0.1238±0.0048 0.0994±0.0056 0.2072±0.0094

LC-PFN 0.1809 0.2674 0.1071 0.1500
NSL-PFN (ours) 0.0512±0.0014 0.1145±0.0271 0.0615±0.0053 0.0826±0.0012

bases, are available in Appendix C.

Calibration. To additionally assess the quality of predic-
tive uncertainties, we incorporate the mean square calibra-
tion error (MSCE; Kuleshov et al., 2018), i.e., 1

J

∑J
j=1 wj ·

(pj − p̂j)
2, where m is the number of bins, pj represents

the predicted confidence level, p̂j is the empirical frequency
of the true outcome falling within that confidence level, and
wj are weights (typically set to 1). This metric evaluates
how well the predicted confidence levels align with the ac-
tual observed frequencies. As shown in Table 9, NSL-PFN
demonstrates notably better calibration performance than
baseline models, particularly on ColPret and DD. These
results show the robustness of NSL-PFN in handling realis-
tic scaling behaviors and the importance of well-calibrated
uncertainty for reliable extrapolation in such regimes.

Prior hyperparameter tuning. For our prior design, we
manually adjust the parameters of our functional prior to
visually match the shapes of the actual curves collected
from various domains. To assess whether NSL-PFN can
further improve prior hyperparameter tuning, we performed
Bayesian optimization on the prior parameters (e.g., a, b, d
for M3 and a, b, α for M4). The optimization process
successfully identified configurations that yielded slight per-
formance improvements over our default settings with just
60 BO steps. See Appendix D for details.

5. Conclusion
In this work, we introduced a Bayesian approach using Prior-
data Fitted Networks (PFNs) to improve neural scaling law
extrapolation, addressing limitations of traditional point es-
timation by incorporating uncertainty quantification. By de-
signing a prior distribution that enables PFNs to meta-learn
through synthetic functions resembling real-world scaling
laws, our method effectively extrapolates scaling behavior
in diverse scenarios. Evaluation on real-world scaling laws
shows superior performance, particularly in data-limited
settings like Bayesian active learning, demonstrating its use-
fulness for practical and uncertainty-sensitive applications.
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A. More Discussion on Related Work
Neural scaling laws There are many observations that neural scaling laws are empirically predictable (Hestness et al.,
2017; Johnson et al., 2018; Rosenfeld et al., 2019; Kaplan et al., 2020; Rosenfeld, 2021; Ghorbani et al., 2021; Bansal
et al., 2022; Hoffmann et al., 2022; Chung et al., 2024), just to name a few. We only discuss recent studies that have
explored parameterizations for neural scaling law extrapolation. The simplest modelM1 assumes a power law function
(e.g., y = ax−b) throughout the domain of interest x (e.g., data, model size, or training time), where it has been used in
various domains, such as healthcase (Cho et al., 2015), neural machine translation (NMT; Gordon et al., 2021), and language
models (Kaplan et al., 2020), among others (Hestness et al., 2017; Johnson et al., 2018; Sharma & Kaplan, 2022). The
most widely used model in the literature isM2, which adds a bias term to the power law function, to capture saturating
performance for large x (Mukherjee et al., 2003; Figueroa et al., 2012; Domhan et al., 2015; Hestness et al., 2017; Johnson
et al., 2018; Rosenfeld et al., 2019; Abnar et al., 2021; Gordon et al., 2021; Rosenfeld, 2021). A different parameterization
M3 has been recently used in NMT (Bansal et al., 2022) to guarantee that the power law function converges to a finite
constant when the domain of interest approaches to infinity. Alabdulmohsin et al. (2022) have proposedM4 to handle
non-power law behaviour in partial scaling law. More recently, Caballero et al. (2022) have proposed broken neural scaling
law (BNSL) by assuming that real-world neural scaling laws have different power law for each segment (Nakkiran et al.,
2021).

Prior-data Fitted Networks (PFNs) In-Context Learning (ICL) represents a paradigm shift from traditional learning
approaches by enabling rapid adaptation to new tasks and data without extensive retraining, through conditioning on input
prompts or context (Dong et al., 2022). The rise of ICL parallels the development of Transformer-based architectures,
particularly large language models (LLMs; Radford et al., 2019; Brown, 2020; Achiam et al., 2023; Touvron et al., 2023a;b;
Dubey et al., 2024). Prior-data Fitted Networks (PFNs) are Transformer models designed for in-context Bayesian prediction,
facilitating efficient inference in a single forward pass without extensive retraining or hyperparameter tuning. PFNs have
demonstrated effectiveness in various applications, such as Bayesian learning curve extrapolation (Adriaensen et al., 2023),
in-context tabular classification (Hollmann et al., 2022), black-box hyperparameter optimization (HPO; Müller et al., 2023),
freeze-thaw Bayesian optimization (Rakotoarison et al., 2024), and time-series forecasting (Dooley et al., 2024; Verdenius
et al., 2024). Building upon this foundation, our work applies PFNs to infer neural scaling laws.

Learning curve extrapolation Learning curves have long been an active area of research, as surveyed by Mohr & van
Rijn (2022). Early works (Cortes et al., 1993; Frey & Fisher, 1999; Kolachina et al., 2012) primarily modeled learning
curves (LCs) based on dataset size, providing “point estimates” of performance without a probabilistic nature, let alone a
Bayesian framework for uncertainty quantification. Additionally, these models often do not address deep neural network
(DNN) training, where the x-axis typically represents training time, measured in parameter updates or epochs. Non-Bayesian
probabilistic models for DNN training curves were later explored (Chandrashekaran & Lane, 2017; Gargiani et al., 2019). In
contrast, the first Bayesian approach for DNN training curve extrapolation was introduced by Domhan et al. (2015) using
Markov Chain Monte Carlo (MCMC) methods. More recently, Adriaensen et al. (2023) introduced a method employing
Prior-data Fitted Networks (PFNs) to predict LCs based on training time. While this method bears a resemblance to our
approach, it is constrained in its applicability to certain scaling behaviors, such as power-law scaling and double descent,
seen when the x-axis reflects model scale or dataset size. Furthermore, it lacks the flexibility to model variable scaling
behaviors across different regions of the x-axis, motivating our development of a tailored prior capable of accommodating
multiple breaks and facilitating Bayesian inference with user-defined configurations. Moreover, while extrapolation has
been investigated in AutoML contexts (Swersky et al., 2014; Klein et al., 2022; Wistuba et al., 2022; Kadra et al., 2023;
Rakotoarison et al., 2024; Lee et al., 2024), and future applications of our work may include enabling AutoML for large-scale
deep learning, we currently prioritize the enhancement of neural scaling law extrapolation via Bayesian methods, rather than
fully automating scaling up the hyperparameter optimization process.

B. Datasets
IC. We use the scaling laws benchmark (Alabdulmohsin et al., 2022), which covers various scaling laws in both vision
and NLP domains. In the vision domain of the benchmark, the downstream evaluation focuses on 5-shot, 10-shot, and
25-shot image classification (IC) tasks. It includes two sizes of big-transfer residual neural networks (BiT; Kolesnikov
et al., 2020), MLP mixers (MiX; Tolstikhin et al., 2021), and vision transformers (ViT; Alexey, 2020). These models are
pretrained on the JFT-300M (Sun et al., 2017) dataset and tested on downstream tasks: ImageNet (Russakovsky et al.,
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2015), CIFAR-100 (Krizhevsky et al., 2009), Birds (Welinder et al., 2010), and Caltech101 (Fei-Fei et al., 2004). For each
downstream task, the benchmark provides 18 scaling law variations (2 model sizes × 3 model types × 3 few-shot settings),
resulting in a total of 72 scaling laws. The x-axis of the scaling law corresponds to the number of examples used for training,
while the y-axis represents the error rate in image classification.

NLP. In the NLP domain of the benchmark, scaling laws are provided for downstream tasks including neural machine
translation (NMT), language modeling (LM), and Big-Bench (BB; bench authors, 2023). For the NMT task, scaling laws
are derived from five encoder-decoder configuration combinations trained following the methodology outlined in (Bansal
et al., 2022). In this case, the x-axis represents the number of observed examples, while the y-axis corresponds to the log
perplexity. For the LM task, the performance of LaMDA architecture (Thoppilan et al., 2022) is evaluated on next-token
prediction. Scaling laws are provided for five different parameter sizes, with the x-axis indicating the number of observed
examples and the y-axis showing the validation loss, rescaled to the range [0, 1]. For the BB task, the one-shot and two-shot
performance of a 262M-parameter decoder-only transformer is assessed across five sub-tasks from (bench authors, 2023).
The x-axis denotes the number of observed examples, while the y-axis reports task-specific metrics such as multiple choice
grad or exact string match.

Nano. In addition to the scaling law benchmark, we incorporate data from nanoGPT-Bench and double descent (Nakkiran
et al., 2021) to enhance the analysis of scaling behavior in the NLP domain, focusing on factors beyond the number
of observed examples. nanoGPT-Bench (Nano) is a benchmark introduced in (Kadra et al., 2023), which evaluates the
performance of nanoGPT trained on the OpenWebText dataset (Gokaslan et al., 2019) using 12 different hyperparameter
configurations. Both the final and best performance are reported, resulting in a total of 24 scaling laws. In this benchmark,
the x-axis corresponds to the model embedding size, while the y-axis represents either the final or best validation loss.

ColPret. Furthermore, we include the latest large dataset (ColPret; Choshen et al., 2024). The dataset aggregates scaling
law data from many language models where the largest model is over 3 billion parameters and provides over 1000 estimated
scaling laws. It consists of 485 LLMs, including GPT-3 (Brown, 2020), Mamba (Gu & Dao, 2023), Llama (Touvron et al.,
2023b), etc., and covers more than 40 distinct model families. They report the number of epochs and computational cost
(FLOPs) additionally, but we focus on the number of seen tokens, leading to 591 scaling laws. We filter scaling laws based
on their length, keeping only those between 10 and 1000, resulting in 194 scaling laws. Additionally, we further exclude two
scaling laws: pythia-19m-deduped due to excessive noise and rpj-d=1024 l=24 h=8-0.25 because its loss saturates. Since
we remove two more scaling laws, the final dataset consists of 192 scaling laws. The x-axis in this dataset represents the
number of seen tokens, while the y-axis corresponds to either the loss or perplexity.

DD. The study by Nakkiran et al. (2021) introduces scaling laws that exhibit a double descent pattern, challenging the
conventional assumption of unidirectional performance trends. The researchers trained and evaluated CNNs, ResNets,
and Transformers on datasets such as CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), IWSLT’14 de-en (Cettolo et al.,
2012), and WMT’14 en-fr (Bojar et al., 2014), exploring various combinations of optimizer settings, augmentations, and
noise levels. In this work, we incorporate 16 publicly available scaling laws from (Nakkiran et al., 2021) that illustrate
double descent behavior (DD). In these scaling laws, the x-axis represents either the model embedding size or the number of
observed examples, while the y-axis reflects the test error or cross-entropy test loss.

C. Implementation Details
M1−4. For experiments involvingM1−4, we refer to the codebase provided by Alabdulmohsin et al. (2022)2. We fit
M1−4 directly to the original scaling laws without normalization.

2The implementation for M1− 4 is available at: https://github.com/google-research/google-research/
tree/master/revisiting_neural_scaling_laws.
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Broken Neural Scaling Laws (BNSL). We obtained the code from the BNSL (Caballero et al., 2022) authors. The
implementation of the code has minor adjustments to ensure stable and efficient training, as detailed below:

BNSL: y = exp

(
log
(
efbnsl(x̃) + ea

)
+ ymean

)
,

where fbnsl(x̃) = W3 ·
(
W2 · softplus(W1x̃+ b1) + b2

)
+ b3,

x̃ =
log(x)− µx

σx
,

µx = mean(log(xtrain)), σx = std(log(xtrain)). (11)

The provided code lacked information on determining the number of breaks, deciding whether to crop or selecting cropping
points. Despite our follow-up requests for clarification, we did not receive a response. Consequently, we designed and tested
various scenarios based on the descriptions in the paper.

To determine the optimal number of breaks, we validate using either the last 10% or the final point of the context, selecting
the number of breaks that produced the best performance. When the optimal number of breaks is greater than zero, we
further explore cropping. Specifically, we identify five evenly spaced points within the context as potential crop locations
and apply the crop that yielded the best validation performance. We then apply the crop that yields the best validation
performance to our inference process as well.

Table 10: BNSL RMSLE across implementations. † indicates that some trials failed, and these values were excluded.

Validation split Crop IC NLP, Nano DD

Last 10% ✗ 0.0406 0.0223 0.0468
Final point ✗ 0.0432 0.0186† 0.0379
Last 10% ✓ 0.0576 0.0231 0.0477

Final point ✓ 0.0571 0.0228† 0.0987

We summarize the results of four experiments in Table 10, each with variations in the validation set configuration and
cropping application. Similar toM1−4, no normalization is applied during the training of BNSL. Due to the large size of
ColPret, we focus on IC, NLP, and DD. While the combination of validation using the final point and no cropping yielded
the best performance in the NLP and DD tasks, some predictions in the NLP task failed. Consequently, in the main text, we
report results based on validation using the last 10% of the context without cropping.

Table 11: MCMC prior distribution.

Name Function Prior

M1 y = ax−b a ∼ U(−1, 0.5) log b ∼ N (−2, 1)
M2 y = ax−b + c a ∼ U(0, 1.5) log b ∼ N (−2, 1) c ∼ U(0, 1)
M3 y = a(x−1 + d)b a ∼ U(0, 1) log b ∼ N (−2, 1) log d ∼ U(0, 1)

M4 x = g(y) =
(

y
a(1−y)α

)− 1
b

log a ∼ U(1, 1000) log b ∼ N (−1, 1) logα ∼ N (0, 1)

BNSL y = exp
(
log
(
efbnsl(x̃) + ea

)
+ ymean

)
,

where fbnsl(x̃) = W3 · (W2 · softplus(W1x̃+ b1) + b2) + b3
a ∼ N (0, 5) W ∼ N (0, 5) b ∼ N (0, 5)

Markov Chain Monte Carlo (MCMC). We implement MCMC using EMCEE (Foreman-Mackey et al., 2013). The
parameters for EMCEE are configured as follows: the number of walkers in the ensemble (nwalkers) is set to 30, the
number of samples (nsamples) is set to 150 (except for Fig. 6), the part of the chain omitted to account for mixing
(burn in) is set to 50, and the sub-sampling frequency (thin) is set to 1. Appropriate prior ranges are defined for each
functional form, as detailed in Table 11. The number of breaks for MCMC (BNSL) is determined through validation,
following the same approach as used for point estimation.

During MCMC training, the x-values are normalized by dividing them by their maximum value, scaling the maximum to 1.
However, for MCMC (M4), where smaller x-values frequently lead to failures, the x-values are instead normalized to a
maximum of 1000. For the DD and Nano datasets, the y-values are normalized by dividing them by the maximum context
value.

16



Bayesian Neural Scaling Law Extrapolation with Prior-Data Fitted Networks

Table 12: BLR performance with non-NN basis functions

Basis IC AVG NLP AVG ColPret DD
RMSLE (↓) LL (↑) RMSLE (↓) LL (↑) RMSLE (↓) LL (↑) RMSLE (↓) LL (↑)

Polynomial 3.979 -6.71 1.311 -57.65 2.573 -174.43 2.420 -408.05
RBF 2.118 -34.82 0.253 -38.54 0.633 -34.82 1.085 -11.68

Fourier 1.362 -56.52 0.283 -160.41 0.529 -52.46 1.801 -34.99
Sigmoid 8.819 -3.37 0.187 -70.81 1.324 -4.54 1.419 -6.51
Spline 0.551 -48.56 0.159 -53.09 0.241 -64.49 0.238 -69.89

Bayesian Linear Regression (BLR) and Deep Kernel Gaussian Process (DKGP). We conducted additional experiments
with the following baselines: BLR (Bishop, 2006) with neural network basis functions, BLR with polynomial basis functions,
BLR with RBF basis functions, BLR with Fourier basis functions, BLR with sigmoid basis functions, BLR with spline
basis functions, and DKGP (Wilson et al., 2016). Hyperparameters, including those of the neural network used as the
basis function for BLR, are tuned via marginal log-likelihood. We implement BLR using BayesianRidge and DKGP
using GPyTorch. The feature dimension is fixed to 5 for all additional baselines, and all target values y are scaled using
RobustScaler, fitted on the context points (∀y ∈ C). The neural networks used for BLR with neural network basis
functions and DKGP are trained for 1000 full-batch epochs using the Adam optimizer (Kingma, 2014) with a learning rate
of 0.01. As shown in Table 12, BLR models with predefined basis functions exhibit significant performance degradation.

LC-PFN For our experiments, we utilize the LC-PFN as described in Adriaensen et al. (2023)3. Since the range of x for
the prior was sampled from [0, 100] during LC-PFN training, we normalize x-values to the same range during inference.
LC-PFN includes its own normalization method for y-values, enabling it to predict learning curves across various ranges
and directions. However, when evaluating LC-PFN on scaling laws, we found that its normalization method failed for
certain scaling laws in the LM task. To address this, we apply the NSL-PFN normalization method, followed by a horizontal
flip, i.e., y ← 1 − y. This adjustment reduced the RMSLE for the LM task from 0.5254 to 0.1151. We report LC-PFN
performance using this updated methodology.

NSL-PFN We employ a Transformer (Vaswani, 2017), representing each context pair (x, y) and the target x as individual
tokens while excluding positional encoding. These tokens are encoded with a simple linear layer. The target tokens are
assumed to be conditionally independent of each other, i.e., we apply masking to the attention matrix so that each token only
attends to the context tokens.

Following Müller et al. (2021), we discretize the output distribution into a finite number of bins. The size (width) of each
bin is set so that, under the prior, has an equal probability of falling in each bin. The number of bins is set to 1,000. For
RMSLE, we use the median of output distribution.

NSL-PFN inherits the hyperparameters of architecture from PFNs, such as the number of layers (nlayers=12), number of
heads (nheads=4), and the size of each hidden layer (nhidden=512). We train NSL-PFN on 1.6M scaling laws sampled
from the prior for 100K iterations, i.e., mini-batch size is set to 16, with Adam optimizer (Kingma, 2014). The learning rate
is set to 0.00002 with cosine annealing, and the warm-up phase spans the first 25K iterations. To determine the size of D
(i.e., M +N ), we uniformly sample from the log space within the range [50, 500]. The training time is roughly 2.6 hours on
NVIDIA A100-SXM4-80GB.

Since NSL-PFN is trained with priors input ranges of [0.01, 1] for x and [0, 1] for y, we preprocess the evaluation data
accordingly. Specifically, we normalize x-values to [0.01, 1]. For y-values, no additional preprocessing is required for the
scaling laws benchmark datasets (IC, NMT, LM, and BB), as they are already scaled to [0, 1]. However, for the Nano and
DD datasets, where y-values exceed 1, we normalize all y-values by dividing them by the largest value in their respective
contexts. This ensures that the context part is normalized to the [0, 1] range, although values in the target part may still
exceed 1.

3The LC-PFN implementation is available at: https://github.com/automl/lcpfn.
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D. Hyperparameter Tuning for Prior Distributions

Table 13: Hyperparameter search space for Bayesian optimization. For each “Log-Parameter” of a given “Model” (e.g., log a
forM3), its normal prior distribution N (µ, σ2) was refined. This was done by optimizing the “Prior Statistic”—specifically
the prior’s mean (µ) or standard deviation (σ). The “Search Range” column defines the optimization bounds for these
statistics. Default prior values are in Table 1.

Model Log-Parameter Prior Statistic Search Range

M3

log a
Mean (µ) Real(-2.0, 0.0)
Std. Dev. (σ) Real(0.1, 1.5)

log(−b) Mean (µ) Real(-3.0, -1.0)
Std. Dev. (σ) Real(0.1, 1.5)

log d
Mean (µ) Real(-0.5, 0.5)
Std. Dev. (σ) Real(0.1, 1.5)

M4

log a
Mean (µ) Real(-0.5, 0.5)
Std. Dev. (σ) Real(0.1, 1.5)

log(−b) Mean (µ) Real(-2.0, 0.0)
Std. Dev. (σ) Real(0.1, 1.5)

logα
Mean (µ) Real(-0.5, 0.5)
Std. Dev. (σ) Real(0.1, 1.5)
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Figure 7: Results of Bayesian Optimization for prior distribution hyperparameters over 60 trials. Top: RMSLE per trial,
with the default RMSLE shown as a dashed red line and the best trial highlighted. Bottom: Cumulative best RMSLE found
over trials, compared against the default RMSLE.

Our proposed methodology utilizes several functional forms (e.g.,M3,M4) for modeling scaling law segments. The prior
distributions for the parameters of these functions are detailed in the main text in Table 1. We conduct a simple Bayesian
optimization (BO) on the prior parameters to minimize the average RMSLE over 60 BO steps. The HPO targeted the
location (mean) and scale (standard deviation) parameters of the Normal prior distributions for the logarithmic parameters
ofM3 andM4. The specific search ranges for these hyperparameters are detailed in Table 13. The results of the Bayesian
Optimization are illustrated in Fig. 7. The BO process successfully identified prior parameter configurations that yielded
slight improvements in performance over our default settings. This outcome suggests that our initial procedure for selecting
prior parameters was not overly aggressive and that there remains some scope for further marginal enhancements through
systematic optimization of these prior hyperparameters.

E. Visualization
From the next page, we present additional extrapolation visualizations.
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Figure 8: Visualization of extrapolation results on ImageNet.
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Figure 9: Visualization of extrapolation results on CIFAR-100.
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Figure 10: Visualization of extrapolation results on Birds 200.
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Figure 11: Visualization of extrapolation results on Caltech101.
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Figure 12: Visualization of extrapolation results on neural machine translation (NMT).
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Figure 13: Visualization of extrapolation results on language modeling (LM).
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Figure 14: Visualization of extrapolation results on Big-Bench (BB).
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Figure 15: Visualization of extrapolation results on NanoGPT-Bench (Nano).
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Figure 16: Visualization of extrapolation results on double descent (DD; Nakkiran et al., 2021), Part 1 of 8.
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Figure 17: Visualization of extrapolation results on double descent (DD; Nakkiran et al., 2021), Part 2 of 8.
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Figure 18: Visualization of extrapolation results on double descent (DD; Nakkiran et al., 2021), Part 3 of 8.
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Figure 19: Visualization of extrapolation results on double descent (DD; Nakkiran et al., 2021), Part 4 of 8.
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Figure 20: Visualization of extrapolation results on double descent (DD; Nakkiran et al., 2021), Part 5 of 8.
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Figure 21: Visualization of extrapolation results on double descent (DD; Nakkiran et al., 2021), Part 6 of 8.
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Figure 22: Visualization of extrapolation results on double descent (DD; Nakkiran et al., 2021), Part 7 of 8.
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Figure 23: Visualization of extrapolation results on double descent (DD; Nakkiran et al., 2021), Part 8 of 8.
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