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ABSTRACT

In recent years, pre-training Graph Neural Networks (GNNs) through self-
supervised learning on unlabeled graph data has emerged as a widely adopted
paradigm in graph learning. Although the paradigm is effective for pre-training
powerful GNN models, the objective gap often exists between pre-training and
downstream tasks. To bridge this gap, graph prompting adapts pre-trained GNN
models to specific downstream tasks with extra learnable prompts while keeping
the pre-trained GNN models frozen. As recent graph prompting methods largely
focus on enhancing model utility on downstream tasks, they often overlook fair-
ness concerns when designing prompts for adaptation. In fact, pre-trained GNN
models will produce discriminative node representations across demographic sub-
groups, as downstream graph data inherently contains biases in both node at-
tributes and graph structures. To address this issue, we propose an Adaptive
Dual Prompting (ADPrompt) framework that enhances fairness for adapting pre-
trained GNN models to downstream tasks. To mitigate attribute bias, we de-
sign an Adaptive Feature Rectification module that learns customized attribute
prompts to suppress sensitive information at the input layer, reducing bias at the
source. Afterward, we propose an Adaptive Message Calibration module that
generates structure prompts at each layer, which adjust the message from neigh-
boring nodes to enable dynamic and soft calibration of the information flow.
Finally, ADPrompt jointly optimizes the two prompting modules to adapt the
pre-trained GNN while enhancing fairness. We conduct extensive experiments
on four datasets with four pre-training strategies to evaluate the performance
of ADPrompt. The results demonstrate that our proposed ADPrompt outper-
forms seven baseline methods on node classification tasks. Our code is available
at:https://anonymous.4open.science/r/ADPrompt-18178.

1 INTRODUCTION

Graphs are ubiquitous in various real-world scenarios across diverse domains, including bioin-
formatics (Chatzianastasis et al., 2023), healthcare systems (Jiang et al., 2024), and fraud de-
tection (Huang et al., 2022). Within the landscape of graph learning, Graph Neural Networks
(GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017a; Veličković et al., 2018a; Xu et al., 2019;
Chen et al., 2020a; Rossi et al., 2020) are a preeminent paradigm, widely recognized for their re-
markable capability to learn graph representations. In particular, GNN models leverage a message-
passing mechanism (Kipf & Welling, 2017), wherein each node recursively aggregates information
from its neighbors to obtain its node embedding. Traditionally, GNN models are optimized in an
end-to-end manner for designated downstream tasks. However, this training paradigm critically de-
pends on the availability of substantial labeled graph data, which is often limited in practical scenar-
ios. Moreover, task-specific training often produces GNNs with limited generalization, restricting
their applicability to other tasks.

To address the above issues, extensive research efforts have been devoted to developing effective
graph pre-training strategies that leverage self-supervised learning to pre-train GNN models on un-
labeled graph data (Veličković et al., 2019; Hu et al., 2020; You et al., 2020). When transferring
pre-trained GNN models to specific downstream tasks, a primary challenge lies in the gap between
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(a) Disparity in Label Distribution Across Attributes (German Dataset)
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Figure 1: (a) Attribute bias: In the German credit dataset, the distribution of labels varies across
node attributes under different gender groups. (b) Structural bias: Across the three datasets, the dis-
tribution of sensitive attributes among node neighbors varies significantly across different sensitive
groups, as defined in Table 2, indicating structural disparity.

the objectives of the pre-training and downstream tasks, e.g., link prediction during pre-training
versus node classification in downstream tasks (Sun et al., 2022). Inspired by recent advances in
prompting within computer vision and natural language processing (Jia et al., 2022; Zhou et al.,
2022; Khattak et al., 2023; Yoo et al., 2023), graph prompting seeks to bridge this gap by adapting
pre-trained GNN models for downstream tasks using additional tunable graph prompts (Sun et al.,
2023b). In contrast to fine-tuning approaches that update the parameters of pre-trained GNN mod-
els for downstream tasks (Zhili et al., 2024; Sun et al., 2024; Huang et al., 2024), graph prompting
modifies the input graph or its representations via learned prompts, while keeping the pre-trained
model parameters fixed.

Although graph prompting effectively facilitates the adaptation of pre-trained GNN models to down-
stream tasks (Sun et al., 2022; Liu et al., 2023a; Fang et al., 2023; Yu et al., 2024b; Duan et al., 2024;
Gong et al., 2024; Yu et al., 2024a; Li et al., 2025), existing graph prompting studies primarily fo-
cus on enhancing model utility (e.g., node classification accuracy), with limited attention to fairness
concerns. These methods often overlook the potential for biased performance across demographic
subgroups, such as gender and race. Beyond the inherent biases in pre-trained GNN models caused
by the pre-training graph data and strategies, simply learning graph prompts on the biased graph
data during adaptation can further exacerbate unfairness on downstream tasks. Unfortunately, such
critical fairness concerns in graph prompting have not been fully explored yet, with only one recent
study (Li et al., 2025) having undertaken a preliminary investigation into this crucial problem.

Debiasing pre-trained GNN models via graph prompting during adaptation is non-trivial due to two
key challenges. The first challenge arises from attribute bias. For example, we can observe from
Figure 1(a) that the distributions of three attributes (i.e., house status, guarantor, and residency du-
ration) are inconsistent across different gender groups in the German credit dataset (Dua & Graff,
2017). In real-world scenarios, recruitment platforms may exhibit attribute bias, where user features
like gender or age affect recommendations, limiting opportunities for some groups. In the graph
data used for downstream tasks, sensitive information (e.g., gender or race information) is often
carried by node attributes, both explicitly and implicitly. Intuitively, graph prompting can modify
the graph data by directly masking these sensitive attributes to suppress their explicit influence on
pre-trained GNN models. However, the remaining attributes can still encode sensitive information
implicitly, thereby undermining efforts to promote fairness. The second challenge lies in structure
bias, where graph connectivity patterns differ across demographic subgroups (Dai & Wang, 2021;
Dong et al., 2022). For instance, in the Pokec n and Pokec z datasets (Figure 1(b)), neighbors’
sensitive attributes vary markedly, with most nodes connected predominantly to same-group neigh-
bors. Such patterns create “echo chambers” that limit exposure to diverse information. Through
message passing, GNNs can further amplify these disparities: nodes with few neighbors receive
limited information, and nodes surrounded by same-group neighbors receive homogeneous signals.
These effects restrict information flow and reinforce biased representations, worsening unfairness
in downstream tasks. As a result, these two challenges pose significant obstacles to achieving fair
adaptation on downstream tasks.

To overcome these challenges, we propose Adaptive Dual Prompting (ADPrompt), a fairness-aware
prompting framework, with soft and dynamic interventions. After pre-training a GNN, ADPrompt
mitigates bias throughout message propagation in three complementary ways: (1) Adaptive Feature
Rectification (AFR) purifies node attributes at the source by identifying and suppressing sensitive
feature dimensions; (2) Adaptive Message Calibration (AMC) dynamically adjusts messages be-
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tween nodes across layers via edge-specific structure prompts; and (3) adversarial training encour-
ages representations invariant to sensitive information. We present theoretical analyses highlighting
that our lightweight prompting framework can both mitigate bias and enhance model adaptation on
downstream tasks. Extensive experiments on four datasets and four pre-training strategies show that
our method consistently outperforms seven baselines. Our contributions are summarized as follows:

• We propose a hierarchical fairness prompting framework spanning the entire information
flow in GNNs, integrating source-level attribute purification with propagation-level mes-
sage calibration. This dual-level design enables dynamic, soft adjustments that minimize
disruption to the original graph structure, effectively mitigating bias while enhancing down-
stream performance.

• We provide detailed methodological descriptions and theoretical analyses of ADPrompt,
clarifying how it mitigates bias in GNNs while improving adaptability to downstream tasks.

• We conduct extensive experiments on multiple datasets under four distinct GNN pre-
training paradigms, and our results consistently show that our method outperforms seven
representative baselines in both performance and fairness.

2 RELATED WORKS

2.1 GRAPH PROMPTING

Graph prompting has emerged as a paradigm to bridge pre-training and downstream tasks in GNNs,
enabling efficient adaptation with minimal parameter updates (Liu et al., 2023b; Sun et al., 2023b;
Dong et al., 2023). For instance, GPF and GPF-plus (Fang et al., 2023) propose a universal
input-space framework that adapts diverse pre-trained GNNs without task-specific prompts. All
in One (Sun et al., 2023a) presents a unified framework with learnable tokens and adaptive struc-
tures for flexible graph-level reformulation. GraphPrompt (Liu et al., 2023a) employs task-specific
prompts to reweight node features during subgraph ReadOut, improving task-aware retrieval from
frozen GNNs. TGPT (Wang et al., 2024) tailors prompts to graph topologies by leveraging graphlets
and frequency embeddings for dynamic feature transformation. While graph prompting methods
have shown promising progress in enhancing model performance and task adaptability, they gener-
ally fail to address the widespread bias inherent in real-world graph data (Dong et al., 2023).

2.2 GROUP FAIRNESS IN GRAPH LEARNING

As GNNs are increasingly applied across diverse domains, enhancing group fairness has become a
critical focus in graph learning (Dai & Wang, 2021; Chen et al., 2024). The survey (Dong et al.,
2023) reviews fairness in graph mining, proposes a taxonomy of fairness notions, and summarizes
existing fairness techniques. FairDrop (Spinelli et al., 2021) proposes a biased edge dropout algo-
rithm to counteract homophily and enhance fairness in graph representation learning. Graph counter-
factual fairness (Ma et al., 2022) addresses biases induced by the sensitive attributes of neighboring
nodes and their causal effects on node features and the graph structure. FPrompt (Li et al., 2025)
enhances fairness in pre-trained GNNs with hybrid prompts that generate counterfactual data and
guide structure-aware aggregation.

3 PRELIMINARIES

3.1 GRAPH NEURAL NETWORKS

Let G = (V, E) denote an attributed graph with node set V = {v1, . . . , vN} and edge set E . Each
node vi has an attribute vector xi ∈ RDx , and N (vi) denotes its neighbors. GNNs learn node
representations via message passing (Kipf & Welling, 2017; Hamilton et al., 2017a; Veličković
et al., 2018a), where each node iteratively aggregates information from its neighbors:

h
(l)
i = AGG(l)

(
h
(l−1)
i , {h(l−1)

j : vj ∈ N (vi)}
)
, (1)

with h
(l)
i ∈ RDl the representation at layer l, initialized by h

(0)
i = xi. The final embedding h

(L)
i is

fed into a predictor π for downstream tasks such as node classification.
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3.2 FAIRNESS METRICS

In this study, we focus on group fairness (Dai & Wang, 2021; Dong et al., 2022), which requires
models to produce non-discriminatory predictions across groups defined by sensitive attributes. Fol-
lowing prior work, we assess fairness using statistical parity (SP) and equal opportunity (EO), based
on the binary label y ∈ 0, 1, sensitive attribute s ∈ 0, 1, and predicted label ŷ ∈ 0, 1. Specifically,
the SP metric ∆SP is defined as

∆SP = |P (ŷ = 1 | s = 1)− P (ŷ = 1 | s = 0)| (2)

and the equal opportunity (EO) metric ∆EO is defined as

∆EO = |P (ŷ = 1 | y = 1, s = 1)− P (ŷ = 1 | y = 1, s = 0)| (3)

For both metrics, a lower value implies better fairness.

3.3 PROBLEM DEFINITION

Based on the above notations, we formulate the problem of fair graph prompting as follows.

Problem 1. Given a graph G = (V, E) and a GNN model θ∗ pre-trained by a pre-training task
TPT , fair graph prompting designs and learns extra tunable prompt vectors to adapt the pre-trained
GNN model on a downstream task TDT without tuning θ∗. The goal of fair graph prompting is to
improve model utility while enhancing model fairness.

4 METHODOLOGY

Existing fairness methods for GNNs often suffer from limited adaptability: some rely on static
augmentation (e.g., injecting fixed counterfactual prototypes), which ignores node-specific charac-
teristics (Ma et al., 2022; Wo et al., 2025), while others adopt hard interventions (e.g., modifying
the graph structure), which may disrupt critical topological information (Li et al., 2025).

To address these limitations, we propose Adaptive Dual Prompting (ADPrompt), a soft and dynamic
intervention strategy that applies fine-grained adjustments to input node features and information
flow while preserving the original graph structure. As illustrated in Figure 2, ADPrompt intervenes
across the entire information flow in GNNs: it first purifies node attributes at the input layer via
adaptive feature rectification, then calibrates message passing dynamically at each layer, and in-
corporates adversarial learning during optimization to enforce invariance to sensitive information.
Details of each component are provided in the following subsections.

𝐱𝒊 Prompted ෤𝐱𝒊

Attribute prompt 𝐦𝒊 Pre-trained GNN model 𝜽Input graph 𝓖 = 𝓥, 𝓔

Tunable Frozen

Attribute 
projector

𝝍

Adaptive Feature Rectification

Prompted ෩𝒉𝒊
𝒍−𝟏

Prompted ෩𝒉𝒋
𝒍−𝟏

Structure 
projector

𝝋
Structure prompt 𝐞𝒊𝒋

𝒍−𝟏

Adaptive Message Calibration

Prompted ෩𝒉𝒊
𝑳

Predictor 𝝅

Adversary 𝝎

Layer 𝒍

ෝ𝒚𝒊

ො𝒔𝒊

𝒚𝒊

𝒔𝒊

𝓛𝑺𝒖𝒑

𝓛𝑨𝒅𝒗

𝓛𝑺𝒖𝒑 − 𝜆𝓛𝑨𝒅𝒗

Prompt Optimization

Figure 2: The framework of ADPrompt.

4.1 ADAPTIVE FEATURE RECTIFICATION

Attribute bias arises from sensitive information (e.g., gender or race) that is explicitly encoded in
certain dimensions of node attributes and implicitly entangled with other dimensions. As a result,
even if the explicit sensitive attributes are removed, biased outputs may still be produced by the pre-
trained GNN. To counteract attribute bias during graph prompting, we introduce an Adaptive Feature
Rectification (AFR) module in ADPrompt. In this module, We purify information at the source level,
reducing biased inputs from the outset. The intuition of AFR is to generate a personalized attribute
prompt for each node that selectively attenuates sensitive feature dimensions via self-gating.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

More specifically, each node vi ∈ V will learn a customized attribute prompt mi ∈ [0, 1]Dx , which
is then applied to its attribute vector xi to obtain the prompted attribute vector x̃i by

x̃i = mi ⊙ xi, (4)
where ⊙ represents the element-wise product between mi and xi. However, learning |V| indepen-
dent attribute prompts is impractical in graph prompting. During adaptation, only a small subset
of nodes is typically labeled, so most nodes cannot receive supervision information for optimizing
their attribute prompts. As a result, node vi’s attribute prompt mi cannot be reliably optimized if
it never contributes to the representations of any labeled ones. To overcome this issue, we propose
a self-gating mechanism (Hu et al., 2018) for Adaptive Feature Rectification. The intuition of the
self-gating mechanism is to obtain attribute prompts for every nodes by learning a shared attribute
projector ψ followed by a sigmoid function. Here, the attribute projector ψ is a compact network
conditioned on the attribute vector of one node. More specifically, we compute the attribute prompt
mi for each node vi by

mi = σ(ψ(xi)) = σ(ReLU(xiU1)U2), (5)
where σ is the sigmoid function. U1 ∈ RDx×Du and U2 ∈ RDu×Dx are two learnable matrices
in ψ. Du is one dimension size of U1 and U2. Then the prompted attribute x̃i is subsequently
used for the pre-trained GNN model. In Adaptive Feature Rectification, attribute prompts serve as
input-layer gates that filter biased information from node features and mitigate bias at the source.

4.2 ADAPTIVE MESSAGE CALIBRATION

Although node features are purified at the outset, bias can still be amplified within GNNs due to
structural disparities. Such disparities across demographic subgroups propagate through message
passing, resulting in biased node representations. To address this, we introduce Adaptive Message
Calibration (AMC) in ADPrompt. Our approach performs soft, fine-grained corrections at the in-
formation flow level without altering the graph structure. Unlike hard interventions such as edge
editing (Loveland et al., 2022; Franco et al., 2024; Li et al., 2025), which risk disrupting critical
topology, AMC lets each node adaptively regulate how it absorbs neighbor information through
learnable structure prompts.

More specifically, each node vi ∈ V aims to learn a customized structure prompt e(l−1)
ij ∈ RDl−1

that will be transmitted from vi’s neighbor vj ∈ N (vi) along with edge (vi, vj) at the l-th layer
of the pre-trained GNN model. Mathematically, ADPrompt updates the prompted representation of
node vi at the l-th layer by reformulating equation 1 with structure prompts as

h̃
(l−1)
i = AGG(l)

(
h̃
(l−1)
i ,

{
h̃
(l−1)
j + e

(l−1)
ij : vj ∈ N (vi)

})
, (6)

where h̃
(0)
i = x̃i. Since e

(l−1)
ij depicts how the information transmitted from vj to vi at the l-th

layer, we may naturally relate structure prompt e(l−1)
ij to both vj and vi. Considering this, we design

a structure projector φ to compute e
(l−1)
ij based on h̃

(l−1)
i and h̃

(l−1)
j . Mathematically, the structure

projector φ computes e(l−1)
ij by

e
(l−1)
ij = φ

(
h̃
(l−1))
i , h̃

(l−1))
j

)
= LeakyReLU

([
h̃
(l−1)
i

∣∣∣∣∣∣h̃(l−1)
j

]
W

(l)
1

)
W

(l)
2 ,

(7)

where [·||·] represents the vector concatenation. W
(l)
1 ∈ R2Dl−1×Dw and W

(l)
2 ∈ RDw×Dl−1 are

learnable parameters in φ. Dw is one dimension size of W(l)
1 and W

(l)
2 . Through Adaptive Message

Calibration, ADPrompt dynamically adjusts the information flow during message passing, enabling
layer-wise and fine-grained modifications based on current node embeddings.

4.3 PROMPT OPTIMIZATION

Through our Adaptive Feature Rectification and Adaptive Message Calibration, ADPrompt pro-
duces the final prompted representation h̃

(L)
i of node vi. Ideally, h̃(L)

i should be unbiased across
demographic subgroups to ensure fair prediction for node classification. To achieve this, we design a
joint optimization objective consisting of a supervised loss and an adversarial loss to collaboratively
optimize attribute prompts and structure prompts.
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SUPERVISED LOSS.

During adaptation, the primary goal of ADPrompt is to enhance model utility on downstream tasks.
In ADPrompt, the predictor π uses h̃(L)

i to generate node vi’s prediction ŷi = π(h̃
(L)
i ). Given the

labeled node set VL ⊂ V , ŷi is then used to predict the binary label yi of node vi by minimizing a
supervised loss between ŷi and yi for each labeled node vi ∈ VL. Mathematically, we can formulate
the supervised loss as the cross-entropy loss by

LSup(ψ,φ, π) = −
1

|VL|
∑
vi∈VL

[yi log ŷi + (1− yi) log(1− ŷi)]. (8)

ADVERSARIAL LOSS.

In the meantime, ADPrompt enhances fairness by encouraging prompted representations to be in-
dependent of sensitive attributes. To this end, we introduce a linear adversary ω that predicts each
node’s binary sensitive attribute from h̃

(L)
i . By minimizing the adversary’s predictive power, AD-

Prompt reduces sensitive information in the representations and guides the model toward fairer
downstream predictions. More specifically, the adversary ω generates the predicted sensitive at-
tribute ŝi = ω(h̃

(L)
i ) for each node vi ∈ V . Given node vi’s binary sensitive attribute yi, we can

formulate the adversarial loss as the cross-entropy loss by

LAdv(ψ,φ, ω) = −
1

|V|
∑
vi∈V

[si log ŝi + (1− si) log(1− ŝi)]. (9)

JOINT OPTIMIZATION OBJECTIVE.

By combining the above loss terms, we finally provide the joint optimization objective in ADPrompt
as a minmax problem. Mathematically, the final optimization objective can be written as

min
ψ,φ,π

max
ω
LSup(ψ,φ, π)− λLAdv(ψ,φ, ω), (10)

where λ is a hyperparameter to balance the two loss terms. The complete algorithm of prompt
optimization is provided in 1.

5 THEORETICAL ANALYSIS

In this section, we present a theoretical analysis to elucidate how the ADPrompt framework sys-
tematically mitigates group bias. Our analysis focuses on decomposing the upper bound of the
Generalized Statistical Parity (∆GSP ) and showing how our dual prompting mechanism tightens
this bound by alleviating its key contributing terms (Dai & Wang, 2021; Li et al., 2025). We fur-
ther analyze model adaptability in Appendix A and provide an Information-Theoretic perspective in
Appendix B.

5.1 PRELIMINARIES AND ANALYTICAL FRAMEWORK

Fairness Criterion. We adopt the Generalized Statistical Parity (∆GSP ) as our core fairness met-
ric (Zafar et al., 2017). For models with continuous outputs, ∆GSP is defined as the norm of the
difference between the expected predictions across sensitive groups:

∆GSP (ŷ) =
∥∥E[ŷi | si = 0]− E[ŷi | si = 1]

∥∥, (11)

where ŷi is the prediction of node vi and ∥·∥ denotes the ℓ2 norm. A smaller ∆GSP indicates greater
model fairness.

Assumption 1. The activation functions of the GNN backbone θ and the classifier π are Lipschitz
continuous, with constants Lf , Lπ > 0 (Rockafellar & Wets, 1998; Bartlett et al., 2017).

6
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Analytical Framework. We aim to minimize the expected prediction disparity ∆GSP (ŷ) across
demographic groups defined by a sensitive attribute s ∈ {0, 1}. Under assumption 1, this disparity
admits an upper bound, which is jointly determined by two main sources: (1) Initial Feature Bias,
when node attributes explicitly carry or implicitly embed sensitive information; (2) Bias Ampli-
fication during Propagation, where the message-passing mechanism of GNNs can exacerbate the
initial bias layer by layer. Our ADPrompt framework tightens this upper bound by synergistically
addressing the two critical sources of bias.

5.2 FAIRNESS BOUND ANALYSIS OF ADPROMPT

Reduction of Initial Bias via Adaptive Feature (AFR). AFR mitigates input-level bias by learn-
ing a node-adaptive promptmi to generate rectified feature x̃i = mi⊙xi. The projector ψ is trained
with an adversarial loss to minimize the mutual information I(X̃; s) between rectified features and
the sensitive attribute. This enforces alignment of feature distributions across demographic groups,
leading to a tighter bound on group bias:

∆GSP (X̃) ≤ ∆GSP (X). (12)
Consequently, AFR establishes fairer initial representations, facilitating less biased information
propagation in subsequent GNN layers.

Suppression of Bias Amplification via Adaptive Message Calibration (AMC). Although fea-
ture purification reduces initial bias, message passing may still amplify disparities. Let ∆(l) denote
the group disparity at the l-th layer:

∆(l) =
∣∣E[h(l)i | si = 0]− E[h(l)i | si = 1]

∣∣. (13)
The recursive aggregation satisfies

∆(l) ≤ γ(l)∆(l−1) + ϵ(l), (14)
where γ(l) > 1 reflects amplification from non-linear aggregation and ϵ(l) captures structural dis-
parity. Over L layers, this effect compounds exponentially:

∆(L) ≲
( L∏
l=1

γ(l)
)
∆(0). (15)

To counter this, AMC injects adaptive calibration vectors e(l−1)
ij into messages via equation 7, op-

timized adversarially to offset sensitive components. This reduces both the amplification factor and
the residual term:

∆(l) ≤ γ̃(l)∆(l−1) + ϵ̃(l). (16)
Together with AFR on inputs, AMC transforms the growth into a controlled sub-multiplicative pro-
cess, ensuring that the final disparity ∆(L) remains bounded. Theorem 1 formalizes this upper
bound:
Theorem 1 (Fairness Guarantee of ADPrompt). Under Assumption 1, for an L-layer GNN, let ∆(l)

denote the group disparity at layer l and ∆GSP (X̃) the initial feature bias after AFR. Then the final
disparity satisfies

∆GSP (h̃
(L)) ≤

(
L∏
l=1

γ̃(l)

)
∆GSP (X̃) +

L∑
l=1

(
L∏

k=l+1

γ̃(k)

)
ϵ̃(l), (17)

where γ̃(l) ≤ γ(l) and ϵ̃(l) ≤ ϵ(l) denote the AMC-calibrated layer-wise amplification and residual
terms respectively. This formally shows that ADPrompt reduces initial feature bias and suppresses
bias propagation, providing a tighter upper bound on ∆GSP than a standard GNN.

6 EXPERIMENTS

6.1 EXPERIMENT SETTINGS

Datasets. We employ four real-world graph datasets from various domains to evaluate our frame-
work: (1) Credit defaulter (Yeh & Lien, 2009), a financial graph where nodes represent cus-
tomers and edges indicate similar credit behavior; (2) German credit (Dua & Graff, 2017), a credit

7
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Table 1: 50-shot performance comparison of graph prompting methods under four pre-training
strategies over four datasets (all values in %). The best-performing method is bolded and the runner-
up underlined.

Credit German Pokec n Pokec zPre-training Tuning
ACC (↑) ∆EO (↓) ∆SP (↓) ACC (↑) ∆EO (↓) ∆SP (↓) ACC (↑) ∆EO (↓) ∆SP (↓) ACC (↑) ∆EO (↓) ∆SP (↓)

InfoMax

Classifier only 54.19 3.80 2.03 58.50 8.50 7.29 70.22 3.96 1.56 70.13 1.19 6.12
Adversarial learning 59.67 2.97 2.91 61.80 0.82 6.39 71.68 0.98 2.67 70.11 0.99 5.01
GraphPrompt 49.38 2.67 3.29 61.50 2.21 2.51 73.94 0.65 2.15 73.63 1.51 0.97
GPF 56.68 3.67 2.41 58.17 1.70 6.34 69.03 2.80 1.89 68.94 3.12 1.94
GPF+ 55.03 1.82 2.22 59.33 5.58 4.02 69.42 2.27 1.81 68.48 1.75 2.07
Self-pro 46.49 2.86 2.13 61.83 8.95 5.80 66.89 0.29 2.54 70.40 0.98 3.16
FPrompt 55.99 1.69 1.55 52.50 4.22 5.11 71.19 3.05 1.59 68.83 3.03 0.82
ADPrompt 58.14 1.08 1.48 64.33 1.18 1.32 69.89 0.22 1.44 70.48 0.92 0.70

GraphCL

Classifier only 59.10 4.38 4.37 64.50 4.52 2.63 70.42 2.10 3.84 71.25 5.48 10.00
Adversarial learning 58.50 2.45 3.75 57.83 2.58 4.06 70.41 0.35 3.12 70.64 3.40 6.26
GraphPrompt 57.19 0.93 1.67 60.17 6.44 5.63 64.61 4.45 6.50 62.22 1.24 1.11
GPF 55.19 2.23 2.04 50.07 7.09 3.73 69.44 4.13 2.10 74.41 3.35 1.43
GPF+ 58.43 2.53 2.54 56.83 4.78 5.07 72.85 1.28 2.17 74.24 5.20 2.17
Self-pro 57.61 1.51 2.27 62.00 2.96 5.51 71.78 5.27 1.51 71.18 0.93 2.50
FPrompt 54.83 4.10 3.93 58.67 3.47 3.73 72.55 0.54 2.29 70.37 1.01 4.21
ADPrompt 59.86 0.91 1.54 65.50 2.14 2.62 76.05 1.27 0.58 70.33 0.89 1.04

GAE

Classifier only 55.78 2.25 3.29 55.50 5.72 7.09 70.63 2.40 2.08 69.97 2.37 7.08
Adversarial learning 53.31 3.81 4.40 57.00 8.47 9.78 69.50 3.64 0.79 71.09 1.37 2.95
GraphPrompt 62.93 1.59 3.08 59.17 3.37 3.06 73.92 2.15 4.56 73.31 4.13 0.91
GPF 54.63 3.39 2.23 50.33 7.38 4.68 68.94 2.24 1.71 67.67 2.69 1.52
GPF+ 57.30 2.30 1.51 51.00 6.50 6.97 69.63 2.13 1.77 70.05 2.60 2.20
Self-pro 57.91 1.43 1.37 50.67 2.71 3.57 73.54 1.93 0.47 74.03 1.53 1.60
FPrompt 57.74 3.07 3.70 61.67 6.13 4.57 71.93 4.89 0.58 68.40 1.58 0.69
ADPrompt 64.86 1.37 1.28 62.17 2.22 2.32 73.62 1.90 0.44 75.09 1.25 0.84

BGRL

Classifier only 55.03 2.88 3.59 63.33 7.23 9.60 70.09 2.22 4.43 70.34 6.30 1.11
Adversarial learning 52.12 3.70 3.32 60.17 5.20 3.71 69.87 1.77 2.39 70.54 5.44 8.79
GraphPrompt 56.06 4.52 2.89 58.49 5.54 4.96 73.63 1.51 2.42 70.68 2.45 2.77
GPF 56.86 3.07 2.92 60.25 6.07 3.53 70.09 2.24 1.95 67.93 2.18 2.42
GPF+ 56.87 3.21 1.58 61.00 8.49 4.49 70.98 1.24 1.77 69.39 2.22 1.10
Self-pro 53.29 2.62 2.41 47.00 5.74 9.20 70.40 0.96 3.16 62.53 0.85 2.40
FPrompt 55.80 2.42 2.95 64.50 3.35 3.43 68.83 3.03 1.82 65.07 1.43 0.82
ADPrompt 58.24 2.12 1.89 65.00 2.34 2.37 75.63 0.92 1.77 66.12 0.99 0.67

dataset where individuals are nodes and edges are based on feature similarities; (3) Pokec z and
(4) Pokec n (Dai & Wang, 2021), social network subgraphs from the Pokec platform where nodes
are users and edges represent friendships. More detailed information about datasets are in Ap-
pendix D.1.

Pre-training Strategies. To evaluate the compatibility of our method, we adopt four pre-training
strategies. For contrastive learning, we use InfoMax (Veličković et al., 2019), GraphCL (You et al.,
2020), and BGRL (Thakoor et al., 2021). For generative learning, we use GAE (Kipf & Welling,
2016), which reconstructs graph structure from encoded node features. Further details are provided
in Appendix D.2.

Baselines. We compare our method with five state-of-the-art graph prompting approaches: Graph-
Prompt (Yu et al., 2024b), GPF and its variant GPF-plus (Fang et al., 2023), Self-pro (Gong et al.,
2024), and FPrompt (Li et al., 2025). Additionally, we report the performance of a classifier trained
without prompts (named as Classifier Only), as well as a variant enhanced with adversarial learning
(named as Adversarial Learning). All baselines are evaluated on node classification, which serves
as our downstream task. More information on these baselines can be found in Appendix D.3.

Implementation Details. In our experiments, we adopt a 2-layer GCN (Kipf & Welling, 2017) as
the backbone for node classification tasks. During pre-training, the datasets are randomly split into
training, validation, and test sets with a ratio of 60%, 20%, and 20%, respectively. The hidden layer
size is set to 128. We employ the Adam optimizer (Kipf & Welling, 2017) with a learning rate of
0.001 for all methods. We train graph prompting for 300 epochs. The main experiments adopt a
50-shot setting, while results for the 10-shot setting are reported in Appendix E.1. All experiments
are repeated three times with different random seeds, and the average performance is reported.
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Figure 3: Comparison of prompt coefficients across sensitive and non-sensitive feature dimensions.
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Figure 4: Effect of the hyperparameter λ on accuracy and fairness under GraphCL pre-training.

6.2 MAIN RESULTS

We compare ADPrompt with seven baseline methods on 50-shot node classification tasks across
four datasets under four pre-training strategies (Table 1). Our method consistently achieves the best
or highly competitive performance across various pre-training strategies. While many baselines
attain strong accuracy, they show notable fairness deficiencies, indicating unequal treatment of de-
mographic groups. In contrast, ADPrompt reduces bias while maintaining high task performance:
for example, on the German dataset, it improves accuracy by 3% and simultaneously lowers both
∆EO and ∆SP by 2%.

6.3 ANALYSIS OF ADPROMPT

Analysis of Adaptive Feature Rectification. To evaluate the AFR module, we analyzed the
prompt coefficients of each feature dimension. Lower coefficients indicate stronger suppression
of the corresponding feature dimension. As shown in Figure 3, sensitive attributes (e.g., gender,
age) consistently receive lower values than non-sensitive ones, confirming that attribute prompts
effectively suppress sensitive information and mitigate feature-level bias.

Impact of the Balancing Parameter. To assess the trade-off between accuracy and fairness, we
analyzed the impact of the balancing hyperparameter λ in prompt optimization under the GraphCL
pre-training strategy on four datasets. As shown in Figure 4, larger λ increases the adversarial
fairness loss LAdv, reducing fairness gaps but potentially harming accuracy. A moderate λ (5–7)
achieves the best balance across most datasets.

More experimental results. Due to the page limit, additional experimental results, including a 10-
shot performance comparison of baseline methods, an ablation study, the performance of ADPrompt
with different GNN backbones, and more, are provided in Appendix E.

7 CONCLUSION

This study introduced ADPrompt, a fairness-aware graph prompting method that integrates Adaptive
Feature Rectification and Adaptive Message Calibration to mitigate biases in both node attributes
and graph structure. It reduces group prejudice in GNNs and improves adaptability for downstream
tasks with a spot of learnable prompts. Extensive experiments on multiple datasets show that AD-
Prompt consistently outperforms seven baselines under various pre-training strategies. Future work
will explore scalability to large graphs and generalization across diverse graph types, as well as more
advanced prompting strategies for broader applications.
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8 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide the full implementation at https://anonymous.4ope
n.science/r/ADPrompt-18178, including pretrained GNNs and the core ADPrompt mod-
ules. All datasets are publicly available, and further experimental details can be found in Section 6.1
and Appendix D.
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A THEORETICAL ANALYSIS OF MODEL ADAPTABILITY

In this section, we present a theoretical analysis of the adaptability of the ADPrompt framework. We
demonstrate that ADPrompt can effectively adapt a fixed pre-trained GNN θ∗ to diverse downstream
tasks through the learned adaptive dual prompts. The key to this adaptability lies in the universality
of the prompts, which can replicate any ideal modification of the graph structure and node attributes,
thereby enabling near-optimal performance on the target task (Xu et al., 2018).

To formalize the adaptability of ADPrompt, let G = (V, E) denote the original graph with node
attributes X = [x1, . . . ,xN ]⊤. Let G′ = (V ′, E ′) represent an arbitrary target graph from the
candidate space, equipped with node attributes X′ = [x′

1, . . . ,x
′
N ]⊤. An ideal adaptation method

would enable the pre-trained GNN θ∗ to generate task-optimal node representations on G′.
Based on this, we present the following theorem 2 to establish the universal adaptation capability of
ADPrompt.

Theorem 2 (Adaptability of ADPrompt). Given a pre-trained L-layer GNN model θ∗ and an input
graph G = (V, E) with node attributes X, for any target graph G′ = (V ′, E ′) with node attributes
X′, there exist learnable prompting modules ψ (AFR) and φ (AMC) such that the final node repre-
sentations h̃(L)

i produced by ADPrompt on G satisfy

h̃
(L)
i [ψ,φ] = h

′(L)
i , ∀vi ∈ V, (18)

where h
′(L)
i denotes the representation of node vi obtained by applying θ∗ to the target graph G′.

The validity of Theorem 2 stems from the powerful expressiveness of the ADPrompt framework,
which manifests in two key aspects:

Proof 1. Simulating Arbitrary Feature Transformations via AFR. The AFR module generates
a personalized, dimension-wise attribute prompt mi for each node vi and applies it via element-
wise multiplication: x̃i = mi ⊙ xi. This fine-grained gating mechanism is significantly more
expressive than simple additive prompts or global transformations. By optimizing the module ψ,
the prompt mi can be trained to arbitrarily scale, suppress, or even nullify each dimension of the
original feature vector xi. This flexibility allows AFR to approximate any target feature matrix X′

with high fidelity (Srivastava et al., 2015; Li & Liang, 2021; Ding et al., 2023).

Proof 2. Simulating Arbitrary Structural Transformations via AMC. Modifications to the
graph structure (i.e., from E to E ′) fundamentally alter the message-passing pathways within the
GNN (Franceschi et al., 2019; Chen et al., 2020b). The Adaptive Message Calibration (AMC)
module directly intervenes in this process by injecting a layer-wise, edge-specific structure prompt
e
(l−1)
ij into each message. This prompt can be learned to: (1) strengthen or weaken the message

from a neighbor vj by aligning e
(l−1)
ij with h̃

(l−1)
j , simulating changes in edge weights (Zhu et al.,

2020); (2) nullify a message (e.g., when e
(l−1)
ij ≈ −h̃(l−1)

j ), which is equivalent to removing the

edge (vi, vj); (3) inject novel information by designing e
(l−1)
ij independently of h̃(l−1)

j , simulating
the effect of virtual nodes or edges present in the target graph G′ but absent in the original graph.
Because this intervention is layer-wise, edge-specific, and dynamic, AMC can effectively replicate
the complex information flow resulting from any structural modification in G′ (Xu et al., 2018).

In summary, the synergistic combination of AFR and AMC endows ADPrompt with expressive
power to jointly simulate arbitrary feature and structural modifications of the input graph by learning
the parameters of ψ and φ. This establishes ADPrompt as a universal adapter that can guide the
model to achieve a theoretical upper-bound of performance on downstream tasks.

B THEORETICAL ANALYSIS: FROM INFORMATION-THEORETIC
PERSPECTIVE

We establish the theoretical foundation of ADPrompt’s fairness capability through from information-
theoretic perspective. In particular, we formulate fairness in graph representation learning as an
Information Bottleneck (IB) problem (Tishby et al., 2000; Wu et al., 2020). The IB principle states
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that an ideal node representation H̃ should preserve maximal information about the task label Y ,
while suppressing information related to the sensitive attribute S. This trade-off can be formalized
in the following Lagrangian form:

min
θADPrompt

I(H̃;S)− β I(H̃;Y ), (19)

where I(·; ·) denotes mutual information, θADPrompt encompasses all learnable parameters (i.e., ψ
and φ), and β > 0 balances task relevance and sensitive information suppression. In practice, the
training objective of ADPrompt, LSup − λLAdv , serves as an effective surrogate for this principle:
LSup promotes the retention of task-relevant information I(H̃;Y ), whereas LAdv acts as a proxy
for reducing sensitive information I(H̃;S).

Proof 3. Adaptive Feature Rectification (AFR) as an Input-Layer Bottleneck. AFR acts as a
bottleneck at the feature input layer (Tishby et al., 2000). Raw node attributes X often contain sen-
sitive information correlated with S, forming the initial source of bias. By optimizing the projector
ψ adversarially, AFR generates a gating prompt mi per node through equation 5. This element-wise
gating selectively suppresses sensitive dimensions in xi, ensuring

I(X̃;S) ≤ I(X;S), (20)

and providing a purified feature foundation for fair downstream propagation (Jin et al., 2020).

Proof 4. Adaptive Message Calibration (AMC) as a Layer-wise Regularizer. Input purification
alone cannot prevent bias amplification in message passing (Dai & Wang, 2021; Dong et al., 2022).
AMC serves as a layer-wise regularizer by generating edge-specific calibration vectors according
to equation 7. These vectors act as corrective signals to suppress sensitive information propagated
from neighbors, thereby reducing the mutual information:

I(H̃
(l)
i ;SN (i)) ≤ I(H̃

(l−1)
i ;SN (i)), (21)

which prevents bias accumulation across layers and ensures fairness in deep GNNs (Tishby et al.,
2000; Moyer et al., 2018; Oono & Suzuki, 2019).

Together, AFR and AMC constitute a hierarchical information disentanglement strategy: (1)
Attribute-level: AFR disentangles node features from sensitive attributes, thereby suppressing bi-
ased information leakage directly at the feature source. (2) Structural-level: AMC disentangles
layer-wise representation updates from structural bias, acting as a progressive corrective mechanism
that prevents the amplification of sensitive information throughout message passing. Trained under
a unified adversarial objective, ADPrompt compresses sensitive information in the final node rep-
resentations H̃ while preserving task-relevant information about Y . This principled, information-
theoretic design substantiates ADPrompt as an effective framework for fair graph representation
learning.

C THE ALGORITHM OF ADPROMPT

The algorithm of ADPrompt is illustrated in Algorithm 1.
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Algorithm 1 ADPrompt

1: Input: pre-trained GNN model θ; graph G = (V, E) with node attributes xi ∈ RDx and
neighbors N (vi); hyperparameters: trade-off λ, learning rate η, total epochs E, current epoch
e.

2: Output: attribute projector ψ, structure projector φ, predictor π,
3: for e = 1 to E do
4: for vi ∈ V do
5: Compute mi = σ(ψ(xi)) using equation 5
6: Compute x̃i using equation 4
7: end for
8: for l = 1 to L do
9: for vi ∈ V do

10: for vj ∈ N (vi) do
11: Compute e(l−1)

ij = φ(h̃
(l−1)
i , h̃

(l−1)
j ) using equation 7

12: end for
13: Update h̃(l)i using equation 6
14: end for
15: end for
16: for vi ∈ V do
17: Compute ŷi = π(h̃

(L)
i ), ŝi = ω(h̃

(L)
i )

18: end for
19: Compute LSup(ψ,φ, π) using equation 8
20: Compute LAdv(ψ,φ, ω) using equation 9
21: Update ψ ← ψ − η∇ψ[LSup(ψ,φ, π)− λLAdv(ψ,φ, ω)]
22: Update φ← φ− η∇φ[LSup(ψ,φ, π)− λLAdv(ψ,φ, ω)]
23: Update π ← π − η∇πLSup(ψ,φ, π)
24: Update ω ← ω − η∇ω[λLAdv(ψ,φ, ω)]
25: end for
26: Return: ψ,φ, π

D MORE DETAILS ABOUT EXPERIMENT SETUP

D.1 INFORMATION ABOUT DATASET

Table 2 summarizes the statistics of the datasets used in our experiments. Each dataset is associated
with a sensitive attribute (e.g., age, gender, or region) and a binary prediction target (e.g., default
status, customer credibility). Notably, in the Pokec-z and Pokec-n datasets, the “working field”
attribute has been binarized to facilitate binary classification tasks, as shown in prior work on fairness
in graph learning (Dai & Wang, 2021; Kose & Shen, 2024)

Dataset Nodes Edges Feature Sensitive Label
Credit 30,000 1,421,858 13 Age Future default
German 1,000 22,242 27 Gender GoodCustomer
Pokec z 67,797 882,765 277 Region Working Field
Pokec n 66,569 729,129 267 Region Working Field

Table 2: The statistics of the datasets used in our experiment.

D.2 PRE-TRAINING STRATEGIES

We employ several representative graph pre-training methods as summarized below.

• InfoMax (Veličković et al., 2018b) is an unsupervised pre-training method that maximizes
mutual information between node embeddings and a global summary via negative sam-
pling, guiding the model to learn structure-aware representations for downstream tasks.
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• GraphCL (You et al., 2020) is a contrastive learning-based approach that generates mul-
tiple structurally and semantically perturbed views of the same graph, resulting in robust
and transferable node embeddings.

• GAE (Kipf & Welling, 2016) conducts self-supervised pre-training by encoding node fea-
tures via a GCN and reconstructing the adjacency matrix through an inner product decoder,
guiding the model to capture the graph’s structural information.

• BGRL (Thakoor et al., 2021) employs a self-supervised learning paradigm where two aug-
mented views of the same graph are processed by online and target encoders, and their
representations are aligned using a bootstrapping loss.

D.3 BASELINES

We evaluate our method against seven representative baselines. The details of each baseline are
summarized as follows:

• Classifier Only is a non-prompting baseline that uses a basic classifier.

• Adversarial Learning is also a non-prompting baseline that enhances model robustness
by training against perturbations to the graph structure or node features.

• GraphPrompt (Yu et al., 2024b) unifies pre-training and downstream tasks by introducing
learnable prompt vectors into the readout layer of the graph encoder, which assists the
model in retrieving task-relevant knowledge.

• GPF (Fang et al., 2023) is a universal graph prompt tuning method that operates in the
input feature space. It achieves prompting by adding a shared, learnable vector to all node
features, making it applicable to any pre-trained GNN.

• GPF-plus (Fang et al., 2023) improves upon GPF by using more sophisticated prompt
designs in the input feature space to enhance performance on downstream tasks.

• Self-pro (Gong et al., 2024) handles heterophily by using an asymmetric graph contrastive
learning framework, which generates prompts by structurally modifying the input graph to
align pre-training and downstream objectives.

• FPrompt (Li et al., 2025) is a fairness-aware prompt tuning method that uses hybrid graph
prompts to mitigate bias. It incorporates a fixed prompt to represent sensitive group em-
beddings and a learnable prompt to bridge the gap between pre-training and downstream
tasks.

E MORE EXPERIMENTAL RESULTS

E.1 MODEL COMPARISON UNDER 10-SHOT SETTING

To assess the effectiveness of our model in few-shot scenarios, we conduct a comparative study
against seven competitive baselines under the 10-shot setting. As shown in Table 3, our method
consistently achieves superior performance in terms of both fairness and predictive accuracy. Each
experiment is repeated three times, and the average results are reported.

E.2 ABLATION STUDY

To demonstrate the efficacy of each module within our proposed method, we conducted a series
of ablation experiments, specifically focusing on the AFR and the AMC. Across all four datasets,
we consistently utilized the InfoMax pre-training method for these evaluations. As evidenced by
the experimental results presented in Figure 5, both constituent parts of our method significantly
contribute to enhancing performance on downstream tasks while simultaneously improving fairness.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 3: 10-shot performance comparison of graph prompting methods under four pre-training
strategies over four datasets (all values in %).

Credit German Pokec n Pokec zPre-training Tuning
ACC (↑) ∆EO (↓) ∆SP (↓) ACC (↑) ∆EO (↓) ∆SP (↓) ACC (↑) ∆EO (↓) ∆SP (↓) ACC (↑) ∆EO (↓) ∆SP (↓)

InfoMax

Classifier only 54.19 1.80 2.03 58.50 8.50 7.29 70.22 3.96 1.56 70.13 1.19 6.12
Adversarial learning 59.67 2.97 2.91 61.80 0.82 6.39 71.68 0.98 2.67 70.11 0.99 5.01
GraphPrompt 55.43 2.75 4.66 53.67 5.35 2.39 68.56 4.75 2.67 67.44 4.32 3.55
GPF 57.39 3.87 2.81 56.33 3.77 1.07 68.60 2.83 1.46 66.11 1.31 3.65
GPF+ 53.35 3.09 3.01 58.67 3.87 4.24 64.27 2.83 1.59 67.32 3.19 1.63
Self-pro 58.93 1.61 2.19 61.32 4.07 6.94 71.60 2.04 4.97 69.94 6.83 5.02
FPrompt 51.52 3.62 2.44 58.50 0.27 2.25 71.55 3.69 2.45 66.43 3.69 2.43
ADPrompt 56.01 1.32 1.20 62.67 1.40 2.21 71.84 0.92 1.38 70.87 0.97 2.72

GraphCL

Classifier only 59.10 4.38 4.37 64.50 4.52 2.63 70.42 2.10 3.84 71.25 5.48 10.00
Adversarial learning 58.50 2.45 3.75 57.83 2.14 4.06 70.41 0.35 3.12 70.64 3.40 6.26
GraphPrompt 50.37 3.15 3.03 51.33 8.02 8.74 64.22 11.27 9.11 63.42 2.00 1.68
GPF 56.76 2.19 1.89 53.50 9.19 8.97 69.29 6.57 6.44 63.40 6.24 7.80
GPF+ 55.60 1.36 1.75 52.17 3.73 4.08 73.56 3.66 1.74 73.18 3.73 1.04
Self-pro 52.71 1.92 2.13 64.00 5.44 4.74 70.85 6.99 6.80 68.87 1.19 1.86
FPrompt 54.52 3.92 4.40 55.33 3.98 3.79 71.07 2.87 2.21 70.61 3.84 4.73
ADPrompt 59.80 0.82 0.57 61.50 0.62 1.92 70.97 1.62 0.83 71.34 0.71 0.75

GAE

Classifier only 55.78 2.25 3.29 55.50 5.72 7.09 70.63 2.40 2.08 69.97 2.37 7.08
Adversarial learning 53.31 3.81 4.40 57.00 8.47 9.78 69.50 3.64 0.79 71.09 1.37 2.94
GraphPrompt 53.51 1.97 0.92 58.32 3.56 4.36 69.75 5.76 1.78 67.32 2.03 2.22
GPF 51.12 1.99 1.77 53.50 4.99 5.73 66.41 1.33 1.32 67.24 1.88 2.33
GPF+ 49.29 1.77 2.09 55.50 4.27 1.52 74.65 1.89 2.93 65.44 2.04 3.73
Self-pro 46.98 2.70 1.60 45.00 5.01 5.01 64.03 2.53 4.58 66.44 3.88 8.74
FPrompt 59.98 1.61 1.60 49.63 4.00 3.07 66.75 1.44 2.60 63.54 1.60 2.33
ADPrompt 61.46 1.40 0.87 63.78 0.81 1.46 70.64 0.93 0.71 67.47 0.35 0.28

BGRL

Classifier only 55.03 2.88 3.59 63.33 7.23 9.60 70.09 2.22 4.43 70.34 6.30 1.11
Adversarial learning 52.12 3.70 3.32 60.17 5.20 3.71 68.87 1.77 2.39 70.54 5.44 8.79
GraphPrompt 54.62 4.44 4.70 58.54 5.23 6.24 69.12 3.45 2.75 68.55 2.83 6.33
GPF 51.82 2.68 2.48 60.17 3.16 4.23 67.65 3.62 1.79 66.28 2.42 2.50
GPF+ 54.50 1.15 1.44 54.67 6.29 4.35 68.52 3.49 2.03 67.20 2.12 1.07
Self-pro 53.03 1.41 1.41 56.83 6.67 5.07 69.18 4.77 4.23 65.58 4.09 5.43
FPrompt 53.72 2.26 2.08 56.00 2.97 5.73 69.05 1.08 1.33 67.75 2.37 2.80
ADPrompt 54.94 0.43 1.46 65.17 1.55 1.23 70.52 1.71 0.88 70.68 1.30 2.39
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Figure 5: Ablation study of ADPrompt across four datasets under InfoMax pre-training strategy.

E.3 PERFORMANCE COMPARISON UNDER DIFFERENT BACKBONE MODELS

We also investigate the performance of ADPrompt with different backbones. Table show the results
on the Credit dataset with GraphSage (Hamilton et al., 2017b) and GAT (Veličković et al., 2018a)
as backbones pre-trained by InfoMax. From the table, we can observe that our method outperforms
three state-of-the-art baselines.
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Backbone Prompt Method ACC (↑) ∆EO (↓) ∆SP (↓)

GraphSage

GPF 63.29 3.05 3.97
GPF+ 65.55 2.30 4.13
FPrompt 64.63 3.13 3.40
ADPrompt 66.67 1.74 2.44

GAT

GPF 57.48 2.39 2.97
GPF+ 61.07 3.43 1.73
FPrompt 56.47 2.17 4.30
ADPrompt 62.67 1.74 1.70

Table 4: Comparison of various methods under different backbone models with InfoMax pre-
training strategy on the Credit dataset.

E.4 PERFORMANCE COMPARISON OF STRUCTURE PROMPT PLACEMENTS

To assess the impact of dynamic message calibration in AMC, we compare ADPrompt with variants
that apply the structure prompt only at the first or second layer. As shown in Table 5, across two pre-
training strategies (InfoMax and GAE) and four datasets, ADPrompt consistently delivers higher
accuracy and smaller fairness gaps, underscoring the benefit of dynamically calibrating structural
information across layers rather than restricting it to a single layer.

Pre-training Dataset Method ACC (↑) ∆EO (↓) ∆SP (↓)

InfoMax

Credit
ADPrompt 58.14 1.08 1.48
ADPrompt (first layer) 56.48 2.68 2.25
ADPrompt (second layer) 55.92 2.14 2.64

German
ADPrompt 64.33 1.18 1.32
ADPrompt (first layer) 62.89 2.53 3.27
ADPrompt (second layer) 59.24 2.66 5.75

Pokec n
ADPrompt 69.89 0.22 1.44
ADPrompt (first layer) 67.86 1.06 1.16
ADPrompt (second layer) 62.72 5.11 3.23

Pokec z
ADPrompt 70.48 0.92 0.70
ADPrompt (first layer) 65.28 4.38 2.15
ADPrompt (second layer) 67.74 6.56 5.59

GAE

Credit
ADPrompt 64.86 1.37 1.28
ADPrompt (first layer) 58.48 5.69 5.13
ADPrompt (second layer) 54.68 1.56 1.43

German
ADPrompt 62.17 2.22 2.32
ADPrompt (first layer) 59.25 5.70 3.78
ADPrompt (second layer) 54.68 5.48 2.59

Pokec n
ADPrompt 73.89 0.22 1.44
ADPrompt (first layer) 58.48 3.02 3.15
ADPrompt (second layer) 54.68 3.76 2.32

Pokec z
ADPrompt 75.09 1.25 0.84
ADPrompt (first layer) 70.32 2.28 1.96
ADPrompt (second layer) 73.56 3.42 1.04

Table 5: Performance comparison with different structure prompt placements.

F USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used solely for polishing the writing of this paper. No other
uses of LLMs were involved.
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