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ABSTRACT

Large language models (LLMs) have achieved remarkable success in a wide range
of natural language processing tasks and can be adapted through prompting. How-
ever, they remain suboptimal in multi-turn interactions, often relying on incorrect
early assumptions and failing to track user goals over time, which makes such
tasks particularly challenging. Prior works in dialogue systems have shown that
long-term planning is essential for handling interactive tasks. In this work, we
propose a prompt optimisation framework inspired by reinforcement learning,
which enables such planning to take place by only modifying the task instruc-
tion prompt of the LLM-based agent. By generating turn-by-turn feedback and
leveraging experience replay for prompt rewriting, our proposed method shows
significant improvement in multi-turn tasks such as text-to-SQL and task-oriented
dialogue. Moreover, it generalises across different LLM-based agents and can
leverage diverse LLMs as meta-prompting agents. This warrants future research
in reinforcement learning-inspired parameter-free optimisation methods.

1 INTRODUCTION

Large language models (LLMs) have shown an extraordinary ability to perform a wide range of
tasks, from generating images in various styles to writing code in different programming languages
for diverse purposes. LLMs are typically post-trained using reinforcement learning from human
feedback (RLHF) (Ouyang et al.l 2022), where they receive single-turn rewards for individual re-
sponses rather than rewards reflecting the quality of an entire multi-turn conversation. This limits
their effectiveness in interactions where tasks are underspecified and clarified over time, often lead-
ing to early mistakes, incorrect assumptions, and cascading failures (Laban et al., [2025). On the
other hand, prior work in dialogue systems demonstrates that long-term planning is vital for interac-
tive tasks, making it essential for LLMs (Young}, 2002} |Young et al.l 2013).

Directly optimising LLMs could improve their ability to plan across multiple turns, e.g., supervised
fine-tuning with low-rank adaptation (Hu et al., 2022)), direct preference optimisation (Feng et al.,
2025b), continuous prompting (Lester et al.,|2021;|Qin & Eisner, 2021} |Li & Liang} [2021;|Liu et al.,
2023)), or reinforcement learning with dialogue-level rewards (Feng et al., [2025a)); however, these
approaches are often impractical for real-time updates due to high computational costs, especially
with limited local resources, and are incompatible with API-only LLMs.

Gradient-free methods, such as instruction-feedback-refine pipelines (Peng et al.,2023; Shinn et al.}
2023} |Yao et al., [2023; [Elizabeth et al.| [2025), avoid parameter updates but rely on frequent API
calls during inference, leading to inefficiency. Meta-prompting and existing prompt optimisation
techniques focus on input-output learning without explicitly modelling long-term planning (Yang
et al.| 20244a; Tang et al., [2025; Pryzant et al., 2023} |Yuksekgonul et al., 2025)).

To address these limitations, we propose Reinforced Prompt Optimisation (RPO). The structure of
RPO is shown in This meta-prompting approach enhances the long-term planning ability
of LLMs by iteratively refining an initial prompt based on natural language feedback, where the
initial prompt can be crafted by experts or generated from a corpus via meta-prompting (Zhou et al.,
2023; Pryzant et al.| 2023; Ye et al., [2024).

In RPO, an LLM-based system interacts with an environment, such as real or simulated users, in
tasks like information seeking or medical QA. A feedbacker, either a human or an LLM, provides



Under review as a conference paper at ICLR 2026

.'I Initialised by Meta-prompting \} Initialised by Expert \"
Expert :
Prompt : 1 y P
Dataset H data writer ' prompt ] o ‘z\
; it -_—

""""""""""""""""""""""""" .- initialise
T

Interactive optimisation

u i
@/85% @ reract ——>{ Sysem @ | gromptt D2
|

g -

trajectories

Feedbacker

O/

feedback!

Rewriter @—% prompttt

Figure 1: The structure of Reinforced Prompt Optimisation (RPO). The initial prompt* can be gen-
erated by LLMs or written by experts. In interactive optimisation, the system will first interact with
the environment, e.g., simulated or real users. The feedbacker, e.g., human experts or LLMs, will
provide textual feedback based on trajectories. The rewriter generates a new prompt based on the
original prompt and the textual feedback to update the system’s original prompt. One cycle of inter-
active optimisation is called an epoch, and we use superscripts to denote the epoch number.

turn-level textual feedback inspired by temporal difference (TD) error. As shown in the right part
of for each turn ¢;, the LLM-generated feedback includes: (1) predicted user emotion in
the next turn elicited by the system response a;, (2) a forecast of dialogue success or failure, and (3)
suggestions based on the subdialogue ¢1.;. These are then aggregated into dialogue-level feedback.

A separate LLM-based rewriter refines the prompt based on the feedback and the previous prompt.
Experience replay is applied by leveraging feedback—prompt pairs from both the current and past
iterations. The updated prompt is used in future interactions. More details can be found in Section[3]
Inspired by these well-studied reinforcement learning concepts, the goal of RPO is to effectively
strengthen the system agent’s long-term planning ability and overall task success.

Our contributions are as follows:

* We propose Reinforced Prompt Optimisation (RPO), a meta-prompting framework that
improves LLMs’ long-term planning in multi-turn tasks by iteratively updating prompts
based on natural language feedback.

* We explore leveraging the concept of temporal difference (TD) error in the LLM-based
feedback generation and experience replay in rewriting, enabling efficient and lower-
variance prompt optimisation.

* Our method can leverage external expert reward signals without revealing the prompt of
the LLM-based system and is flexible with respect to the choice of LLM backbones for the
system or meta-prompting agent.

2 RELATED WORK

Gradient-based optimisation for LLMs For high parameter counts, training or fine-tuning an
entire large language model is infeasible since it requires a huge amount of computational resources.
As a result, parameter-efficient fine-tuning, such as training only part of the model or freezing the
model and training an adapter, is widely used to refine LLMs (Hu et al.| [2022; 2023} [Lialin et al.,
2023). On the other hand, continuous prompting, e.g., prefix-tuning and soft-prompting, is also
popular to adapt LLMs to specific tasks or improve their performance (Lester et al., 2021} |Qin &
Eisner, 2021} Li & Liang, 2021} Liu et al., 2023). By updating inputs of every attention layer (Li
& Liang| 2021)), or task-related vectors (Lester et al.,|2021)), these methods can achieve comparable
performance to full fine-tuning across various model sizes and tasks (Liu et al., |2022). Although
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these methods can improve LLMs effectively, they do not apply to API-access-only LLMs, and such
training processes cannot be carried out in real-time.

Self-feedback To improve the performance of text-based prompts, various prompting styles are
proposed, e.g., Chain-of-Thought (Wei et al.l [2022) or ReAct (Yao et al.| 2023). These prompting
methods encourage LLMs to reason before taking action or generating responses, which leads to
better performance. However, optimising the prompt for better performance by manual trial and
error is inefficient. Instead, self-feedback methods are introduced to refine the LLMs’ response,
e.g., LLM-augmenter generates feedback by itself and leverages external knowledge to rewrite its
response (Peng et al.,[2023)), and Reflexion summarises previous interactions with the environment
as ‘reflections’ to improve the model’s response (Shinn et al., 2023)).

While this demonstrates the ability of LLMs for self-correction, these self-feedback methods rely
on frequent API calls since their original prompt is not optimal. As a result, the computation cost
and latency during inference are not negligible.

Prompt optimisation Meta-prompting methods are widely used to generate a prompt without hu-
man editing. The automatic prompt engineer (APE) method leverages an LLM, which is instructed
to generate an initial prompt and selects the prompt with the best performance on the target task
(Zhou et al 2023). Automatic prompt optimisation (APO) further employs a self-feedback mod-
ule to provide textual feedback, which gives suggestions on how to edit the old prompt (Pryzant
et al., 2023). |Ye et al.| (2024) propose a meta-prompt LLM to edit the original prompt step-by-
step. [Kong et al.| (2024) and [Cheng et al.| (2024) train a sequence-to-sequence model for prompt
rewriting by reinforcement learning and preference data, respectively. [Yang et al.| (2024a) propose
optimisation by prompting (OPRO), which leverages LLLMs to rewrite the original prompt based
on a corresponding performance score. To leverage experience, |[Zhang et al.[ (2023) model LLMs
as semi-parametric RL agents with memory storing task data, actions, and (J-value estimates for
few-shot in-context learning. [Zhang et al.|(2024) propose Agent-Pro, which constructs policy-level
reflections according to the numerical feedback from the environment and improves its policy incre-
mentally. Tang et al.|(2025)) introduce the Gradient-inspired LLM-based Prompt Optimizer (GPO),
which updates the prompt iteratively based on numerical feedback and controls the edit distance
through a cosine-based decay strategy. TextGrad generates textual feedback based on the user in-
put and system output for prompt rewriting (Yuksekgonul et al., [2025). Although these methods
demonstrate promising performance in generating or improving prompts, they focus on single-turn
tasks. Our approach addresses multi-turn interactions, where prompts are updated with temporally
grounded feedback to enhance long-term planning ability.

Learning ability of LLMs via prompting Although transformers are universal approximators
(Yun et al.,|2020) and in-context learning in LLMs can be viewed as implicit fine-tuning (Dai et al.,
2023)), the following remain open questions: Can we prompt LLMs for arbitrary tasks, and what are
the limitations of in-context learning?

Petrov et al.| (2024) highlight the limitations of context-based fine-tuning methods, e.g., in-context
learning, prompting, and prefix tuning, for new task learning in transformers. Specifically, trans-
formers struggle to acquire new tasks solely through prompting, as prompts cannot change the
model’s attention patterns. Instead, they can only bias the output of the attention layers in a fixed
direction and elicit skills learned through pre-training. In other words, only models with billions of
parameters trained on vast, diverse datasets are capable of in-context learning, adapting to new tasks
through examples or instructions without modifying their underlying weights. Therefore, we focus
on fundamental models large enough to demonstrate their in-context learning ability, to investigate
reinforcement prompt optimisation, which is fully composed of in-context learning with LLMs.

3  REINFORCED PROMPT OPTIMISATION

Inspired by the gradient-based optimisation and reinforcement learning algorithms, where a model
is initialised from pretraining and then further updated by on-policy learning based on interactions
with the environment, we propose the Reinforced Prompt Optimisation (RPO) method (as shown in
[Figure T)). The initial instruction can be generated by a prompt writer LLM p such as the automatic
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prompt engineer (APE) (Zhou et all, [2023) (the upper left part of or written by human
experts (the upper right part of [Figure TJ).

In the interactive optimisation (the lower part of [Figure I)), the system will interact with the envi-
ronment, e.g., human users or simulated users, and generate several multi-turn trajectories, which,
for example, can be task-oriented dialogue or medical question-answering. Then the feedbacker,
which can be a language model LLM ¢ or human experts, will provide textual feedback to guide the
optimisation direction for the rewriter LLMp, which will generate a new prompt to improve the
system’s performance based on the feedback and original prompt.

We emphasise that although our method shares a feedback—rewrite structure similar to self-refine
approaches, the key difference lies in the target of refinement. Self-refine methods polish the agent’s
output, whereas our method updates its instruction. In other words, we treat the system’s instruction
as a textual parameter to be modified, which reduces serving costs and latency by lessening the need
for a multi-agent-style feedback and rewriting pipeline.

3.1 FEEDBACK GENERATION
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Figure 2: Workflow of feedback generation by an LLM. The Monte Carlo—style feedback (left) is
generated after the entire interaction is completed, whereas the Temporal Difference—style feedback
(right) consists of turn-level sub-feedback. Each sub-feedback includes a prediction of next-turn
user satisfaction, a prediction of goal success, and an actionable suggestion.

As shown in[Figure 2] we consider two approaches for generating feedback via LLMs: Monte Carlo
(MC)-style and Temporal Difference (TD)-style feedback generation.

The MC-style feedback is produced only after the entire dialogue trajectory (¢1.,,) has been com-
pleted (the prompt of the MC-style feedbacker is shown in [Figure 9):

feedbackyc = LLMFp(t1.,) (1

This approach is commonly used in single-turn tasks such as sequence classification, named-entity
recognition, or one-turn question answering (Pryzant et al., 2023} |Ye et al.,[2024; |Wang et al., [2024;
Tang et al.l 2025} Yuksekgonul et al.l 2025). It typically yields prompt modification suggestions
based on a global success or failure signal. While this captures the overall quality of the interaction,
it collapses the inherently multi-turn nature of real-world interactions into a single outcome.

In contrast, TD-style feedback incorporates turn-level evaluations:
feedbackqy, ; = LLMF(t1, feedbackry, 1, ta, feedbackyp 5, - - -, t;), (2)

where feedbackry, ; is the turn-level feedback at turn j. All turn-level feedback, feedbackry ;.;,
will be summarlsed by LLMF into a final feedback p, afterwards (details of the prompt are shown
in [Figure 10). Rather than waiting until the dialogue ends, the feedbacker provides incremental
assessments at each turn, including the prediction of user sentiment and expected dialogue success,
along with actionable suggestions.
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In other words, TD-style feedback treats the immediate user response as a short-term reward (Ghaz-
arian et al., [2022), while also estimating long-term outcomes such as task success. This idea can be
formalised through the TD error, which balances short-term reward and long-term estimation:

(515 =T¢ + PYV(SiH»l) — V(St) (3)

where 7, corresponds to the short-term reward (e.g., user sentiment after the current turn), V'(s;) is
approximated by the previous turn-level feedback, and V'(s;1) represents the estimated long-term
value of continuing the dialogue toward successful task completion. This dual perspective enables
the system to refine both local decision-making at the turn level and global trajectory planning across
the full interaction.

3.2 APPLYING FEEDBACK TO THE PROMPT

Unlike gradient-based optimisation, where gradients can be added or subtracted from model param-
eters, incorporating textual feedback into prompts is non-trivial. One cannot concatenate or remove
arbitrary text from the original prompt without risking incoherence or loss of functionality. To ad-
dress this, we introduce a basic rewriter LLMp to apply textual feedback on the original prompt:

prompt™t = LLMg(prompt, feedback’), 4
where ¢ denotes the epoch index. Its instruction is shown in[Figure 7

Inspired by experience replay in reinforcement learning (Andrychowicz et al., |2017), the rewriter
can leverage not only the prompt and feedback from the current epoch, but also those from previous
epochs (its instruction is shown in[Figure §):

prompt't! = LLMg (prompt", feedback’, prompt' =1, feedback'™", ..., prompt*, feedbackl). 5)

Reinforced Prompt Optimisation (RPO) alleviates the need for task-specific manual prompt engi-
neering by automating prompt creation and refinement entirely through LLMs. The feedback signal
may originate from either simulated environments or human users. Importantly, while the feed-
backer and rewriter themselves are LLMs that require prompts, these prompts are task-independent
and need to be specified only once. Optimising the prompts of these meta-prompting agents lies
beyond the scope of this work and is left for future research.

4 EXPERIMENT SETTINGS

In this study, we focus on iterative meta-prompting by leveraging textual feedback from the envi-
ronment. We conduct experiments on three challenging human—machine interaction tasks that re-
quire multiple turns: Text-to-SQL, Task-oriented Dialogue, and Medical Question-answering (Sec-
tion .T). An overview is shown in Our meta-prompting components are task-agnostic
(Section[4.2). They are designed to optimise the prompt of interactive LLM-based systems (Sec-
tion [4.3). Furthermore, to assess how different prompts affect system performance, all prompts are
in a zero-shot in-context learning fashionﬂ consisting only of task descriptions without examples.

4.1 TASKS

Text-to-SQL |Laban et al.| (2025)) proposed 6 tasks to study the performance drop of LLMs from
fully-specified user queries to multi-turn interactions. The multi-turn, sharded instruction (e.g.,
Shard 1 conveys the high-level intent, and subsequent shards provide incremental clarifications) is
partitioned based on the single-turn, fully-specified instruction from the original dataset. The largest
decline occurs in the Text-to-SQL task, which we therefore select to study under different prompt
optimisation methods, using instructions and databases from the Spider dataset (Yu et al., 2018).

In this task, the system agent receives a database schema at the start of the interaction and generates
SQL queries from user queries in natural language. We evaluate both closed-source LLMs (GPT-40
mini, Gemini-2.0-flash) and open-source LLMs (Llama-3.1-8B, Llama-3.1-70B, Llama-4-scout) to

"Following [Brown et al.|(2020), this is in-context learning since task descriptions are given as context, but
also zero-shot because no demonstrations are included.
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Figure 3: The summary of our experiment tasks.

test whether prompt optimisation generalises across different LLMs. The agent is optimised in the
multi-sharded environment and evaluated by functional accuracy, requiring generated SQL queries
to exactly match the reference outputs across all databases.

Task-oriented Dialogue To evaluate on a more realistic scenario, we conduct experiments on
MultiWOZ 2.1 (Budzianowski et al.|, [2018; |[Eric et al.,[2020), containing 10k human-to-human con-
versations on information-seeking, recommendations, and reservations across multiple domains. In
this work, we focus on the attraction, hotel, restaurant, and train domains, under the ConvLab-3
framework (Zhu et al., |2023)). Each user goal of the simulated user is a plain-text description of
requirements, e.g., “You are looking for a place to stay, the hotel should be in the cheap price range
and in the city centre. You also need to find a restaurant nearby.”

The system agent is FnCTOD (Li et al.l [2024), built with GPT-40 mini. In comparison to the
standard, single-stage LLM-based system, FnCTOD consists of two parts: dialogue state tracking as
a function call to access external databases, and response generation based on function call results.
Both prompts are subject to optimisation. The performance of the system is measured by success
rate, i.e., whether the recommended entities satisfy user goals and all the requested information is
fulfilled, based on a rule-based evaluator in ConvLab-3.

Medical Question-Answering To evaluate our system in a more human-centred setting and how
well prompting can improve the model’s performance in a domain that is not common in the pre-
training data, we use two medical question-answering datasets: Huatuo-26M (Wang et al.,[2025)) and
ShenNong-TCM (Wei Zhu & Wang| [2023). The questions in Huatuo-26M and ShenNong-TCM are
collected from the internet, e.g., encyclopedias, books, literature, and web corpus, or generated by
an LLM based on a traditional Chinese medicine entity graph in Huatuo-26M and ShenNong-TCM,
respectively. Simulated users act based on descriptions in plain text, related to general medicine or
traditional Chinese medicine, e.g., “F& A EWGE —EEA » FE IEE P L E MW - (1

only have cough as a symptom. Please recommend Chinese medicine or a prescription.)”.

The system agent is built with GPT-40 mini, interacting with users in single-turn or multi-turn set-
tings. It does not access external knowledge bases but relies solely on pre-training knowledge. At
each epoch, an expert with degrees in general medicine and traditional Chinese medicine provides
feedback on 10 interactions. For evaluation, three different experts compare 2 systems on 30 inter-
action pairs in general medicine and 30 in traditional Chinese medicine per expert (90 per domain
in total), based on safety, professionalism, and fluency, following the setting in|Yang et al.|(2024b).

4.2 META-PROMPTING COMPONENTS

In the interactive optimisation phase, the feedbacker LLMr and rewriter LLMpg are built with
closed-source LLMs, e.g. GPT-40 mini (OpenAl et al., |[2024) and Gemini-2.0-flash (Gemini Team!
et al.,[2024])), or open-source LLMs, e.g. Llama-3.1-8B, Llama-3.1-70B (Grattafiori et al.,[2024)), and
Llama-4-scout (MetaAll 2025)). More detail is shown in[Table 3] Across different tasks, the prompts
of LLMr and LLM g, remain fixed, highlighting the task-independent role of these components.
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4.3 OPTIMISATION AND EVALUATION

We start by collecting interactions using the initial prompt and user instructions sampled from the
training set. The feedbacker receives 10 interactions, since the context length of the LLM-based
feedbacker is limited, and to efficiently incorporate human expert feedback. At each epoch, the
rewriter generates 2 new prompts based on the previous prompt and the feedback. New interactions
are collected with each candidate prompt, and the one with the highest score on the validation set
(based on automatic metrics or human experts, depending on the task) is chosen for the next iteration.

Baselines In our experiments, we compare three prompt optimisation methods. Automatic Prompt
Optimisation (APO) uses the user input, system output, and label to generate feedback (Pryzant et al.,
2023). For multi-turn interactions, golden labels are infeasible since multiple solution paths exist;
thus, we use a binary success/failure label. Gradient-inspired Prompt Optimizer (GPO) iteratively
updates prompts using numerical feedback, e.g., functional accuracy for Text-to-SQL, task success
for dialogue (Tang et al.||2025). MC-style (TextGrad) (Yuksekgonul et al.,|2025)) processes the entire
conversation and generates textual feedback, as mentioned in Section @

5 RESULTS AND DISCUSSION

5.1 ROBUSTNESS AND GENERALISABILITY

System agents as different LLMs shows the results of optimising system agents built on
five LLM backbones for the text-to-SQL task. Prompt optimisation methods aim to improve system
agents in the multi-sharded setting, i.e., the user only reveals part of the information in one turn. For
comparison, Oracler,; 1, a single-turn setting where the user query is fully specified at once, is taken
as an upper bound. The performance gap between Baselinesy,rq.q and Oracler,1; (average 0.333
vs. 0.743) highlights the difficulty LLMs face in handling multi-turn interactive tasks.

RPOrp outperforms prior approaches when the system agent is built with Gemini-2.0-flash, Llama-
4-scout, and Llama-3.1-70B. In contrast, RPO1p,eplay achieves the best overall performance, with
an average score of 0.477 (+54.2% over Baselinegy . qcq). Llama-3.1-8B benefits the most, since
its performance optimised by RPOrp.repiay (0.467) nearly matches the oracle fully-specified setting
(0.505). The consistent improvements across closed-source (GPT-40-mini, Gemini-2.0-flash) and
open-source (Llama variants) models demonstrate the robustness of our approach and the effective-
ness of combining temporal-difference style feedback with replay.

However, despite substantial gains over the sharded baseline, a gap to the baseline with the fully-
specified user query (average 0.477 vs. 0.743) underscores that prompt optimisation can mitigate,
but not fully eliminate, the degradation caused by multi-turn interactions.

Table 1: Functional accuracy of Text-to-SQL system agents built on five LLMs optimised with
various methods. Oracler,11: An oracle baseline in a single-turn setting with fully-specified user
queries. The final two columns show the average score (Mean) and the relative improvement (A%)
over the Baselinegy;qeq across various LLMs. Best scores in the multi-turn setting are bolded.

LLM of the system agent

Method Mean A%
GPT Gemini Llama-4 Llama-8B Llama-70B
Baselinesyarqeq (Laban et al., 2025) 0.402 0.514 0.206 0.224 0.318 0.333 -
APO (Pryzant et al.,|2023) 0.374 0.523  0.318 0.290 0.336 0.368 16.9
GPO (Tang et al.;[2025) 0.458 0.523  0.299 0.290 0.308 0.376 17.5
MC-style (Yuksekgonul et al.,[2025) 0.459 0.551  0.250 0.346 0.332 0.388 20.4
RPO1p (ours) 0.439 0.561  0.336 0.318 0.383 0.408 28.9
RPOTDreplay (OUrs) 0.528 0.607 0.383 0.467 0.402 0477 54.2
Oraclery:1 (Laban et al., [2025) 0.893 0.841 0.729 0.505 0.748 0.743  140.2

Prompt optimisation with different LLMs [Table 2| reports the success rates of FnCTOD (L1
et al.,2024) when optimised by different prompt optimisation methods across five LLM backbones.
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The baseline system achieves a success rate of 0.420, while all optimisation methods substantially
improve performance. Among prior approaches, MC-style feedback yields the strongest results with
a mean success rate of 0.565 (+34.4% over baseline), slightly outperforming APO and GPO. Our
proposed methods consistently surpass these baselines. In particular, RPOrp achieves a mean score
of 0.575 (+37.0%), demonstrating the advantage of trajectory-driven optimisation. When combined
with the rewriter with experience replay, RPOrp.eplay delivers the best performance across all LLMs,
reaching an average success rate of 0.619, corresponding to a relative improvement of 47.3%. The
gains are consistent across all five LLMs, confirming that our approach is robust and generalisable,
independent of the underlying model of the meta-prompting agents.

Table 2: The success rate of the task-oriented dialogue system, FnCTOD (Li et al., 2024)), improved
by various prompt optimisation methods leveraging 5 different LLMs. The initial success rate of
FnCTOD is 0.420. Best scores are bolded.

Method LLM of the meta-prompting agent

Mean A%

GPT Gemini Llama-4 Llama-8B Llama-70B
APO (Pryzant et al.,2023) 0.540 0.560  0.540 0.560 0.560 0.552 31.4
GPO (Tang et al.;[2025)) 0.579 0.541  0.571 0.554 0.526 0.554 32.0
MC-style (Yuksekgonul et al.| [2025) 0.567 0.549  0.575 0.560 0.572 0.565 344
RPOrp (ours) 0.578 0.562  0.586 0.594 0.556 0.575 37.0
RPO1D+replay (OUrS) 0.625 0.622 0.618 0.622 0.606 0.619 47.3

5.2 EFFECT OF DIFFERENT STYLES AND INPUT SIGNALS OF TEXTUAL-BASED FEEDBACKER

The training curves of FnCTOD optimised by the methods of MC-style, TD-style, and TD-
style+replay with Gemini-2.0-flash are shown in (See results with other LLMs in
[ure 6). Similar to the behaviour in traditional RL optimisation, MC-style exhibits higher variance
during the early stages of training, whereas TD-style is more stable and converges faster. With fur-
ther training, their final performances become comparable. In contrast, incorporating experience
replay into the rewriter yields more stable training and achieves the best overall performance.

We conduct a further ablation study on the impact of different information as input to the feedbacker
(as shown in [Figure 4b). The basic setting passes the dialogue in pure text. The subjective setting
includes the user goal, and the believe setting adds the API call in comparison to the basic setting,
respectively. The full setting is our proposed TD-style+replay, including both the user goal and the
system API call.

Both the user goal and the API call are essential for optimal performance. While the user goal
can be inferred from the user’s utterances and the correctness of an API call is reflected in the
system’s response, providing these signals explicitly yields significant gains. The reason is that
the correctness of API calls is the main challenge in task-oriented dialogue: an incorrect selection
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Figure 4: The training curves of different optimisation methods. Each setting is trained on 4 seeds
and evaluated on 100 dialogues. The line is the average success and the shadow is the standard error.
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of a function indicates a misunderstanding of the user’s intent, and wrong argument values reflect
errors in dialogue state tracking, both of which can cause the conversation to fail. An example of
the prompts of FnCTOD before and after optimised by RPOrp.replay can be found in and

respectively.

5.3 PROMPTING LIMITATIONS ON UNDERREPRESENTED TOPICS IN LLMS

We compare our method against three systems: a standard system, built with GPT-40 mini with
the initial prompt, a standard system updated via GPO, and HuatuoGPT-II (Chen et all 2024), a
large language model which is fully fine-tuned on medical data and demonstrates the state-of-the-
art performance on Chinese medicine benchmarks. In other words, except HuatuoGPT-II, a fully
fine-tuned 7B model, all systems are built with GPT-40 mini by prompting.

In general medicine, our method consistently outperforms the fully fine-tuned HuatuoGPT-II with an
86.7% win rate and is preferred over other prompting-based baselines. On the other hand, traditional
Chinese medicine is more challenging. For example, our system’s preference rate drops by 41%
compared to Huatuo when transitioning from general medicine to traditional Chinese medicine.
However, despite this drop in preference, our proposed method is still favoured in general.

This observation is aligned with the findings by Petrov et al.| (2024)). Our method performs better
in general medicine because the skills present in the pre-training data of LLMs can be elicited by
prompting. However, tasks that are unseen or underrepresented in pre-training data are hard to learn
through prompting. How to properly leverage external knowledge to improve the performance on
unseen or under-represented tasks is an important future work.

GPO 26.7% GPO 21.2% 27.3%

Standard Standard 30.3% 27.3%
Huatuo 10.0% Huatuo 24.2% 30.3%
0% 20% 40% 60% 80%  100% 0% 20% 40% 60% 80%  100%
mmm Ours win tie Ours lose mmm Ours win tie Ours lose
(a) Result on general medicine. (b) Results on traditional Chinese medicine.

Figure 5: Overall preference between our method and a standard system (Standard), GPO, and
HuatuoGPT-II (Huatuo) on the medical question-answering task. The overall recommendation by
human experts is based on safety, professionalism, and fluency.

6 CONCLUSIONS

We proposed a robust framework for interactive prompt optimisation that can effectively optimise
system agents built on diverse LLM backbones and system structures, from standard input—output
agents in text-to-SQL and medical QA to multi-stage agents in task-oriented dialogue accessing
external knowledge sources. In addition, it is flexible to the choice of LLM used for generating
feedback and rewriting, as it works effectively with both closed-source LLMs (GPT-40 mini and
Gemini-2.0-flash) and open-source LLMs (Llama variants). Turn-level feedback enriched with user
status and API details, together with experience replay in rewriting, proved highly effective for
stabilising and enhancing optimisation in multi-turn tasks.

By using the optimised prompt, the system can minimise the need for extensive self-feedback loops,
reducing computational overhead and API call frequency during inference. Although the perfor-
mance optimised by our method still falls short of fully specified settings and unseen tasks remain
difficult to optimise purely by prompting, our reinforcement learning-inspired method offers a sta-
ble, practical, and efficient approach for automatic prompt optimisation to reduce the challenges of
unspecified multi-turn interactions, which could be valuable for future LLM research.



Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This work uses open-source datasets, such as Spider, MultiWwOZ, Huatuo-26M, and ShenNong-
TCM. The MultiWOZ dataset is widely used in research on task-oriented dialogue. The Huatuo-
26M dataset is collected from publicly accessible data without personal information and is available
to academic researchers. The ShenNong-TCM dataset is generated by GPT-3.5 based on a tradi-
tional Chinese medicine knowledge graph. As a result, these datasets should not be regarded as
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generated by LLMs. We use LLMs to assist with paper writing by handling language-level tasks
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A MODEL LIST

The LLMs used in our experiment are listed in

Table 3: Specific model versions used in our experiments.

Short Form Name Version Access Provider
GPT GPT-40 mini gpt-40-mini-2024-07-18 OpenAl

Gemini Gemini-2.0-flash gemini-2.0-flash-001 Vertex Al
Llama-4 Llama-4-scout-17B-16E  1lama-4-scout-17b-16e-instruct-maas  VertexAl
Llama-8B Llama-3.1-8B N/A Vertex Al
Llama-70B  Llama-3.1-70B N/A VertexAl

B CONVERAGE ANALYSIS

The training curve of prompt optimisation based on different settings (e.g., MC-style, TD-style, and
TD-style+replay) across different LLMs (GPT-40 mini, Llama-3.1-8B, Llama-3.1-70B, and Llama-

4-scout) is shown in[Figure €| (The result of Gemini-2.0-flash is shown in [Figure 4a] previously).
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The training curves become stable after epoch 3 (trained with 300 dialogues), and the TD-
style+replay setting improves the stability. However, since existing LLMs are not batch-invariant,
which means their behaviour will be impacted by different batch sizes, there is unavoidable variance
caused by their nondeterministic behaviour (He & Thinking Machines Lab|, [2025).
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Figure 6: The training curve of different optimisation methods. Each setting is trained over 4 seeds,

evaluated on 100 dialogues. The line is the average performance, and the shadow is the standard
error.

C PROMPTS

The prompts used in the basic and experience replay rewriter are shown in [Figure 7| and [Figure 3}
respectively. The prompts used in the MC-style and TD-style feedbackers are shown in|[Figure 9/and

respectively.

You are an assistant tasked with improving the prompt instruction of another large language model assistant.
You will be given the previous instruction prompt and its feedback.

Here is the previous instruction [PROMPT®] and the feedback [FEEDBACK®]

Please generate a new instruction prompt for the next iteration, with performance improvement.
Please output the new instruction prompt directly without any extra description, since the result would be fed back into
the assistant directly. The new prompt should not be longer than 512 tokens.

Figure 7: The prompt of the basic rewriter.
C.1 AN EXAMPLE OF THE SYSTEM PROMPT BEFORE AND AFTER OPTIMISATION BY RPO

shows the original prompt of FnCTOD and is the prompt optimised by
RPOTD+replay .
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You are an assistant tasked with improving the prompt instruction of another large language model assistant.
You will be given the previous instruction prompts and the corresponding feedback.

Prompt: [PROMPTl] and its corresponding feedback: [FEEDBACKl]

Prompt: [PROMPT '] and its corresponding feedback: [FEEDBACK ']
Current Prompt: [PROMPT®] and its corresponding feedback: [FEEDBACK®]

Please generate a new instruction prompt for the next iteration, with performance improvement.
Please output the new instruction prompt directly without any extra description, since the result would be fed back into
the assistant directly. The new prompt should not be longer than 512 tokens.

Figure 8: The prompt of the experience replay rewriter.

Based on the user goal and the dialog history, please provide feedback to the system. The feedback should be
constructive and helpful for the system to improve.

Here are the user goals [USER GOALS] and the dialogs [DIALOG]

Figure 9: The prompt of the MC-style feedbacker.

Here is the user goal: [USER GOALS]

For each turn, please evaluate the system's behaviour. Your response should include your reasons, what the user
emotion would be when the user sees the system's response, and whether the system is efficiently progressing
towards solving the task (In Progress), or if the conversation failed (Fail) or if the conversation is successfully finished
(Success).

Your response's format should be:

[reason] Your reason

[emotion] User's emotion, which could be Neutral, Fearful, Dissatisfied, Apologetic, Abusive, Excited, or Satisfied.
[success] In progress / Success / Fail

[feedback] How to improve

user: [USER UTTERANCE,],
the database query from the systemis: [API CALL],
system: [SYSTEM UTTERANCE; ]

[FEEDBACKyp, o]
user: [USER UTTERANCE, ],
the database query from the systemis: [APTI CALL],

system: [SYSTEM UTTERANCE, ]

[FEEDBACKyp (]

Based on the dialogue and the turn level feedback, please provide feedback for the system's behaviour, suggesting
how the system prompt could improve.

Figure 10: The prompt of the TD-style feedbacker. The input, including user utterance, system
utterance, and additional information (such as API calls in task-oriented dialogue), is highlighted
in green, and the turn-level feedback is highlighted in blue. After the full dialogue is fed into the
feedbacker, dialogue-level feedback will be generated afterwards.
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You are a task-oriented assistant.

Don't make assumptions about what values to plug into functions.

Ask for clarification if a user request is ambiguous.

Use only the argument values explicitly provided or confirmed by the user instead of the assistant.

Don't add or guess argument values.

Ensure the accuracy of arguments when calling functions to effectively obtain information of entities requested by the
user.

Figure 11: The system prompt of FnCTOD before prompt optimisation.

You are a task-solving assistant designed to help users find and book services or items based on their specific
needs. Be polite, helpful, and concise. Think step by step.

1. Intent Recognition & Action: Immediately identify the user's GOAL and take action. Avoid greetings and
redundant repetition of the user request. Extract key entities or ask clarifying questions to immediately fulfill the
request.

2. Dynamic Slot Updating & Goal Tracking:

o After each turn, completely update all relevant slots (day, time, people, location, price range, constraints, etc.)
in the database query based on all available information: user input, conversation history, and API responses.
Prioritize explicit user input.

o Track user goals throughout the conversation and make sure ALL goals are fulfilled before completing.
Remember all constraints (positive and negative).

3. Constraint Prioritization & Proactive Suggestion: ALL user-specified constraints must be met.

o If a direct match isn't found, proactively offer alternatives that best align with user requirements (nearby
locations, different dates/times, related options, fuzzy matching). Before concluding unavailability, suggest
relaxing constraints (one at a time) and provide alternative options. Focus on constraints which do not
conflict, and try to find options. Consider similar options not explicitly asked for.

4. Context & Conversational Flow:

o Maintain context across turns using conversation history. Avoid repetitive questions by remembering previous
answers. Update search parameters based on new information. Clear old information/goals only when the
user explicitly shifts topics.

o Repeat unfulfilled goals only when presenting subtask results if the goals are pertinent to the result.

o Handle multiple requests in a single turn.

5. Accurate & Efficient API Calls:

o Validate API call parameters against current, complete, and accurate user preferences exactly.

o Avoid hardcoded or default values.

o Do not continue API calls if the answer has already been found and presented or if the API provides the
requested information.

o Validate input data type compliance and reasonable limits (dates, times, prices).

o If exact matches are unavailable, use fuzzy/partial matching to return similar results.

6. Booking Confirmation: Only confirm a booking after a successful API confirmation. Do not hallucinate bookings.

7. Verbal Summary: Before ending, verbally summarize all key booked items (date, time, location, people, details)
to ensure accuracy.

8. Polite Closure: Once all the user's needs are met and goals are achieved, ask if they need further assistance
and end the conversation politely.

9. Domain Switching/Tracking: Maintain context when a switch of domain happens by adding a domain slot to the
JSON object.

Figure 12: The system prompt of FnCTOD after it is optimised by RPOtp.replay for 8 epochs.
RPOTp.replay 1 built with Gemini-2.0-Flash. The format is generated by the rewriter in markdown
format. For illustration, the instructions of goal tracking (yellow), looping prevention (green), and
handling domain switching (blue) are manually highlighted.
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