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ABSTRACT

Deep metric learning (DML) provides rich measures of content-based visual sim-
ilarity, which have become an essential component for many downstream tasks in
computer vision and beyond. This paper questions a central paradigm of DML, the
process of embedding individual images before comparing their embedding vec-
tors. The embedding drastically reduces image information, removing all spatial
information and pooling local image characteristics into a holistic representation.
But how can we determine for an individual image the characteristics that would
render it similar to a particular other image without having seen the other one?
Rather than aiming for the least common denominator and requiring a common
embedding space for all training images, our approach identifies for each pair
of input images the locations and features that should be considered to compare
them. We follow a cross-attention approach to determine these meaningful lo-
cal features in one image by measuring their correspondences to the other image.
Overall image similarity is then a non-linear aggregation of these meaningful local
comparisons. The experimental evaluation on standard DML benchmarks shows
this approach to significantly improve over the state of the art.

1 INTRODUCTION

Similarity learning is important for many different tasks in computer vision: classification, detection,
face recognition, zero-shot and few-shot learning. Usually similarity learning is trained on one set
of examples of similar and dissimilar pairs and later applied to a different set of pairs. In such a way
a certain amount of generalization is required when training a model to find similarities between
objects. The main goal of the conventional approach to deep metric learning is to train an encoder
function E and an embedding function ϕ such that composition ϕ ◦ E yields a representation that
can fully describe input image. And this representation is later used to measure similarities to other
images and to retrieve nearest neighbours, i.e. most similar objects with respect to the notion of
similarity.

Moreover, we see that conventional approach focuses a lot on the problem of finding image represen-
tation. The comparison to another image is performed via feeding individual image representations
to the loss function. What is important here is that the representation of an image is fixed and does
not change whatever image it is compared with.

Hence this approach is unnatural to the problem of similarities estimation: given a query image -
most decisive parts for similarity estimation may change depending on the image we compare it to.

Let us illustrate this idea with the following example. When we have been working with the SOP
dataset we have noticed that images of the same bike vary a lot in viewpoint. One image can focus on
a saddle another one on the gears and the wheel, see Fig.1. So it can be hard to determine whether
these images are of the same bike if only look on the bike specific details. However, it might be
useful to notice a unique joint pattern, for example a green carpet on the floor frame color to amplify
those details when perform similarity estimation. unique visual feature that can be amplified and
focused on only if we observe two images jointly.

But how do we learn this joint similarity? We need to design a mechanism that will somehow blend
two images we want to compare together. Furthermore, we need a mechanism to blend information
and we also must decide at which level to fuse images. Taking the input pixel representation can be
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too coarse, but if we take the final representation yielded by the ϕ ◦ E, we may already loose too
much information at this point. This happens mostly because the output of the encoder E, usually
a pretrained on ImageNet(Deng et al., 2009) convolutional part of the Resnet-50(He et al., 2016).
For an image of size 224 × 224px we get a tensor of size 7 × 7 × 2048 as the output of E. The
projection ϕ includes a pooling operation of some kind and an embedding projection onto the unit
sphere of dimensionality 512. So we have a compression rate of ≥ 200. Moreover, this projection
also removes all the spatial information. We see that the image first undergoes a severe compression
operation and only afterwards is being compared with another image. This is also bad because it
may disregard relations between different image parts. This leads to the following necessity we want
to fuse information of a pair of samples as early as possible together and we want our representation
to be as rich as possible. First, aggregation methods is on of the crucial thing to redesign. Second,
information from both images must be fused at the output of E.
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Figure 1: When comparing anchor image
Ianchor to I1 and I2 our bidirectional global
to local attention block can spot features
present in both images and not just relevant
for the class “bicycle”. We see that when
comparing image Ianchor with I1 model
looks at a frame and green floor in Ianchor
image, since these are only two common
details between objects(bottom left). When
comparing Ianchor with Iw the only de-
tail common is the green floor, so it ac-
cummulates all the attention in Ianchor im-
age(bottom right).

There is also a technical side of the problem of con-
ventional approach: pooling of the features into a
single representation is a bottleneck for information
flow between the loss and the weights we want to
adjust. With the recent advancements in comput-
ing hardware the trend for increase of image reso-
lution for deep learning becomes apparent. Regard-
ing our problem, the higher the input resolution is,
the more lossy becomes the aggregation method de-
scribed above. For that reason it becomes necessary
to find an alternative to the lossy aggregation opera-
tion in particular and to the holistic approach based
on finding fixed representation in general. Novel ap-
proaches must focus on fusing rich image represen-
tation and finding features adjusted to a particular
image pair, namely for a particular comparison.

Moreover simple pooling methods(aggregation
method) like average pooling or max pooling of fea-
tures result in information blurring, which becomes
a bigger problem when scaling image resolutions
which prevents effective training of high resolution
input. Talk about other results on this experiment.
Mention that we do not need true hi-res, but we use
the upsampled version. Also mention that we do not
need extra parameters.

We suggest an alternative to the holistic approach.
We design a novel bidirectional global to local atten-
tion mechanism that facilitates more direct similarity
learning between rich image representation and ag-
gregates all individual similarities better better then
the conventional approaches. Our attention mecha-
nism can better fuse features together and turn a sim-
ilarity into a truly pair-based concept.

Through extensive experiments we show that pair-
based similarity learning is being superior to the
image-based similarity learning in terms of retrieval
performance. We study individual elements of the
novel bidirectional global to local attention mechanism and provide meaningful insights into the
decision making process of our approach. We also show that our method can be combined with
classic DML losses and can significantly boosts their performance and make them outperform state-
of-the-art approaches which are full of heavy machinery used for training them. We also observe
that our method can scales much better with the input image resolution compared to other methods,
thus indicating that we have a better training signal.
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2 RELATED WORK

2.1 DEEP METRIC LEARNING.

Deep Metric Learning (DML) (Roth et al., 2020b; Musgrave et al., 2020; Milbich et al., 2021) is
one of the leading lines of research on similarity learning and related applications, such as image
retrieval and search (Sohn, 2016; Wu et al., 2017; Roth et al., 2019; Jacob et al., 2019) or face
recognition (Schroff et al., 2015; Hu et al., 2014; Liu et al., 2017; Deng et al., 2019), and even in-
fluenced the advance of self-supervised, contrastive representation learning (He et al., 2020; Chen
et al., 2020; Misra & Maaten, 2020). With the goal of optimizing individual image projections into
an expressive embedding space such that similarity relations between the images are reflected by
a given distance metric, a multitude of different approaches for learning have been proposed. The
main problem formulation of DML are surrogate ranking tasks over tuples of images, ranging from
simple pairs (Hadsell et al., 2006) and triplets (Wu et al., 2017; Schroff et al., 2015) to higher-
order quadruplets (Chen et al., 2017) and more generic n-tuples (Sohn, 2016; Oh Song et al., 2016;
Hermans et al., 2017; Wang et al., 2019). These ranking tasks sometimes include geometrical con-
straints (Wang et al., 2017; Deng et al., 2019). To make learning feasible despite the exponential
complexity of tuple combinations, such methods are often combined with tuple sampling strate-
gies following either manually defined (Wu et al., 2017; Schroff et al., 2015; Xuan et al., 2020) or
learned heuristics (Ge, 2018; Harwood et al., 2017; Roth et al., 2020a). Often, this issue is also
successfully alleviated by class proxies representing entire sets of training images such as NCA for-
mulations (Goldberger et al., 2005; Movshovitz-Attias et al., 2017; Kim et al., 2020; Teh et al., 2020;
Qian et al., 2019) or classification-based approaches (Deng et al., 2019; Zhai & Wu, 2018). Finally,
extensions of these basic formulations further improved the out-of-distribution generalization capa-
bilities of the learned embedding spaces, e.g by leveraging multi-task and ensemble learning (Opitz
et al., 2017; 2018; Sanakoyeu et al., 2021; Roth et al., 2019; Milbich et al., 2020; Kim et al., 2018),
generating synthetic training samples (Duan et al., 2018; Lin et al., 2018; Zheng et al., 2019; Gu
et al., 2021; Ko & Gu, 2020), diverse, complementary feature semantics (Milbich et al., 2020; Mil-
bich et al., 2020), self-distillation (Roth et al., 2021) or sample memory banks (Wang et al., 2020).

All the above works follow the predominating paradigm of determining image similarity by com-
paring mutually independent, holistic image projections in the embedding space. Thereby, they
rely on the rationale that features shared by similar images are implicitly similarly encoded in the
latent encoding. In our work, we break this paradigm and design a bidirectional global to local
attention module that explicitly identifies and links local, shared image features for estimating sim-
ilarity. Most similar to our work is the work of Seidenschwarz et al. (Seidenschwarz et al., 2021)
and Elezi et al. (Elezi et al., 2020), which use self-attention, respectively label-propagation to ex-
change messages between standard, holistic image embeddings to incorporate global structure into
the embedding space. Moreover, DIML (Zhao et al., 2021) similarly to our work proposed an in-
terpretable DML framework operating on local features. However, correspondences are established
by solving an expensive optimal transport problem. In contrast, our approach is based on an effi-
cient cross-images attention mechanism, thus allowing us to greatly scale the spatial maps of local
features.

2.2 ATTENTION MECHANISMS.

The attention mechanism allows neural networks to explicitly focus on dedicated parts of the model
input (Jaderberg et al., 2015), feature representations (Vaswani et al., 2017) and even output (Jaegle
et al., 2021a). Introduced as hard attention, Spatial Transformers (Jaderberg et al., 2015) proposed
a differentiable input sampler. The powerful formulation of soft (self-)attention was pioneered by
transformers (Vaswani et al., 2017) which revolutionized the field of natural language processing
and recently also gain influence in the vision domain (Dosovitskiy et al., 2021). Finally, cross atten-
tion has been shown to be a flexible concept for relating two arbitrary data representations (Jaegle
et al., 2021b;a), e.g. for effectively scaling Vision Transformers (Dosovitskiy et al., 2021) to large
input images. In our work, we formulate a bidirectional global to local attention mechanism to find
correspondences between images.
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2.3 EXPLAINABILITY IN DEEP LEARNING.

Deep Metric Learning methods typically are difficult to interpret due to the holistic nature of the
optimized latent embedding spaces. ABE (Kim et al., 2018) uses an self-attention mechanism for
learning an ensemble of global learners to implicitly focus on different parts of the input image.
However, (i) attention is not performed between images, thus only masked image regions that are
captured by a particular learner can be visualized and (ii) those image regions are only consistent
for very attention channels. In contrast, our approach explicitly establishes local correspondences
between images, which are used to determine individual similarities between object parts. These
correspondences naturally allow to visualize fine-grained relations between objects that the model
considers crucial for similarity assessment. Similarly, DIML (Zhao et al., 2021) aims at finding
local object correspondences, which, however, are limited to coarse object parts only, due to compu-
tational restrictions limiting the number of independent image regions to be represented. A widely
used visualization in DML are UMAP (McInnes et al., 2018) or tSNE (Maaten & Hinton, 2008)
projections of the holistic image embeddings. While such visualizations help to show which images
are overall similar and dissimilar, they only implicitly provide insights into why a model puts two
images next to each other on the embedding manifold.

3 APPROACH

Lets first recap the conventional approach to Deep Metric Learning. The task is given an input image
I find such an embedding e such that it satisfies label relations to the other samples in the dataset.
Usually, the image I is fed first into the encoder network E and then mapped onto the manifold
using embedding function ϕ. This gives us a representation e = ϕ(E(I)) in a d dimensional space
on a d− 1 dimensional unit sphere Sd−1 := {x ∈ Rd | ∥x∥ = 1}.

To satisfy relationships between dataset labels networks measure similarity between images I1, I2
by computing a distance between embeddings ϕ(E(I1)) and ϕ(E(I2)).

Thus, it is assumed that image is fully represented using its embedding ϕ(E(I)). The training signal
is computed only after plugging distances between embeddings d(ϕ(E(I1)), ϕ(E(I2))) into the loss
function used for optimization. As the reader can notice, the images do not interact until the distance
between the points is computed, hence all the computations are performed on the per image basis.

Moreover, training signal passes though the lossy process of compression inside of an embedding
function ϕ. However, images contain plenty of information and compressing this information by
means of some simple pooling method in the function ϕ can be detrimental to the performance.

To give you exact numbers: the most widely used encoder network E is the convolutional part of
the Resnet-50 network. For an input image I1 of size 224 × 224 pixels we obtain a spatial tensor
F1 := E(I1) ∈ Rh×w×d, where h = 7, w = 7, d = 2048. This representation has much more
space to store useful information compared to the final embedding e1 := ϕ(E(I1)) ∈ Rd, where d
is usually 128 or 512. This results in a compression rate of ≈ 200 between F1 and e1.

These are two flaws of the representation seeking approach when applied to the problem of similarity
learning - no interaction between images when computing their embeddings and lossy aggregation
procedure. Additionally, a holistic approach can not explain which parts of an image are important
for similarity and which are not.

Thus, we need a mechanism to directly compare F1 with F2 := E(I2), not e1 with e2 = ϕ(E(I2)).
Since F1, F2 ∈ Rh×w×d are of extremely high dimensionality, we can not just flatten this represen-
tation and feed it into the fully connected layer - this would have been computationally ineffective.
Instead, we need a mechanism that can effectively estimate which parts across a pair of images to
compare and how to weight those similarities.

If we do not know what to compare we may throw information we need before even having a chance
to find out this information was useful.

The well established way to estimate which parts of an input must be related and processed jointly
is the attention mechanism introduced by (Vaswani et al., 2017).
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However, if we compute attention between F1 and F2, the result is a matrix of size hw × hw
which indicates correlation between different sites of those images. This set of correlations can be
dominated by correlations between irrelevant parts of an image. For example, for birds classification
task we can have the highest correlations between blue sky segments in both images, though this
information is useless for the task of birds discrimination.

For that reason we must know what to relate - what part is that and how meaningful it is? Addi-
tionally, we want to learn how similar two different parts are? For that reason we split the repre-
sentation F = E(I) into parts embeddings FP := πP (F ) ∈ Rh×w×d and similarities embeddings
FS := πS(F ) ∈ Rh×w×d. πP , πS are defined in the Sec.4.1.

Hence, we need to compare with each other not only on the level of individual parts but with an
image as a whole. To have an additional global representation of an image we maxpool the parts
representation FP together across dimension h×w and obtain g := πG(FP ). Detailed description
of πG is provided in the Sec.4.1.

That means we want to compare g1 with all parts from FP
2 and g2 with all parts from FP

1 . This
is more efficient then comparing exhaustively individual tokens from FP

1 and FP
2 . For example,

sky patches are present in both images and have high correlations but they are not important for
discrimination.

For the sake of simplicity from now on we assume that all FP , FS are reshaped to the shape hw×d.
This should remove ambiguity of the matrix calculus below.

Moreover, we want our method to focus on those details of image I2 which are important for image
I1. Therefore, we want to relate g1 with F2 to enable amplification of tokens of F2 which are highly
correlated with g1. Even though they might have been unnoticeable in F2 on its own.

We find the importance of parts of image I2 to image I1 as a whole by computing the attention of
between local parts of I2 and global representation g1 of I1 softmax(

g1F
p
2√
d
) ∈ R1×hw). And vice

versa we compute attention softmax(
g1F

p
2√
d
) ∈ R1×hw) for attention between parts of I2 to image

I1 as a whole. Expressions above tell us which parts must be related. Now we need to estimate
similarity between individual local parts. This can be formulated as S := FS

1

(
FS
2

)T
.

Now we have similarities between individual parts and importance of inidividual parts. Next we
combine those two concepts together:

s(F1, F2) := softmax

(
g1F

p
2
⊤

√
d

)(
F s
2F

s
1
⊤
)
softmax

(
F p
1 g

⊤
2√
d

)
. (1)

We call this computation block consisting of πP , πS , πG a bidirectional global to local attention for
similarity estimation.

Reader may note a connection of the equation above to the renown attention mechanism widely
used for establishing correlations between objects of different nature. Given queries Q, keys K and
values V we estimate first correlation between queries and keys softmax(QK⊤). In our case we
attention applied from both sides and values V being individual similarities S between different
image parts, while attention weighting matrix is the global to local attention between images.

Given the similarity scores between all pairs of points we plug them into any loss function used as a
training objective in DML. We use the multi-similarity loss (Wang et al., 2019) to compute the loss
for every batch:

L :=
1

b

(
b∑

i=1

1

α
log

[∑
k∈Pi

exp−α(s(Fi,Fk)−λ)

]
+

1

β
log

[∑
k∈Ni

expβ(s(Fi,Fk)−λ)

])
. (2)

The training algorithm is summarized in Alg.1.
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Algorithm 1 Training

Require: E - pretrained ResNet-50,
X - dataset with images and class labels,
b - batch size
Initialize E
Initialize layers πS , πP , πG of the similarity cross attention.
while not converged do

Sample b Images with labels (Ii, li) ∈ X , i ∈ {1, .., b}
for ∀i ∈ {1, .., b} do

Compute backbone output F̄i

Compute similarities FS
i = πS(Fi), parts FP

i = πP (Fi)
Compute global representation gi = πG(πP (Fi))

end for
for ∀i, j ∈ {1, .., b} | i ̸= j do

Compute local similarities Sij = FS
j FS

i
⊤

Compute global to local attentions softmax

(
giF

p
j

⊤
√
d

)
and softmax

(
Fp

i g⊤
j√
d

)
Compute final similarity s(Fi, Fj) using Eq.1

end for
Compute loss L specified in Eq.2
Backpropagate gradients of L into weights θπS , θπP , θπG .

end while

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS.

Implementation details. We follow the common training protocol (Wu et al., 2017; Roth et al.,
2019; Sanakoyeu et al., 2021) for DML and utilize an ResNet50 (He et al., 2016) encoder E pre-
trained on the ImageNet dataset. The model is implemented in the Tensorflow2 framework. All the
experiments are conducted on a single RTX 8000 or a single RTX 6000 GPU.
For training, we use the Adam (Kingma & Ba, 2015) optimizer with a fixed learning rate of 10−5

and default β1, β2 parameters with no learning rate scheduling being applied. A default batch size
of 32 is used unless stated otherwise. We choose the popular multi-similarity loss (Wang et al.,
2019) as our DML objective function using default parameters stated in the original paper. For all
the experiments unless stated otherwise we first resize input images to the size 256× 256px follow-
ing standard practice (Musgrave et al., 2020; Roth et al., 2020a) and afterwards artificially upsample
them to size 608 × 608px. At inference time, to further follow standard protocol, we apply center
cropping to size 224× 224px after the initial resize to 256× 256px and then upsamle it back to the
our final input size of 608 × 608px. We discuss the rationale of the upsampling and its benefit for
our approach in Sec. 4.3.1.
Datasets. We evaluate the performance on three standard DML benchmark datasets using the default
train-test splits:

• CARS196(Krause et al., 2013), which contains 16,185 images from 196 car classes. The
first 98 classes containing 8054 images are used for training, while the remaining 98 classes
with 8131 images are used for testing.

• CUB200-2011(Wah et al., 2011) with 11,788 bird images from 200 classes. Training/test
sets contain the first/last 100 classes with 5864/5924 images respectively.

• Stanford Online Products (SOP)(Oh Song et al., 2016) provides 120,053 images divided in
22,634 product classes. 11318 classes with 59551 images are used for training, while the
remaining 11316 classes with 60502 images are used for testing.

Architecture design. The design of the mappings πP , πS , πG is inspired by the design of the
transformer encoder of the vision transformers(Dosovitskiy et al., 2021). Both πP , πS perform
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layer normalization of the input and follow that by a single fully connected layer. πG performs max
pooling across hw channels, followed by another fully connected layer and L2-normalization.

Evaluation procedure. Our method computes similarity score directly between a pair of images
images. In order to compute R@k for every query image we need to compute its similarities to
all the other neighbours in the dataset. This results in a quadratic complexity at evaluation step,
since we need to porcess all pairs of images. To circumvent this nuisance we compute and store
all intermediate embeddings F and the global parts embeddings g. The latter is used to compute
nearest 100 neighbours using these global embeddings. And only for those approximate nearest
neighbours we compute similarities with our full method. Using these similarities we rerank ap-
proximate neighbours accordingly and compute final retrieval scores. This gives a reasonable time
overhead, especially when compared to the exhaustive pairwise similarity computation for all pairs
in the dataset. In practice it results in 15% increase in evaluation time.

4.2 COMPARISON TO THE STATE OF THE ART METHODS

First of all we present how our approach stands against other methods. We evaluate performance
on three standard datasets i.e. CUB200 (Wah et al., 2011), CARS196 (Krause et al., 2013) and
SOP (Oh Song et al., 2016). We measure the retrieval performance using the widely used Recall@k
score (Jegou et al., 2011). Results are summarized in Tab.1. They indicate that our approach signif-
icantly outperforms other approaches and validates efficiency of our cross-image similarity estima-
tion. Please note that for the sake of fairness all experiments are performed after applying standard
DML image preprocessing - image is first scaled to the size of 256× 256px , then we take a central
crop of size 224×224px and only afterwards image is upsampled to the size 608×608px. Thus our
approach can not benefit from minuscule details visible only in high-resolutional input, see Sec.4.3.1
for the detailed study on the importance of the resolution and fine details.

There is another popular metrics in DML is the NMI (Manning et al., 2010) (Normalized Mutual
information) score. We do not report it because our approach yields a single similarity score and
essentially eliminates a concept of embedding, thus making NMI score inapplicable to our approach.

4.3 COMPONENTS OF THE BIDIRECTIONAL GLOBAL TO LOCAL ATTENTION MODULE

Let us have a closer look at Eq.1 closely. It consists of two main components: attention be-
tween holistic parts embeddings of the first image and parts embedding of the second image
softmax(g1F

p
2 )R1×hw and the matrix of local similarities S = F s

2F
s
1 .

We can study the effect of each individual component separately. At first we can assume that we do
not need any attention between image parts across images. In that case our similarity boils down
to the average of the local similarities S, namely final similarity is 1TF s

2F
s
11, where 1 ∈ Rd×1 is

a vector of all ones. The R@1 score drops by 8.9pp on CUB dataset and by 6.5pp on the Cars196
dataset for the image resolution 608×608px. We conclude that the parts embeddings FP are crucial
for similarity learning.

We can also ablate effect of individual similarities between global embeddings g1 and FP
2 and

replace it with attention between local parts, namely replace eq.1 with

softmax

(
F p
1 (F

p
2 )

⊤
√
d

)
⊙
(
F s
2 (F

s
1 )

⊤)⊙ softmax

(
F p
2 (F

p
1 )

⊤
√
d

)
. (3)

. This has less effect on the final score with 3.5pp and 2.9pp drop in R@1 on CUB200 and Cars196
datasets respectively. This indicates that relation between local and global representation in Eq.1
helps similarity learning.

We can completely remove the bidirectional global to local attention mechanism and use baseline
projection function ϕ for finding the representation and use cosine similarity for computing the
similarity between points. This experiment is provided in Sec.4.3.2. Where we study how does our
model performs if coupled with different losses.
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CUB200-2011 CARS196 SOP
Method BB R@1 R@2 NMI R@1 R@2 NMI R@1 R@10 NMI

Margin128Wu et al. (2017) R50 63.6 74.4 69.0 79.6 86.5 69.1 72.7 86.2 90.7
Multi-Sim512Wang et al. (2019) BNI 65.7 77.0 - 84.1 90.4 - 78.2 90.5 -
MIC128Roth et al. (2019) R50 66.1 76.8 69.7 82.6 89.1 68.4 77.2 89.4 90.0
HORDE512Jacob et al. (2019) BNI 66.3 76.7 - 83.9 90.3 - 80.1 91.3 -
Softtriple512Qian et al. (2019) BNI 65.4 76.4 69.3 84.5 90.7 70.1 78.3 90.3 92.0
ABE512Kim et al. (2018) G 60.6 71.5 - 85.2 90.5 - 76.3 88.4 -
ProxyNCA++512 Teh et al. (2020) R50 69.0 79.8 71.3 86.5 92.5 71.5 80.7 92 -
XBM128 Wang et al. (2020) BNI 65.8 75.9 - 82.0 88.7 - 80.6 91.6 -
PADS128 Roth et al. (2020a) R50 67.3 78.0 69.9 83.5 89.7 68.8 76.5 89.0 89.9
GroupLoss1024 Elezi et al. (2020) BNI 65.5 77.0 69.0 85.6 91.2 72.7 75.1 87.5 90.8
DIML512Zhao et al. (2021) R50 67.9 - - 87.0 - - 78.5 - -
D&C512Sanakoyeu et al. (2021) R50 68.2 - 69.5 87.8 - 70.7 79.8 - 89.7
SynProxy512 Gu et al. (2021) R50 69.2 79.5 - 86.9 92.4 - 79.8 90.9 -
DiVA512 Milbich et al. (2020) R50 69.2 79.3 71.4 87.6 92.9 72.2 79.6 91.2 90.6
ProxyAnchor512 Kim et al. (2020) R50 69.7 80.0 - 87.7 92.9 - 80.0 91.7 -
Intra-Batch512 Seidenschwarz et al. (2021) R50 70.3 80.3 74.0 88.1 93.3 74.8 81.4 91.3 92.6
S2D2512 Roth et al. (2021) R50 70.1 79.7 71.6 89.5 93.9 72.9 80.0 91.4 90.8

Ours (256
upsmpl−−−−→ 608) R50 77.2 84.7 - 93.9 95.2 - 83.0 92.4 -

Table 1: Comparison to the state-of-the-art methods on CUB200-2011Wah et al. (2011),
CARS196Krause et al. (2013) and SOPOh Song et al. (2016). ’BB’ denote the backbone archi-
tecture being used (’R50’=ResNet50, ’BNI’=BN-InceptionNet, ’G’=GoogleNet). For our model,
’x → y’ indicates the image resizing process (x initial downsampling resolution, y subsequent up-
sampling resolution.) If y is not specified, the intial downsampling resolution x is used.

4.3.1 RESOLUTION EFFECT

We see an increase in performance with the increase of the image size. In Fig.2 we summarize
effect of the increase in image resolution for different methods on different datasets. Majority of the
methods benefit to some extend from the increase in image size. However, our attention mechanism
that replaces pooling operation helps to unleash the benefits of hi-resolution training.
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(a) Our results on the CUB200 dataset.
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(b) Our results on the Cars196 dataset.

Figure 2: Effect of image resolution of our approach against other methods.

Fine-grained details importance.
As an additional experiment we verify how much performance is lost due to the intermediate down-
sampling (no downsampling) to the size 256×256px. When no downsampling is performed we can
reach 0.7pp higher on R@1 on the CUB200 dataset and only 0.15pp R@1 on the Cars1-196. As
we see, our model does not significantly suffer from the missing information of real high-resolution

8



Under review as a conference paper at ICLR 2023

input. Hence, not additional, fine-grained information is crucial for performance, but the increased
number of “tokens” entailed by larger input image resolutions of tensors FS and FP .

4.3.2 OTHER LOSSES
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(a) CUB200 dataset.
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Figure 3: Effect of the attention module for different image resolutions. We see that the our mecha-
nism has bigger effect with the increase in image resolution.

We also apply our method using other losses used for similarity learning and observe consistent
improvement when scaling to larger image size. Thus, our bidirectional global to local attention
mechanism for similarity learning is applicable to other methods as well. Though other methods
increase the recall scores with the increase in resolution, our method helps to boost this effect.
This becomes especially prominent when we go for higher resolutions rates, reaching image size
608 × 608. In Fig.3 we visualize results for multi-similarity loss and for margin loss(Wu et al.,
2017) on the Cars-196 and CUB200 datasets.

5 CONCLUSIONS

We have presented a novel approach to visual similarity learning by abandoning the common
paradigm of holistic image encodings. Rather we have framed a similarity learning task as a pair-
based approach and not an image-based approach more suitable for a general representation learning.
We have designed a novel way to learn and utilize similarities between local regions of the image
without any extra labels. Our novel bidirectional global to local attention module splits the task
into two parts: what is related and how similar is that. We have provided a visual evidence that the
similarity learning may alter its focus within the same image depending on the image we compare
it to. On a technical side, we fight a problem of high compression rate of the embeddings mapping
function. We have shown that our bidirectional global to local attention similarity learning scales
better with increase in resolution compared to the other state-of-the-art approaches and significantly
outperform them in retrieval metrics on all three datasets. Our approach is generic and easy to com-
bine with other losses or even more sophisticated approaches to DML. We have also studied the
effect of each individual block of our bidirectional global to local attention block.
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