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ABSTRACT

Federated learning (FL) has garnered significant attention from academia and in-
dustry in recent years due to its advantages in data privacy, scalability, and com-
munication efficiency. However, current FL algorithms face a critical limitation:
their performance heavily depends on meticulously tuned hyperparameters, par-
ticularly the learning rate or stepsize. This manual tuning process is challenging
in federated settings due to data heterogeneity and limited accessibility of local
datasets. Consequently, the reliance on problem-specific parameters hinders the
widespread adoption of FL and potentially compromises its performance in dy-
namic or diverse environments. To address this issue, we introduce PAdaMFed,
a novel algorithm for nonconvex FL that carefully combines adaptive stepsize
and momentum techniques. PAdaMFed offers two key advantages: 1) it operates
autonomously without relying on problem-specific parameters, making it, to our
knowledge, the first FL algorithm to achieve such problem-parameter-agnostic
adaptation; and 2) it manages data heterogeneity and partial participation without
requiring heterogeneity bounds. Despite these benefits, PAdaMFed provides sev-
eral strong theoretical guarantees: 1) It achieves state-of-the-art convergence rates
with a sample complexity of O(ε−4) and communication complexity of O(ε−3)
to obtain an accuracy of ‖∇f (θ)‖ ≤ ε, even using constant learning rates; 2)
these complexities can be improved to the best-known O(ε−3) for sampling and
O(ε−2) for communication when incorporating variance reduction; 3) it exhibits
linear speedup with respect to the number of local update steps and participating
clients at each global round. These attributes make PAdaMFed highly scalable and
adaptable for various real-world FL applications. Extensive empirical evidence on
both image classification and sentiment analysis tasks validates the efficacy of our
approaches.

1 INTRODUCTION

Federated learning (FL) has emerged as a promising paradigm for machine learning, allowing mul-
tiple clients to collaboratively train a model without sharing raw data. Since its introduction by
McMahan et al. (2017), FL has garnered substantial attention from both academia and industry. Ma-
jor conferences such as NeurIPS, ICML, and ICLR have witnessed a proliferation of FL-related re-
search, addressing critical challenges including communication efficiency (Chen et al., 2021; Sattler
et al., 2019), privacy preservation (Wei et al., 2020; Mothukuri et al., 2021), heterogeneity manage-
ment Li et al. (2020); Karimireddy et al. (2020b); Wang et al. (2020), and partial and asynchronous
participation (Wang et al., 2024; Xu et al., 2023).

Despite significant advancements, current FL algorithms face a critical limitation: their perfor-
mance heavily depends on meticulously tuned hyperparameters, particularly the learning rate or
stepsize. This tuning process typically requires extensive computational resources and problem-
specific knowledge, such as smoothness parameters, heterogeneity bounds, stochastic gradient vari-
ances, and initial optimality gaps. For instance, MIME (Karimireddy et al., 2020a) relies on smooth-
ness constants and data heterogeneity bounds for stepsize determination, FedProx (Li et al., 2020)
requires careful adjustment of a proximal term based on data heterogeneity, and FedDyn (Acar
et al., 2021) demands tuning of a regularization parameter contingent on problem characteristics.
Furthermore, algorithms such as FedADT (Gao et al., 2023) and FedAMS (Chen et al., 2020) neces-
sitate problem-specific parameters to establish minimum communication rounds, which must exceed
thresholds associated with smoothness and other hyperparameters.
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This reliance on problem-specific parameters poses several critical challenges. First, it impedes the
widespread adoption of FL by complicating deployment and requiring expertise for hyperparameter
tuning (Mostafa, 2019; Deng et al., 2020). Second, it potentially compromises performance in
dynamic or diverse environments where data distributions may evolve (Reddi et al., 2020; Koloskova
et al., 2020). Last, accurately estimating these parameters in federated settings is often infeasible due
to the distributed nature of data and the inherent privacy constraints of FL (Konečnỳ et al., 2016).

Recent research has attempted to address this issue through adaptive stepsize methods. FedOpt
(Reddi et al., 2020) incorporates adaptive optimization techniques like AdaGrad, Adam, and Yogi
into FL, demonstrating improved convergence compared to FedAvg (McMahan et al., 2017). Fed-
Nova (Wang et al., 2020) introduces a normalization technique that effectively mitigates objective
inconsistency caused by partial client participation and data heterogeneity. FedBN (Li et al., 2021)
employed local batch normalization to alleviate feature shift before averaging models, outperform-
ing both classical FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020) for non-IID data.
While these approaches show promise, they still require careful tuning of global learning rates.

Momentum is a technique that mitigates data heterogeneity and accelerates gradient descent by
maintaining a velocity vector of gradient history. Recent studies have investigated the combination
of adaptive methods with momentum to leverage both advantages. Hsu et al. (2019) proposed Fe-
dAvgM, which incorporates a server-side momentum term into the FedAvg algorithm, demonstrating
enhanced convergence rates and robustness against data heterogeneity. Wang et al. (2019) developed
SlowMo, a momentum-based method that employs two nested loops to facilitate faster convergence
in distributed optimization. FedAMS (Chen et al., 2020) utilizes adaptive moment methods on both
the server and client sides to address data heterogeneity. MIME (Karimireddy et al., 2020a) com-
bines client and server momentum to enhance convergence. Wu et al. (2023) introduced FAFED,
a momentum-based variance reduction scheme integrated with an adaptive matrix, achieving the
best-known sample and communication complexity when utilizing diminishing stepsizes. Neverthe-
less, these methods still necessitate fine-tuning of multiple hyperparameters, limiting their practical
applicability.

A very recent contribution, FedSPS (Sohom Mukherjee, 2024), claims to be the first fully locally
adaptive method for FL with minimal hyperparameter tuning. While promising, this approach relies
on stringent assumptions of bounded gradients and bounded data heterogeneity. Moreover, it fails to
converge to optima with constant stepsizes and requires adjustment of a maximum stepsize threshold
based on the smoothness parameter, maintaining a degree of hyperparameter dependence. Therefore,
there is a critical need for more robust and adaptive FL algorithms capable of operating effectively
across diverse scenarios without relying on problem-specific parameters.

1.1 MAIN CONTRIBUTIONS

This paper addresses these critical limitations of FL by proposing a novel approach that eliminates
the need for problem-specific parameters while effectively handling arbitrary heterogeneous data
and supporting partial client participation. Our method is based on a careful combination of adap-
tive stepsize and momentum techniques. The adaptive stepsize mechanism dynamically adjusts local
learning rates against client update heterogeneity, while the momentum component provides stabil-
ity under partial participation and accelerates convergence in the nonconvex landscape. Our main
contributions are summarized below.

1) We introduce PAdaMFed, a problem-specific Parameter Agnostic algorithm for nonconvex FL
based on adaptive stepsizes and client-side Momentum. PAdaMFed offers several significant
advantages:

• Independent of problem-specific parameters: PAdaMFed operates autonomously without
relying on any problem-specific parameters such as smoothness constants or stochastic gra-
dient variance. All stepsizes in our approach are explicitly determined by the number of
participating clients, local updates, and communication rounds. To the best of our knowl-
edge, this is the first algorithm to achieve such parameter-agnostic adaptation in FL.

• Robustness to arbitrary heterogeneous data: PAdaMFed inherently manages data hetero-
geneity without requiring any heterogeneity bounds among clients while accommodating
partial client participation. This feature enhances its scalability and adaptability in real-
world scenarios where client data can be highly diverse and unpredictable, and full partici-
pation may not always be feasible due to resource constraints or device availability.
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2) We provide a rigorous theoretical analysis of PAdaMFed, demonstrating its state-of-the-art per-
formance:

• PAdaMFed achieves a sample complexity of O(ε−4) and communication complexity of
O(ε−3) to obtain a ‖∇f (θ)‖ ≤ ε accuracy for nonconvex FL problems, even using constant
learning rates.

• The complexities are further improved to the best-known sample complexity ofO(ε−3) and
communication complexity of O(ε−2) when incorporating variance reduction.

• PAdaMFed exhibits linear speedup with respect to the numbers of local update steps and
participating clients in each global round.

Notably, these theoretical results are obtained under minimal assumptions, requiring only L-
smoothness of loss functions and unbiased stochastic gradients with bounded within-client vari-
ance. This represents a significant advancement over existing FL algorithms, which typically
necessitate constraints such as data heterogeneity bounds (Li et al., 2021; Wu et al., 2023), di-
minishing stepsizes (Wu et al., 2023; Sohom Mukherjee, 2024), or fail to achieve the best-known
convergence rates (Liang et al., 2019; Alghunaim, 2024).

3) We conduct empirical evaluations on both image classification and sentiment analysis tasks to
validate our theoretical findings and the efficacy of our algorithms. Our methods are compared
against several established baselines, including FedAvg (McMahan et al., 2017), SCAFFOLD
(Karimireddy et al., 2020b), and SCAFFOLD-M (Cheng et al., 2024). Extensive numerical
evidence demonstrates the superiority of our approaches in not only stepsize robustness but also
testing accuracy and convergence speed.

2 PROBLEM SETUP

We consider an FL system where N clients collaboratively train a common learning model θ ∈ Rd
under the coordination of a parameter server. Let ξi represent a random sample of client i drawn
from its local data distribution Di. The loss function associated with client i is given by fi(θ) :=
Eξi∼Di

[F (θ; ξi)], where F (θ; ξi) is the stochastic loss of client i over sample ξi. The objective of
the FL system is to minimize the global loss function across all clients, defined as:

minθ∈Rd f(θ) := 1
N

∑N
i=1 fi(θ) where fi(θ) := Eξi∼Di

[F (θ; ξi)] .

In a federated setting, clients collaboratively train a global model, but the raw data of each client is
never shared with the server and other clients.

Denote by ‖ · ‖ the `2 norm. We make the following assumptions.
Assumption 1 (Sample-Wise Smoothness). Given any ξ, the sample-wise loss function F (θ; ξ) is
L-smooth, i.e., ‖∇F (θ; ξ)−∇F (δ; ξ)‖ ≤ L‖θ − δ‖ for all θ, δ ∈ Rd.

The Sample-Wise Smoothness Assumption 1 implies the following standard smoothness condition.
Assumption 2 (Standard Smoothness). There exists L > 0, such that the loss function fi is L-
smooth, i.e., ‖∇fi (θ)−∇fi (δ)‖ ≤ L‖θ − δ‖ for all θ, δ ∈ Rd and i ∈ {1, . . . , N}.

We emphasize that our original PAdaMFed algorithm is based on the Standard Smoothness As-
sumption 2. The slightly more stringent Assumption 1 is required when using variance reduction to
further facilitate convergence.
Assumption 3 (Stochastic Gradient). There exists σ ≥ 0 such that for all θ ∈ Rd and i ∈
{1, . . . , N}, Eξi [∇F (θ; ξi)] = ∇fi(θ) and Eξi ‖∇F (θ; ξi)−∇fi(θ)‖2 ≤ σ2, where ξi ∼ Di.

Assumption 3 ensures that the stochastic gradient ∇F (θ; ξi) is unbiased and has bounded within-
client variance, which is standard in stochastic optimization.

We consider nonconvex FL problems with heterogeneous data among clients that the local data
distributionsDi 6= Dj for any i 6= j. When addressing data heterogeneity, most existing approaches,
such as SCAFFOLD (Karimireddy et al., 2020b), FedProx (Li et al., 2020), FedAMS (Chen et al.,
2020), and MIME (Karimireddy et al., 2020a), require an upper bound on gradient dissimilarity, i.e.,
there exist constants B, σ2

h > 0 such that
1
N

∑N
i=1 ‖∇fi(θ)‖2 ≤ B ‖∇f(θ)‖2 + σ2

h for all θ ∈ Rd. (1)
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This assumption simplifies the mathematical analysis of those FL approaches and ensures their al-
gorithmic performance. However, it may not hold in scenarios where data across clients exhibit
significant and unpredictable variations, thus compromising the robustness of FL.

Existing FL algorithms typically rely on problem-specific parameters to determine their stepsizes,
including the smoothness parameter L, gradient variance σ2, and heterogeneity bounds B and σ2

h.
The smoothness parameter, which characterizes the Lipschitz continuity of gradients, is generally a
global property requiring knowledge of the entire dataset. Similarly, quantifying data heterogeneity
across clients necessitates a comprehensive understanding of the differences between local data
distributions. However, in FL settings where raw data sharing is prohibited and only model updates
are exchanged, obtaining precise measurements of these parameters is computationally prohibitive
and may compromise FL’s privacy guarantees.

In the subsequent section, we present an algorithm that is independent of problem-specific parame-
ters and capable of handling arbitrarily heterogeneous data, thereby eliminating the requirement of
the heterogeneity bound (1).

3 ALGORITHM DEVELOPMENT

Algorithm 1 PAdaMFed: A Problem-Parameter-Agnostic Algorithm for Nonconvex FL

1: Require: Initial model θ0, control variates c−1
i = 1

K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
for any i, c−1 =

1
N

∑
i c
−1
i , momentum g−1 = c−1, global learning rate γ, local learning rate η, and momentum

parameter β
2: for t = 0, · · · , T − 1 do
3: Central Server: Uniformly sample clients St ⊆ {1, · · · , N} with |St| = S
4: for each client i ∈ St in parallel do
5: Initialize local model θt,0i = θt and control variate cti = 0 (for i /∈ St, cti = ct−1

i )
6: for k = 0, · · · ,K − 1 do
7: Compute gt,ki = β

(
∇F

(
θt,ki ; ξt,ki

)
− ct−1

i + ct−1
)

+ (1− β)gt−1

8: Update local model θt,k+1
i = θt,ki − η

gt,ki

‖gt,ki ‖
9: end for

10: Update control variate cti = 1
K

∑K
k=1∇F

(
θt,ki ; ξt,ki

)
11: Upload θt,Ki and cti to central server
12: end for

Central server:
13: Aggregate local updates gt = 1

ηSK

∑
i∈St

(
θt − θt,Ki

)
14: Update global model θt+1 = θt − γgt
15: Aggregate control variate ct = ct−1 + 1

N

∑
i∈St

(
cti − c

t−1
i

)
16: Aggregate momentum gt = β

(
1
S

∑
i∈St

(
cti − c

t−1
i

)
+ ct−1

)
+ (1− β)gt−1

17: Download θt+1 and βct + (1− β)gt to all clients
18: end for

In this section, we propose PAdaMFed, a problem parameter-agnostic algorithm for nonconvex FL
based on adaptive stepsizes and client-side momentum. PAdaMFed is designed to operate indepen-
dently of any problem-specific parameters, handle arbitrarily heterogeneous data, and accommodate
partial client participation.

3.1 ALGORITHM DEVELOPMENT OF PADAMFED

PAdaMFed builds upon the well-established SCAFFOLD algorithm (Karimireddy et al., 2020b),
which was designed to address “client drift” in FL, where local models significantly deviate from the
global model due to partial participation and data heterogeneity. The core concept of SCAFFOLD
is the utilization of control variates to correct the drift between client updates and the global model.
Specifically, the server maintains a global control variate, denoted by ct, to represent the average

4
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model update direction, while each client maintains a local control variate, denoted by cti for all
i ∈ {1, . . . , N}, to track individual update directions. Client updates are subsequently adjusted
using the difference between local and global control variates. SCAFFOLD demonstrates faster and
more stable convergence compared to the seminal FedAvg algorithm (McMahan et al., 2017).

In this paper, we extend the original SCAFFOLD framework by incorporating client-side momentum
and local adaptive stepsizes, as outlined in Algorithm 1. Specifically, in Step 7 of Algorithm 1, the
local descent direction of client i at global round t and local step k is computed as:

gt,ki = β
(
∇F

(
θt,ki ; ξt,ki

)
− ct−1

i + ct−1
)

+ (1− β)gt−1.

In this expression, the term ∇F
(
θt,ki ; ξt,ki

)
represents the stochastic gradient at the current local

model θt,ki with the sample ξt,ki . The term ct−1 − ct−1
i adjusts the difference between the global

and local control variates, helping to mitigate client drift. The term gt−1 denotes the current global
momentum, essential for stabilizing and accelerating the convergence across clients.

In Step 8 of Algorithm 1, the local model for each client i is updated by:

θt,k+1
i = θt,ki − η

gt,ki

‖gt,ki ‖
.

Here, an adaptive stepsize η/‖gt,ki ‖ is utilized by normalizing the descent direction vector gt,ki . This
normalization guarantees that the updates from each client have a uniform magnitude, preventing
the disproportionate impact of any individual client on the global model update. It also provides us
the convenience on quantifying the distance between consecutive models in our theoretical analysis,
maintaining that

∥∥∥θt,k+1
i − θt,ki

∥∥∥ = η
∥∥∥gt,ki /‖gt,ki ‖

∥∥∥ = η for all i, k, t.

Additionally, since cti = 1
K

∑K−1
k=0 ∇F

(
θt,ki ; ξt,ki

)
for all i, the momentum update in Step 16 of

Algorithm 1 can be expressed as:

gt = β
(

1
S

∑
i∈St

(
1
K

∑K−1
k=0 ∇F

(
θt,ki ; ξt,ki

)
− ct−1

i

)
+ ct−1

)
+ (1− β)gt−1. (2)

This equation accumulates the descent directions across clients and iterations. With gt, the optimiza-
tion trajectories at each client are smoothed by the descent directions of other clients, enhancing the
robustness of the optimization process against variability in local updates caused by data heterogene-
ity. Notably, our PAdaMFed algorithm maintains the communication workload of the SCAFFOLD
for both uplink and downlink.

3.2 ACCELERATING PADAMFED WITH VARIANCE REDUCTION

Variance reduction is an effective technique to accelerate convergence and enhance the stability
of FL, particularly when dealing with heterogeneous data and limited client participation. In this
subsection, we enhance PAdaMFed by integrating a variance reduction component into each client’s
descent direction, resulting in our PAdaMFed-VR algorithm. A detailed description of this algorithm
is provided in Appendix C.

PAdaMFed-VR differs from PAdaMFed primarily in its computation of the local gradient. Specifi-
cally, Step 7 of Algorithm 1 is replaced with:

gt,ki = ∇F
(
θt,ki ; ξt,ki

)
+ β

(
ct−1 − ct−1

i

)
+ (1− β)

(
gt−1 −∇F

(
θt−1; ξt,ki

))
,

where ∇F
(
θt−1; ξt,ki

)
represents the variance reduction component. Our variance reduction de-

sign follows the principle of STORM (Cutkosky & Orabona, 2019) to make more efficient sample
utilization. For each local update, the sample ξt,ki is used twice: 1) to compute the gradient based on
the current local model θt,ki ; and 2) to evaluate the gradient at the previous global model θt−1. This
dual usage of each sample mitigates the influence of within-client gradient noise, enabling more
accurate estimation of gradient directions.

5
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4 THEORETICAL RESULTS AND COMPARISONS WITH PRIOR WORK

In this section, we present theoretical analyses on the convergence properties of both PAdaMFed and
PAdaMFed-VR. Based on these findings, we will compare the performance of these two algorithms
with state-of-the-art FL methods.

4.1 THEORETICAL RESULTS

Theorem 1. Suppose that Assumptions 2 and 3 hold. Let the local and global learning rates of

PAdaMFed be η = 1
K
√
T

and γ = (SK)
1
4

T
3
4

, respectively, the momentum parameter be β =
√

SK
T ,

and {θt}t≥0 be the iterates generated by Algorithm 1. Then, it holds for all T ≥ 1 that

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ ≤ O(∆ + L+ σ +

√
Lσ

(SKT )
1
4

+

√
SKσ + L√

T

)
,

where ∆ := f
(
θ0
)
−minθ f(θ).

Theorem 2. Suppose that Assumptions 1 and 3 hold. Let the local and global learning rates of

PAdaMFed-VR be η = 1
KT and γ = (SK)

1
3

T
2
3

, respectively, the momentum parameter be β = (SK)
1
3

T
2
3

,

and {θt}t≥0 be the iterates generated by Algorithm 2. Then, it holds for all T ≥ 1 that

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ ≤ O(∆ + L+ σ

(SKT )
1
3

+
(L+ σ)(SK)

1
3

T
2
3

)
.

Remark 1. According to Theorem 1, PAdaMFed converges to an ε-stationary point 1 in expectation
within O

(
1

SKε4

)
communication rounds. This is improved to O

(
1

SKε3

)
when incorporating vari-

ance reduction, as shown in Theorem 2. Furthermore, both algorithms demonstrate linear speedup
with respect to the number of participating clients S and local update steps K.

Remark 2. In PAdaMFed, setting SK = O(T
1
3 ) yields a sample complexity 2 of O(ε−4) with a

communication complexity ofO(ε−3). Similarly, by setting SK = O(
√
T ), PAdaMFed-VR achieves

the best-known sample complexity ofO(ε−3) with a communication complexity ofO(ε−2) to find an
ε-stationary point (Wu et al., 2023).
Remark 3. In traditional FL, selecting optimal stepsizes theoretically requires the knowledge of
problem-specific parameters, which are often unavailable. Consequently, in real-world FL sce-
narios, stepsizes must be tuned empirically—a process that is labor-intensive, time-consuming, and
sometimes even impractical. In contrast, in our PAdaMFed and PAdaMFed-VR, the stepsizes are de-
termined by the numbers of participating clients S, local update stepsK, and communication rounds
T , eliminating the need for any problem-specific parameters. This problem-parameter-independent
feature simplifies implementation, enhances robustness, and facilitates the deployment of our algo-
rithm across diverse FL applications.

4.2 PROOF SKETCH

Our theoretical proof starts from the L-smoothness property of the loss function f(θ), which yields
the following inequality:

f
(
θt+1

)
− f (θt) ≤ 2γ ‖∇f (θt)− gt‖ − γ ‖∇f (θt)‖+ γ

SK

∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥+ γ2L
2 .

1A point θ is said to be ε-stationary if ‖∇f (θ)‖ ≤ ε. Note that for any ε-stationary point defined using
‖∇f(θ)‖2, one can derive the corresponding guarantee for ‖∇f(θ)‖ based on the following relationship:

1

T

T−1∑
t=1

E‖∇f(θt)‖ = 1

T

T−1∑
t=0

E
√
‖∇f(θt)‖2 ≤ 1

T

T−1∑
t=0

√
E‖∇f(θt)‖2 ≤

√√√√ 1

T

T−1∑
t=0

E‖∇f(θt)‖2

where the first and second inequalities utilizes Jensen’s inequality as the square root function is concave. There-
fore, we can align our results with the conventional 1

T

∑T
t=1 ‖∇f(θ

t)‖2 metric by taking square root on both
sides of their convergence bounds.

2Total number of samples across clients, local updates, and communication rounds.
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To establish an upper bound for 1
T

∑T−1
t=0 E ‖∇f (θt)‖, we must quantify two key terms:

1
T

∑T−1
t=0 E ‖∇f (θt)− gt‖ and 1

T

∑T−1
t=0

1
SKE

[∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥].
The momentum gt is a recursive variable that accumulates values from previous rounds.
By plugging into the expression of gt (provided in (2)) into |∇f (θt)− gt| and introducing
the auxiliary term f

(
θt−1

)
, we can recursively express ‖∇f (θt)− gt‖ by its predecessor∥∥∇f (θt−1

)
− gt−1

∥∥, scaled by a contraction coefficient (1 − β). This substitution also intro-
duces additional terms associated with stochastic gradients and control variates. Through meticu-
lous control of all intermediate terms, we prove that 1

T

∑T−1
t=0 E ‖∇f (θt)− gt‖ is upper bounded

by O((SKT )−
1
4 ) for PAdaMFed and by O((SKT )−

1
3 ) for PAdaMFed-VR.

The term E
[∑

i∈St,k

∥∥∥gt,ki − gt∥∥∥] represents gradient dissimilarity across clients. While the
heterogeneity bound (1) could readily control this term, our objective is to eliminate depen-
dence on such bounds. Instead, we relax this term to E

∥∥∇fi (θt−1
)
− ct−1

i

∥∥, along with other
controllable terms, by substituting the expressions for gt,ki and gt. Analogous to our treat-
ment of E |∇f (θt)− gt|, we exploit the recursive property of the control variate ct−1

i to bound

E
∥∥∇fi (θt−1

)
− ct−1

i

∥∥. This, in turn, allows us to establish a bound for E
[∑

i∈St,k

∥∥∥gt,ki − gt∥∥∥].
Combining the above processes leads to our analytical results. For comprehensive proofs, please
refer to Appendix B for Theorem 1 and Appendix C for Theorem 2.

Intuition on the Algorithmic Features: The efficacy of PAdaMFed stems from the synergistic in-
tegration of three indispensable components: local gradient normalization, client-side momentum,
and control variates. 1) Gradient normalization serves as an adaptive learning rate scheme, auto-
matically adjusting stepsizes based on the local optimization landscape. This design automatically
allows larger steps in regions with small gradients (where more aggressive exploration is beneficial)
and smaller steps in steep regions (where careful progress is needed). 2) Client-side momentum
helps accelerate convergence while maintaining stability. First, it helps overcome local irregularities
in the loss landscape by accumulating gradients over clients and iterations; Second, it accelerates
progress in directions of consistent gradient agreement. 3) Furthermore, control variates align local
updates with the global objective, reducing variance in gradient estimates and ensuring more consis-
tent updates across heterogeneous client data. Collectively, these techniques ensure that the stepsizes
are independent of problem-specific parameters such as smoothness parameters and heterogeneity
bounds, simplifying the tuning process and enhancing robustness across diverse FL applications.
Notably, our algorithms also eliminate the need for data heterogeneity bounds, further broadening
their applicability.

4.3 COMPARISONS WITH PRIOR WORK

We compare PAdaMFed and PAdaMFed-VR with several representative algorithms for solving FL
problems with heterogeneous data, as listed in Table 1.

Comparisons of PAdaMFed with Prior FL Algorithms: The SCAFFOLD (Karimireddy et al.,
2020b) algorithm requires the smoothness parameter L for stepsize tuning. However, its communi-

cation complexity, given by O
((

N
S

) 1
3 L
Kε4

)
, is suboptimal. MIME (Karimireddy et al., 2020a) im-

proves this complexity toO
(

1
SKε4

)
by incorporating server-level momentum. Nevertheless, MIME

requires large-batch local gradients per round, and its learning rates depend on multiple problem
parameters, including initial optimality gap ∆ and heterogeneity bound σ2

h, which are challenging
to estimate.

FedSPS (Sohom Mukherjee, 2024) incorporates stochastic Polyak step-sizes into local client up-
dates, achieving a communication complexity ofO

(
1

NKε4

)
in full participation scenarios. However,

its analysis relies on the assumption of bounded data heterogeneity. Moreover, its stepsize tuning
requires knowledge of the lower bounds of all local loss functions, i.e., `∗i for all i, in addition to the
smoothness parameter L, leading to significant problem-parameter dependence.

SCAFFOLD-M (Cheng et al., 2024) employs similar client-side momentum as PAdaMFed, remov-
ing the need for bounded data heterogeneity. However, SCAFFOLD-M’s stepsizes depend on sev-
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Table 1: Comparisons of algorithms for solving FL problems with heterogeneous data.
(Shorthand notation: Add. Assump. = Additional assumptions aside from Assumptions 1–3, BDH
= Bounded data heterogeneity define in (1), BG = Bounded gradient that ‖∇fi(θ)‖ ≤ G, ∀i,θ,
BHD = Bounded Hessian dissimilarity that

∥∥∇2fi(θ)−∇2f(θ)
∥∥2 ≤ δ, ∀i,θ)

Algorithms Add. Assump. Stepsize
Stepsize-Related

Problem Parameters

Communication

Complexity

SCAFFOLD
(Karimireddy et al., 2020b)

– γ =
√
S, η ≤ 1

24γKL

(
S
N

) 2
3

L O
((

N
S

) 1
3 L
Kε4

)
MIME

(Karimireddy et al., 2020a)
BDH, BHD η =

√
∆S

LG̃TK2 , G̃ = σ2
h + σ2

K
L, ∆, σ2, σ2

h O
(

1
SKε4

)

FedSPS
(Sohom Mukherjee, 2024)

BDH
ηt,ki = min

{
F
(
θ
t,k
i ;ξ

t,k
i

)
−`∗i

c
∥∥∥∇F(θt,k

i ;ξ
t,k
i

)∥∥∥2 , ηb
}

1

ηb ≤ min
{

1
2cL

, 1
25LK

} L, `∗i , ∀i O
(

1
NKε4

)

SCAFFOLD-M
(Cheng et al., 2024)

–
β = min

{
1, S

N
2
3

,
√
L∆SK
σ2T

,
√
L∆S2

G0N

}
2

γ = β
L

, ηKL . min

{
1√
S
, 1

βK
1
4

,
√
S
N

} L, ∆, σ2, G0 O
(

1
SKε4

)

PAdaMFed
(This paper)

– β =
√
SK
T

, γ =
(SK)

1
4

T
3
4

, η = 1

K
√
T

– O
(

1
SKε4

)
Variance-Reduced

FAFED
(Wu et al., 2023)

BDH, BG ηt ∝ N
2
3

Lt
1
3

, βt ∝ η2
t L O

(
1

SKε3

)

SCAFFOLD-M-VR
(Cheng et al., 2024)

–

β = min

{
S
N
,
(
KL∆
σ2T

) 2
3
, S

1
3

}
γL = min

{
1,
√
βS
}

ηKL . min

{√
β
S
,
(
β
SK

) 1
4

} L, ∆, σ2 O
(

1

S
√
Kε4

)

PAdaMFed-VR
(This paper)

– β =
(SK)

1
3

T
2
3

, γ =
(SK)

1
3

T
2
3

, η = 1
KT

– O
(

1
SKε3

)
1 `∗i ≤ infθ,ξi∼Di F (θ; ξi) for any i, and c is a constant to balance adaptivity and accuracy.
2 G0 := 1

N

∑N
i=1

∥∥∇fi(θ0)
∥∥2.

eral problem-specific parameters, including the smoothness parameter L, initial optimal gap ∆, and
stochastic gradient variance σ2, resulting in laborious stepsize tuning. In contrast, PAdaMFed is
completely independent of problem-specific parameters.3

Comparisons of PAdaMFed-VR with Prior Variance-Reduced FL Algorithms: FAFED (Wu
et al., 2023) employing a momentum-based variance reduction with an adaptive matrix, achieving
the best-knownO(ε−3) sample complexity andO(ε−2) communication complexity through the use
of diminishing stepsizes. However, FAFED requires stringent assumptions of bounded gradients and
bounded data heterogeneity. Moreover, its learning rates are subject to several complex constraints
and rely on problem-parameter-based algorithm tuning. SCAFFOLD-M-VR (Cheng et al., 2024)
is a variance-reduced SCAFFOLD-M algorithm and, similarly, requires careful step size tuning

3It is worth mentioning that SCAFFOLD-M achieves a convergence rate of 1
T

∑T−1
r=0 E[‖∇f(θt)‖2] ≤

O
(√

L∆σ2

SKT
+ L∆

T

(
1 + N2/3

S

))
. While this bound is theoretically superior to our method by a factor of

N2/3

S
in the second term, the overall convergence behavior is primarily governed by the first term. There-

fore, our comparative analysis focuses on the dominant first term, which represents the primary bottleneck in
practical convergence.
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(a) i.i.d (b) non-i.i.d

Figure 1: Test accuracy versus the number of communication rounds on the EMNIST dataset.

(a) i.i.d (b) non-i.i.d

Figure 2: Test accuracy versus learning rate on the EMNIST dataset.

based on multiple problem-dependent parameters. Even though, it fails to achieve the best-known
complexity established in the literature.

5 NUMERICAL EXPERIMENTS

In this section, we present experiments on two distinct tasks: image classification and textual sen-
timent analysis. The image classification task is performed on both the EMNIST dataset (Cohen
et al., 2017) and the CIFAR-10 (Li et al., 2017) dataset , while the sentiment analysis task is con-
ducted on the IMDB dataset (Maas et al., 2011), which contains movie reviews sourced from the
Internet Movie Database. We evaluate the proposed algorithms against baselines, including FedAvg
(McMahan et al., 2017), SCAFFOLD (Karimireddy et al., 2020b), and SCAFFOLD-M (Cheng et al.,
2024). Additionally, experiments are conducted under both i.i.d. and non-i.i.d. data settings. Due to
space limitations, the detailed experimental setup and additional simulation results are provided in
Appendix D.

Figure 1 illustrates the test accuracy of various algorithms versus the number of communication
rounds on the EMNIST dataset, with subfigure 1a representing i.i.d. data and subfigure 1b depicting
non-i.i.d. data. The stepsizes for our algorithms, PAdaMFed and PAdaMFed-VR, are determined
based on the theoretical guidance provided in Theorem 1 and Theorem 2, respectively. For fair com-
parisons, the hyperparameters of other algorithms in Figure 1 are optimized through grid search to
achieve their best performance. The results demonstrate that our proposed methods significantly out-
perform all baseline algorithms—FedAvg, SCAFFOLD, and SCAFFOLD-M—in both convergence
speed and test accuracy. Notably, although SCAFFOLD-M employs a similar momentum technique,
it converges more slowly than PAdaMFed and achieves lower accuracy, validating the efficacy of our
adaptive stepsize design. Building upon these advantages, the incorporation of variance reduction
further enhances our methods’ superiority through more efficient sample utilization. Moreover, the
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results on non-i.i.d. data in subfigure 1b demonstrate even greater performance margins than the
i.i.d. case, highlighting the advantages of our algorithms.

Figure 2 compares the test accuracy of various algorithms versus the learning rate on the EMNIST
dataset. All algorithms were evaluated over 400 communication rounds to ensure fair comparison.
We observe that our algorithm demonstrates superior robustness to stepsize selection, maintaining
stable performance across a significantly wider range of learning rates compared to baseline meth-
ods. Specifically, it achieves test accuracy exceeding 0.8 across the stepsize range [3× 10−3, 10−1]
for i.i.d. data distributions (subfigure 2a) and above 0.7 for the same stepsize range under non-i.i.d.
conditions (subfigure 2b). In contrast, baseline algorithms exhibit substantially narrower regions of
stable performance, empirically validating our method’s enhanced stepsize robustness.

6 CONCLUSIONS

This paper has proposed an innovative approach to eliminating problem-specific parameter depen-
dencies in FL, enabling parameter-agnostic generalization across diverse settings. Our algorithms
have also removed the need for data heterogeneity bounds and accommodated partial client partici-
pation, further broadening its applicability to real-world scenarios. We have provided a rigorous the-
oretical analysis demonstrating state-of-the-art convergence rate, based on the minimal assumptions
of L-smoothness of loss functions and unbiased stochastic gradients with bounded within-client
variance. Additionally, we have enhanced the convergence rate of our algorithm through variance
reduction, achieving the best-knownO(ε−3) sampling complexity andO(ε−2) communication com-
plexity. Furthermore, we have provided extensive numerical evidence on both image classification
and textual sentiment analysis tasks to verify the efficacy of our approaches.
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Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Robust and
communication-efficient federated learning from non-iid data. IEEE transactions on neural net-
works and learning systems, 31(9):3400–3413, 2019.

11

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sebastian U. Stich Sohom Mukherjee, Nicolas Loizou. Locally adaptive federated learning. arXiv
preprint arXiv:2307.06306, 2024.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Im-
proving communication-efficient distributed SGD with slow momentum. arXiv preprint
arXiv:1910.00643, 2019.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020.

Xiaolu Wang, Yuchang Sun, Hoi-To Wai, and Jun Zhang. Dual-delayed asynchronous sgd for arbi-
trarily heterogeneous data. arXiv preprint arXiv:2405.16966, 2024.

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek,
and H Vincent Poor. Federated learning with differential privacy: Algorithms and performance
analysis. IEEE transactions on information forensics and security, 15:3454–3469, 2020.

Xidong Wu, Feihu Huang, Zhengmian Hu, and Heng Huang. Faster adaptive federated learning.
In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp. 10379–10387,
2023.

Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang Gao. Asynchronous federated learning on
heterogeneous devices: A survey. Computer Science Review, 50:100595, 2023.

Jing Xu, Sen Wang, Liwei Wang, and Andrew Chi-Chih Yao. Fedcm: Federated learning with
client-level momentum. arXiv preprint arXiv:2106.10874, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A RELATED WORKS

Adaptive Stepsize Methods: Adaptive stepsize methods have gained significant attention in opti-
mization literature due to their ability to automatically adjust learning rates based on the geometry
of the objective function. These methods, such as Adam (Kingma & Ba, 2014), AdaGrad (Duchi
et al., 2011), and RMSProp (Hinton, 2012), have demonstrated remarkable success in various ma-
chine learning tasks, particularly in handling sparse gradients and non-stationary objectives. In the
context of FL, adaptive stepsizes offer several advantages. First, they eliminate the need for manual
tuning of learning rates, which is especially beneficial in federated settings where global knowledge
of the objective function’s properties is limited. Second, adaptive methods can potentially mitigate
the impact of data heterogeneity by allowing different update rates for different model parameters,
effectively accounting for varying gradient statistics across clients.

FedOpt (Reddi et al., 2020) introduced adaptive optimization techniques like AdaGrad, Adam, and
Yogi into FL, demonstrating improved convergence properties compared to the traditional FedAvg
algorithm. Wang et al. (2020) proposed FedNova, which normalizes and scales local updates to mit-
igate objective inconsistency caused by partial client participation and data heterogeneity. FedBN
(Li et al., 2021) employed local batch normalization to alleviate feature shift before averaging mod-
els, outperforming both classical FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020) for
non-IID data. While these approaches demonstrated the advantages of adaptive methods for easing
parameter tuning, none provides theoretical guarantees, and careful tuning of global learning rates
remains essential.

Momentum: Momentum, on the other hand, is a technique that accelerates gradient descent by
maintaining a velocity vector that captures the history of gradients. In nonconvex optimization, mo-
mentum has been shown to help escape saddle points more efficiently and potentially reach better
local optima (Cutkosky & Orabona, 2019). The incorporation of momentum in FL algorithms can
provide several benefits. It can help smooth out the impact of heterogeneous updates from differ-
ent clients, potentially leading to more stable and faster convergence. Moreover, momentum can
aid in overcoming the challenges posed by partial client participation by maintaining a consistent
optimization trajectory even when client participation varies across rounds.

Hsu et al. (2019) proposed FedAvgM, which adds a server-side momentum term to the FedAvg
algorithm, demonstrating improved convergence rates and robustness to data heterogeneity. Wang
et al. (2019) developed SlowMo, a momentum-based method using two nested loops to achieve
faster convergence in distributed optimization. Both FedCM (Xu et al., 2021) and (Cheng et al.,
2024) investigated the integration of client-side momentum in FedAvg to effectively tackle client
heterogeneity and partial participation in FL.

Combination of Adaptive Stepsizes and Momentum: Recent works have explored combining
adaptive methods and momentum in FL. FedAMS (Chen et al., 2020) implements a local AMS-
Grad scheme for FL, demonstrating fast convergence with low communication cost. MIme (Karim-
ireddy et al., 2020a) combines control-variates with server-level momentum at every local update
to mimic centralized methods running on IID data, outperforming centralized methods but requir-
ing a large-batch local gradient per round for each client. Wu et al. (2023) introduced FAFED,
a momentum-based variance reduction scheme integrated with an adaptive matrix, attaining the
best-known sample and communication complexity when using diminishing stepsizes. While these
methods demonstrate improved performance, they still require careful tuning of global learning
rates.

A recent contribution, FedSPS (Sohom Mukherjee, 2024), claims to be the first fully locally adaptive
method for FL with minimal hyperparameter tuning. While promising, this approach relies on
stringent assumptions of bounded data heterogeneity and gradients. Moreover, it fails to converge
to optima with constant stepsizes and requires adjustment of a maximum stepsize threshold based
on the smoothness parameter, thus retaining some hyperparameter dependence. The limitations of
existing approaches underscore the critical need for more robust, adaptive FL algorithms capable of
operating effectively across diverse scenarios without extensive parameter tuning.

This paper makes a significant advancement by proposing a novel algorithm, PAdaMFed, that com-
pletely eliminates dependency on problem-specific parameters. All stepsizes in our approach are ex-
plicitly determined by the number of participating clients, local updates, and communication rounds.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

To the best of our knowledge, this is the first algorithm that achieves such problem-parameter inde-
pendence in FL. Moreover, our algorithm inherently manages data heterogeneity and partial client
participation without requiring any heterogeneity bound among clients, which is also nontrivial.

Data heterogeneity has been extensively studied in FL. However, existing algorithms either depend
on bounded data heterogeneity (e.g., FedAvg (McMahan et al., 2017), SCAFFOLD (Karimireddy
et al., 2020b), FedProx (Li et al., 2020), and MIme (Karimireddy et al., 2020a)) or fall short of
achieving state-of-the-art convergence rates (e.g., VRL-SGD (Liang et al., 2019) and LED (Alghu-
naim, 2024)). Recently, Cheng et al. (2024) demonstrated that momentum can eliminate the data
heterogeneity constraint in the FedAvg and SCAFFOLD algorithms while achieving state-of-the-art
convergence results. Wang et al. (2024) introduced DuDe-ASGD for asynchronous FL, which can
effectively handle arbitrarily heterogeneous data by leveraging stale stochastic gradients. However,
their algorithms require carefully designed stepsizes based on hyperparameters. In contrast, our al-
gorithm accommodates arbitrary data heterogeneity while achieving complete problem-parameter
independence.

A notable concurrent work by (Li et al., 2024) also explores problem-parameter free algorithms in
the context of decentralized non-convex optimization. While both studies target problem-parameter
free optimization, our work addresses the unique challenges inherent to federated learning settings.
The fundamental distinction lies in our treatment of client drift—a critical phenomenon arising from
multiple local updates and data heterogeneity in federated environments. Our key technical contri-
butions beyond (Li et al., 2024) are twofold: 1) The development of a novel framework integrating
control variates with momentum to mitigate client drift, requiring sophisticated theoretical analysis
due to their complex interactions; 2) The successful elimination of explicit heterogeneity bounds,
which were previously considered essential in federated learning literature.

B THEORETICAL ANALYSIS OF PADAMFED

Our analysis is based on the following useful lemmas.
Lemma 1. For any t, we have

1

NK

∑
i,k

∥∥∥θt,ki − θt∥∥∥2

≤ 1

3
η2K2 and

1

NK

∑
i,k

∥∥∥θt,ki − θt∥∥∥ ≤ 1

2
ηK.

Proof. From the update rule of local model, for any i, k and t, we have

∥∥∥θt,k+1
i − θt,ki

∥∥∥ = η

∥∥∥∥∥∥ gt,ki∥∥∥gt,ki ∥∥∥
∥∥∥∥∥∥ ≤ η.

Then,

∥∥∥θt,ki − θt∥∥∥2

=

∥∥∥∥∥∥
k−1∑
j=0

(
θt,j+1
i − θt,ji

)∥∥∥∥∥∥
2

≤ k
k−1∑
j=0

∥∥∥θt,j+1
i − θt,ji

∥∥∥2

≤ η2k2.

Summing the above inequality over i and k yields

1

NK

∑
i,k

∥∥∥θt,ki − θt∥∥∥2

≤ η2

K

K−1∑
k=0

k2 ≤ η2

6K
(K − 1)K(2K − 1) ≤ 1

3
η2K2.

Similarly, we have

1

NK

∑
i,k

∥∥∥θt,ki − θt∥∥∥ ≤ 1

NK

∑
i,k

(
E
∥∥∥θt,ki − θt∥∥∥2

) 1
2

≤ η

K

K−1∑
k=0

k ≤ 1

2
ηK.

These inequalities in Lemma 1 are frequently used in our analysis.
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Lemma 2. Given vectors ω1, · · · ,ωN ∈ Rd and ω = 1
N

∑N
i=1 ωi, if we sample S ⊂ {1, · · · , N}

uniformly randomly such that |S| = S, then it holds that

E

∥∥∥∥∥ 1

S

∑
i∈S

ωi

∥∥∥∥∥
2
 ≤ ‖ω‖2 +

1

SN

N∑
i=1

‖ωi − ω‖2 .

Proof. Letting 1{i ∈ S} be the indicator for the event i ∈ S , we prove this lemma by direct
calculation as follows:

E

∥∥∥∥∥ 1

S

∑
i∈S

ωi

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1

S

N∑
i=1

ωi1{i ∈ S}

∥∥∥∥∥
2


=
1

S2
E

∑
i

‖ωi‖2 1{i ∈ S}+ 2
∑
i<j

ω>i ωj1{i, j ∈ S}


=

1

SN

N∑
i=1

‖ωi‖2 +
1

S2

S(S − 1)

N(N − 1)
2
∑
i<j

ω>i ωj

=
1

SN

N∑
i=1

‖ωi‖2 +
1

S2

S(S − 1)

N(N − 1)

∥∥∥∥∥
N∑
i=1

ωi

∥∥∥∥∥
2

−
N∑
i=1

‖ωi‖2


=
N − S
S(N − 1)

1

N

N∑
i=1

‖ωi‖2 +
N(S − 1)

S(N − 1)
‖ω‖2

=
N − S
S(N − 1)

1

N

N∑
i=1

‖ωi − ω‖2 + ‖ω‖2

≤ 1

SN

N∑
i=1

‖ωi − ω‖2 + ‖ω‖2,

where the last inequality uses the fact that N−SN−1 ≤ 1 for any nonempty set S.

From the L-smoothness of f(·) in Assumption 2, we have

f
(
θt+1

)
− f

(
θt
)

≤ ∇f
(
θt
)> (

θt+1 − θt
)

+
L

2

∥∥θt+1 − θt
∥∥2

(a)

≤ −γ∇f
(
θt
)> 1

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki ∥∥∥
+

γ2L

2

= −γ
(
∇f

(
θt
)
− gt

)> 1

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki ∥∥∥
− γ (gt)>

 1

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki ∥∥∥
+

γ2L

2

≤ γ
∥∥∇f (θt)− gt∥∥− γ (gt)>

 1

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki ∥∥∥ −
gt

‖gt‖

− γ ∥∥gt∥∥+
γ2L

2

(b)

≤ 2γ
∥∥∇f (θt)− gt∥∥− γ ∥∥∇f (θt)∥∥+ γ

∥∥gt∥∥
∥∥∥∥∥∥ 1

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki ∥∥∥ −
gt

‖gt‖

∥∥∥∥∥∥+
γ2L

2

(c)

≤ 2γ
∥∥∇f (θt)− gt∥∥− γ ∥∥∇f (θt)∥∥+

γ

SK

∑
i∈St,k

‖gt,ki − g
t‖+

γ2L

2
, (A1)
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where (a) uses the inequality that
∥∥θt+1 − θt

∥∥ =

∥∥∥∥ γ
SK

∑
i∈St,k

gt,ki

‖gt,ki ‖

∥∥∥∥ ≤ γ, (b) is based on

γ ‖∇f (θt)‖ − γ ‖gt‖ ≤ γ ‖∇f (θt)− gt‖ and (c) is from the following relation:

∥∥gt∥∥
∥∥∥∥∥∥ 1

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki ∥∥∥ −
gt

‖gt‖

∥∥∥∥∥∥ =
‖gt‖
SK

∥∥∥∥∥∥
∑
i∈St,k

 gt,ki∥∥∥gt,ki ∥∥∥ −
gt,ki
‖gt‖

∥∥∥∥∥∥
=
‖gt‖
SK

∥∥∥∥∥∥
∑
i∈St,k

‖gt‖ −
∥∥∥gt,ki ∥∥∥

‖gt‖
∥∥∥gt,ki ∥∥∥ gt,ki

∥∥∥∥∥∥
≤ ‖g

t‖
SK

∑
i∈St,k

∣∣∣‖gt‖ − ∥∥∥gt,ki ∥∥∥∣∣∣
‖gt‖

∥∥∥gt,ki ∥∥∥
∥∥∥gt,ki ∥∥∥

=
1

SK

∑
i∈St,k

∣∣∣∥∥gt∥∥− ∥∥∥gt,ki ∥∥∥∣∣∣
≤ 1

SK

∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥ .
Taking expectation on both sides of (A1), we obtain

γE
∥∥∇f (θt)∥∥ ≤E [f (θt)− f (θt+1

)]
+ 2γE

∥∥∇f (θt)− gt∥∥
+

γ

SK
E

 ∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥
+

γ2L

2
.

Summing the above inequality over t and dividing it by γT , we have

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ ≤ 1

γT
E
[
f
(
θ0
)
− f

(
θT
)]

+
2

T

T−1∑
t=0

E
∥∥∇f (θt)− gt∥∥

+
1

SKT

T−1∑
t=0

E

[∑
i∈St

∥∥∥gt,ki − gt∥∥∥
]

+
γL

2
. (A2)

We have the following results on the terms 1
T

∑T−1
t=0 E ‖∇f (θt)− gt‖ and

1
SKT

∑T−1
t=0 E

[∑
i∈St

∥∥∥gt,ki − gt∥∥∥] in (A2).

Lemma 3. Under Assumptions 2 and 3, the disparity 1
T

∑T−1
t=0 E ‖∇f (θt)− gt‖ is upper bounded

by:

1

T

T−1∑
t=0

E
∥∥∇f (θt)− gt∥∥ ≤ 1

βT

(
1

2
ηβKL+

3σ√
SK

)
+
γL

β
+

√
1 +

10β

S
ηKL+ σ

√
30β

SK

+ 2γL

√
β

S

(
1 +

4N2

S2

)
+

√
η
√
KLσ

2
√
S

.

Lemma 4. Under Assumptions 2 and 3, the gradient dissimilarity
1

SKT

∑T−1
t=0 E

[∑
i∈St

∥∥∥gt,ki − gt∥∥∥] is upper bounded by:

1

SKT

T∑
t=1

E

 ∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥
 ≤2β

((
1 +

2√
K

)
σ + 2ηKL+

(
1 +

2N

S

)
γL

)

+
8Nβ

ST

(√
2σ√
K

+

√
2S

3N
ηKL

)
.
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The proof of Lemma 3 is presented in subsection B.1 and the proof of Lemma 3 is presented in
subsection B.2.

Set β = β0√
T

, γ = γ0

T
3
4

and η = 1
K
√
T

. From Lemma 3, we know that

1

T

T−1∑
t=0

E
∥∥∇f (θt)− gt∥∥

≤ 1

β0

√
T

(
β0L

2T
+

3σ√
SK

)
+

γ0L

β0T
1
4

+

√
1 +

10β0

S
√
T

L√
T

+ σ

√
30β0

SK
√
T

+
2γ0L

T

√
β0

S

(
1 +

4N2

S2

)
+

√
Lσ

2
√
SKT

.
3σ

β0

√
SKT

+
γ0L

β0T
1
4

+
L√
T

+ σ

√
30β0

SK
√
T

+

√
Lσ

2
√
SKT

. (A3)

Similarly, from Lemma 4, we know that

1

SKT

T−1∑
t=0

E

 ∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥


≤ 2β0√
T

((
1 +

2√
K

)
σ +

2L√
T

+

(
1 +

2N

S

)
γ0L

T
3
4

)
+

8Nβ0

ST
3
2

(√
2σ√
K

+

√
2S

3N

L√
T

)

.
2β0σ√
T

+
4β0σ√
KT

. (A4)

Define the initial optimality gap ∆ := f
(
θ0
)
− f∗. Then, f

(
θ0
)
− f

(
θT
)
≤ f

(
θ0
)
− f∗ = ∆.

Plugging (A3) and (A4) into (A2), we have

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ .

∆

γ0T
1
4

+
6σ

β0

√
SKT

+
2γ0L

β0T
1
4

+
2L√
T

+ 2σ

√
30β0

SK
√
T

+

√
2Lσ

(SKT )
1
4

+
2β0σ√
T

+
4β0σ√
KT

+
γ0L

2T
3
4

.

Let γ0 = (SK)
1
4 and β0 =

√
SK. Then, we have

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ ≤ O(∆ + L+ σ +

√
Lσ

(SKT )
1
4

+

√
SKσ + L√

T

)
.

By setting SK ≤ O
(
T

1
3

)
, we have

√
SK√
T
∝ O

(
(SKT )−

1
4

)
and thus

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ ≤ O(∆ + L+ σ +

√
Lσ

(SKT )
1
4

)
.

B.1 PROOF OF LEMMA 3

The proof of Lemma 3 utilizes the following result.

Lemma 5. For any i, t, define φti := E ‖∇fi (θt)− cti‖
2. Under Assumptions 2 and 3, we have

φti ≤
(

2σ2

K
+

2S

3N
η2K2L2

)(
1− S

4N

)2t

+ 4

(
N2

S2
γ2L2 +

σ2

K
+

1

3
η2K2L2

)
,∀i.

Proof. Since for any t, the S elements in St are uniformly sampled from {1, · · · , N}, we have

cti =

{
ct−1
i with probability1− S

N
1
K

∑
k∇F

(
θt,ki ; ξt,ki

)
with probability SN .
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Using Young’s inequality repeatedly, we have

φti =

(
1− S

N

)
E
∥∥∇fi (θt)− ct−1

i

∥∥2
+
S

N
E

∥∥∥∥∥ 1

K

∑
k

(
∇fi

(
θt
)
−∇F

(
θt,ki ; ξt,ki

))∥∥∥∥∥
2

≤
(

1− S

N

)
E
∥∥∇fi (θt)∓∇fi (θt−1

)
− ct−1

i

∥∥2
+
S

N

(
2σ2

K
+

2L2

K

∑
k

E
∥∥∥θt,ki − θt∥∥∥2

)

≤
(

1− S

N

)
E
[(

1 +
S

2N

)
φt−1
i +

(
1 +

2N

S

)
γ2L2

]
+

2S

N

(
σ2

K
+

1

3
η2K2L2

)
≤
(

1− S

2N

)
φt−1
i +

2N

S
γ2L2 +

2S

N

(
σ2

K
+

1

3
η2K2L2

)
≤
(

1− S

2N

)t
φ0
i +

(
2N

S
γ2L2 +

2S

N

(
σ2

K
+

1

3
η2K2L2

)) t−1∑
τ=0

(
1− S

2N

)τ
≤
(

1− S

2N

)t
φ0
i + 4

(
N2

S2
γ2L2 +

σ2

K
+

1

3
η2K2L2

)
.

Since c−1
i = 1

K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
, we have

φ0
i =

(
1− S

N

)
E
∥∥∇fi (θ0

)
− c−1

i

∥∥2
+
S

N
E

∥∥∥∥∥∇fi (θ0
)
− 1

K

∑
k

∇F
(
θ0,k
i ; ξ0,k

i

)∥∥∥∥∥
2

≤
(

1− S

N

)
σ2

K
+

2S

N

(
L2E

∥∥∥θ0 − θ0,k
i

∥∥∥+
σ2

K

)
≤
(

1 +
S

N

)
σ2

K
+

2S

3N
η2K2L2

≤ 2σ2

K
+

2S

3N
η2K2L2.

Then, we have

φti ≤
(

2σ2

K
+

2S

3N
η2K2L2

)(
1− S

2N

)t
+ 4

(
N2

S2
γ2L2 +

σ2

K
+

1

3
η2K2L2

)
≤
(

2σ2

K
+

2S

3N
η2K2L2

)(
1− S

4N

)2t

+ 4

(
N2

S2
γ2L2 +

σ2

K
+

1

3
η2K2L2

)
,

where we use the relation 1− S
2N ≤

(
1− S

4N

)2
.

Define Et := ∇f (θt) − gt and ut := ∇f (θt) −∇f
(
θt−1

)
. From the update rule of momentum

gt, we have

Et =(1− β)
(
∇f

(
θt
)
− gt−1

)
+ β

∇f (θt)− ct−1 − 1

SK

∑
i∈St,k

(
∇F

(
θt,ki ; ξt,ki

)
− ct−1

i

)
︸ ︷︷ ︸

:=vt

=(1− β)Et−1 + (1− β)ut + βvt

=(1− β)tE0 +

t∑
τ=1

uτ (1− β)t+1−τ +

t∑
τ=1

βvτ (1− β)t−τ .

Based on the triangle inequality of `2 norm and the concavity of the square root (·) 1
2 , we have

E
∥∥Et∥∥ ≤(1− β)tE

∥∥E0
∥∥+

t∑
τ=1

E ‖uτ‖ (1− β)t+1−τ +

E

∥∥∥∥∥
t∑

τ=1

βvτ (1− β)t−τ

∥∥∥∥∥
2
 1

2

. (A5)
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Since c−1
i = 1

K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
for any i, c−1 = 1

N

∑
i c
−1
i , and g−1 = c−1, we have

E
∥∥E0

∥∥ = E

∥∥∥∥∥∥∇f (θ0
)
− 1

NK

∑
i,k

∇F
(
θ0; ξ−1,k

i

)
+

β

SK

∑
i∈S0,k

(
∇F

(
θ0
i ; ξ−1,k

i

)
−∇F

(
θ0,k
i ; ξ0,k

i

))∥∥∥∥∥∥
≤ σ√

NK
+ E

∥∥∥∥∥∥ β

SK

∑
i∈S0,k

(
∇F

(
θ0
i ; ξ−1,k

i

)
∓∇fi

(
θ0
i

)
∓∇fi

(
θ0,k
i

)
−∇F

(
θ0,k
i ; ξ0,k

i

))∥∥∥∥∥∥
≤ σ√

NK
+

βσ√
SK

+
β

SK
E

 ∑
i∈S0,k

∥∥∥∇fi (θ0
)
−∇fi

(
θ0,k
i

)∥∥∥
+

βσ√
SK

≤ βL

NK

∑
i,k

E
∥∥∥θ0,k

i − θ
0
∥∥∥+

3σ√
SK

≤ 1

2
ηβKL+

3σ√
SK

, (A6)

where the last inequality uses the results in Lemma 1.

Additionally, for any t, we have

∥∥ut∥∥ =
∥∥∇f (θt+1

)
−∇f

(
θt
)∥∥ ≤ L∥∥θt+1 − θt

∥∥ ≤ γL
∥∥∥∥∥∥ 1

SK

∑
i∈St,k

gt,ki

‖gt,ki ‖

∥∥∥∥∥∥ ≤ γL. (A7)

To proceed, we handle the last term in (A5). First, we have

E

∥∥∥∥∥
t∑

τ=1

βvτ (1− β)t−τ

∥∥∥∥∥
2

=

t∑
τ=1

β2E‖vτ‖2(1− β)2(t−τ)

+
∑

1≤τ1,τ2≤t,τ1 6=τ2

E
〈
βvτ1(1− β)t−τ1 , βvτ2(1− β)t−τ2

〉
. (A8)

Let F0 6= ∅ and F t,ki := σ({θt,ji }0≤j≤k ∪ F t) and F t+1 := σ(∪iF t,Ki ) for all t ≥ 0, where
σ() indicates the σ-algebra. Let E[·|F t] represent the expectation conditioned on the filtration F t
with respect to the random variables {ξt,ki }1≤i≤N,0≤k<K in the t-th iteration. Let Eξt,ki

[·] represent

the expectation taking over the random sample ξt,ki . Similarly, let ESt [·] represent the expectation
taking over the uniformly sampled client set St. The set St is independent across different t. Then,
for any t, we have

E[vt|F t] = E{ξt,ki }∀i,k,St
[vt]

= E{ξt,ki }∀i,k

∇f (θt)− ct−1 − 1

NK

∑
i,k

(
∇F

(
θt,ki ; ξt,ki

)
− ct−1

i

)
= ∇f

(
θt
)
− 1

NK

∑
i,k

∇fi
(
θt,ki

)
,
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where the last equality is based on Assumption 3 and the fact that
∑N
i=1 c

t
i = ct for any t. Then, for

any 0 ≤ t1 < t2 ≤ T − 1, we have
E
〈
vt1 ,vt2

〉
= E

〈
vt1 ,E

[
vt2 |F t2

]〉
= E

〈
1

SK

∑
i∈St,k

(
∇fi

(
θt1
)
−∇fi

(
θt1,ki

))
,

1

NK

∑
i,k

(
∇fi

(
θt2
)
−∇fi

(
θt2,ki

))〉

+ E

〈
1

SK

∑
i∈St,k

(
∇fi

(
θt1,ki

)
−∇F

(
θt1,ki ; ξt1,ki

))
,

1

NK

∑
i,k

(
∇fi

(
θt2
)
−∇fi

(
θt2,ki

))〉

+ E

〈
ESt

[
1

S

∑
i∈St

ct−1 − ct−1
i

]
,

1

NK

∑
i,k

(
∇fi

(
θt2
)
−∇fi

(
θt2,ki

))〉

≤ L2

2NK

∑
i,k

E
∥∥∥θt1,ki − θt1

∥∥∥2

+
L2

2NK

∑
i,k

E
∥∥∥θt2,ki − θt2

∥∥∥2

+
σ√
SK

L

NK

∑
i,k

∥∥∥θt2,ki − θt2
∥∥∥

≤ 1

3
η2K2L2 +

η
√
KLσ

2
√
S

. (A9)

Further, based on Lemma 2, we have

E
∥∥vt∥∥2 ≤E

∥∥∥∥∥∥∇f (θt)− 1

NK

∑
i,k

∇F
(
θt,ki ; ξt,ki

)∥∥∥∥∥∥
2

+
1

S

1

N

∑
i

E

∥∥∥∥∥ 1

K

∑
k

(
∇F

(
θt,ki ; ξt,ki

)
− 1

N

∑
i

∇F
(
θt,ki ; ξt,ki

))
−
(
ct−1
i − ct−1

)∥∥∥∥∥
2

︸ ︷︷ ︸
:=Λt

≤2

(
L2E

∥∥∥θt − θt,ki ∥∥∥+
σ2

NK

)
+

Λt
S

≤2

3
η2K2L2 +

2σ2

NK
+

Λt
S
.

Λt ≤
1

N

∑
i

E

∥∥∥∥∥ 1

K

∑
k

∇F
(
θt,ki ; ξt,ki

)
− ct−1

i

∥∥∥∥∥
2

=
1

N

∑
i

E

∥∥∥∥∥ 1

K

∑
k

∇F
(
θt,ki ; ξt,ki

)
∓∇fi

(
θt,ki

)
∓∇fi

(
θt
)
∓∇fi

(
θt−1

)
− ct−1

i

∥∥∥∥∥
2

≤ 4σ2

K
+

4L2

NK

∑
i,k

E
∥∥∥θt,ki − θt∥∥∥2

+ 4L2E
∥∥θt − θt−1

∥∥2
+

4

N

∑
i

E
∥∥∇fi (θt−1

)
− ct−1

i

∥∥2

≤ 4σ2

K
+

4

3
η2K2L2 + 4γ2L2 +

4

N

∑
i

φt−1
i ,

where φt−1
i := E

∥∥∇fi (θt−1
)
− ct−1

i

∥∥2
. From Lemma 5, we know that, for any i,

φt−1
i ≤

(
2σ2

K
+

2S

3N
η2K2L2

)(
1− S

4N

)2(t−1)

+ 4

(
N2

S2
γ2L2 +

σ2

K
+

1

3
η2K2L2

)
≤6σ2

K
+ 2η2K2L2 +

4N2

S2
γ2L2. (A10)

Plugging the upper bound of φt−1
i into Λt yields

Λt ≤
28σ2

K
+

28

3
η2K2L2 + 4γ2L2

(
1 +

4N2

S2

)
.
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Then, we have

E
∥∥vt∥∥2 ≤

(
2

3
+

10

S

)
η2K2L2 +

30σ2

SK
+

4γ2L2

S

(
1 +

4N2

S2

)
. (A11)

Plugging (A9) and (A11) into (A8) gives

E

∥∥∥∥∥
t∑

τ=1

βvτ (1− β)t−τ

∥∥∥∥∥
2

≤βE‖vτ‖2 + E 〈vτ1 ,vτ2〉

≤
(

2

3
+

10

S

)
βη2K2L2 +

30σ2β

SK
+

4βγ2L2

S

(
1 +

4N2

S2

)
+

1

3
η2K2L2 +

η
√
KLσ

2
√
S

.

Since β ≤ 1, taking square root on both sides of the above inequality yields

E

∥∥∥∥∥
t∑

τ=1

βvτ (1− β)t−τ

∥∥∥∥∥
2
 1

2

≤
√

1 +
10β

S
ηKL+ σ

√
30β

SK
+ 2γL

√
β

S

(
1 +

4N2

S2

)
+

√
η
√
KLσ

2
√
S

, (A12)

where we use the fact that
√
a+ b ≤

√
a+
√
b, for any a, b ≥ 0.

Plugging (A6), (A7), and (A12) into (A5), we have

E‖Et‖ ≤(1− β)t
(

1

2
ηβKL+

3σ√
SK

)
+
γL

β
+

√
1 +

10β

S
ηKL+ σ

√
30β

SK

+ 2γL

√
β

S

(
1 +

4N2

S2

)
+

√
η
√
KLσ

2
√
S

.

Summing the above inequality over t yields

1

T

T−1∑
t=0

E‖Et‖ ≤ 1

βT

(
1

2
ηβKL+

3σ√
SK

)
+
γL

β
+

√
1 +

10β

S
ηKL+ σ

√
30β

SK

+ 2γL

√
β

S

(
1 +

4N2

S2

)
+

√
η
√
KLσ

2
√
S

.

B.2 PROOF OF LEMMA 4

Recall that gt,ki = β
(
∇F

(
θt,ki ; ξt,ki

)
− ct−1

i + ct−1
)

+ (1− β)gt−1, and

gt =
1

SK

∑
i∈St,k

gt,ki

= β

(
1

S

∑
i∈St

(
1

K

K−1∑
k=0

∇F
(
θt,ki ; ξt,ki

)
− ct−1

i

)
+ ct−1

)
+ (1− β)gt−1.
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Then, we have

E

 1

SK

∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥


= βE

 1

SK

∑
i∈St,k

∥∥∥∥∥∇F (θt,ki ; ξt,ki

)
− ct−1

i − 1

S

∑
i∈St

(
1

K

K−1∑
k=0

∇F
(
θt,ki ; ξt,ki

)
− ct−1

i

)∥∥∥∥∥


≤ 2β

NK

∑
i,k

E
∥∥∥∇F (θt,ki ; ξt,ki

)
− ct−1

i

∥∥∥
=

2β

NK

∑
i,k

E
∥∥∥∇F (θt,ki ; ξt,ki

)
∓∇fi

(
θt,ki

)
∓∇fi

(
θt
)
∓∇fi

(
θt−1

)
− ct−1

i

∥∥∥
≤ 2β

σ +
L

NK

∑
i,k

∥∥∥θt,ki − θt∥∥∥+ L
∥∥θt − θt−1

∥∥+
2β

N

∑
i

E
∥∥∇fi (θt−1

)
− ct−1

i

∥∥
≤ 2β

(
σ +

1

2
ηKL+ γL

)
+

2β

N

∑
i

√
φt−1
i .

From Lemma 5, we know that√
φt−1
i ≤

(√
2σ√
K

+

√
2S

3N
ηKL

)(
1− S

4N

)t−1

+ 2

(
N

S
γL+

σ√
K

+
1√
3
ηKL

)
,∀i.

Thus, we have

E

 1

SK

∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥
 ≤2β

((
1 +

2√
K

)
σ + 2ηKL+

(
1 +

2N

S

)
γL

)

+ 2β

(√
2σ√
K

+

√
2S

3N
ηKL

)(
1− S

4N

)t−1

.

Summing the above inequality over t yields

1

SKT

T∑
t=1

E

 ∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥
 ≤2β

((
1 +

2√
K

)
σ + 2ηKL+

(
1 +

2N

S

)
γL

)

+
8Nβ

ST

(√
2σ√
K

+

√
2S

3N
ηKL

)
.

C THEORETICAL ANALYSIS OF PADAMFED WITH VARIANCE REDUCTION

The analysis of PAdaMFed-VR is similar to that of PAdaMFed. We first present the following two
auxiliary Lemmas.

Lemma 6. Under Assumptions 1 and 3, the disparity 1
T

∑T−1
t=0 E ‖∇f (θt)− gt‖ is upper bounded

by:

1

T

T−1∑
t=0

E
∥∥∇f (θt)− gt∥∥ ≤ 1

βT

(
1

2
ηKL+

3σ√
SK

)
+
ηKL

2β
+ γL

√
2

SKβ
+ σ

√
22β

SK

+ γL

√
3β

S

(
1 +

4N2

S2

)
+ ηKL

√
6β

S
.
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Algorithm 2 PAdaMFed-VR: PAdaMFed with Variance Reduction

1: Require: initial model θ0, θ−1 = θ0, control variates c−1
i = 1

K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
for

any i, c−1 = 1
N

∑
i c
−1
i , momentum g−1 = c−1, global learning rate γ, local learning rate η,

and momentum parameter β
2: for t = 0, · · · , T − 1 do
3: Central Server: Uniformly sample clients St ⊆ {1, · · · , N} with |St| = S
4: for each client i ∈ St in parallel do
5: Initialize local model θt,0i = θt and control variate cti = 0 (for i /∈ St, cti = ct−1

i )
6: for k = 0, · · · ,K − 1 do
7: Compute gt,ki = ∇F

(
θt,ki ; ξt,ki

)
+ β

(
ct−1 − ct−1

i

)
+ (1 −

β)
(
gt−1 −∇F

(
θt−1; ξt,ki

))
8: Update local model θt,k+1

i = θt,ki − η
gt,ki

‖gt,ki ‖
9: Update control variate cti = cti + 1

K∇F
(
θt,ki ; ξt,ki

)
10: end for
11: Upload θt,Ki and cti to central server
12: end for

Central server:
13: Aggregate local updates gt = 1

ηSK

∑
i∈St

(
θt − θt,Ki

)
14: Update global model θt+1 = θt − γgt
15: Aggregate control variate ct = ct−1 + 1

N

∑
i∈St

(
cti − c

t−1
i

)
16: Aggregate momentum gt = β

(
1
S

∑
i∈St

(
cti − c

t−1
i

)
+ ct−1

)
+ (1− β)gt−1

17: Download θt+1, ct, and gt to all clients
18: end for

Lemma 7. Under Assumptions 1 and 3, the gradient dissimilarity
1

SKT

∑T−1
t=0 E

[∑
i∈St

∥∥∥gt,ki − gt∥∥∥] is upper bounded by:

1

SKT

T∑
t=1

E

 ∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥
 ≤2β

((
1 +

2√
K

)
σ + 2ηKL+

(
1 +

2N

S

)
γL

)

+
8Nβ

ST

(√
2σ√
K

+

√
2S

3N
ηKL

)
+ ηKL+ 2γL.

Set β = β0

T
2
3

and γ = γ0

T
2
3

. η = 1
KT . From Lemma 6, we know that

1

T

T−1∑
t=0

E
∥∥∇f (θt)− gt∥∥ ≤ 1

β0T
1
3

(
L

2T
+

3σ√
SK

)
+

L

2β0T
1
3

+
γ0L

T
1
3

√
2

SKβ0
+

σ

T
1
3

√
22β0

SK

+
γ0L

T

√
3β0

S

(
1 +

4N2

S2

)
+

L

T
4
3

√
6β0

S

.
3σ

β0

√
SKT

1
3

+
L

2β0T
1
3

+
γ0L

T
1
3

√
2

SKβ0
+

σ

T
1
3

√
22β0

SK
. (A13)

Similarly, from Lemma 7, we have

1

SKT

T∑
t=1

E

 ∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥
 ≤2β0

T
2
3

((
1 +

2√
K

)
σ +

2L

T
+

(
1 +

2N

S

)
γ0L

T
2
3

)

+
8Nβ0

ST
5
3

(√
2σ√
K

+

√
2S

3N

L

T

)
+
L

T
+

2γ0L

T
2
3

. (A14)
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Plugging (A13) and (A14) into (A2), we have

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ .

∆

γ0T
1
3

+
6σ

β0

√
SKT

1
3

+
L

β0T
1
3

+
2
√

2γ0L√
SKβ0T

1
3

+
2σ
√

22β0√
SKT

1
3

+
2β0σ

T
2
3

+
2γ0L

T
2
3

.

Set β0 = (SK)
1
3 and γ0 = (SK)

1
3 , we have

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ .

∆

γ0T
1
3

+
6σ

β0

√
SKT

1
3

+
L

β0T
1
3

+
2
√

2γ0L√
SKβ0T

1
3

+
2σ
√

22β0√
SKT

1
3

+
2β0σ

T
2
3

+
2γ0L

T
2
3

≤O

(
∆ + L+ σ

(SKT )
1
3

+
(L+ σ)(SK)

1
3

T
2
3

)
.

By setting SK ≤ O
(√

T
)

, we have (SK)
1
3

T
2
3
∝ O

(
(SKT )−

1
3

)
and thus

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ ≤ O(∆ + L+ σ

(SKT )
1
3

)
.

C.1 PROOF OF LEMMA 6

Since Et := ∇f (θt)− gt, we have

Et =∇f
(
θt
)
− 1

SK

∑
i∈St,k

∇F
(
θt,ki ; ξt,ki

)
+
β

S

∑
i∈St

(
ct−1
i − ct−1

)

− (1− β)

gt−1 ∓∇f
(
θt−1

)
− 1

SK

∑
i∈St,k

∇F
(
θt−1; ξt,ki

)
=(1− β)Et−1 +

1

SK

∑
i∈St,k

(
∇F

(
θt; ξt,ki

)
−∇F

(
θt,ki ; ξt,ki

))
︸ ︷︷ ︸

:=wt

+ β

∇f (θt)− ct−1 − 1

SK

∑
i∈St,k

(
∇F

(
θt; ξt,ki

)
− ct−1

i

)
︸ ︷︷ ︸

:=ṽt

+ (1− β)

 1

SK

∑
i∈St,k

(
∇F

(
θt−1; ξt,ki

)
−∇F

(
θt; ξt,ki

))
+∇f

(
θt
)
−∇f

(
θt−1

)
︸ ︷︷ ︸

:=ũt

=(1− β)tE0 +

t∑
τ=1

wτ (1− β)t−τ +

t∑
τ=1

ũτ (1− β)t+1−τ +

t∑
τ=1

βṽτ (1− β)t−τ .

E
∥∥Et∥∥ ≤(1− β)tE

∥∥E0
∥∥+

t∑
τ=1

E
∥∥wt

∥∥ (1− β)t−τ +

E

∥∥∥∥∥
t∑

τ=1

ũτ (1− β)t+1−τ

∥∥∥∥∥
2
 1

2

+

E

∥∥∥∥∥
t∑

τ=1

βṽτ (1− β)t−τ

∥∥∥∥∥
2
 1

2

. (A15)
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Since θ−1 = θ0, c−1
i = 1

K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
for any i, c−1 = 1

N

∑
i c
−1
i , and g−1 = c−1,

we have

E
∥∥E0

∥∥ =E

∥∥∥∥∥∥∇f (θ0
)
− 1

NK

∑
i,k

∇F
(
θ0; ξ−1,k

i

)

+
1

SK

∑
i∈S0,k

(
β∇F

(
θ0
i ; ξ−1,k

i

)
+ (1− β)∇F

(
θ0; ξ0,k

i
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Then, we have ∥∥wt
∥∥ ≤ L

SK

∑
i∈St,k

E
∥∥∥θt,ki − θt∥∥∥ ≤ 1

2
ηKL. (A17)

Additionally, since E[ũt|F t] = 0, then, for any 0 ≤ t1 < t2 ≤ T − 1, we have

E
〈
ũt1 , ũt2

〉
= E

〈
ũt1 ,E[ũt2 |F t2 ]

〉
= 0.

From Lemma 2, for any t, we have
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∥∥∥∥∥∥ 1

NK

∑
i,k

(
∇F

(
θt−1; ξt,ki

)
−∇F

(
θt; ξt,ki

))
+∇f

(
θt
)
−∇f

(
θt−1

)∥∥∥∥∥∥
2

+
1

SN

N∑
i=1

E

∥∥∥∥∥ 1

K

∑
k

(
∇F

(
θt−1; ξt,ki

)
−∇F

(
θt; ξt,ki

))
+∇f

(
θt
)
−∇f

(
θt−1

)∥∥∥∥∥
2

≤ L2

NK

∥∥θt − θt−1
∥∥2

+
L2

SK

∥∥θt − θt−1
∥∥2

≤2γ2L2

SK
.

Then, we have

E

∥∥∥∥∥
t∑

τ=1

ũτ (1− β)t+1−τ

∥∥∥∥∥
2

=

t∑
τ=1
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Similarly, since E[ṽt|F t] = 0, for any 0 ≤ t1 < t2 ≤ T − 1, we have

E
〈
ṽt1 , ṽt2

〉
= E

〈
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= 0.

From Lemma 2, for any t, we have
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By (A10), φt−1
i ≤ 6σ2
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2L2. Then, we have
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Plugging (A16), (A17), (A18), and (A19) into (A15) yields

E‖Et‖ ≤(1− β)t
(

1

2
ηKL+

3σ√
SK

)
+
ηKL

2β
+ γL

√
2

SKβ
+ σ

√
22β

SK

+ γL

√
3β

S

(
1 +

4N2

S2

)
+ ηKL

√
6β

S
.

Summing the above inequality over t yields
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C.2 PROOF OF LEMMA 7

With variance reduction, we have gt,ki = ∇F
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From Section B.2, we know that
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Then, we have
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Summing the above inequality over t, we have
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D ADDITIONAL NUMERICAL RESULTS

In this section, we provide detailed simulation settings and present the results for the textual senti-
ment analysis task.

Datasets. 1) Image Dataset: The EMNIST dataset (Cohen et al., 2017) extends the MNIST dataset,
featuring images of handwritten letters and digits. It includes both uppercase and lowercase English
letters as well as digits from 0 to 9. 2) Natural Language Dataset: The IMDB dataset (Maas et al.,
2011) contains movie reviews sourced from the Internet Movie Database, with each review labeled
as either positive or negative sentiment.

Experimental Settings: Our evaluation encompasses both image classification and textual senti-
ment analysis tasks. For image classification, we employ a convolutional neural network (CNN) with
three convolutional layers and two fully connected layers for the EMNIST dataset, and a ResNet-
18 architecture for CIFAR-10. The sentiment analysis task utilizes a Long Short-Term Memory
(LSTM) model on the IMDB dataset. The experimental framework involves 100 distributed clients,
with 10 clients participating randomly in each training round. We investigate both independent and
identically distributed (i.i.d.) and non-i.i.d. data distributions. For i.i.d. scenarios, we implement
uniform random data distribution across clients. To simulate realistic heterogeneity in non-i.i.d.
settings, we apply different statistical distributions: a Dirichlet distribution Dir(1) for EMNIST,
Dir(0.5) for CIFAR-10, and a Beta distribution Beta(2,5) for IMDB. All hyperparameters, including
learning rates, are optimized through comprehensive grid search.

D.1 SIMULATIONS ON CIFAR-10 DATASET

Figure 3 presents the comparative analysis of test accuracy across different algorithms on the
CIFAR-10 dataset, with subfigures 3a and 3b illustrating the performance under i.i.d. and non-
i.i.d. data distributions, respectively. The observed patterns align with those demonstrated in Figure
1. Our proposed algorithms demonstrate superior performance compared to existing methods, in-
cluding FedAvg, SCAFFOLD, and SCAFFOLD-M, both in terms of convergence rate and final test
accuracy. Under non-i.i.d. conditions, while all algorithms exhibit increased performance volatility
and reduced accuracy, the relative performance hierarchy remains consistent with the i.i.d. scenario,
as shown in subfigure 6b.

Figure 4 illustrates the evolution of gradient norm |∇f(θt)| for various algorithms on the CIFAR-10
dataset under both i.i.d. and non-i.i.d. data distributions. The results demonstrate that momentum-
enhanced methods, specifically our proposed algorithm and SCAFFOLD-M, achieve more rapid
gradient norm reduction compared to their non-momentum counterparts.

We further carry out the ablation study by isolating the effects of momentum and gradient normaliza-
tion in Figure 5. The results demonstrate that incorporating SCAFFOLD with normalized gradient
leads to degraded performance due to the loss of gradient magnitude information. Therefore, the
momentum is essential in our algorithm design to maintain the descent direction by effectively ag-
gregating gradients across clients and iterations.
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(a) i.i.d (b) non-i.i.d

Figure 3: Test accuracy versus the number of communication rounds on the CIFAR-10 dataset.

(a) i.i.d (b) non-i.i.d

Figure 4: Gradient norm versus the number of communication rounds on the CIFAR-10 dataset.

D.2 SIMULATIONS ON IMDB DATASET

Figure 6 shows the test accuracy of various algorithms versus the number of communication rounds
on the IMDB dataset, with subfigure 6a representing i.i.d. data and subfigure 1b depicting non-
i.i.d. data. In general, the results are similar to those in Figure 1 and Figure 3, but with smoother
curves. This may be attributed to the fact that the text sentiment analysis task, which is a binary
classification problem (positive or negative), is simpler than the image classification task. First, we
observe that our algorithms significantly outperform all the compared algorithms, including FedAvg,
SCAFFOLD, and SCAFFOLD-M, in both convergence speed and test accuracy. Second, due to the
judicious combination of adaptive stepsizes, PAdaMFed surpasses its counterpart, SCAFFOLD-
M, which only uses momentum in its local updates. Additionally, variance reduction improves
PAdaMFed’s performance through more efficient sample utilization. Finally, our algorithm’s supe-
riority is even more pronounced on non-i.i.d. data, as demonstrated in subfigure 6b.

Figure 7 compares test accuracy against the learning rate on the IMDB dataset. We only compare
our algorithm with SCAFFOLD-M, as it performed the best among the comparison baselines in the
classification task. We observe that across the entire stepsize range, our algorithm consistently out-
performs SCAFFOLD-M in test accuracy for both i.i.d. and non-i.i.d. data settings. However, com-
pared to the image classification task, the performance margin of our algorithm is less pronounced,
likely due to the simplicity of the binary classification task in text sentiment analysis. Additionally,
because of this simplicity, the performance of both algorithms in the non-i.i.d. setting is comparable
to that in the i.i.d. case, which contrasts with the image classification task.
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(a) i.i.d (b) non-i.i.d

Figure 5: Ablation study versus the number of communication rounds on the CIFAR-10 dataset.

(a) i.i.d (b) non-i.i.d

Figure 6: Test accuracy versus the number of communication rounds on the IMDB dataset.

(a) i.i.d (b) non-i.i.d

Figure 7: Test accuracy versus learning rate on the IMDB dataset.
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