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Abstract

Graph neural networks (GNNs) have shown superiority in many prediction tasks
over graphs due to their impressive capability of capturing nonlinear relations in
graph-structured data. However, for node classification tasks, often, only marginal
improvement of GNNs over their linear counterparts has been observed. Previous
works provide very few understandings of this phenomenon. In this work, we
resort to Bayesian learning to deeply investigate the functions of non-linearity in
GNN s for node classification tasks. Given a graph generated from the statistical
model CSBM, we observe that the max-a-posterior estimation of a node label
given its own and neighbors’ attributes consists of two types of non-linearity, a
possibly non-linear transformation of node attributes and a ReLLU-activated feature
aggregation from neighbors. The latter surprisingly matches the type of non-
linearity used in many GNN models. By further imposing a Gaussian assumption
on node attributes, we prove that the superiority of those ReLU activations is
only significant when the node attributes are far more informative than the graph
structure, which nicely matches many previous empirical observations. A similar
argument can be achieved when there is a distribution shift of node attributes
between the training and testing datasets. Finally, we verify our theory on both
synthetic and real-world networks. Our code is available at https://github,
com/Graph-COM/Bayesian_inference_based_GNN.git.

1 Introduction

Learning on graphs (LoG) has been widely used in the applications with graph-structured data [|1,2].
Node classification, as one of the most crucial tasks in LoG, asks to predict the labels of nodes in
a graph, which has been used in many applications such as community detection [3-6], anomaly
detection [/7,/8]], biological pathway analysis [9}/10] and so on.

Recently, graph neural networks (GNN5s) have become the de-facto standard used in many LoG tasks
due to their super empirical performance [11,12]. Researchers often attribute such success to non-
linearity in GNNs which associates them with great expressive power [ 13}/14]. GNNs can approximate
a wide range of functions defined over graphs [[15-17] and thus excel in predicting, e.g., the free
energies of molecules [18], which are by nature non-linear solutions of some quantum-mechanical
equations. However, for node classification tasks, many studies have shown that non-linearity to
control the exchange of features among neighbors seems not that crucial. For example, many works
use linear propagation of node attributes over graphs [19,/20], and others recommend adding non-
linearity while only to the transformation of initial node attributes [21-23]. Both cases achieve
comparable or even better performance than other models with complex nonlinear propagation, such
as using neighbor-attention mechanism [24]. Recently, even in the complicated heterophilic setting
where nodes with same labels are not directly connected, linear propagation still achieves competitive
performance [25L26], compared with the models with nonlinear and deep architectures [[27,28]].
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Figure 1: Averaged one-vs-all Classification Accuracy on Citation Networks of Nonlinear Models v.s.
Linear Models. Node attributes in or out of the one class are generated from Gaussian distributions
N(u, %) and NV (v, %), w, v € R™, respectively. The detailed settings are introduced in Sec.

Although empirical studies on GNNs are extensive till now and many practical observations as
above have been made, there have been very few works attempting to characterize GNNSs in theory,
especially to understand the effect of non-linearity by comparing with the linear counterparts for
node classification tasks. The only work on this topic to the best of our knowledge still focuses
on comparing the expressive power of the two methods to distinguish nodes with different local
structures [[29]. However, the achieved statement that non-linear propagation improves expressiveness
may not necessarily reveal the above phenomenon that non-linear and linear methods have close
empirical performance while with subtle difference. Moreover, more expressiveness is often at the
cost of model generalization and thus may not necessarily yield more accurate prediction [30,31].

In this work, we expect to give a more precise characterization of the values of non-linearity in
GNNss from a statistical perspective, based on Bayesian inference specifically. We resort to contextual
stochastic block models (CSBM) [32,[33]. We make a significant observation that given a graph
generated by CSBM, the max-a-posterior (MAP) estimation of a node label given its own and
neighbors’ features surprisingly corresponds to a graph convolution layer with ReLU as the activation
combined with an initial node-attribute transformation. Such a transformation of node attributes is
generally nonlinear unless they are generated from the natural exponential family [34]. Since the
MAP estimator is known to be Bayesian optimal [35], the above observation means that ReLU-based
propagation has the potential to outperform linear propagation. To precisely characterize such benefit,
we further assume that the node attributes are generated from a label-conditioned Gaussian model,
and analyze and compare the node mis-classification errors of linear and nonlinear models. We have
achieved the following conclusions (note that we only provide informal statements here and the
formal statements are left in the theorems).

* When the node attributes are less informative compared to the structural information, non-linear
propagation and linear propagation have almost the same mis-classification error (case I in Thm. [2).

* When the node attributes are more informative, non-linear propagation shows advantages. The
mis-classification error of non-linear propagation can be significantly smaller than that of linear
propagation with sufficiently informative node attributes (case II in Thm. [2).

* When there is a distribution shift of the node attributes between the training and testing datasets,
non-linearity provides better transferability in the regime of informative node attributes (Thm. [3).

Given that practical node attributes are often not that informative, the advantages of non-linear
propagation over linear propagation for node classification is limited albeit observable. Our analysis
and conclusion apply to both homophilic and heterophilic settings, i.e., when nodes with same labels
tend to be connected (homophily) or disconnected (heterophily), respectively [|251127,28.36,37].

Extensive evaluation on both synthetic and real datasets demonstrates our theory. Specifically, the
node mis-classification errors of three citation networks with different levels of attributed information
(Gaussian attributes) are shown in Fig. |1} which precisely matches the above conclusions.

1.1 More Related Works

GNNss have achieved great empirical success while theoretical understanding of GNNs, their non-
linearity in particular, is still limited. There are many works studying the expressive power of
GNNs [16,38H48]], while they often assume arbitrarily complex non-linearity with limited quantitative
results. Only a few works provide characterizations on the needed width or depth of GNN layers [45-
48]. More quantitative arguments on GNN analysis often depend on linear or Lipschitz continuous



assumptions to enable graph spectral analysis, such as feature oversmoothing [49,|50] and over-
squashing [51,52], the failure to process heterophilic graphs [25,27,/53] and the limited spectral
representation [54,55]. Some works also study the generalization bounds [[56-58] and the stability
of GNNs [59-62]. However, the obtained results may not reveal a direct comparison between non-
linearity and linearity of the model, and their analytic techniques avoid tackling the specific forms of
non-linear activations by using a Lipschitz continuous bound which is too loose in our case.

Stochastic block models (SBM) and its contextual counterparts have been widely used to study the
node classification problems [32,/33,/63-67], while these studies focus on the fundamental limits.
Recently, (C)SBM and its large-graph limitation also have been used to study the transferrability
and expressive power of GNN models [[68-70]] and GNNs on line graphs [5], while these works did
not compare non-linear and linear propagation. CSBM has also been used to show the advantage of
linear convolution over no convolution for node classification [[71]. A very recent result shows that
attention-based propagation [24] may be much worse than linear propagation given low-quality node
attributes under CSBM [72]]. Our results imply that ReLU is the de facto optimal non-linearity instead
of attention and may at most marginally outperform the linear model when with low-quality node
attributes. Some previous works also use Bayesian inference to inspire GNN architectures [73-80],
while these works focus on empirical evaluation instead of theoretical analysis.

2 Preliminaries

In this section, we introduce preliminaries and notations for our later discussion.

Maximum-a-posteriori (MAP) estimation. Suppose there are a set of finite classes C. A class label
Y € C is generated with probability 7y, where ) - cc Ty = 1. Given Y, the corresponding feature
X in the space X is generated from the distribution X ~ Py-. A classifier is a decision f : X — C and
the Bayesian mis-classification error can be characterized as £(f) = 3.y co Ty [ 15(x)2v Py (X),
where and later 1g indicates 1 if .S is true and O otherwise. The MAP estimation of Y given X is
the classifier f*(X) £ arg maxy ¢ Ty Py (X) that can minimize £(f) [35]. Later, we denote the
minimal Bayesian mis-classification error £(f) as £* = £(f*).

Signal-to-Noise Ratio (SNR). Detection of a signal from the background essentially corresponds to
a binary classification problem. SNR is widely used to measure the potential detection performance
before specifying the classifier [81]]. In particular, if we have two equiprobable classes C = {—1,1}
and the features follows 1-d Gaussian distributions Py = N (u1y,0%), Y € C. The SNR p defined as
follows precisely characterizes the minimal Bayesian mis-classification error.

mean difference®  (py — p_1)?
SNR: p= = . 1
p variance o? M

In this case, the MAP estimation f*(X) = 2 % 1;x_,,|>|x—u_,| — 1 and the minimal Bayesian
mis-classification error is ®(—,/p/2) where ® denotes the cumulative standard Gaussian distribution
function. For more general cases where the two classes are associated with sub-Guassian distribu-
tions Py, s.t. Py (|X| > t) € [c1 exp(—cat?), C; exp(—C5t?)], for some non-negative constants
c1, c2, C1, Cy, a similar connection between £* and p can be shown by leveraging sharp sub-Gaussian
lower bounds [82]. We will specify the connection to SNR in our case in Sec. ] and the SNR p will
be used as the main bridge to compare the mis-classification errors of non-linear v.s. linear models.

Contextual Stochastic Block Model (CSBM). Random graph models have been widely used to
study the performance of algorithms on graphs [83}/84]]. For node classification problems, CSBM is
often used [68-70], as it well combines the models of network structure and node attributes.

We study the case that nodes are in two equi-probable classes C = {—1, 1}, where 7y = %, Y eC.
Our analysis can be generalized. An attributed network G = (V, £, X) is sampled from CSBM with
parameters (n, p, ¢, P1,P_1) as follows. Suppose there are n nodes, V = [n]. For each node v, the
label Y,, € C is sampled from Rademacher distribution. Given Y,,, the node attribute X,, is sampled
from Py;,. For two nodes u, v, if Y;, = Y,,, there is an edge e,,,, € £ connecting them with probability
p. If Y, #Y,, there is an edge e,, € £ connecting them with probability ¢g. All node attributes X
and edges & are independent given the node labels Y = {Y,|v € V}.

Note that p > ¢ indicates the nodes with the same labels tend to be directly connected, which
corresponds to the homophilic case, while p < ¢ corresponds to the heterophilic case.



The gap |p — q|, representing probabilities difference of a node connects to nodes from the same
class or the different class, reflects structural information and the gap between P1, P_; reflects
attributed information, e.g., Jensen-Shannon distance JS(P;, P_1) that is well connected to Bayesian
mis-classification error [[85]. Graph learning allows combining these two types of information. In
Sec. [, we give more specific definitions of these two types of information and their regime for our
analysis.

3 Bayesian Inference and Nonlinearity in Graph Neural Networks

In the previous section, we discuss that given conditioned feature distributions X ~ Py, Y € C, the
MAP estimation f*(X') can minimize mis-classification error. For node classification in an attributed
network, the estimation of a node label should depend on not only one’s own attributes but also
its neighbors’. For example, in a homophilic network, nodes with same labels tend to be directly
connected. Intuitively, using the averaged neighbor attributes may provide better estimation of the
label, which gives us graph convolution. In a heterophilic network, nodes with different labels tend
to be directed connected. So, intuitively, checking the difference between one’s attributes and the
neighbors’ may provide better estimation. However, what could be the optimal form to combine
one’s own attribute with the neighbors’ attributes? We resort to the MAP estimation. That is, given
the attributes of a node v € V and its neighbors ,,, we consider the MAP estimation as follows.

*XIH qu ) — IPX’U’ qu R va7 Yuu )
PO X o) = angmas | a5, PO (b N Yo (Yo b

where Ty, (v, }, .., denotes their prior distributions of node labels. Note that here we simplify the
problem and consider only 1-hop neighbors by following the setting [71]. In practice, most GNN
models can only work on local networks due to the scalability constraints [|11}/86}87]. Even with the
above simplification, the above MAP estimation is generally intractable.

Therefore, we consider the CSBM with parameters (n, p, ¢, 1, P_1). In this case, the prior distribu-
tion follows Ty, (v, 1,cn, =27 IWel=1 which is a constant given A, The rest term follows

]P) (X1)7 {XU}UE./\/’Ualexu {}/u}ue./\fv) = P (Xm {Xu}ueNv |K;7 {Yru}uGNU) P (M)D/v; {Yu}uENU)

- H Py, (Xu) H pUFYoY)/2,0-YuY)/2 (9
ueN,U{v} weN,

Therefore, the MAP estimation f*(X,, { Xy, }uens,) is to solve

P (X (Ko bucn,) = argmas Py, (X,) [[ max By, (X,)pH¥/2g0-¥02  (3)
’ Y,ec uEN Yucl

This can be solved via the max-product algorithm [88]. To establish the connection to GNNs, we
rewrite the RHS of Eq. in the logarithmic form and use the fact that C = {—1, 1}. And, we achieve

T ( Xy, A Xuuen,) = sgn <1Og + Z M(Xu,psq ) ,  where
ueN,
Py (X,) > ( Py (X,) > q
M(Xy,p,q) = ReLU (lo ——— +1o —ReLU (log —————* + 1o + log =.
(Xu,p,9) Bp, (x, T8, B, (x,) T8, e

We leave the derivation in Appendix [B| Amazingly, activation ReLUs in the message M well connect
to the activations commonly-used in GNN models, e.g., graph convolution networks [12]]. Given the
optimality of the MAP estimation, we summarize this observation in Proposition

Proposition 1 (Optimal Nonlinear Propagation). Consider a network G ~ CSBM(n, p, q,P1,P_1).
To classify a node v, the optimal nonlinear propagation (derived by the MAP estimation) given the
attributes of v and its neighbors follows:

Py = (Xo;P1,Poy) + Y ¢ (¢ (Xu;Pr,Py);log(p/q)) )
uEN,

where ¢ (a;P1,P_1) = log Pl(?) and ¢(a;log 2) = ReLU(a+log £) — ReLU(a —log £) —log 2.




The optimal nonlinear propagation in Eq. (4) may contain two types
of non-linear functions: (1) ¢ is to measure the likelihood ratio
between two classes given the node attributes; (2) ¢ is to propagate
the likelihood ratios of the neighbors. ReLUs in ¢ avoid the overuse
of the likelihood ratios from neighbors, as ¢ essentially provides a  Figure 2: Function é(z;log 2 )
bounded function (See Fig.[2). One observation of the direct benefit

of this non-linear propagation is as follows.

v
log?
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X
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Remark 1. When there is no structural information, ie., p = q, ¢(x;0) = 0, Vz € R, the
propagation is deactivated, which avoids potential contamination from the attributes of the neighbors.

In the equ1probable case, the MAP estimation also gives the maximum likelihood estlmatlon (MLE)
of Y if we view the labels as the fixed parameters. When the classes are unbalanced my # 1 5, similar
results can be obtained while additional terms log - may appear as bias in Eq. (). Later, our

analysis focuses on the equiprobable case while empmcal results in Sec. [5]show more general cases.

Moreover, if one is to infer the posterior distribution of Y, one may replace the max-product algorithm
to solve Eq. (3) with the sum-product algorithm [89]. Then, the obtained non-linearity in ¢ will turn
into Tanh functions. As ReLUs are more used in practical GNNs, we focus on the case with ReLUs.

Discussion on the Non-linearity. Next, we discuss more insights into the non-linearity of ¥ and ¢.

The function 1 essentially corresponds to a node-attribute transformation, which depends on the
distributions P . As these distributions are unknown in practice, a NN model to learn v is suggested,
such as the one in the model APPNP [21]] and GPR-GNN [25]]. Due to the expressivity of NNs [90,91]],
a wide range of 1) can be modeled. One insightful example is that when [P ; are Laplace distributions,
1) is a bounded function (same as ¢) to control the heavy-tailed attributes generated by Laplace
distributions.

Example 1 (Laplace Assumptlon) When node attributes follow m-dimensional independent Laplace
distribution, i.e., Py, = (2b),n exp(—|| Xy — Youl|1/b) for w € R™, b > 0and Y, € {-1,1}.
According to Eq. @), the function ¢ (-;P1,P_1) can be specified as

Yigp(Xo; P1,P_y) = 17¢(X,;2u/b), where ¢ as defined in Eq. @) works in an entry-wise manner.

As node-attribute distributions may vary a lot, v is better to be modeled via a general NN in practice.
More interesting findings may come from ¢ in Eq. (@) as it has a fixed form and well matches the
most commonly-used GNN architecture. Specifically, besides the extreme case stated in Remark|[T,
we are to investigate how non-linearity induced by the ReLUs in ¢ may benefit the model. We expect
the findings to provide the explanations to some previous empirical experiences on using GNNs.

To simplify our discussion, when analyzing ¢, we focus on the case with a linear node-attribute
transformation 1) = tG,, in Eq. (6) by assuming label-dependent Gaussian node attributes. This
follows the assumptions in previous studies [[71,/72]. In fact, there are a class of distributions named
natural exponential family (NEF) [34] which if the node attributes satisfy, the induced ¢ is linear. We
conjecture that our later results in Sec. ] are applied to the general NEF since the only difference is
the bias term by comparing Eq. (5) and Eq. (6).

Example 2 (Natural Exponential Family Assumption). When node features follow m-dimensional
natural exponential family distributions Py, (X) = h(X,) - exp(6{. X, — M(0y,)) for Oy, € R™
andY, € {—1,1} where M (0y,) is a parameter function. The function (-;P1,IP_1) is specified as:

Unef( X3 01,0_1) = (01 — 0_1)" X, — (M(01) — M(6_1)). @)
In particular, when Py = N (i, I/m), P_y = N'(v, I/m) for u,v € R™,
Vea(Xos 1, v) = m [(n—v)" Xy — ([l = I713)/2] - (6)

More generally, our optimal nonlinear propagation Eq. (4) can be well generalized to other settings
as long as the model satisfies edge-independent assumption, where edges random variables are
mutually independent conditioned on the labels of nodes. When this assumption is satisfied, the MAP
estimation will result in graph convolution with ReL.U activation.

We summarize our main theoretical findings regarding the nonlinearity of ¢ in the next section.



4 Main Results on ReLLU-based Nonlinear Propagation

In this section, we summarize our analytical results on ¢ in the optimal nonlinear propagation (Eq. (4)).
Our study assumes an attributed network generated from CSBM(n, p, ¢, N'(u, I/m), N (v, [/m))
where pu, v € R™. We use CSBM-G(n, p, q, i1, V) later to denote this model for simplicity. We
are interested in the asymptotic behavior when n — oco. Note that all parameters p, v, p, ¢, m may
implicitly depend on n. We are to compare the non-linear propagation model P, suggested by Eq. (@)
where 1) = )G,y With the following linear counterpart P..

Baseline linear model: Pf)(w) = Yoau(Xo; 1, V) +w Z WGan(Xu; 1, v), forallv € V. (7)
ueEN, v
where w € R is an extra parameter to be tuned. Note that this linear model can be claimed as an

optimal linear model up-to a choice of w because the distributions of both the center node attribute
X, and the linear aggregation from the neighbors ) w7, Xu are Gaussian and symmetric w.r.t. the

hyperplane {Z € R™|(u — v)TZ = (||ul|3 — ||v||3)/2} for the two classes. We are to compare
their classification errors £" = £(sgn(P,)) and &' (w) = £(sgn(P! (w))). By following [71], we also
discuss separability of all nodes in the network, i.e., P(Yv € V, P, - Y, > 0) in Theorem 1.

To begin with, we introduce several quantities for the convenience of further statements. The SNRs

_EPY =1 -ER Y = 1) (EPLw)IY = 1 - BPyw)]Y, = ~1)°
Pr var(P,|Y, = 1) L var(PL(w)|Y, = 1)
are important quantities to later characterize different types of propagation. Also, we characterize
structural information by S(p, q) = (p — ¢)?/(p + ¢) and attributed information by /|| — v/|2.

(log 7z)2) and S®:9)
n [p—q]

Assumption 2 (Bounded Attributed Information). /m||u — v|l2 = o, (logn).

Assumption 1 (Moderate Structural Information). S(p, q) = wy( - 1.

Assumption states that structural information should be neither too weak nor too strong. S(p, q) =
2

wn(@) excludes the extremely weak case discussed in Remark Moreover, the graph structure

should not be too sparse, so the aggregated information from neighbors dominates the propagation.

S9) _, | means neither p = wr(q) nor ¢ = wy,(p), which avoids extremely strong structural

[p—q
information. This assumption is more general than some concurrent works on CSBM-based GNN

analysis [71,{72] as we include the cases with less structural information |p — q| = o0,(p + q)
and with heterophily p < ¢. Assumption [2 is to avoid too strong attributed information: when
vmllp —v|l2 = Q,(logn), all nodes in CSBM can be accurately classified in the asymptotic sense
without structural information, i.e. P(Vv € V, ¥ga(Xy; i, v) - Yy, > 0) = 1 — 0,(1). Now, we
present our first lemma which links the mis-classification errors £, ! to with the SNRs p,., p;:

Lemma 1. Suppose (p, q) satisfies Assumptionfor any G ~ CSBM-G(n, p, q, i, V),
¢ € [Crexp(=Cap,/2),exp(—pr/2)], € (w) = exp(—pi(w)(1 + 0,(1))/2) ®)

where C5 is asymptotically a constant, and the notation a(n) — b(n) denotes a(n)/b(n) — 1.
Lemmal[T]claims that the classification errors under both nonlinear and linear model can be controlled
by their SNRs. By leveraging Lemmal[I] we can further illustrate the separability of all nodes in the
network, which is presented in the following theorem.

Theorem 1 (Separability). Suppose that (p, q) satisfies Assumption for G ~ CSBM-G(n, p, q, i, V),
if vmllp = vz = wn(y/logn/S(p, q)n), then
P(VoeV,P, Y, >0)=1—-0,(nexp(—p-/2)) =1 —0,(1), 9)
P(Vo € V, P (w)-Y, >0)=1— 0O, (nexp(—p(w)/2)) =1 —0,(1). (10)
Here, assume |w| > c for some positive constant ¢ and sgn(w) = sgn(p — q) in the linear model.
TheoremEapplies to both homophilic (p > ¢) and heterophilic (p < ¢) scenarios. Even for just

the linear case, compared to [71] which needs \/m||x — v||2 = w,(logn/+/S(p, ¢)n) to achieve
separability, we have /log n improvement due to a tight analysis.



As shown in Lemma [ and Theorem [T, the errors are mainly determined by SNRs. Large SNR
implies a fast decay rate of the errors of a single node and the entire graph, which motivates us to
further explore SNRs to illustrate a comparison between non-linear and linear models. We consider
comparing with the optimal linear model, i.e., p; = p;(w*), where w* = arg min,eg & (w).
Theorem 2. Suppose that (p, q) satisfies Assumptionz for G ~ CSBM-G(n, p, q, i, v), under the
separable condition in Theorem vmllu — vl = wn(y/logn/S(p, ¢)n), we further have

o I Limited Attributed Information: When /m||un — v|2 = O,(1),
pr = ©n(p]), (11

Further, if /m||p — vlj2 = on(|1og(p/9)]), pr/p} = 1;
* II. Sufficient Attributed Information: When \/m||ju — v||2 = w, (1) and satisfies Assumption 2}

pr =wn(min{exp(m|lp —v[3/3),nS(p, )m™ u —vI3*} - pf) = walpi).  (12)

Theorem E also works both homophilic (p > ¢) and heterophilic (p < ¢) scenarios. Theoremg
implies that when attributed information is limited, nonlinear propagation behaves similar to the
linear model as their SNRs are in the same order. Particularly, when attributed information is very
limited, v/m/||p — v||2 = on(]log(p/q)|), the SNRs of two models are asymptotically the same. In
the regime of sufficient attributed information, nonlinear propagation brings order-level superiority
compared with the linear model. The intuition is that in this regime, when the attributes are very
informative, the bounds of ¢ in Eq. (4} help with avoiding overconfidence given by the node attributes.
The coefficient before p; in Eq. shows the trade-off between structural information and attributed
information on controlling the superiority of nonlinear propagation.

Next, we analyze whether nonlinearity makes model more transferable or not when there often exists
a distribution shift between the training and testing datasets, which is also practically useful.

We consider the following setting. We assume using a large enough network generated by CSBM-
G(n, p, q, i, v) for training so that the optimal parameters as in P, and P! (w*) for this CSBM-G
have been learnt. We consider their mis-classification errors over another CSBM-G with parameters
(n,p', ¢, 1, v"). We keep the amounts of attributed information and structural information unchanged
bysettingp=p',q=¢, 0 = (p+v)/2+ R(p—v)/2,V = p+v/2+ R(v — u)/2 for a rotation
matrix R close to I. Let A¢” and A¢!(w*) denote the increase of mis-classification errors of models
P, and P! (w*), respectively, due to such a distribution shift. We may achieve the following results.

Theorem 3 (Transferability). Suppose that (p,q) satisfies Assumption [I, for G' ~ CSBM-

G(n,p', ¢, 1, V"), under the linear separable condition \/m|u' — V|2 = wy(y/logn/S(p', ¢ )n).
Suppose P, and P (w*) have learnt parameters from G ~ CSBM-G(n, p, q, i, ) where the parame-
ters of two CSBM-Gs follow the relation described above. Then, we have

* I Limited Attributed Information: When \/m||p — v||2 = o, (|log(p/q)|), AE™ /AL (w*) — 1.

o IL. Sufficient Attributed Information: When \/m||p — v||2 = wy, (1) and and satisfies Assump-
tion AL /AL (w*) — 0.

Similar to Theorem [2, when attributed information is very limited, nonlinearity will not bring any
benefit, while in the regime with informative attributes, nonlinearity increases model transferability.
We leave the intermediate regime /m||p — v||2 € [Q2,(|log(p/q)|), On(1)] for future study.

S Experiments

In this section, we verify our theoretical results based on synthetic and real datasets. In all experiments,
we fix w in the linear model (Eq. (7)) as w = 1 for the homophilic case (p > ¢) and w = —1 for the
heterophilic case (p < ¢). Experiments on other w’s can be found in Appendix which does
not change the achieved conclusion. This is because when the node number 7 is large, for a constant
w, the neighbor information will dominate the results. Later, we use P! = P! (w) for simplicity.

5.1 Asymptotic Experiments - Model Accuracy & Transferability Study

Our first experiments focus on evaluating the asymptotic (n — oo) classification performance of
nonlinear and linear models. Given a CSBM-G, we generate 5 graphs and compute the average
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accuracy results (#correctly classified nodes / #total nodes). We compare the nonlinear v.s. linear
models under three different CSBM-G settings. Fig. [3|shows the results.

All three cases satisfy the separability condition in Theorem [T, so, as n increases, the accuracy
progressively increases to 1. Our results also match well with the implications provided by Theorem 2}
In the regime with limited attribute information (Fig. ELEFT) where p, = ©,,(p]) as proved, the
nonlinear model and the linear model behave almost the same (performance gap < 0.15% for
n > 10°). In the regime with sufficient attribute information (Fig. [l MIDDLE) where p, = wy(p})
as proved, we may observe that the nonlinear model can significantly outperform the linear model
as n — oo. Fig.[I RIGHT is to show the heterophilic graph case (p < ¢). If we switch the values
of p, ¢ (and also change the models correspondingly), we obtain the exactly same figure up to some
experimental randomness (see Appendix [H.1.2). Also, Fig.[T RIGHT considers a boundary case of
sufficient attributed information, i.e., /m[[ — v||> = ©,(1). We observe that Theorem 2] still well
describes the asymptotic performance when n — oo.

We further study the transferability for the non-linear model and the linear model. We follow the
setting in Theoremby rotating i, v — ', V. Fig. 4 shows the result and well matches Theorem
In the regime of limited attributed information, the two models have the almost same transferability,
i.e., the perturbation error ratio is close to 1. In contrast, with sufficient attributed information, the
non-linear model is more transferrable than the linear counterpart as the ratio is smaller than 1.

5.2 Transition Curve

Our second experiment studies the tradeoff between attributed information and structural information.
We fix the graph size n = 2 x 10* and get the averaged classification accuracy based on 5 generated
graphs. For the homophilic case, we test different levels of attributed information (|| — v|| from
10~* to 10 with m = 10) and structural information (fixing ¢ = 5 x 1072 and increasing p from
p = ¢ to 1). The intermediate testing points are sampled in log scales. Fig. [5|LEFT shows the results.
When structural information is limited and attributed information is sufficient, the non-linear model
shows significant advantage over the linear model while for most other parameter settings, these two
models share similar performance. Fig.[5 RIGHT shows the heterophilic case, where we observe a
similar pattern. In the heterophilic case, we fixing p = 5 x 1073 and increasing ¢ from ¢ = p to 1.
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5.3 Real-world Network Experiments

This experiments compare non-linear models and linear models under Gaussian and Laplacian
attributes on three benchmark citation networks PubMed, Cora, and CiteSeer @]. In these three
networks, nodes denote papers and edges denote the citation relationships between the papers. The
statistics (# nodes, # edges, # classes) of these three networks are: PubMed (19,717, 44,338, 3);
Cora (2,708, 5,428, 7); CiteSeer (3,327, 4,732, 6).

Experimental Settings. We carry out one-v.s.-all and several-v.s.-several classification tasks. After
nodes are put into two classes, we generate two graphs independently with attributes according to
Gaussian (or Laplace) distributions. One graph is used for training and the other one for testing. For
the Gaussian case, we use a nonlinear model by following Eq. 4| with ¢) = 1), While the parameters
such as log(p/q), i — v and other biases need to be learned. For the Laplacian case, we consider three
nonlinear models by following the form of (a) full Eq. E with ¢ = 1)1,p; (b) only nonlinear attribute
transformation 1) = %)j4p; (c) only nonlinear propagation ¢ with linear attribute transformation.
Later, we call them nonlinear models (a), (b), (c), respectively. Similar to the Gaussian case, all the
parameters in these functions are obtained by training. The model is trained with Adam optimizer
(learning rate = le — 2, weight decay = 5e — 4). We give other details to Appendix [H.2.T.

Result Analysis. We report the averaged results over 5 trials in Fig.|I|(Gaussian) and Fig. 6| (Lapla-
cian). Due to the space limit, we leave the results for the several-v.s.-several case in Appendix [H.2.1]
The Gaussian case well matches our theory. Only when the node features are very informative, the
gaps between the nonlinear model and the linear model become significant. This is true for all three
networks.

The Laplacian case is more complicated. Non-linear model (a) outperforms the two non-linear models
(b) and (c). The two non-linear models both outperform the linear model. More specifically, when
attributed information is not very informative, i.e., small ||u||2, attribute nonlinear transformation
function 9 4, is more crucial, because in this regime, non-linear model (a) significantly outperforms
non-linear model (c) and non-linear model (b) significantly outperforms the linear model, while
two non-linear models (a) and (b) perform similarly, and non-linear model (c) and the linear model
perform similarly. With more informative attributed information, nonlinear propagation function
¢ becomes more significant, because the gaps between two non-linear models (a) and (b) (also,



non-linear model (c) and the linear model) are obvious, which again matches our Theorem 2] although
here we have Laplacian node attributes instead of Gaussian node attributes.

6 Conclusion

This work uses Bayesian methods to investigate the function of non-linearity in GNNs. Given a
graph generated from CSBM, we observe the optimal non-linearity to estimate a node label given
its own and neighbors’ attributes is in twofold: attribute non-linear transformation and non-linear
propagation. We further investigate the non-linear propagation by imposing Gaussian assumptions on
node attributes. We prove that non-linear propagation shares a similar performance (with or without
distribution shift) with linear propagation in most cases except when node attributes become very
informative. These findings explain many previous empirical observations in this domain and would
help researchers and practitioners to understand their GNNs’ behaviors in practice.
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